
l

l 1985)
le process
a non-

ofs

r,
Information Processing Letters 92 (2004) 83–87

www.elsevier.com/locate/ip

A constructive proof for FLP

Hagen Völzer∗

Institute for Theoretical Computer Science, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

Received 18 March 2004; received in revised form 3 June 2004

Available online 27 July 2004

Communicated by R. Backhouse

Abstract

We present a simple elementary proof for the result of Fischer, Lynch, and Paterson (FLP) [J. ACM 32 (2) (Apri
374–382] that the consensus problem cannot be solved deterministically in an asynchronous system where a sing
may fail by crashing. Our proof is, in contrast to the original, constructive in its crucial lemma, showing not only that
terminating execution does exist but also how it can be constructed. Our proof is based on the new notion ofnon-uniformityof
a configuration. Non-uniformity is different frombivalency, which is the central notion in the original proof as well as in pro
of related results.
 2004 Elsevier B.V. All rights reserved.

Keywords:Distributed computing; Distributed systems; Fault tolerance; Concurrency; Consensus problem; Formal modelling

1. Introduction altered, multiplied, or lost during transit. Howeve
the
ut-
in-
er,
ex-
d as

ich
onal

een
each
not

messages may be received in a different order than in

per-
the
ing a
, i.e.,
d only
te of
stem
tive

also
. This
since
ystem

erved
The crash-tolerant consensus problem is one of
central paradigmatic problems in distributed comp
ing. The fundamental result that there is no determ
istic asynchronous solution to it, proven by Fisch
Lynch, and Paterson [2], has sparked a fruitful and
tensive line of research. The problem can be state
follows.

Consider a finite set of sequential processes, wh
communicate by sending messages over bidirecti
channels. We assume that there is a channel betw
each pair of processes. Channels are reliable, i.e.,
message that is sent is eventually received; it is

* Tel.: +49 451 500 5314.
E-mail address:voelzer@tcs.uni-luebeck.de (H. Völzer).

0020-0190/$ – see front matter 2004 Elsevier B.V. All rights res
doi:10.1016/j.ipl.2004.06.008
which they were sent.
Upon receipt of a single message, a process

forms an atomic step, which consists of receiving
message, computing the next local state, and send
finite set of messages. Processes are deterministic
the successor state and the messages sent depen
on the content of the received message and the sta
the process when the message is received. The sy
is asynchronous, i.e., there are no bounds for rela
speeds of processes or communication delays.1

1 The FLP model seems to be more general at first sight as it
allows a process to change its state when no message arrives
feature, however, does not increase the power of the model
a process does not gain any knowledge in an asynchronous s

.

84 H. Völzer / Information Processing Letters 92 (2004) 83–87

Any process may stop its participation in the
algorithm, in which case we say that the process

ess
oes

ess
s
ch

e

he
2),
ude

m-

t

r,
ol
nt.
es,
t
tha

f

ess
hm

a

can b

To model the consensus problem, we assume that
there is initially exactly one message to each process

ay
ent.
ally

-
n-

ges
n

ns

arts
,

ses

of
ed
as
n,

nd

n-
-
-

crashes. However, we assume that at most one proc
crashes during an entire execution. A process that d
not crash in an execution is said to becorrect in that
execution.

In the (binary) consensus problem, each proc
gets an input value from the set{0,1} and a proces
may irrevocably decide on a final output value su
that the following three conditions are met:

• No two processes decide differently (agreement).
• The output value is the input value of som

process (validity).
• Each correct process eventually decides (termina-

tion).

In the remainder of the paper, we formalize t
model of computation and the problem (Section
present the new proof (Section 3), and we concl
with a short discussion.

2. The model and the problem

This section details our model of distributed co
putation and the consensus problem.

