
ACM Symposium on Priniples of Programming Languages (POPL), January 2003
Ownership Types for Object Encapsulation

Chandrasekhar Boyapati
Laboratory for Computer Science

Massachusetts Intitute of Technology
Cambridge, MA 02139
chandra@lcs.mit.edu

Barbara Liskov
Laboratory for Computer Science

Massachusetts Intitute of Technology
Cambridge, MA 02139

liskov@lcs.mit.edu

Liuba Shrira
Department of Computer Science

Brandeis University
Waltham, MA 02454

liuba@cs.brandeis.eduAbstratOwnership types provide a statially enforeable way of spe-ifying objet enapsulation and enable loal reasoning aboutprogram orretness in objet-oriented languages. However,a type system that enfores strit objet enapsulation istoo onstraining: it does not allow eÆient implementationof important onstruts like iterators. This paper arguesthat the right way to solve the problem is to allow objetsof lasses de�ned in the same module to have privileged a-ess to eah other's representations; we show how to do thisfor inner lasses. This approah allows programmers to ex-press onstruts like iterators and yet supports loal reason-ing about the orretness of the lasses, beause a lass andits inner lasses together an be reasoned about as a module.The paper also skethes how we use our variant of owner-ship types to enable eÆient software upgrades in persistentobjet stores.Categories and Subjet DesriptorsD.3.3 [Programming Languages℄: Language Construts;D.2.4 [Software Engineering℄: Program Veri�ationGeneral TermsLanguages, Veri�ation, TheoryKeywordsOwnership Types, Objet Enapsulation, Software Upgrades1 IntrodutionThe ability to reason loally about program orretness isruial when dealing with large programs. Loal reasoningallows orretness to be dealt with one module at a time.Eah module has a spei�ation that desribes its expetedbehavior. The goal is to prove that eah module satis�es itsThe researh was supported in part by DARPA ContratF30602-98-1-0237, NSF Grant IIS-98-02066, and NTT.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-628-5/03/0001 ...$5.00

spei�ation, using only the spei�ations but not ode ofother modules. This way the omplexity of the proof e�ort(formal or informal) an be kept under ontrol.This loal reasoning approah is sound if separate veri�a-tion of individual modules suÆes to ensure the orretnessof the omposite program [43, 28℄. The key to sound lo-al reasoning in objet-oriented languages is objet enap-sulation. Consider, for example, a Stak objet s that isimplemented using a linked list. Loal reasoning about theorretness of the Stak implementation is possible if objetsoutside s do not diretly aess the list nodes, i.e., the listnodes are enapsulated within the s.This paper presents a variant of ownership types for spe-ifying and statially enforing objet enapsulation. Withownership types, a program an delare that s owns all thelist nodes. The type system then statially ensures that thelist nodes are enapsulated within s.A type system that enfores strit objet enapsulation, how-ever, is too onstraining [55℄: it does not allow eÆient im-plementation of important onstruts like iterators [48, 32℄.Consider, for example, an iterator over the above-mentionedStak objet s. If the iterator is enapsulated within s, itannot be used outside s. If the iterator is not enapsulatedwithin s, it annot diretly aess the list nodes in s, andhene annot run eÆiently.Previous ownership type systems were either too onstrain-ing to support onstruts like iterators [22, 21℄, or too per-missive to support loal reasoning [20, 14, 11℄; for examplethey allowed objets outside the above-mentioned Stak ob-jet s to temporarily get diret aess to the list nodes.This paper argues that the right way to solve the problemis to provide speial aess privileges to objets belonging tolasses in the same module; we show how to do this for innerlasses [50, 38℄. Our variant of ownership types allows innerlass objets to have privileged aess to the representationsof the orresponding outer lass objets. This prinipled vi-olation of enapsulation allows programmers to express on-struts like iterators using inner lasses, yet supports loalreasoning about the orretness of the lasses. Our systemsupports loal reasoning beause a lass and its inner lassesan be reasoned about together as a module.The paper also desribes how our variant of ownership typesenables eÆient software upgrades in persistent objet stores.213



Our interest in software upgrades led us to work on owner-ship types. The paper shows how our ownership types anbe used to ensure that ode for upgrading objets does notobserve broken invariants or interfaes unknown at the timeit was written; this makes it possible for programmers toreason about the orretness of their upgrades.This paper is organized as follows. Setion 2 disusses objetenapsulation. Setion 3 desribes our variant of ownershiptypes for enforing objet enapsulation. Setion 4 presentsa formal desription of the type system. Setion 5 shows howownership types an be used to enable modular upgrades.Setion 6 disusses related work and Setion 7 onludes.2 Objet EnapsulationObjet enapsulation is important beause it provides theability to reason loally about program orretness. Rea-soning about a lass in an objet-oriented program involvesreasoning about the behavior of objets belonging to thelass. Typially objets point to other subobjets, whih areused to represent the ontaining objet.Loal reasoning about lass orretness is possible if the sub-objets are fully enapsulated, that is, if all subobjets areaessible only within the ontaining objet. This ondi-tion supports loal reasoning beause it ensures that outsideobjets annot interat with the subobjets without allingmethods of the ontaining objet. And therefore the on-taining objet is in ontrol of its subobjets.However, full enapsulation is often more than is needed.Enapsulation is only required for subobjets that the on-taining objet depends on [43, 28℄:D1. An objet x depends on subobjet y if x alls meth-ods of y and furthermore these alls expose mutablebehavior of y in a way that a�ets the invariants of x.Thus, a Stak objet s implemented using a linked list de-pends on the list but not on the items ontained in the list.If ode outside ould manipulate the list, it ould invalidatethe orretness of the Stak implementation. But ode out-side an safely use the items ontained in s beause s doesn'tall their methods; it only depends on the identities of theitems and the identities never hange. Similarly, a Set ofimmutable elements does not depend on the elements evenif it invokes a.equals(b) to ensure that no two elements a andb in the Set are equal, beause the elements are immutable.Loal reasoning about a lass is possible if objets of thatlass enapsulate every objet they depend on. But stritobjet enapsulation is too onstraining [55℄: it prevents ef-�ient implementation of important onstruts like iterators.For example, to run eÆiently, an iterator over the above-mentioned Stak objet s needs aess to the list nodes in s.To provide this aess, we have to allow objets like iteratorsto violate enapsulation.Loal reasoning is still possible provided all violations of en-apsulation are limited to ode ontained in the same mod-ule. For example, if both the Stak and its iterator are imple-

