Available online at www.sciencedirect.com

SGIENGE@DIRECT" Informa.tlon
Processing
£l Letters
ELSEVIER Information Processing Letters 92 (2004) 83-87

www.elsevier.com/locatefipl

A constructive proof for FLP

Hagen Volzef

Institute for Theoretical Computer Science, Univigref Libeck, Ratzeburger Allee 160, 23538 Libeck, Germany
Received 18 March 2004; received in revised form 3 June 2004
Available online 27 July 2004
Communicated by R. Backhouse

Abstract

We present a simple elementary proof for the result of Fischer, Lynch, and Paterson (FLP) [J. ACM 32 (2) (April 1985)
374-382] that the consensus problem cannot be solved deterministically in an asynchronous system where a single proces:
may fail by crashing. Our proof is, in contrast to the original, constructive in its crucial lemma, showing not only that a non-
terminating execution does exist but also how it can be constructed. Our proof is based on the new natearoformityof
a configuration. Non-uniformity is different frotvivalency which is the central notion in the original proof as well as in proofs
of related results.

0 2004 Elsevier B.V. All rights reserved.

Keywords:Distributed computing; Distributed systems; Fault tolerance; Concurrency; Consensus problem; Formal modelling

1. Introduction altered, multiplied, or lost during transit. However,
messages may be received in a different order than in
The crash-tolerant consensus problem is one of the which they were sent.
central paradigmatic problems in distributed comput- ~ Upon receipt of a single message, a process per-
ing. The fundamental result that there is no determin- forms an atomic step, which consists of receiving the
istic asynchronous solution to it, proven by Fischer, message, computing the next local state, and sending a
Lynch, and Paterson [2], has sparked a fruitful and ex- finite set of messages. Processes are deterministic, i.e.,
tensive line of research. The problem can be stated asthe successor state and the messages sent depend only
follows. on the content of the received message and the state of
Consider a finite set of sequential processes, which the process when the message is received. The system
communicate by sending messages over bidirectionalis asynchronous, i.e., there are no bounds for relative
channels. We assume that there is a channel betweerspeeds of processes or communication detays.
each pair of processes. Channels are reliable, i.e., each
message that is sent is eventually received; it is not
1 The FLP model seems to be more general at first sight as it also
allows a process to change its state when no message arrives. This

* Tel.: +49 451 500 5314, feature, however, does not increase the power of the model since
E-mail addressvoelzer@tcs.uni-luebeck.de (H. Volzer). a process does not gain any knowledge in an asynchronous system

0020-0190/$ — see front mattér 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2004.06.008

84 H. Vélzer / Information Processing Letters 92 (2004) 83-87

Any process may stop its participation in the To model the consensus problem, we assume that
algorithm, in which case we say that the process there is initially exactly one message to each process
crashesHowever, we assume that at most one process p containing p's input value. Such a message may
crashes during an entire execution. A process that doesbe interpreted as a message from the environment.

not crash in an execution is said to berrectin that
execution.

Apart from these messages, channels are initially
empty. Therefore, we call a configurationf an algo-

In the (binary) consensus problem, each processrithm initial if for each procesg, state.(p) = s, and

gets an input value from the s@, 1} and a process
may irrevocably decide on a final output value such
that the following three conditions are met:

e No two processes decide differenthgreement

e The output value is the input value of some
processyalidity).

e Each correct process eventually decidesniina-
tion).

In the remainder of the paper, we formalize the
model of computation and the problem (Section 2),
present the new proof (Section 3), and we conclude
with a short discussion.

2. Themodel and the problem

This section details our model of distributed com-
putation and the consensus problem.

Let P be a finite set ofprocess identifiersS a
countable set gbrocess state@ndM a countable set
of message valued messagés a pair(p, m) wherem
is a message value andis either a process identifier,
denoting thereceiverof the message, or the symbol
1 ¢ P, signifying a message to the environment.
A configuratiorc consists of a vector of process states,
i.e., a mappingstate : P — S and a finite multiset

msgs of messages, which denotes the messages tha

are in transit inc. A processp consists of arinitial
state s, € S and astep transition functionwhich
assigns to each paim, s) of a message valua and
a process state a follower stateand a finite set of
messages (the messages to be senp by a step).

msgs contains exactly one messagg, (input, v,))
for each p wherev, denotes the input value gi.

A processdecideson a valuev when it sends a mes-
sage(L, (output v)). Such a message to the environ-
ment is never received in our model.

