
Implementing Associative Processing:
Rethinking Earlier Architectural Decisions

Robert A. Walker, Jerry Potter, Yanping Wang, and Meiduo Wu

Kent State University
Mathematics and Computer Science Department

Kent, OH 44242
{walker, potter, yawang, mwu}@mcs.kent.edu

Abstract

This paper describes an initial design of an associative
processor for implementation using field-programmable
logic devices (FPLDs). The processor is based loosely on
earlier work on the STARAN computer, but updated to
reflect modern design practices. We also draw on a large
body of research at Kent State on the ASC and MASC
models of associative processing, and take advantage of
an existing compiler for the ASC model. The resulting
design consists of an associative array of 8-bit RISC
Processing Elements (PEs), operating in byte-serial
fashion under the control of an Instruction Stream (IS)
Control Unit that can execute assembly language code
produced by a machine-specific back-end compiler.

1 Introduction Ñ the KSU MASC model

At Kent State University (KSU), research has long
focused on a unique variant of data parallel processing
known as associative processing. Associative processors
provide the capabilities of massive associative memories
Ñ the ability to access memory by content rather than
address Ñ without the high cost associated with ÒrealÓ
associative memories. Such associative processors are
particularly well suited for problems that involve
searching through and processing massive amounts of
data, such as relational database management, data
mining, air traffic control, image processing, and
graphics.

The bit-matching circuitry of associative memories is
expensive, but associative processors are much more cost
effective. An associative processor shares Processing
Elements (PEs) among the memory, allowing thousands
of memory words to be examined in parallel. A global set
of mask bits selects the memory words to be examined,
program logic selects the fields within the words to be
compared, and responder bits indicate successful

matches. A control unit broadcasts the same instruction to
each PE, but based on the results of previous searches, a
particular PE can decide whether or not to perform that
instruction. For example, a search could be performed to
locate all burgundy Ford Focus cars in Ohio on a dealerÕs
lot, and then limit further processing to only those cars.
Associative computing is discussed in detail in [Potter92]
and [Krikelis97].

Developed at Kent State, the MASC (Multiple ASsociative
Computing) model of associative computing grew out of
work on the STARAN and MPP computers at Goodyear
Aerospace Corporation. In the MASC model, shown
conceptually in Figure 1, the associative processing array
consists of a set of cells, each containing a PE and a local
memory. A tabular data structure is stored in the array as
one record per memory, which means the PEs can
simultaneously perform various arithmetic, logical, or
comparison operations on a particular field in their own
local memories in parallel.

In the current MASC model, there are one or more
different Instruction Stream (IS) Control Units (but much
less than the number of PEs). Each IS contains a copy of
the program it is to execute, and can broadcast an
instruction to all cells. Each cell listens to only one
ISÑinitially all cells listen to the same IS, but the cells
can switch to other ISs in response to their local data and
commands from the current IS. An active PE
conditionally executes the commands it receives from its
IS based on the contents of its mask bits, while an inactive
PE simply listens to the commands of its IS until it is
reactivated. (A single-IS version of the MASC model is
described in [Potter92,] and will be referred to here as the
ASC model when the two need to be distinguished.)

The MASC model supports associative processing by
providing associative searching and selection, logical
operations (AND and OR), maximum, minimum, least
upper bound, and greatest lower bound. Searching permits

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

the simultaneous examination and identification of all
those cells that meet the search criteria. The identified
cells, called responders, can then have their mask bits set
to become the new set of active cells. An IS has the
ability to detect the presence of responders, send
instructions to active cells in parallel or sequentially, and
restore previously active cells to the set of idle cells. The
maximum (minimum) functions retrieve either the
greatest (least) value in a particular field or the index of
the PE containing that value.

2 The ASC processor Ñ implementing the
ASC model

We are currently re-evaluating associative computing in
terms of todayÕs implementation technology. More
specifically, the single-instruction stream ASC model is
being implemented; later on the focus will be shifted to
the multiple-instruction stream MASC model. During
this implementation, some ideas from the STARAN and
earlier processors have been adopted. However, the
architecture has been completely reinvented to
accommodate advances in implementation technology
(the STARAN was implemented in TTL). Our initial
target implementation is on field-programmable logic
devices (FPLDs) in the Altera FLEX family; later
implementations may be on other FPLDs or even on
custom ASICs.