Let P be a finite set ofprocess identifiers, S a
countable set ofprocess states, andM a countable se
of message values. A messageis a pair(p,m) wherem
is a message value andp is either a process identifie
denoting thereceiverof the message, or the symb
⊥ /∈ P , signifying a message to the environme
A configurationc consists of a vector of process stat
i.e., a mappingstatec :P → S and a finite multise
msgsc of messages, which denotes the messages
are in transit inc. A processp consists of aninitial
state sp ∈ S and a step transition function, which
assigns to each pair(m, s) of a message valuem and
a process states a follower stateand a finite set o
messages (the messages to be sent byp in a step).
An algorithm associates a process with each proc
identifier. We will henceforth assume that an algorit
is given and we will simply call a process identifier
process when no confusion arises.

unless it receives a message. It is easy to see that each model
simulated by the other.
t

e

p containingp’s input value. Such a message m
be interpreted as a message from the environm
Apart from these messages, channels are initi
empty. Therefore, we call a configurationc of an algo-
rithm initial if for each processp, statec(p) = sp and
msgsc contains exactly one message(p, 〈input, vp〉)
for eachp wherevp denotes the input value ofp.
A processdecideson a valuev when it sends a mes
sage(⊥, 〈output, v〉). Such a message to the enviro
ment is never received in our model.

A stepis identified with a message(p,m). A step
(p,m) is enabled in a configurationc if msgsc
contains the message(p,m). The step may thenoccur,
resulting in afollower configurationc′, wherec′ is
obtained fromc by removing (p,m) from msgsc,
changingp’s state and adding the set of messa
to msgsc according to the step transition functio

associated withp. We denote this byc
p,m−→ c′.

An execution froma configurationc0 is a finite
or infinite alternating sequenceσ = c0, x1, c1, . . . of
configurations and steps that starts inc0 and ends, if it
is finite, in a configuration such that for all positio

i of σ , we haveci
xi+1−→ ci+1. A configurationc′ is

reachable froma configurationc, denotedc ⇒ c′, if
there is an execution, possibly without steps, that st
in c and ends inc′. For a subsetQ of processes

we write c
Q	⇒ c′ if c′ is reachable fromc through

an execution that contains only steps of proces

q ∈ Q and we writec
−Q	⇒ c′ if c′ is reachable from

c through an execution that contains only steps
processesq ∈ P \ Q. Note that steps are enabl
persistently, i.e., an enabled step remains enabled
long as it does not occur. The following propositio
which is easy to verify, is known as the “diamo
property”.

Proposition 1. If c
Q	⇒ c1 andc

−Q	⇒ c2, then there is

a configurationc′ such thatc1
−Q	⇒ c′ andc2

Q	⇒ c′.

An executionof an algorithm is an execution from
some initial configuration of that algorithm. A co
figuration is areachableconfiguration of the algo
rithm if it is reachable from some initial configura
tion. A processp is said to becorrect in an execution

H. Völzer / Information Processing Letters 92 (2004) 83–87 85

σ = c0, x1, c1, . . . if for each positioni of σ such that
ci enables some step ofp, there is a positionj > i

ity,

to
e

s
y

idity
t

ly if

the
s al
1-
issi-

here

e of
ork

t
out
h

The main idea of our proof is to consider possible
decision values of subsets ofn − 1 processes. Note

sus

ithm.
u-

nd

-

e

.

ve
)

-

such thatxj is a step ofp. An executionσ is fair if we
have for eachm, eachp that is correct inσ , and each
positioni of σ : If (p,m) is enabled inci then there is
somej > i such thatxj = (p,m). Let |P | = n. A fair
executionσ is t-admissible, for t � n, if there are at
mostt processes that are not correct inσ .

An algorithm solvest-tolerant consensusif each
t-admissible execution satisfies agreement, valid
and termination.

