
 Apeiron, Vol. 9, No. 2, April 2002 62 

© 2002 C. Roy Keys Inc. 

Surfaces of Constant 
Retarded Distance and 
Radiation Coordinates 

J. H. Caltenco, R. Linares y M., J. López-Bonilla 
Sección de Estudios de Posgrado e Investigación 
Escuela Superior de Ingeniería Mecánica y Eléctrica 
Instituto Politécnico Nacional 
Edif. Z, Acc. 3, 3er piso, Col. Lindavista 
CP07738, México, DF 
E-mail:lopezbjl@hotmail.com 
hcalte@maya.esimez.ipn.mx 

We construct the element of volume vector corresponding to a 
surface of constant retarded distance around of an arbitrary 
timelike curve; the method employed is based in the radiation 
coordinates of Florides-McCrea-Synge for Riemannian 4-
spaces. Our results have interest in the study of the 
electromagnetic Liénard-Wiechert field in curved spacetimes. 
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1. Introduction 
In this work the element of volume vector rdσ  is calculated for a 
surface with a constant retarded distance, which is constructed around 
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of the trajectory of an electric charge with arbitrary motion in a 
Riemannian space. This is a generalization that was done by Synge 
[1] in special relativity. The employed method is suggested by the 
radiation coordinates ry  introduced in [2,3] for the study of 
gravitational radiation; here they are used in electromagnetic radiation 
and they are very well adapted for this purpose because with such 
coordinates the curved space behaves like a “flat space” in some 
aspects. In other words, the use of ry  implies that what was learned 
in Minkowski space can be translated naturally to Riemann’s spaces. 
Our expression for rdσ  coincides with Villarroel’s results 
obtained in [4] by means of the procedure that DeWitt-Brehme [5] 
use when constructing a surface with cons tant instantaneous 
distance [6,7]. However, we think that our method is more simple 
and powerful because it turns immediate the results on radiation 
tensors deduced in [8]. 

We shall use the “Universe Function” Ω  of Ruse [9], which 
allows having covariant expansions in curved space. This function 
remained forgotten during a long time and its present relevance may 
be seen in [4, 5, 8, 10-17]. 

2. Radiation Coordinates 
We assume the Einstein convention for the addition of repeated 
indices (1, 2, 3, and 1,…,4 for greeks and latin indices, respectively) 
and that the metric locally takes the diagonal form ( ) ( )1- 1, 1, ,1=abη  

at any event. In order to construct the radiation coordinates ry  of [2] 
we need a timelike curve C (which in this case will be the electron 
trajectory) with an orthonormal tetrad on it. 

 ( ) ( ) abib
i
a ee η='
' , ( )

( )
'''' ji

a
jia gee = , (1) 
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where ( ) ds
dx

e
i

ii
'

''
4 == υ  is the unitary tangent vector to C, and rx  is a 

totally arbitrary coordinate system with ji
ij dxdxgds =2 . The primed 

indices label points on C. 
Now let us see how rx  generates new coordinates. For every P we 

construct the past sheet of its null cone which intersects to C in P’ 
(retarded point associated to P). We parametrize the null geodesic P 
P’ in the form ( )uxr  with 0uu =  at P’ and 01 uuu >=  at P with 

du
dx

V
r

r =  as its tangent vector satisfying 0=r
rVV .  The assigned 

radiation coordinates to P are given by: 

 [ ] ( ) '
''

jr
jj

r esy υ+Ω−=  (2) 

where 'jΩ  denote the covariant derivative of Ω [14]: 

 ( ) '01' jj Vuu −−=Ω , 0'
' =ΩΩ j

j . (3) 

The expression (2) is equivalent to: 

 ( ) '
'

j
j ey σσ Ω−= , sy j

j +Ω= '
'

4 υ , (4) 

which implies that in radiation coordinates the curve C reduces to 
syy == '4'   ,0σ . If we introduce the notation: 