The remainder of this paper is organized as follows. This
section presents the overall structure of our associative
processor and the major design decisions made. Section 3
describes the architecture of the IS Control Unit for the
associative processing array. Section 4 then elucidates the
architecture of Processing Elements, along with the
circuitry for handling responders and searching for

minimum / maximum values. As of this writing (January
2001) the remaining details of this architecture are being
defined by test sample programs against the architecture,
and coding the architecture in VHDL is in progress.

2.1 Targeting the Altera FLEX 10K20 for the
initial implementation

Our initial design will use AlteraÕs MAX+PLUS II design
environment to implement a small ASC processor on
Altera FLEX 10K20 field-programmable logic devices
(FPLDs). This initial prototype will contain a small array
of 4 PEs and a single IS control unit. Since this design has
very limited PEs and a single instruction stream, the cell
and IS interconnection networks shown in Figure 1 will
not be implemented yet. The current implementation
focuses only on basic ASC functions, such as the
broadcast and reduction operations, conditional searching,
maximum and minimum field searching, and responder
iterations that operate on a small database management
application. Although this design is too small to be of
great use, it will enable us to test our architecture.
However, our ultimate goal is to use a much larger
number of more powerful chips, and to implement the
more advanced features of the full MACS model.

There are a number of boards from Altera available in our
VLSI Design lab; each of these boards includes one
Altera FLEX 10K20 FPLD. According to AlteraÕs 10K
data sheet [AlteraDoc1], the FLEX 10K20 contains
20,000 logic gates, grouped into 144 Logic Array blocks,
each of which contains 8 Logic Elements. Each logic
element, in turn, contains a 4-input look-up table and a
programmable flip-flop. The FLEX 10K20 also contains
6 Embedded Array Blocks (EAB) that can be used as
internal on-chip fast memory Ñ each EAB provides 2048
bits of RAM that can be configured in 256*8, 512*4,

Memory PE

Memory PE

Memory PE

Memory PE

Instruction
Stream

1

Instruction
Stream

k

C
el

l I
nt

er
co

nn
e

ct
io

n
N

e
tw

o
rk

IS
 In

te
rc

on
n

ec
tio

n
N

et
w

or
k

Figure 1 – A Conceptual View of the KSU MASC Model

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

1024*2, or 2048*1 bits, with an access latency of about
20-50ns.

Based on the characteristics of the FLEX 10K20 FPLD
and its limited size, our initial design implements only
one IS Control Unit and four PEs in the Associative
Processing Array. Since there are 6 EABs available on the
chip, each PE uses one EAB as its Data Memory, which is
configured as 256 bytes. The two remaining EABs are
employed as the Instruction Memory and the Data
Memory in the control unit; one is configured as 64 32-bit
words (the ASC Control Unit has 32-bit instructions), and
the other is configured the same as the PEÕs Data Memory
(which has 256 bytes).

2.2 ASC processor design overview

Having examined the STARANÕs design and the features
of our FLEX 10K20 target chip, we decided to implement
an 8-bit (byte serial) associative processor instead of a bit
serial processor like the STARAN. In our
implementation, each PE uses a separate EAB as its Data
Memory, and our initial experiments seem to indicate that
there are sufficient Logic Array blocks in proportion to
each EAB to implement a full 8-bit PE for each memory.

Each EAB can easily be configured and accessed as an 8-
bit memory. Other implications of this choice to
implement a byte-serial processor are discussed over the
course of this paper.

An overview of our small initial prototype of the ASC
processor is shown in Figure 2. It includes a single IS
Control Unit, and an Associative Processing Array
containing 4 PEs, a set of Common Registers, and some
support circuitry.

The IS Control Unit processes 32-bit ASC instructions
that are produced by a machine-specific back-end
compiler that translates the output of the existing ASC
compiler into our ASC processorÕs machine code. Blocks
of instructions are stored in its Instruction Memory, and
the Control Unit fetches, and decodes those instructions.
After decoding, it executes the sequential operations
directly, and sends control signals to the PEs in the
Associative Processing Array to execute the parallel
instructions. During this process, address translation and
corner turning are provided as necessary by the Array
Controller so that each PE can properly access its Data
Memory.