O1. Every objet has an owner.O2. The owner an either be another objet or world.O3. The owner of an objet does not hange over time.O4. The ownership relation forms a tree rooted at world.Figure 1: Ownership Properties
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Figure 2: An Ownership Relationmented in the same module, we an still reason about theirorretness loally, by examining the ode of that module.3 Ownership Types for EnapsulationOwnership types [22, 20, 14, 11℄ provide a statially enfore-able way of speifying objet enapsulation. The idea isthat an objet an own subobjets it depends on, thus pre-venting them from being aessible outside. This setionpresents our ownership type system. This system is simi-lar to the one desribed in [20℄|the main di�erene is thatto support onstruts like iterators, the type system in [20℄allows temporary violations of enapsulation. We disallowthis violation. Instead, we support onstruts like iteratorsusing inner lasses.The key to the type system is the onept of objet owner-ship. Every objet has an owner. The owner an either beanother objet or a speial owner alled world. Our type sys-tem statially guarantees the ownership properties shown inFigure 1. Figure 2 presents an example ownership relation.We draw an arrow from x to y if x owns y. In the �gure, thespeial owner world owns objets o1, o5, and o6; o1 owns o2and o4; o2 owns o3; and o6 owns o7.Ownership allows a program to statially delare enapsula-tion boundaries that apture dependenies:D2. An objet should own all the objets it depends on.The system then enfores enapsulation: if y is inside theenapsulation boundary of z and x is outside, then x annotaess y. (An objet x aesses an objet y if x has a pointerto y, or methods of x obtain a pointer to y.) In Figure 2, o7is inside the enapsulation boundary of o6 and o1 is outside,so o1 annot aess o7. An objet is only allowed to aess:1) itself and objets it owns, 2) its anestors in the ownershiptree and objets they own, and 3) globally aessible objets,namely objets owned by world.1 Thus, o1 an aess allobjets in the �gure exept for o3 and o7.1Note the analogy with nested proedures: pro P1 fvar x2;214



1 lass TStak<stakOwner, TOwner> {2 TNode<this, TOwner> head = null;34 void push(T<TOwner> value) {5 TNode<this, TOwner> newNode =6 new TNode<this, TOwner>(value, head);7 head = newNode;8 }9 T<TOwner> pop() {10 if (head == null) return null;11 T<TOwner> value = head.value(); head = head.next();12 return value;13 }14 }1516 lass TNode<nodeOwner, TOwner> {17 TNode<nodeOwner, TOwner> next; T<TOwner> value;1819 TNode(T<TOwner> v, TNode<nodeOwner, TOwner> n) {20 this.value = v; this.next = n;21 }22 T<TOwner> value() { return value; }23 TNode<nodeOwner, TOwner> next() { return next; }24 }2526 lass T<TOwner> { }2728 lass TStakClient<lientOwner> {29 void test() {30 TStak<this, this> s1 = new TStak<this, this> ();31 TStak<this, world> s2 = new TStak<this, world>();32 TStak<world, world> s3 = new TStak<world, world>();33 /* TStak<world, this> s4 = new TStak<world, this> (); */34 }} Figure 3: Stak of T Objets
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Figure 4: Ownership Relation for TStaks s1, s2, s33.1 Owner PolymorphismWe present our type system in the ontext of a Java-likelanguage augmented with ownership types. Every lass def-inition is parameterized with one or more owners. The �rstowner parameter is speial: it identi�es the owner of theorresponding objet. The other owner parameters are usedto propagate ownership information. Parameterization al-lows programmers to implement a generi lass whose ob-jets have di�erent owners. This parameterization is similarto parametri polymorphism [54, 16, 1, 61℄ exept that ourparameters are owners, not types.An owner an be instantiated with this, with world, or withanother owner parameter. Objets owned by this are en-apsulated objets that annot be aessed from outside.Objets owned by world an be aessed from anywhere.pro P2 fvar x3; pro P3 f...ggg. Say xn+1 and Pn+1 arehildren of Pn. Pn an only aess: 1) Pn and its hildren, 2)the anestors of Pn and their hildren, and 3) global variablesand proedures.