A stepis identified with a messageg, m). A step
(p,m) is enabledin a configurationc if msgs
contains the messagg, m). The step may theoccur,
resulting in afollower configurationc’, wherec’ is
obtained fromc¢ by removing (p, m) from msgs,
changingp’s state and adding the set of messages
to msgs according to the step transition function

associated withp. We denote this byc D

An execution froma configurationcg is a finite

or infinite alternating sequence = cgp, x1, c1, ... Of
configurations and steps that startggrand ends, if it

is finite, in a configuration such that for all positions

i of o, we havec; =3 ci+1. A configurationc’ is
reachable froma configuratiorc, denotedc = ¢/, if
there is an execution, possibly without steps, that starts
in ¢ and ends inc’. For a subsetQ of processes,

we write ¢ =% ¢’ if ¢ is reachable from through
an execution that contains only steps of processes

g € Q and we writec _:Q> ¢ if ¢’ is reachable from

¢ through an execution that contains only steps of
processes; € P\ Q. Note that steps are enabled
ﬁpersistently, i.e., an enkdd step remains enabled as
ong as it does not occur. The following proposition,
which is easy to verify, is known as the “diamond

property”.

Proposition 1. If ¢ =% ¢; ande =3 ¢, then there is

An algorithm associates a process with each process a configuratione’ such thatcy _:% ¢ andey :Q> c.

identifier. We will henceforth assume that an algorithm
is given and we will simply call a process identifier a
process when no confusion arises.

An executiorof an algorithm is an execution from
some initial configuration of that algorithm. A con-
figuration is areachableconfiguration of the algo-

unless it receives a message. It is easy to see that each model can b&ithm if it is reachable from some initial configura-

simulated by the other.

tion. A process is said to becorrectin an execution

H. Voélzer / Information Processing Letters 92 (2004) 83-87

o =co, X1, c1, . .. if for each position of o such that
¢; enables some step ¢f, there is a positiory > i
such thaty; is a step ofp. An executiorv is fair if we
have for eachn, eachp that is correct iro, and each
positioni of o: If (p, m) is enabled irr; then there is
somej > i such thatc; = (p,m). Let|P| =n. A fair
executiono is r-admissible for ¢ < n, if there are at
mostt processes that are not correctin

An algorithm solvesz-tolerant consensug each
t-admissible execution satisfies agreement, validity,
and termination.

3. The proof

First we relax the specification of consensus to
obtain a problem that is solvable in our model. We
say that an executiodecidesv if there is a process
that decidesv in that execution. Likewise, we say
that a configuratior is v-decidedif msgs contains
a messagé L, (output v)). We say that an algorithm
solvest-tolerant pseudo-consensias ¢ < n if eacht-

85

The main idea of our proof is to consider possible
decision values of subsets af— 1 processes. Note
that the restriction of a 1-tolerant pseudo-consensus
algorithm for n processes to any subset af— 1
processes is a O-tolerant pseudo-consensus algorithm.
The following definitions are based on that intu-
ition.

We write ¢ == ¢’ for ¢

¢ =2 ¢ in the following.

{p}

2L " and ¢ =& ¢ for

Definition 1. Let ¢ be a reachable configuration and
p be a process. We say that a value {0,1} is a
p-silent decision valuef ¢ if there is av-decided

configurationc’ such thatc =2 ¢’. The set of allp-
silent decision values of is denoted by vdp, c).
A reachable configuratianis v-uniformif val(p, ¢) =
{v} for all p andnon-uniformif it is neither 0-uniform
nor 1-uniform.

Proposition 2. Letc be a reachable configuration.

admissible execution satisfies agreement and validity (a) For each procesg, we haveval(p, ¢) # .

and for each reachable configuratiorand each set
Q C P with |Q| > n —t, there is a configuration/

that is decided for some value such that ¢’. It is
easy to showthat there is an algorithm that solves
tolerant pseudo-consensus in our model if and only if
n>2t+1.

Clearly, eachr-tolerant consensus algorithm is-a

tolerant pseudo-consensus algorithm. Assume for the

(b) If ¢ is v-decided then it is also-uniform.

Proof. The claims follow directly from the defini-
tions. O

Proposition 3. Let ¢ 25 ¢’ and ¢ be a process. We
have

rest of the paper that a 1-tolerant pseudo-consensus al{a) p # g impliesval(q, ¢’) C val(g, c),

gorithm is given. To this end, we will show that each 1-

(b) p =g impliesval(g, ¢) C val(g, ¢’), and

tolerant pseudo-consensus algorithm has an admissi-(c) val(g, ¢) = {0} impliesval(g, ¢’) # {1}.

ble execution that does not decide and therefore, there

is no 1-tolerant consensus algorithm.

2 Ben-Or's randomized consensus algorithm [1] is-talerant
pseudo-consensus algorithm for> 2r + 1 (replace coin flips by
an assignment to a default value). For the impossibility in case of
n < 2¢, the classical argument applies that a temporary network
partition may force conflicting decisions: Consider a sulZgebf
t processes that get input 0 and a suliebf n — ¢ processes that
get input 1.Pg can reach a decision, which must be on 0, without
any participation ofP; and likewiseP; can reach a decision, which
must be on 1, without any participation 8§. Proposition 1 implies
that both executions can be joine@sulting in an execution with
conflicting decisions.