Since the Associative Processing Array is byte-serial, the
Control Unit must loop to process any field that is longer

Figure 2 – ASC Processor (Small Initial Prototype)

PE Memory0 256 Bytes PE0

PE Memory1 256 Bytes PE1

PE Memory2 256 Bytes

PE Memory3 256 Bytes

PE2

PE3

16 8-bit
Common
Registers

Max / Min
Circuitry

Responder
Resolution
Circuitry

Array Controller

D
ata M

em
ory 256 B

ytes

Instruction
Memory:
64 32-bit
Word

 Responder Control Line

PE Control Signals

Data Bus

Addr Bus

InstrAddr

Data

IS Control Unit Associative Processing Array

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

than 8 bits. For example, when processing an integer
addition of 32 bits, the Control Unit must execute the
addition instruction four times and propagate carry
information between bytes. When appropriate, the Control
Unit also detects active responders (through the responder
control line set by the PE array) and processes them in
serially or in parallel. The Control Unit is described in
more detail in Section 3.

There are sixteen 8-bit Common Registers ($CR0 to
$CR15), which serve as intermediate data storage when
transferring data between the Control Unit and the
Associative Processing Array, and are used for
broadcasting and reduction. Since they are common to the
Control Unit and to the PEs in the Associative Processing
Array, both the Control Unit and the PEs can use the
Common Registers as a source of instruction operands.

The PEs in the Associative Processing Array operate in
SIMD fashion, with each PE receiving control signals
from the Control Unit. Those PEs whose mask bit is true
will execute the instructions sent by Control Unit, while
the others will remain idle. The array also contains
circuitry to detect the existence of responders, and
min/max circuitry to perform minimum / maximum value
searches. The Associative Processing Array is described
in more detail in Section 4.

3 The IS control unit

The IS Control Unit, shown in Figure 3, contains an
Instruction Memory, an Instruction Register, a Data
Memory, sixteen 8-bit General Purpose Registers, an 8-bit
ALU, and assorted logic. This section briefly describes
the architecture of the Control Unit and the instructions it
supports.

3.1 Control unit architecture

The Control Unit, sketched in Figure 3, contains several
components. The major components and their main
functionality are as follows:

¥ ALU: provides 8-bit arithmetic and logic operations
as well as comparison operations, and can also be
used as a part of global reduction operations such as
summation.

¥ General Purpose Registers: a bank of sixteen 8-bit
General-Purpose Registers ($SR0 - $SR15) to
provide workspace for arithmetic and data transfer
operations.

Figure 3 – ASC IS Control Unit

Data
Memory:
256
Bytes

Instruction
Memory:
64 32-bit Words

D-MDR

D-MAR

PC &
Branch
Logic

I-MAR

Instruction Register

Loop and
counter
logic

16 8-bit
General
Purpose
Registers

$SR0-
$SR15

Controller

 8-bit ALU

Responder Control Line

Data Bus to Common Registers

Address Bus

Control Signals

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

¥ Buses: a unidirectional 8-bit address bus that
connects to each PE memory, and an 8-bit bi-

directional data bus that connects to the Common
Registers.

Table 1 — Machine Instruction Set

Arithmetic Instructions
INSTRUCTION EXAMPLE MEANING
Add ADD $GR1, $CR1, $GR2; $GR1+ $CR1 = $GR2
Subtract SUB $GR1, $GR2, $GR3; $GR1 - $GR2 = $GR3
Multiply MUL $GR1, $GR2, $GR3; $GR1 * $GR2 = $GR3
Arithmetic Shift AS $GR1, $GR2, $GR3 $GR1 * 2$GR2 = $GR3

Logical Instructions
INSTRUCTION EXAMPLE MEANING
And AND $LR1, $LR2, $LR3; $LR1 & $LR2 = $LR3
Or OR $LR1, $LR2, $LR3; $LR1 | $LR2 = $LR3
Xor OR $LR1, $LR2, $LR3; $LR1 | $LR2 = $LR3
Not NOT $LR1, $LR2; ! $LR1 = $LR2

Compare Instructions
INSTRUCTION EXAMPLE MEANING
Set if greater than SGT $GR1, $CR1, $LR1; if $GR1 > $CR1, $LR1=1;

else $LR1=0.
Set if greater equal SGE $GR1, $CR1, $LR1; if $GR1 >= $CR1, $LR1=1;

else $LR1=0.
Set if less than SLT $GR1, $CR1, $LR1; if $GR1 < $CR1, $LR1=1;

else $LR1=0.
Set if less equal SLE $GR1, $CR1, $LR1; if $GR1 <= $CR1, $LR1=1;

else $LR1=0.
Set if equal SEQ $GR1, $CR1, $LR1; if $GR1== $CR1, $LR1=1;

else $LR1=0.
Set if not equal SNE $GR1, $CR1, $LR1; if $GR1!= $CR1, $LR1=1;

else $LR1=0.