 '' jjK Ω−=  '
j'w jυΩ= , (5) 

then (4) adopts the form of the relation (9.3) of [1] for flat space: 

 ( ) '
'

j
j eKyy σ

σ
σ == , swyy +=−= 4

4 . (6) 

In this sense the curved space behaves like a Minkowski space, which 
is very useful. 
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At P´ the metric tensor can be written in terms of the tetrad as 
( )

( ) '''''' jijiji eeg υυσ
σ −= , then from (3) and (5): 

 ( ) 2''''
'' wgKKyy jiji

ji =+= υυσ
σ , (7) 

thus 

 ( ) ''' jjj weyK υσ
σ += , (8) 

therefore ( )'rr yy −  behaves like a null vector because 

( )( ) 0'
' =−− rr

rr yyyy . Our expressions (7) and (8) coincide with 
(9.4) and (9.5) of [1]. 

Following the corresponding procedure in flat space we introduce 
a new system of coordinates: 

 σσ yz = , syyyz =−= σ
σ44 , (9) 

that is, 4z  remains constant on the null cone with vertex at P’ It is 
clear that the Jacobian of the transformation: rr zy →  is equal to one, 
therefore: 

 





=





b

a

b

a

x
y

J
x
z

J  (10) 

Let us calculate (10). If we use that ( ) rr Vuu 01 −=Ω  and 

r
r

r
r

r

r

ws
x
x Ω−==

∂
∂ − '1

,
'

'

υυ , then from (6) and (9) we obtain the partial 

derivatives: 
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( ) ( ) ( )

ii

i
r

r
jr

rj
i

iii

w
x
z

e
ds
d

ewe
x
z

Ω−=
∂
∂

Ω



 Ω+Ω+Ω−=

∂
∂

−

−

1
4

'
'

''
''

1'
'

σσσ
σ

υ
, 11) 

thus  

 

( ) ( ) ( ) ( ) ''3'2'1
'''''

1

4321

det           ptrj
ptrjba

mkji

ijkm

b

a

eeew

x
z

x
z

x
z

x
z

x
zJ

Ω∈Ω−=

∂
∂

∂
∂

∂
∂

∂
∂≡∈









−

, (12) 

where we have employed the property '
'

p
mpm ΩΩ=Ω  and the 

antisymmetry of the Levi-Civita symbol ijkm∈ . From (3) it is evident 
that 'pΩ  can be expressed in terms of the tetrad as 

( ) ( ) '4'' ppp weeb +=Ω σ
σ , then (12) implies the final form: 

 ( )∆−=





Pg

x
z

J b

a

2
1

, (13) 

such that 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
' '

1 1
2 2

'

det , ' det

det , '

ij i j

a b

g P g g P g

D g P g P D
− −

= − = −

= − −Ω ∆ =
. (14) 

With (13) it is apparent the remark of [5] p. 231 and [12] p. 1251: the 
geodesics emerging from P begin their intersection when 01 =∆− , 
arising the so-called “caustic surface.” Therefore we shall accept that 
P is near to P’. 

The relations (9) and (13) permit to consider the volume element 
of the curved space- time, in fact: 
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 ( ) zdsdPgzd
z
xJxd

a

b
312

144 −− ∆=






= , (15) 

but from (6), (7) and (9) it is clear that 2wzz =σ
σ , thus σz  can be 

seen as a 3- vector at P’ of magnitude w and spherical coordinates 
ϕθ  ,  with respect to the triad ( ) 're σ , then: 

 γdwdwzd 23 = , ϕθθγ ddd sin=  (16) 

being γd  the element of solid angle in the rest frame of the charge. In 
this way (15) turns out to be: 

 ( ) γdsdwdwPgxd 212
14 −− ∆= , (17) 

which together with (13) represent the generalization to Riemannian 
spaces from the following results (9.15) and (9.21) of Synge [1] (who 
uses imaginary coordinates) for Minkowski space: 

 1−=





b

a

x
z

J , γdsdwdwxd 24 =  (18) 

In the next section we will apply (17) to the particular case of the 
surface =w constant, which is important when studying the 
electromagnetic radiation. 