1 lass C<Owner, sOwner, tOwner> where (sOwner <= tOwner) {2 ...3 TStak<sOwner, tOwner> s;4 }Figure 5: Using Where Clauses to Constrain OwnersFigure 3 shows an example.2 A TStak is a stak of T ob-jets. It is implemented using a linked list. The TStaklass is parameterized by stakOwner and TOwner. stak-Owner owns the TStak objet; TOwner owns the T objetsontained in the TStak. The ode spei�es that the TStakobjet owns the nodes in the list; therefore the list nodesannot be aessed from outside the TStak objet.The type of TStak s1 is instantiated using this for boththe owner parameters. This means that TStak s1 is ownedby the TStakClient objet that reated it and so are the Tobjets in s1. TStak s2 is owned by the TStakClient objet,but the T objets in s2 are owned by world. TStak s3 isowned by world and so are the T objets in s3. The ownershiprelation for s1, s2, and s3 is depited in Figure 4 (assumingthe staks ontain two elements eah). (The dotted lineindiates that every objet is diretly or indiretly ownedby world.)3.2 Constraints on OwnersFor every type T hx1; :::; xni with multiple owners, our typesystem statially enfores the onstraint that (x1 � xi) forall i 2 f1::ng. Reall from Figure 1 that the ownershiprelation forms a tree rooted at world. The notation (y � z)means that y is a desendant of z in the ownership tree. Thenotation (y � z) means that y is either the same as z, or yis a desendant of z in the ownership tree. Thus, the typeof TStak s4 in Figure 3 is illegal beause (world 6� this).The above onstraint is the same as in [20℄. However, weextend it to parameterized methods as well. For a methodmhxn+1; :::; xki(...)f...g of an objet of type T hx1; :::; xni, therestrition is that (x1 � xi) for all i 2 f1::kg. (These on-straints are needed to provide enapsulation in the preseneof subtyping. [11℄ illustrates this point with an example.)To hek ownership onstraints modularly, it is sometimesneessary for programmers to speify additional onstraintson lass and method parameters. For example, in Figure 5,the type of s is legal only if (sOwner � tOwner). We al-low programmers to speify suh additional onstraints us-ing where lauses [25, 54℄, and our type system enfores theonstraints. For example, in Figure 5, lass C spei�es that(sOwner � tOwner). An instantiation of C that does notsatisfy the onstraint is illegal.3.3 SubtypingThe rule for delaring a subtype is that the �rst owner pa-rameter of the supertype must be the same as that of thesubtype; in addition, of ourse, the supertype must satisfythe onstraints on owners. The �rst owners have to math2The example shows type annotations written expliitly.However, many of them an be automatially inferred. SeeSetion 4.3 for details.215



1 lass TStak<stakOwner, TOwner> {2 TNode<this, TOwner> head = null;3 ...4 TStakEnum<enumOwner, TOwner> elements<enumOwner>()5 where (enumOwner <= TOwner) {6 return new TStakEnum<enumOwner, TOwner>();7 }8 lass TStakEnum<enumOwner, TOwner>9 implements TEnumeration<enumOwner, TOwner> {1011 TNode<TStak.this, TOwner> urrent;1213 TStakEnum() { urrent = TStak.this.head; }1415 T<TOwner> getNext() {16 if (urrent == null) return null;17 T<TOwner> t = urrent.value();18 urrent = urrent.next();19 return t;20 }21 boolean hasMoreElements() {22 return (urrent != null);23 }24 }25 }2627 lass TStakClient<lientOwner> {28 void test() {29 TStak<this, world> s = new TStak<this, world>();30 TEnumeration<this, world> e1 = s.elements();31 TEnumeration<world, world> e2 = s.elements();32 }}3334 interfae TEnumeration<enumOwner, TOwner> {35 T<TOwner> getNext();36 boolean hasMoreElements();37 } Figure 6: TStak With Iteratorbeause they are speial, in that they own the orrespond-ing objets. Thus, TStakhstakOwner, TOwneri is a subtypeof ObjethstakOwneri. But ThTOwneri is not a subtype ofObjethworldi beause the �rst owners do not math.3.4 Inner ClassesOur inner lasses are similar to the member inner lasses inJava. Inner lass de�nitions are nested inside other lasses.Figure 6 shows an example. The inner lass TStakEnumimplements an iterator for TStak; the elements method ofTStak provides a way to reate an iterator over the TStak.The TStak ode is otherwise similar to that in Figure 3.Reall from before that an owner an be instantiated withthis, with world, or with another owner parameter. Withinan inner lass, an owner an also be instantiated with C.this,where C is an outer lass. This feature allows an inner objetto aess the objets enapsulated within its outer objets.In Figure 6, the owner of the urrent �eld inTStakEnum isinstantiated with TStak.this. The urrent �eld aesses listnodes enapsulated within its outer TStak objet.An inner lass is parameterized with owners just like a reg-ular lass. In our system, the outer lass parameters arenot automatially visible inside an inner lass. If an innerlass uses an outer lass parameter, it must expliitly inludethe outer lass parameter in its delaration. In Figure 6,the TStakEnum delaration inludes the owner parameterTOwner from its outer lass. TOwner is therefore visibleinside TStakEnum. But the TStakEnum delaration does