Proof. Part (a) follows directly from Definition 1.
For part (b), letv € val(p, c). Then there is av-

decided configuration, such thatc -y cy. From
Proposition 1 follows that there is & such that

ey == ¢” and ¢’ == ¢”. The former implies that”

is v-decided and together with the latter, we have
v e val(p, ¢’). Part (c) follows directly from parts (a)
and (b). O

Lemma 1. There is a non-uniform initial configura-
tion.

86

Proof. Let P = {po, ..., pn—1}. Let ¢; denote the
initial configuration where process; has input 1 if
and only if j <i for i =0,...,n. Note thatc; and
ci+1 differ only in the input of p;. It follows from
validity that cg is O-uniform andc, is 1-uniform.
There is an indexj such thatc; is O-uniform and
cj+1 is not O-uniform. Because; is O-uniform, we
have Oe val(p;, c¢j). Therefore, there is a 0-decided

configurationc such that; =_ Sincec; andc;41

differ only in the input ofp ;, we also have ;1 2.
and hence @ val(p;, c;11). It follows thatc; 1 is not
1-uniform and therefore, it is non-uniformo

Lemma 2. For each non-uniform configurationand
each procesy there is a configuration’ such that
¢ = ¢’ andval(p,) = {0, 1}.

Proof. If val(p, ¢) ={0, 1}, we are done. Let, without
loss of generality, v&p, ¢) = {0}. Sincec is non-
uniform, there is a procesg such that le val(q, c).
Then there is a 1-decided configurationsuch that
¢ = c1. Because is 1-decided, we have v@l, c¢1) =
{1}. Due to Proposition 3(c), there is a configuration
such thatc = ¢’ = ¢1 and valp, ¢’) = {0, 1}, which
is what we wanted to show.O

We are now ready to prove the main theorem,
where we use the following definition. Let =
co, X1, c1, . . ., cx be a finite execution angp, m) be a
step that is enabled i).. Theenabling timeof (p, m)
in o is the smallest positiohof o such that; enables
(p,m) forall j=1,....k andx; # (p,m) for all
j=I1+1.. . k.

Theorem 1. Each1-tolerant pseudo-consensus algo-
rithm has a0-admissible execution that does not de-
cide.

Proof. To construct the non-deciding execution, start
in a non-uniform initial confjuration, which exists
according to Lemma 1. Thernepeat the following as
long as possible. Take an enabled stepm) with
the minimal enaling time and extend, according to
Lemma 2, to a configuration such that valp, ¢) =

{0, 1}. Configurationc is therefore non-uniform. If
(p,m) is enabled inc let (p, m) occur and call the
resulting configuratiort’. Due to Proposition 3(b),

H. Volzer / Information Processing Letters 92 (2004) 83—-87

we have valp,c¢) = {0,1} and ¢’ is hence non-
uniform.

We obtain a fair execution where all processes are
correct and that is always eventudltyon-uniform and
hence does not decide

4. Conclusion

Consensus is a coordination problem where the
consistent choice of a final value has to be coor-
dinated. When no randomization is available, co-
ordination can be achieved only through synchro-
nization. The FLP result shows that an asynchro-
nous system cannot provide the required synchroniza-
tion.

In the original proof [2], the central lemma, which
states that every enabled stép, m) can eventually
be executed without determining a decision value,
is proven by way of contradiction. We have shown
how such an extension can be constructively obtained:
If v is not a p-silent decision value, then drive
the execution towards a decision anuntil both
values arep-silent decision values, which assures
that the occurrence afp, m) preserves both decision
values.

The original proof and other proofs of related re-
sults are based on the notion bivalency where
a configuration isbivalent if a 0-deciding config-
uration as well as a 1-deciding configuration can
be reached from it. We troduced the notion of
non-uniformity which gives rise to a simpler proof.
Non-uniformity is weaker than bivalency, i.e., non-
uniformity implies bivalency but bivalency does not
imply non-uniformity. We hope that the new notion
can help to simplify other proofs that are based on bi-
valency.

Acknowledgement

We would like to thank an anonymous referee who
helped to improve the presentation of this material.

3 tis easy to show that our construction can also assure that the
execution is always non-uniform.

H. Vélzer / Information Processing Letters 92 (2004) 83-87 87

References [2] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of

distributed consensus with one faulty process, J. ACM 32 (2)
[1] M. Ben-Or, Another advantage of free choice: Completely asyn- (April 1985) 374-382.

chronous agreement protocols, in: Proceedings of the 2nd An-
nual ACM Symposium on Principles of Distributed Computing,
ACM, 1983, pp. 27-30.