3. The proof

First we relax the specification of consensus
obtain a problem that is solvable in our model. W
say that an executiondecidesv if there is a proces
that decidesv in that execution. Likewise, we sa
that a configurationc is v-decidedif msgsc contains
a message(⊥, 〈output, v〉). We say that an algorithm
solvest-tolerant pseudo-consensusfor t � n if eacht-
admissible execution satisfies agreement and val
and for each reachable configurationc and each se
Q ⊆ P with |Q| � n − t , there is a configurationc′

that is decided for some value such thatc
Q	⇒ c′. It is

easy to show2 that there is an algorithm that solvest-
tolerant pseudo-consensus in our model if and on
n � 2t + 1.

Clearly, eacht-tolerant consensus algorithm is at-
tolerant pseudo-consensus algorithm. Assume for
rest of the paper that a 1-tolerant pseudo-consensu
gorithm is given. To this end, we will show that each
tolerant pseudo-consensus algorithm has an adm
ble execution that does not decide and therefore, t
is no 1-tolerant consensus algorithm.

2 Ben-Or’s randomized consensus algorithm [1] is at-tolerant
pseudo-consensus algorithm forn � 2t + 1 (replace coin flips by
an assignment to a default value). For the impossibility in cas
n � 2t , the classical argument applies that a temporary netw
partition may force conflicting decisions: Consider a subsetP0 of
t processes that get input 0 and a subsetP1 of n − t processes tha
get input 1.P0 can reach a decision, which must be on 0, with
any participation ofP1 and likewiseP1 can reach a decision, whic
must be on 1, without any participation ofP0. Proposition 1 implies
that both executions can be joined, resulting in an execution with
conflicting decisions.
-

that the restriction of a 1-tolerant pseudo-consen
algorithm for n processes to any subset ofn − 1
processes is a 0-tolerant pseudo-consensus algor
The following definitions are based on that int
ition.

We write c
p	⇒ c′ for c

{p}	⇒ c′ and c
−p	⇒ c′ for

c
−{p}	⇒ c′ in the following.

Definition 1. Let c be a reachable configuration a
p be a process. We say that a valuev ∈ {0,1} is a
p-silent decision valueof c if there is av-decided

configurationc′ such thatc
−p	⇒ c′. The set of allp-

silent decision values ofc is denoted by val(p, c).
A reachable configurationc is v-uniformif val(p, c) =
{v} for all p andnon-uniformif it is neither 0-uniform
nor 1-uniform.

Proposition 2. Let c be a reachable configuration.

(a) For each processp, we haveval(p, c) �= ∅.
(b) If c is v-decided then it is alsov-uniform.

Proof. The claims follow directly from the defini
tions. �
Proposition 3. Let c

p,m−→ c′ and q be a process. W
have

(a) p �= q impliesval(q, c′) ⊆ val(q, c),
(b) p = q impliesval(q, c) ⊆ val(q, c′), and
(c) val(q, c) = {0} impliesval(q, c′) �= {1}.

Proof. Part (a) follows directly from Definition 1
For part (b), letv ∈ val(p, c). Then there is av-

decided configurationcv such thatc
−p	⇒ cv . From

Proposition 1 follows that there is ac′′ such that

cv
p	⇒ c′′ andc′ −p	⇒ c′′. The former implies thatc′′

is v-decided and together with the latter, we ha
v ∈ val(p, c′). Part (c) follows directly from parts (a
and (b). �
Lemma 1. There is a non-uniform initial configura
tion.

86 H. Völzer / Information Processing Letters 92 (2004) 83–87

Proof. Let P = {p0, . . . , pn−1}. Let ci denote the
initial configuration where processpj has input 1 if

d

t

m,

o-
e-

art

o

f

,

we have val(p, c′) = {0,1} and c′ is hence non-
uniform.

are

the
or-

co-
ro-
ro-
iza-

h

ue,
wn
ed:
e

es
n

e-

an
f
f.
n-
ot
n
bi-

ho
.