1 lass TStak<stakOwner, TOwner> {2 TNode<this, TOwner> head = null;3 ...4 lass TStakEnum<enumOwner, TOwner>5 implements TEnumeration<enumOwner, TOwner> {67 TNode<TStak.this, TOwner> urrent;8 ...9 T<TOwner> getNext() writes(this) reads(TStak.this){...}10 boolean hasMoreElements() reads(this){...}11 }12 }1314 interfae TEnumeration<enumOwner, TOwner> {15 T<TOwner> getNext() writes(this) reads(world);16 boolean hasMoreElements() reads(this);17 } Figure 7: TStak Iterator With E�etsnot inlude stakOwner. Therefore, stakOwner is not visibleinside TStakEnum.Note that in this example, the elements method is parame-terized by enumOwner. This allows a program to reate dif-ferent iterators that have di�erent owners. elements returnsan iterator of type TStakEnumhenumOwner, TOwneri. Forthis type to be legal, it must be the ase that (enumOwner �TOwner). This requirement is aptured in the where lause.Note also that TStakhstakOwner, TOwneri.TStakEnum-henumOwner, TOwneri is delared to be a subtype of TEnu-merationhenumOwner, TOwneri. This allows TStakClient toreate an unenapsulated iterator e2 over an enapsulatedTStak s; the program an then pass e2 to objets outsidethe TStakClient. In general, inner lasses an be used to im-plement wrappers [32℄ that expose a limited interfae to anouter objet. A program an then reate a wrapper aroundan enapsulated subobjet, and pass the wrapper objet out-side the enapsulation boundary.3.5 Enapsulation TheoremOur system provides the following enapsulation property:Theorem 1. x an aess an objet owned by o only if:1. (x � o), or2. x is an inner lass objet of o.Proof. Consider the ode: lass Chf; :::if::: T ho; :::i y :::g.Variable y of type T ho; :::i is delared within the stati sopeof lass C. Owner o an therefore be either 1) this, or 2)world, or 3) a formal lass parameter, or 4) a formal methodparameter, or 5) C0.this, where C0 is an outer lass. We willshow that in the �rst four ases, the onstraint (this � o)holds. In the �rst two ases, the onstraint holds trivially.In the last two ases, (f � o) and (this� f), so the onstraintholds. In the �fth ase, (C0.this = o). Therefore an objet xof a lass C an aess an objet y owned by o only if either1) (x � o), as in the �rst four ases, or 2) x is an inner objetof o, as in the �fth ase.216



1 lass IntVetor<vOwner> {2 int elementCount = 0;3 int size() reads (this) { return elementCount; }4 void add(int x) writes(this) { elementCount++; ... }5 ...6 }78 lass IntStak<sOwner> {9 IntVetor<this> ve = new IntVetor<this>();10 void push(int x) writes (this) { ve.add(x); }11 ...12 }1314 void m<sO,vO> (IntStak<sO> s, IntVetor<vO> v)15 writes (s) reads (v) where !(v <= s) !(s <= v) {1617 int n = v.size(); s.push(3); assert(n == v.size());18 }Figure 8: Reasoning About Aliasing and Side E�ets3.6 DisussionOur variant of ownership types supports loal reasoning pro-vided the programmer delares that all depended-on objetsare owned. The above theorem implies that owned objetsan only be aessed from inside the owner, and by inner ob-jets. Therefore if ownership aptures the depends relationdesribed in Setion 2, loal reasoning about the orretnessof a lass is possible, beause the lass and its inner lassestogether an be reasoned about as a module.Our ownership types are also expressive. They allow eÆ-ient implementation of onstruts like iterators and wrap-pers [32℄. Furthermore, they also allow programs to reatewrappers that an be used in ontexts where the underlyingobjet is inaessible. This ability was illustrated in Figure 6;iterator e2 an be used globally even though the TStak itis iterating over an only be used in TStakClient.Ours is the �rst ownership type system to support onstrutslike iterators and generally aessible wrappers while also en-suring loal reasoning. We disuss this further in Setion 6.3.7 E�ets ClausesOur system also ontains e�ets lauses [49℄ beause theyare useful for speifying assumptions that hold at methodboundaries and enable modular reasoning and heking ofprograms. We use e�ets with ownership types to enablemodular upgrades; we desribe this in Setion 5.Our system allows programmers to speify reads and writeslauses. Consider a method that spei�es that it writes(w1; :::; wn) and reads (r1; :::; rm). The method an writean objet x (or all methods that write x) only if (x � wi)for some i 2 f1::ng. The method an read an objet y (orall methods that read y) only if (y � wi) or (y � rj), forsome i 2 f1::ng, j 2 f1::mg. We thus allow a method toboth read and write objets named in its writes lause.Figure 7 shows a TStak iterator that uses e�ets, but isotherwise similar to the TStak iterator in Figure 6. In theexample, the hasMoreElements method reads the this objet.The getNext method reads objets owned by TStak.this andwrites (and reads) the this objet.

P ::= defn* edefn ::= lass nhformal+i extends  where onstr* bodybody ::= finnerlass* �eld* meth*g ::= nhowner+i j Objethowner+i j .nhowner+iowner ::= formal j world j n.thisonstr ::= (owner � owner) j (owner 6� owner)innerlass ::= defnmeth ::= t mnhformal*i(arg* ) e�ets where onstr* fege�ets ::= reads (owner* ) writes (owner* )�eld ::= t fdarg ::= t xt ::=  j intformal ::= fe ::= new  j x.new  j x j let (arg=e) in feg jx.fd j x.fd = y j x.mnhowner*i(y* )n 2 lass namesfd 2 �eld namesmn 2 method namesx,y 2 variable namesf 2 owner namesFigure 9: GrammarWhen e�ets lauses are used in onjuntion with subtyping,the e�ets of an overridden method must subsume the e�etsof the overriding method. This sometimes makes it diÆultto speify preisely all the e�ets of a method. For example,it is diÆult to speify preisely all the read e�ets in thegetNextmethod of the TEnumeration lass beause TEnumer-ation is expeted to be a supertype of subtypes like TStak-Enum and TEnumeration annot name the spei� objetsused in the getNext methods of these subtypes. To aom-modate suh ases, we allow an esape mehanism, where amethod an inlude world in its e�ets lauses.Ownership types and e�ets an be used to loally reasonabout the side e�ets of method alls. Consider, for example,the ode in Figure 8, whih shows an IntStak implementedusing an IntVetor ve. (We adopted this example from [44℄.)The example has a method m that reeives two arguments:an IntStak s and an IntVetor v. The ondition in the assertstatement in m an be true only if v is not aliased to s.ve.In the example, the method m uses a where lause to speifythat (v 6� s) and (s 6� v). Sine the ownership relation formsa tree (see Figure 1), this onstraint implies that v annot bealiased to s.ve. Furthermore, IntVetor.size delares that itonly reads objets owned by the IntVetor, and IntStak.pushdelares that it only writes (and reads) objets owned bythe IntStak. Therefore, it is possible to reason loally thatv.size and s.push annot interfere, and thus the ondition inthe assert statement in m must be true.4 The Type SystemThis setion presents a formal desription of our type system.To simplify the presentation of key ideas, we desribe ourtype system in the ontext of a ore subset of Java [33℄ knownas Classi Java [31℄. We add inner lasses to Classi Javaand augment its type system with ownership types. Ourapproah, however, extends to the whole of Java and othersimilar languages.4.1 Type ChekingFigure 9 presents our grammar. The ore of our type systemis a set of rules for reasoning about the typing judgment: P ;217