Mask Stack Instructions
INSTRUCTION EXAMPLE MEANING
Copy top of mask stack TOPMSK $LR1; Copy top of the mask stack to

$LR1.
Pop the top of mask stack POPMSK $LR1; Pop the top of mask stack to

$LR1.
Replace top of mask stack REPLACEMSK $LR1; Replace top of stack with $LR1.
Push into mask stack PUSHMSK $LR1; Push $LR1 into mask stack.
Push to mask stack and them PUSHMSKTHEM $LR1; Push $LR1 to mask stack and

ÒThemÓ register.

Data Transfer Instructions
INSTRUCTION EXAMPLE MEANING
Load a byte from memory to
GPR

LD 0X2F, $GR1; Load content of (0X2F) to
$GR1.

Store byte from register to
memory

ST $GR1, 0X05; Store $GR1 to memory address
(0X05).

Load register to register LDRR $GR1, $CR1; Move data from $GR1to $CR1
Load Immediate value to
register

LDI ImmVal, $CR0; Load immediate value to
common register $CR0

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

¥ Loop & Count Logic: used to process data fields
longer than one byte, as described in Section 2.2.

¥ PC & Branch Logic: controls program counter and
provides branches around parts of the instruction
stream if there are no responders.

¥ Controller Logic: coordinates the Loop & Count
Logic and the PC & Branch Logic and sends
addresses and control signals to the PEs in the
Associative Processing Array.

3.2 Machine instruction set

The IS Control Unit is designed to process assembly
language instructions produced by our newly developed
back-end compiler, which takes advantages of an existing
ASC compiler. Although the ASC processor has never
been implemented, our existing ASC compiler was
supported on the STARAN, CM-2, and Wavetracer, and
simulators have been designed to run on a variety of SISD
machines. As a result, the back-end compiler takes the
output of our existing compilerÕs intermediate code, and
translates that into our ASC processorÕs machine code
that is based on our specific architecture. More detailed
information about this back-end compiler can be found in
[Wang01].

There are two categories of instructions supported by our
ASC processor: masked instructions and unmasked
instructions. Masked instructions are executed only by
those PEs that have a Ò1Ó on the top of their mask stack,

while unmasked instructions are executed by all PEs. In
each category, there are arithmetic instructions, logical
instructions, compare instructions, mask stack
instructions, data transfer instructions, and reduction
instructions, as shown in Table 1.

3.3 Comparison to STARAN

The ASC Control Unit is roughly similar to that of
STARAN, in that it processes a similar instruction set
(although a number of simplifications were made). At the
moment, we have a small Control Unit with a limited
Instruction Memory and Data Memory instead of a full
host controller, but that smaller Control Unit should work
well when we move to the Multiple-Instruction-Stream
MASC model. The other major difference between our
ASC processor and STARAN is that STARAN was bit-
serial, whereas our ASC processor is byte-serial, which
gives us some additional processing power.

4 The associative processing array

The Associative Processing Array consists of an array of
Processing Element (PE) cells, along with min/max
circuitry and responder circuitry as shown in Figure 2.
Each PE cell consists of a PE and a local memory. The
local memory usually stores one record out of a tabular
data structure, where a record usually consists of several
variable-size fields. The PEs can thus simultaneously
perform various arithmetic, logical, or comparison

Table 1 — Machine Instruction Set (cont.)

Reduction Instructions
INSTRUCTION EXAMPLE MEANING
Select a responder FIND $LR1; According to the value of $LR1,

find a responder from a group
without clear their responder
registers.

Select a responder and clear it STEP $LR1; According to the value of $LR1,
find a responder from a group,
and clear the responderÕs $LR1.

Select a responder and clear all
others

RESVFST $LR1; According to the value of $LR1,
find a responder from a group,
and clear all others $LR1.

A step for searching minimum MIN $GR1, $LR1; Compare one bit of $GR1 at a
time from a selected group in
searching for the minimum field,
store result in $LR1.