t the
and only if j < i for i = 0, . . . , n. Note thatci and
ci+1 differ only in the input ofpi . It follows from
validity that c0 is 0-uniform andcn is 1-uniform.
There is an indexj such thatcj is 0-uniform and
cj+1 is not 0-uniform. Becausecj is 0-uniform, we
have 0∈ val(pj , cj). Therefore, there is a 0-decide

configurationc such thatcj

−pj	⇒ c. Sincecj andcj+1

differ only in the input ofpj , we also havecj+1
−pj	⇒ c

and hence 0∈ val(pj , cj+1). It follows thatcj+1 is not
1-uniform and therefore, it is non-uniform.�
Lemma 2. For each non-uniform configurationc and
each processp there is a configurationc′ such that
c ⇒ c′ andval(p, c′) = {0,1}.

Proof. If val(p, c) = {0,1}, we are done. Let, withou
loss of generality, val(p, c) = {0}. Since c is non-
uniform, there is a processq such that 1∈ val(q, c).
Then there is a 1-decided configurationc1 such that
c ⇒ c1. Becausec1 is 1-decided, we have val(p, c1) =
{1}. Due to Proposition 3(c), there is a configurationc′
such thatc ⇒ c′ ⇒ c1 and val(p, c′) = {0,1}, which
is what we wanted to show.�

We are now ready to prove the main theore
where we use the following definition. Letσ =
c0, x1, c1, . . . , ck be a finite execution and(p,m) be a
step that is enabled inck . Theenabling timeof (p,m)

in σ is the smallest positionl of σ such thatcj enables
(p,m) for all j = l, . . . , k and xj �= (p,m) for all
j = l + 1, . . . , k.

Theorem 1. Each1-tolerant pseudo-consensus alg
rithm has a0-admissible execution that does not d
cide.

Proof. To construct the non-deciding execution, st
in a non-uniform initial configuration, which exists
according to Lemma 1. Then, repeat the following as
long as possible. Take an enabled step(p,m) with
the minimal enabling time and extend, according t
Lemma 2, to a configurationc such that val(p, c) =
{0,1}. Configurationc is therefore non-uniform. I
(p,m) is enabled inc let (p,m) occur and call the
resulting configurationc′. Due to Proposition 3(b)
We obtain a fair execution where all processes
correct and that is always eventually3 non-uniform and
hence does not decide.�

4. Conclusion

Consensus is a coordination problem where
consistent choice of a final value has to be co
dinated. When no randomization is available,
ordination can be achieved only through synch
nization. The FLP result shows that an asynch
nous system cannot provide the required synchron
tion.

In the original proof [2], the central lemma, whic
states that every enabled step(p,m) can eventually
be executed without determining a decision val
is proven by way of contradiction. We have sho
how such an extension can be constructively obtain
If v is not a p-silent decision value, then driv
the execution towards a decision onv until both
values arep-silent decision values, which assur
that the occurrence of(p,m) preserves both decisio
values.

The original proof and other proofs of related r
sults are based on the notion ofbivalency, where
a configuration isbivalent if a 0-deciding config-
uration as well as a 1-deciding configuration c
be reached from it. We introduced the notion o
non-uniformity which gives rise to a simpler proo
Non-uniformity is weaker than bivalency, i.e., no
uniformity implies bivalency but bivalency does n
imply non-uniformity. We hope that the new notio
can help to simplify other proofs that are based on
valency.

Acknowledgement

We would like to thank an anonymous referee w
helped to improve the presentation of this material

3 It is easy to show that our construction can also assure tha
execution is always non-uniform.

H. Völzer / Information Processing Letters 92 (2004) 83–87 87

References

yn-
An-
g,

[2] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of
distributed consensus with one faulty process, J. ACM 32 (2)
[1] M. Ben-Or, Another advantage of free choice: Completely as
chronous agreement protocols, in: Proceedings of the 2nd
nual ACM Symposium on Principles of Distributed Computin
ACM, 1983, pp. 27–30.
(April 1985) 374–382.