` P : t[PROG℄WFClasses(P) ClassOne(P) IClassOne(P)FieldsOne(P) MethodsOne(P) OverridesOK(P)P = defn1::n e P ` defni 2 ; P ; ;; world; world ` e : t` P : t P ` defn 2 [CLASS℄OFields(.nhf1::ni) def= .nhf1::ni n.this, OFields() OFields(;) def= ;E = OFields(.nhf1::ni), owner f1::n, onstr� P ; E ` wfP ; E ` 0 P ` ilassi 2 .nhf1::ni P ; E ` �eldi P ; E ` methiP ` lass nhf1::ni extends 0 where onstr� filass� �eld� meth�g 2 P ; E ` onstr[� WORLD℄P ; E `owner oP ; E ` (o � world) [CONSTR ENV℄E = E1, onstr, E2P ; E ` onstr [� OWNER℄P ; E ` e : nho1::niP ; E ` (e � o1) [� REFL℄P ; E `owner oP ; E ` (o � o) [� TRANS℄P ; E ` (o1 � o2) P ; E ` (o2 � o3)P ; E ` (o1 � o3)P ; E ` X � Y[X � Y ℄X = x1::n Y = y1::m8i2f1::ng 9j2f1::mg (xi � yj)P ; E ` (X � Y ) P ; E `owner o[OWNER WORLD℄P ; E `owner world [OWNER FORMAL℄E = E1, owner f , E2P ; E `owner f [OWNER THIS℄E = E1,  n.this, E2P ; E `owner n.this P ; E ` t[TYPE INT℄P ; E ` int [TYPE OBJECT℄P ; E `owner oP ; E ` Objethoi[TYPE C℄P ` lass nhf1::ni... where onstr� ... 2 nhfi P ; E ` nhoiP ; E `owner oi P ; E ` o1 � oi P ; E ` onstr [o1=f1℄::[on=fn℄(fij 2 f) ^ (oij 2 o) ^ (fk = fij ) =) (ok = oij)P ; E ` nhoi.nho1::ni P ; E ` t1 <: t2[SUBTYPE C℄ P ; E ` nhoi.nho1::niP ` lass nhf1::ni extends n0ho0i.n0hf1 o�i ... 2 nhfiP ; E ` nhoi.nho1::ni <: n0ho0i.n0hf1 o�i [o1=f1℄::[on=fn℄[SUBTYPE REFL℄P ; E ` tP ; E ` t <: t [SUBTYPE TRANS℄P ; E ` t1 <: t2P ; E ` t2 <: t3P ; E ` t1 <: t3 P ; E ` wf[ENV ;℄P ; ; ` wf [ENV X℄P ; E ` wfx =2 Dom(E)P ; E ` tP ; E, t x ` wf [ENV OWNER℄P ; E ` wff =2 Dom(E)P ; E, owner f ` wf [ENV CONSTR℄onstr = (o � o0) _ onstr = (o 6� o0)P ; E ` wf P ; E `owner o, o0E0 = E, onstr6 9x;y (P ; E0 ` x � y) ^ (P ; E0 ` x 6� y)P ; E, onstr ` wfP ` meth 2 [METHOD DECLARED℄P ` lass nhf1::ni... f... meth ...g 2 P ` meth 2 .nhf1::ni [METHOD INHERITED℄P ` meth 2 nhfi.nhf1::niP ` lass n0hg1::mi extends nhoi.nho1::ni... 2 0P ` meth [o1=f1℄::[on=fn℄ 2 0.n0hg1::mi P ; E ` method[METHOD℄E0 = E, owner f1::n, onstr�, arg�P ; E0 ` wf P ; E0; r�; w�; w� ` e : tP ; E ` t mnhf1::ni(arg�) reads(r�)writes(w�) where onstr� fegP ` �eld 2 [FIELD DECLARED℄P ` lass nhf1::ni... f... �eld ...g 2 P ` �eld 2 .nhf1::ni [FIELD INHERITED℄P ` �eld 2 nhfi.nhf1::niP ` lass n0hg1::mi extends nhoi.nho1::ni... 2 0P ` �eld [o1=f1℄::[on=fn℄ 2 0.n0hg1::mi P ; E ` �eld[FIELD℄P ; E ` tP ; E ` t fd P ; E ` e : t[EXP TYPE℄P ; E; world; world ` e : tP ; E ` e : tP ; E; R; W ` e : t[EXP SUB℄P ; E; R; W ` e : t0P ; E; R; W ` t0 <: tP ; E; R; W ` e : t [EXP REF℄P ; E; R; W ` x : nhoi P ` (t fd) 2 nhfiR = R1, r, R2 x � rP ; E; R; W ` x:fd : t [o=f ℄ [EXP REF ASSIGN℄P ; E; R; W ` x : nhoi P ` (t fd) 2 nhfiW = W1, w, W2 x � w P ; E; R; W ` y : t [o=f ℄P ; E; R; W ` x:fd = y : t [o=f ℄[EXP NEW℄ P ; E ` nho1::niP ; E; R; W ` new nho1::ni : nho1::ni [EXP X.NEW℄P ; E ` x :  P ; E ` .nho1::niP ; E; R; W ` x.new nho1::ni : .nho1::ni [EXP VAR℄E = E1, t x, E2P ; E; R; W ` x : t[EXP LET℄arg = t x P ; E; R; W ` e : tP ; E, arg; R; W ` e0 : t0P ; E; R; W ` let (arg = e) in fe0g : t0 [EXP INVOKE℄P ` (t mnhf(n+1)::mi(tj yj j21::k) reads(r1::r) writes(w1::w) where onstr� feg) 2 nhfi.nhf1::niP ; E; R; W ` x : nhoi.nho1::ni P ; E; R; W ` xj : tj [o1=f1℄..[om=fm℄P ; E `owner oi P ; E ` o1 � oi P ; E ` r1::r [o1=f1℄..[om=fm℄ � RP ; E ` onstr [o1=f1℄::[om=fm℄ P ; E ` w1::w [o1=f1℄..[om=fm℄ � WP ; E; R; W ` x.mnho(n+1)::mi(x1::k) : t [o1=f1℄..[om=fm℄Figure 10: Type Cheking Rules218