A step for searching maximum MAX $GR1, $LR1; Compare one bit of $GR1 at a
time from a selected group in
searching for the minimum field.
Store result in $LR1.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

operations on those fields in their own local memory
under the control of the IS Control Unit.

4.1 PE architecture

The architecture of one PE in the Associative Processing
Array is shown in Figure 4. This PE is composed of an 8-
bit ALU, a 1-bit ALU, sixteen 8-bit General-Purpose
Registers, sixteen 1-bit Logical Registers, a mask stack, a
special purpose 1-bit ÒThemÓ register, and a 1-bit
responder register.

The 8-bit ALU and the sixteen 8-bit General-Purpose
Registers ($GP0 to $GP15) are primarily used for byte-
serial arithmetic and comparison operations. The
operands for the 8-bit ALU come from either the General-
Purpose Registers or from the Common Registers, and the
output from the ALU goes to one of the General-Purpose
Registers or to the Common Registers. Data transfer
instructions permit memory access.

If operands are larger than one byte, the Control Unit
must process each byte in turn. For instance, an addition
of two 4-byte integers is processed by four 1-byte

additions from the least significant byte to the most
significant byte. Each time, the carry out from one byte is
stored in the C8 register, and the sum is stored in one of
the General Purpose Registers.

The 1-bit ALU and the sixteen 1-bit Logical Registers
($LR0 to $LR15) are used to perform logical operations,
and in conjunction with the responder circuitry (the
responder register and the mask stack) are used to support
associative processing. To perform an associative search
operation, a broadcast value (stored in a Common
Register) is compared with the corresponding data stored
in the local memory of each PE (after loading it into a
General Purpose Register). For example, it may be
necessary to search for those cars whose color is
ÒburgundyÓ and are located on a dealerÕs lot in ÒOhioÓ.
Those two comparisons are performed, and each result is
stored temporarily in a Logical Register. After both
comparisons have been performed, the results are
logically ANDed together to produce the final result,
which is Ò1Ó if the both comparison searches are
successful and otherwise it is Ò0Ó. This result is then used
to set the responder register, and is pushed into mask
stack. In certain special cases, it is necessary to store this

Figure 4 – One PE in the ASC Associative Processing Array

 8-bit
 ALU

General-Purpose Registers

C8

 1-bit
 ALU

Logical Registers

C1

MUMU

16 8-bit
General
Purpose
Registers

$GR0-
$GR15

16 1-bit
Logical
Registers

$LR0-
$LR15

8-element
1-bit
Mask
Stack

1-bit ÒThemÓ
Register

1-bit Responder
Register

Common Registers

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

result for later use; if so, the result can be pushed into the
mask stack and also be stored into the ÒThemÓ register
using the ÒPUSHMSKTHEMÓ instruction .

The mask stack is particularly useful when multiple levels
of association exist. In ASC, the IF-THEN statement
might include several nested conditions, which would
incur multiple levels of association. Using the mask stack,
we can distinguish these different association levels
efficiently. The mask stack in a PE, which can contain up
to 8 1-bit logical values, is capable of indicating up to 8
levels of association groups (assume the nested conditions
never exceed 8 levels). The farther the stack grows, the
more restricted association group it indicates.

When a program begins, the first item of the stack is
initialized to 1 for all memory cells. This means that all
cells are in the active group at the top level. A new active
association group in the mask stack can be set up by IF
statement in ASC. The top of the mask stack always
indicates the current association group. During the THEN
statement-block, all of the current responders (which are
indicated by the responder bits) are processed either in
parallel or serially, but is possible that the responder bit
may change afterward. For example, the responder bits
will be cleared one by one during serial processing of the
responders. However, the current association group is
kept in the stack until the corresponding ENDIF is
encountered, then the top of mask stack is popped. Before
processing the next association group, the responder bit
will be updated using the top value of the mask stack. So
with the mask stack, it is efficient to perform as many
operations as desired on an association group.

4.2 The resolution and min / max circuitry

In addition to the PE cells, the Associative Processing
Array includes the resolution circuitry and min/max
circuitry as shown in Figure 2. The responder circuitry is
used by the Control Unit to process responders, and the
min/max circuitry is used to find the minimum or
maximum value of the specified field among the
responders.