3. Surface of constant retarded distance  
We consider the 3-space =w constant, thus the covariant derivative 

rw; is orthogonal to that surface. Then it is evident that its vector 

volume element is given by: 

 σσ dwwwd r
a

ar ;
2

1
;

;

−
= , (19) 
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being σd  the 3-element of volume. But when building the shell 
formed by dwww +  ,  and the null cones at two points on C, we get 

for its 4-volume σdwdwwxd a
a

2
1

;
;

4 −
=  and after comparison with 

(17) it implies that ( ) γσ dsdwPgdww a
a

212
12

1
;

,
−−−

∆= , thus (19) 

adopts the form 

 ( ) γσ dsdwwPgd rr ;
212

1 −− ∆= . (20) 

On the other hand, from (5): 

 ( ) rrr Www Ω+−= − χσ 1
;

ˆ  (21) 

with the notation:  

 '
'ˆ i
rir υσ Ω= , ''

''
ji

ji υυχ Ω= , (22) 

'
'

'
'

i
i

i
i aK

ds
d

W −=Ω= υ , 

where 'ia  is the acceleration of the charge. Substituting (21) in (20) 
we find the result (3.35) of Villarroel [4]: 

 ( ) ( )[ ] γχσσ dsdWwwPgd rrr Ω+−∆= −− ˆ12
1

, (23) 

which is the generalization to curved spaces of (10.6) of Synge [1]. 
The deduction of (23) was simple thanks to the radiation 

coordinates that originated (17). Nevertheless, this is not the end of 
the usefulness of rz ; in our opinion, its true importance lies on the 
analogies that we can establish with the Minkowski space, which will 
be seen more clearly in the next section. 
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4. Radiation tensors 
In the flat space we have the following radiative part of the Maxwell 
tensor corresponding to the Liénard-Wiechert retarded field 
( )j

jaaa =2 : 

 ( ) sr
R
rs KKWwawqT 22242 −− −=  (24) 

which is a radiation tensor because it satisfies: 

 0=s

R
rs KT , 0, =s

R
rsT . (25) 

The continuity equation (25) is consequence of: 

 
( )
( )

2 4 ,

6 2 ,

0

0

s
r s

s
r s

a w K K

w W K K

−

−

=

=
, (26) 

which in turn are particular cases of the identity; 

 ( )[ ] 0,2 =− s
sr

mn KKWwaf , 4−+− mn , (27) 

f  being an arbitrary function of 2a . 
It is quite natural to ask ourselves if (24) can be extended to the 

curved space. The answer is affirmative under the two prescriptions: 
Identify rK  with rΩ− , see (5). 

Multiply (24) by ( )∆Pg 2
1

 due to the fact that xd 4  contains the 

factor ( ) 12
1 −− ∆Pg  with respect to the corresponding expression for 

the flat space, see (17). 
Thus: 

 ( ) ( ) sr
R
rs WwawPgqT ΩΩ−∆= −− 22242

12 , (28) 
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satisfies (25) with covariant derivative, and it is immediate the 
generalization of (26): 

 
( )

( )

;1 2 42

;1 6 22

0

0

s

r s

s

r s

g P a w

g P w W

−

−

 ∆ Ω Ω =  

 ∆ Ω Ω =  

. (29) 

Moreover, from (17) and (28) we have the relation: 

 ( ) γddwdsWwawqxdT br
R
rb ΩΩ−= −− 222224 , (30) 

which is important when performing some integration around the 
world line of q . 

We notice that (28) and (29) correspond to the results 
(2.28),….,(2.31) of Villarroel [8], but in our focusing they emerged 
naturally through the correspondence with the Minkowski space. 
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