Judgment Meaning` P : t program P yields type tP ` defn 2  defn is a well-formed lass in lass P ; E `owner o o is an ownerP ; E ` onstr onstraint onstr is satis�edP ; E ` X � Y e�et X is subsumed by e�et YP ; E ` t t is a well-formed typeP ; E ` t1 <: t2 t1 is a subtype of t2P ; E ` wf typing environment E is well-formedP ` �eld 2  lass  delares/inherits �eldP ` meth 2  lass  delares/inherits methP ; E ` �eld �eld is a well-formed �eldP ; E ` meth meth is a well-formed methodP ; E ` e : t expression e has type tP ; E; R; W ` e : t expression e has type t and read/writee�ets of e are subsumed by R/WFigure 11: Typing JudgmentsE; R; W ` e : t. P , the program being heked, is in-luded here to provide information about lass de�nitions.E is an environment providing types for the free variablesof e. R and W must subsume the read and write e�etsof e. t is the type of e. We de�ne a typing environmentas E ::= ; j E, t x j E, owner f j E, onstr . We de�ne ef-fets as R, W ::= o1::n. We de�ne the type system using thejudgments in Figure 11. We present the rules for these judg-ments in Figure 10. The rules use a number of prediatesthat are shown in Figure 12. These prediates are based onsimilar prediates from [31℄. For simpliity, we sometimestreat outermost lasses in our rules as if they were innerlasses of lass ;. We also sometime use nhfi to denoten1hf11::1n1 i.n2hf21::2n2 i..nkhfk1::knk i.4.2 Soundness of the Type SystemOur type heking rules ensure that for a program to bewell-typed, the program respets the properties desribed inFigure 1. A omplete syntati proof [63℄ of type soundnessan be onstruted by de�ning an operational semantis (byextending the operational semantis of Classi Java [31℄) andthen proving that well-typed programs do not reah an er-ror state and that the generalized subjet redution theoremholds for well-typed programs. The subjet redution theo-rem states that the semanti interpretation of a term's typeis invariant under redution. The proof is straightforwardbut tedious, so it is omitted here.4.3 Type InfereneAlthough our type system is expliitly typed in priniple, itwould be onerous to fully annotate every method with theextra type information. Instead, we an use a ombinationof inferene and well-hosen defaults to signi�antly reduethe number of annotations needed in pratie. [14, 11℄ de-sribe an intraproedural type inferene algorithm and somedefault types; we an use a similar approah. (In [14, 11℄,about one in thirty lines of ode had to be hanged to expressJava programs in an ownership type system.) We emphasizethat this approah to inferene is purely intraproedural anddoes not infer method signatures or types of instane vari-ables. Rather, it uses a default ompletion of partial typespei�ations in those ases to minimize the required anno-tations. This approah permits separate ompilation.

Prediate MeaningWFClasses(P) There are no yles in the lass hierarhyClassOne(P) No lass is delared twie in PIClassesOne(P) No lass ontains two inner lasses withsame name, either delared or inheritedFieldsOne(P) No lass ontains two �elds with samename, either delared or inheritedMethodsOne(P) No lass ontains two methods withsame nameOverridesOK(P) Overriding methods have the same returntype and parameter types as the methodsbeing overridden. The read and writee�ets of an overriding method must besuperseded by those of the overriddenmethodsFigure 12: Prediates Used in Type Cheking Rules4.4 Runtime OverheadThe system we desribed is a purely stati type system.The ownership relations are used only for ompile-time typeheking and are not preserved at runtime. Consequently,our programs have no runtime overhead ompared to regular(Java) programs. In fat, one way to ompile and run a pro-gram in our system is to onvert it into a regular programafter type heking, by removing the owner parameters, theonstraints on owners, and the e�ets lauses.A language like Java, however, is not purely statially-typed.Java allows downasts that are heked at runtime. Sup-pose an objet with delared type Objethoi is downast toVetorho,ei. Sine the result of this operation depends on in-formation that is only available at runtime, our type hekerannot verify at ompile-time that e is the right owner pa-rameter even if we assume that the objet is indeed a Ve-tor. To safely support downasts, a system has to keep someownership information at runtime. This is similar to keepingruntime information with parameterized types [54, 61℄. [10℄desribes how to do this eÆiently for ownership by keepingruntime information only for objets that an be potentiallyinvolved in downasts into types with multiple parameters.5 Upgrades in Persistent Objet StoresThis setion shows how ownership types and e�ets lausesan be used to enable modular reasoning about the orret-ness of upgrades in a persistent objet store. The desire toahieve suh reasoning was the motivation for our work onownership types for enapsulation.A persistent objet store [46, 5, 9, 17, 18, 29, 56℄ ontainsonventional objets similar to what one might �nd in anobjet-oriented language suh as Java. Appliations aesspersistent objets within atomi transations, sine this isneessary to ensure onsisteny for the stored objets; trans-ations allow for onurrent aess and they mask failures.Upgrades are needed in suh a system to improve objetimplementations, to orret errors, or even to hange inter-faes in the fae of hanging appliation requirements; thisinludes inompatible hanges to interfaes where the newinterfae does not support the same methods as the old one.Providing a satisfatory solution for upgrades in persistentobjet stores has been a long-standing hallenge.219