The responder resolution circuitry gives the Control Unit
a signal to indicate whether or not there is at least one
successful responder after searching. If there are multiple
responders, they will be processed by the Control Unit
either serially or in parallel. If serial processing is needed,
the responder resolution circuitry is responsible for
selecting the successful responders in turn for the Control
Unit to process, and once a responder has been processed,
for clearing the corresponding responder bit. After all the
responders are processed, the signal provided by the
responder resolution circuitry to the Control Unit will
indicate that there is no responder.

The min/max circuitry searches for the largest and
smallest value in a field among all active responders. The
general idea is to use bit slices as masks for the extreme
value. It is performed in parallel as follows:

1. Searching the bit slices from most significant bit to
least significant bit. As each bit slice is processed,
it is logically ANDed with the corresponding
logical register indicated by instruction stream, and
the result is stored back to that register. This
operation is shown in Table 1 under the Reduction
Instruction category. A 1-bit MAX register is used
to indicate whether the data in the specified field is
the maximum.

2. Checking all the results in that logical register in
parallel to ensure that at least one new maximum
value remains (at least one result is 1). If it is true,
then the MAX bit is updated; if all the results are 0,
then all current entries considered have the same
bit value 0 and remain tied (the MAX bit is not
updated at this time).

3 . Continue to process the remaining bit slices as
above until all are processed.

4. Once all bit slices have been processed, if only one
MAX bit is 1, it marks the largest number; if more
than one MAX bit is 1, those cells are tied for the
maximum.

The minimum value can be obtained in a similar way, but
we use the MIN bit instead of the MAX bit, and logically
NOT the bit slices first, then logically AND the result
with the logical register.

4.3 Comparison to STARAN

The ASC Processing Array is very different from that in
STARAN, and is essentially a totally new design. The
processors in ASC, which work in byte-serial fashion,
have a RISC load / store architecture and instruction set of
our own design, based roughly on a ÒtypicalÓ modern
RISC processor. Furthermore, unlike STARAN, our ASC
processor has General-Purpose Registers in each PE, and
a stack of mask bits instead of a single mask bit. Finally,
each PE has its own local memory, instead of sharing a
common memory, which obviates the need for the
complex corner-turning circuitry that STARAN needed
for efficient memory access.

5 Conclusions and future work

At this point, we have completed a preliminary paper
design of the ASC processor. We have also developed a
back-end machine-specific compiler. An initial VHDL
version of the array controller and some parts of PE are
implemented on the Altera FLEX 10K20 FPLD. Over the
next few months, we expect to code the whole design in

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

VHDL, simulate to verify its functionality on a small
database application, and evaluate how well it fits on the
Altera 10K FPLD chip groups. Then we will purchase
PCI boards with larger FPLD and with 32MB or more of
SDRAM, and construct a larger associative processor.
Eventually, we expect to implement the full multiple-
instruction-stream MASC model.

6 Acknowledgements

The authors thank Professor Kenneth Batcher and other
members of the Parallel Processing Group, for many
helpful discussions.

7 References
[AlteraDoc1] A l t e r a 1 0 K d a t a s h e e t

http://www.altera.com/document/ds/dsf10k.pdf

[Batcher74] K. E. Batcher, ÒSTARAN Parallel Processor
System HardwareÓ, 1974 National Computer
Conference, AFIPS Conference Proceedings,
vol.43, pp. 405-410.

[Batcher80] K. E. Batcher, ÒArchitecture of A Massively
Parallel ProcessorÓ, IEEE Computer Society,
1980.

[Krikelis97] A. Krikelis and C.C. Weems, Associative
Processing and Processors, IEEE Computer
Society, 1997.

[Potter92] J.L. Potter, Associative Computing, Plenum
Publishing, New York, 1992.

[Potter94] J.L. Potter, J. Baker, S. Scott, A. Bansal, C.
Leangsuksun, and C. Asthagiri, ÒASC: An
Associative Computing Paradigm,Ó IEEE
Computer, November 1994, pp. 19-26.

[Staran77_1] Goodyear Aerospace Corporation, ÒSTARAN
Reference ManualÓ, November 1977.

[Staran77_2] Goodyear Aerospace Corporation, ÒSTARAN
Programming ManualÓ, November 1977.

 [Wang01] Y. Wang, Design Documentation, ÒA Machine-
specific Back-end Parallel Compiler Design Ð
Target ASC Machine Architecture, Assembling
Language, and Binary Machine Code FormatÓ,,
http://www.mcs.kent.edu/~yawang/ASC-
compiler.html

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