An upgrade for a persistent objet store is de�ned as a setof lass-upgrades, one for eah lass whose objets need tohange. A lass-upgrade is a triple: hold-lass, new-lass,TFi. It indiates that all objets belonging to old-lassshould be transformed, through the use of the transformfuntion TF provided by the programmer, into objets ofnew-lass. TF takes an old-lass objet and a newly al-loated new-lass objet and initializes the new-lass objetfrom the old-lass objet. The upgrade infrastruture ausesthe new-lass objet to take over the identity of the old-lassobjet, so that all objets that used to point to the old-lassobjet now point to the new-lass objet.An upgrade is exeuted by transforming all objets whoselasses are being replaed. However, transforms must notinterfere with appliation aess to the store, and must beperformed eÆiently in both spae and time. In addition,they must be done safely so that important persistent stateis not orrupted. Previous approahes [4, 7, 29, 45, 56, 57℄do not provide a satisfatory solution to these hallenges;they either stop appliation aess to the database whilerunning the upgrade, or they keep opies of the database, orthey limit the expressive power of transforms (e.g., transformfuntions are not allowed to make method alls).Our system provides an eÆient solution. It performs up-grades lazily. An objet is transformed just before an appli-ation aesses it: the appliation transation is interruptedto run the transform funtion. The transform runs in itsown transation; when this transation ommits, the appli-ation transation is resumed. Our system also allows laterupgrades to run in parallel with earlier ones. If an objet hasseveral pending transforms, they are run one after another,in upgrade order. Furthermore, if a transform transationT enounters an objet with a pending transform from anearlier upgrade, T is interrupted (just like an appliationtransform) to run the pending transform, and ontinues ex-eution after the pending transform ommits.More details an be found in [13, 12, 47℄.5.1 Ownership Types for Safe UpgradesOur upgrade system is eÆient and expressive: it does notdelay appliation transations, avoids the use of versions(opies of objets), and does not limit the expressive powerof transform funtions. But it also needs to support modu-lar reasoning about the orretness of transform funtions.This is possible if eah transform funtion enounters onlyobjet interfaes and invariants that existed when its up-grade started, even though in reality the transform fun-tion might run muh later, after appliation transationsand other transform transations.We use our variant of ownership types to enable modularreasoning about the orretness of transform funtions. Oursystem heks statially whether transform funtions satisfythe following onstraint, using ownership and e�ets dela-rations (e�ets lauses state what objets TFs aess):S1. TF(x) only aesses objets that x owns (diretly ortransitively).

Transform funtions often satisfy S1 beause ownership fre-quently aptures the depends relation disussed in Setion 2,and typially transform funtions only aess the depended-on objets. (We disuss in [13℄ how we support modularreasoning of transform funtions when S1 does not hold.)Our implementation also ensures the following:S2. For any objet x a�eted by an upgrade, x is aessedbefore any objet owned by x.We ensure S2 using two mehanisms. If the owned objet isenapsulated within x, the type system guarantees that x isaessed �rst. If the owned objet is shared with an innerlass objet of x, our system auses x to be aessed justbefore the inner lass objet is �rst used after the upgrade.This latter mehanism is desribed in more detail in [13℄.When S1 holds, we an prove that out-or-order proessingof transforms does not ause problems. In partiular, wean show that: appliations do not interfere with transformfuntions, transform funtions of unrelated objets do notinterfere with eah other, and transform funtions of relatedobjets run in a pre-determined order (namely an objet istransformed before its owned subobjets). (The proofs aregiven in [13℄).Thus when S1 holds, we an ensure that transform funtionsenounter the expeted interfaes and invariants. This sup-ports modular reasoning: eah transform funtion an bereasoned about as extra method of its old lass.6 Related WorkEulid [41℄ is one of the �rst languages that onsidered theproblem of aliasing. [37℄ stressed the need for better treat-ment of aliasing in objet-oriented programs. Early work onIslands [36℄ and Balloons [3℄ foused on fully enapsulatedobjets where all subobjets an objet an aess are not a-essible outside the objet. Universes [53℄ also enfores fullenapsulation, exept for read-only referenes. However, fullenapsulation signi�antly limits expressiveness, and is oftenmore than is needed. The work on ESC/Java pointed outthat enapsulation is required only for subobjets that theontaining objet depends on [43, 28℄, but ESC/Java wasunable to always enfore enapsulation.6.1 Ownership Types and EnapsulationOwnership types provide a statially enforeable way of spe-ifying objet enapsulation. They were proposed in [22℄ andformalized in [21℄. These systems enfore strit objet en-apsulation, but do so by signi�antly limiting expressive-ness. They require that a subtype have the same ownersas a supertype. So TStakhstakOwner, TOwneri annot bea subtype of ObjethstakOwneri. Moreover, they do notsupport iterators.PRFJ [14℄, SCJ [11℄, and JOE [20℄ extended ownership typesto support a natural form of subtyping. To do so withoutviolating enapsulation, JOE introdues the onstraint thatin every type with multiple owners, the �rst owner � all220



other owners. As a result, in JOE, a program an reate apointer from objet x to an objet owned by o only if (x �o). PRFJ and SCJ allow an objet to ontain pointers tosubobjets owned by a di�erent objet, but they have e�etslauses that prevent a program from following suh point-ers. The above systems e�etively enfore enapsulation forobjet �elds. However, to support onstruts like iterators,they allow method loal variables to violate enapsulation.Therefore they do not support loal reasoning.AliasJava [2℄ uses ownership types to aid program under-standing. Like other ownership type systems, AliasJava al-lows programmers to use ownership information to reasonabout aliasing. AliasJava is also more exible than otherownership type systems. However, unlike other ownershiptype systems, AliasJava does not enfore any enapsulationproperties. (This is illustrated with an example in [11℄.)Ownership types have been extended to inner lasses in [19,2℄. However, these systems do not enfore the propertystated in Setion 3.5, and do not support loal reasoning.Ownership types have also been used to enfore other prop-erties. Parameterized Rae-Free Java (PRFJ) [14℄ uses anownership based type system to prevent data raes in multi-threaded programs. Safe Conurrent Java (SCJ) [11℄ extendsthis to prevent both data raes and deadloks. These sys-tems an be ombined with our approah to enfore objetenapsulation as well as prevent data raes and deadloks.[11℄ skethes a way of doing this.Reent work [15, 59℄ ombines region types [60, 24, 35℄ withour type system to statially ensure both objet enapsula-tion and safe region-based memory management.6.2 Related Type SystemsLinear types [62℄ and unique pointers [51℄ an also be usedto ontrol objet aliasing. Linear types have been used inlow level languages to support safe expliit memory deallo-ation [24℄ and to trak resoure usage [26, 27℄. Linear typesand unique pointers are orthogonal to ownership types, butthe two an be used in onjuntion to provide more expres-sive systems. PRFJ [14℄ is the �rst system that ombinesownership types with onventional unique pointers. Reentwork [23℄ proposes a better approah that allows a programto speify a unique external pointer to an objet; there anbe other internal pointers to the objet from its subobjets.E�ets lauses [49℄ are useful for speifying assumptions thatmust hold at method boundaries. E�ets enable modularheking of programs. PRFJ [14℄ is the �rst system to om-bine e�ets with ownership types to statially prevent dataraes. [11℄ and [20℄ also ombine e�ets with ownership forpreventing deadloks and for program understanding. Thispaper uses e�ets with ownership to enable lazy upgrades.Data groups [42, 44℄ an be used to name groups of objets inan e�ets lause to write modular spei�ations in the pres-ene of subtyping. Ownership types provide an alternateway of writing modular spei�ations. Ownership types analso be used to name groups of objets in an e�ets lause|

the name of an owner an be used to name all the objetstransitively owned by the owner. Figure 8 presents an exam-ple from [44℄ expressed using ownership types. Data groupsare implemented using a theorem prover, and in priniple,they an be very exible. However, pivot uniqueness in [44℄imposes drasti restritions on pivot �elds. Ownership typesdo not impose suh restritions; they only require that theowner of an objet be unique. In [44℄, the owner exlusiononstraint is hard oded. In our system, programmers anspeify arbitrary onstraints on owners using where lauses;owner exlusion an be used as a default.Systems suh as TVLA [58℄, PALE [52℄, and Roles [40℄ spe-ify the shape of a loal objet graph in more detail thanownership types. TVLA an verify properties suh as whenthe input to the program is a tree, the output is also atree. PALE an verify all the data strutures that an beexpressed as graph types [39℄. Roles an verify global prop-erties suh as the partiipation of objets in multiple datastrutures. Roles also support ompositional interproeduralanalysis. In ontrast to these systems that take exponentialtime for veri�ation, ownership types provide a lightweightand pratial way to onstrain aliasing.7 ConlusionsObjet enapsulation enables sound loal reasoning aboutprogram orretness in objet-oriented languages. Owner-ship types provide a way of speifying and statially en-foring objet enapsulation. However, a type system thatenfores strit objet enapsulation is too onstraining: itdoes not allow eÆient implementation of important on-struts like iterators.This paper argues that the right way to solve the problemis to allow objets of lasses de�ned in the same module tohave privileged aess to eah other's representations. Weshow how to do this for inner lasses. Our variant of owner-ship types allows objets of inner lasses to have privilegedaess to the representations of the orresponding objetsof outer lasses. This prinipled violation of enapsulationallows programmers to express onstruts like iterators andwrappers using inner lasses. Our system also allows wrap-pers to be used in more global ontexts than the objetsthey wrap. Yet our system supports loal reasoning aboutthe orretness of lasses, beause a lass and its inner lassesan be reasoned about together as a module.Thus the paper desribes the �rst ownership type systemthat is expressive enough to support iterators and wrappers,while also supporting loal reasoning. In addition, the pa-per desribes an appliation of the tehnique to enable mod-ular reasoning about upgrades in persistent objet stores.Ownership types have been used for other purposes as well,suh as for preventing data raes and deadloks, and for saferegion-based memory management. Sine ownership typesrequire little programming overhead, their type heking isfast and salable, and they provide several bene�ts, theyo�er a promising approah to making objet-oriented pro-grams more reliable.221
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