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Abstract

Ownership types provide a statically enforceable way of spec-
ifying object encapsulation and enable local reasoning about
program correctness in object-oriented languages. However,
a type system that enforces strict object encapsulation is
too constraining: it does not allow efficient implementation
of important constructs like iterators. This paper argues
that the right way to solve the problem is to allow objects
of classes defined in the same module to have privileged ac-
cess to each other’s representations; we show how to do this
for inner classes. This approach allows programmers to ex-
press constructs like iterators and yet supports local reason-
ing about the correctness of the classes, because a class and
its inner classes together can be reasoned about as a module.
The paper also sketches how we use our variant of owner-
ship types to enable efficient software upgrades in persistent
object stores.

Categories and Subject Descriptors

D.3.3 [Programming Languages|: Language Constructs;
D.2.4 [Software Engineering]: Program Verification

General Terms
Languages, Verification, Theory
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The ability to reason locally about program correctness is
crucial when dealing with large programs. Local reasoning
allows correctness to be dealt with one module at a time.
Each module has a specification that describes its expected
behavior. The goal is to prove that each module satisfies its
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specification, using only the specifications but not code of
other modules. This way the complexity of the proof effort
(formal or informal) can be kept under control.

This local reasoning approach is sound if separate verifica-
tion of individual modules suffices to ensure the correctness
of the composite program [43, 28]. The key to sound lo-
cal reasoning in object-oriented languages is object encap-
sulation. Consider, for example, a Stack object s that is
implemented using a linked list. Local reasoning about the
correctness of the Stack implementation is possible if objects
outside s do not directly access the list nodes, i.e., the list
nodes are encapsulated within the s.

This paper presents a variant of ownership types for spec-
ifying and statically enforcing object encapsulation. With
ownership types, a program can declare that s owns all the
list nodes. The type system then statically ensures that the
list nodes are encapsulated within s.

A type system that enforces strict object encapsulation, how-
ever, is too constraining [55]: it does not allow efficient im-
plementation of important constructs like iterators [48, 32].
Consider, for example, an iterator over the above-mentioned
Stack object s. If the iterator is encapsulated within s; it
cannot be used outside s. If the iterator is not encapsulated
within s, it cannot directly access the list nodes in s, and
hence cannot run efficiently.

Previous ownership type systems were either too constrain-
ing to support constructs like iterators [22, 21], or too per-
missive to support local reasoning [20, 14, 11]; for example
they allowed objects outside the above-mentioned Stack ob-
ject s to temporarily get direct access to the list nodes.

This paper argues that the right way to solve the problem
is to provide special access privileges to objects belonging to
classes in the same module; we show how to do this for inner
classes [50, 38]. Our variant of ownership types allows inner
class objects to have privileged access to the representations
of the corresponding outer class objects. This principled vi-
olation of encapsulation allows programmers to express con-
structs like iterators using inner classes, yet supports local
reasoning about the correctness of the classes. Our system
supports local reasoning because a class and its inner classes
can be reasoned about together as a module.

The paper also describes how our variant of ownership types
enables efficient software upgrades in persistent object stores.



Our interest in software upgrades led us to work on owner-
ship types. The paper shows how our ownership types can
be used to ensure that code for upgrading objects does not
observe broken invariants or interfaces unknown at the time
it was written; this makes it possible for programmers to
reason about the correctness of their upgrades.

This paper is organized as follows. Section 2 discusses object
encapsulation. Section 3 describes our variant of ownership
types for enforcing object encapsulation. Section 4 presents
a formal description of the type system. Section 5 shows how
ownership types can be used to enable modular upgrades.
Section 6 discusses related work and Section 7 concludes.

2 Object Encapsulation

Object encapsulation is important because it provides the
ability to reason locally about program correctness. Rea-
soning about a class in an object-oriented program involves
reasoning about the behavior of objects belonging to the
class. Typically objects point to other subobjects, which are
used to represent the containing object.

Local reasoning about class correctness is possible if the sub-
objects are fully encapsulated, that is, if all subobjects are
accessible only within the containing object. This condi-
tion supports local reasoning because it ensures that outside
objects cannot interact with the subobjects without calling
methods of the containing object. And therefore the con-
taining object is in control of its subobjects.

However, full encapsulation is often more than is needed.
Encapsulation is only required for subobjects that the con-
taining object depends on [43, 28]:

D1. An object x depends on subobject y if z calls meth-
ods of y and furthermore these calls expose mutable
behavior of y in a way that affects the invariants of x.

Thus, a Stack object s implemented using a linked list de-
pends on the list but not on the items contained in the list.
If code outside could manipulate the list, it could invalidate
the correctness of the Stack implementation. But code out-
side can safely use the items contained in s because s doesn’t
call their methods; it only depends on the identities of the
items and the identities never change. Similarly, a Set of
immutable elements does not depend on the elements even
if it invokes a.equals(b) to ensure that no two elements a and
b in the Set are equal, because the elements are immutable.

Local reasoning about a class is possible if objects of that
class encapsulate every object they depend on. But strict
object encapsulation is too constraining [55]: it prevents ef-
ficient implementation of important constructs like iterators.
For example, to run efficiently, an iterator over the above-
mentioned Stack object s needs access to the list nodes in s.
To provide this access, we have to allow objects like iterators
to violate encapsulation.

Local reasoning is still possible provided all violations of en-
capsulation are limited to code contained in the same mod-
ule. For example, if both the Stack and its iterator are imple-
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O1. Every object has an owner.

02. The owner can either be another object or world.

03. The owner of an object does not change over time.

O4. The ownership relation forms a tree rooted at world.

Figure 1: Ownership Properties

world

Figure 2: An Ownership Relation

mented in the same module, we can still reason about their
correctness locally, by examining the code of that module.

3 Ownership Types for Encapsulation

Ownership types [22, 20, 14, 11] provide a statically enforce-
able way of specifying object encapsulation. The idea is
that an object can own subobjects it depends on, thus pre-
venting them from being accessible outside. This section
presents our ownership type system. This system is simi-
lar to the one described in [20]—the main difference is that
to support constructs like iterators, the type system in [20)]
allows temporary violations of encapsulation. We disallow
this violation. Instead, we support constructs like iterators
using inner classes.

The key to the type system is the concept of object owner-
ship. Every object has an owner. The owner can either be
another object or a special owner called world. Our type sys-
tem statically guarantees the ownership properties shown in
Figure 1. Figure 2 presents an example ownership relation.
We draw an arrow from z to y if z owns y. In the figure, the
special owner world owns objects 0l, 05, and 06; ol owns 02
and o4; 02 owns 03; and 06 owns o7.

Ownership allows a program to statically declare encapsula-
tion boundaries that capture dependencies:

D2. An object should own all the objects it depends on.

The system then enforces encapsulation: if y is inside the
encapsulation boundary of z and z is outside, then = cannot
access y. (An object z accesses an object y if x has a pointer
to y, or methods of z obtain a pointer to y.) In Figure 2, o7
is inside the encapsulation boundary of 06 and ol is outside,
so ol cannot access o7. An object is only allowed to access:
1) itself and objects it owns, 2) its ancestors in the ownership
tree and objects they own, and 3) globally accessible objects,
namely objects owned by world."! Thus, ol can access all
objects in the figure except for o3 and o7.

'Note the analogy with nested procedures: proc P; {var xa;



class TStack<stackOwner, TOwner> {
TNode<this, TOwner> head = null;

1
2
3
4 void push(T<TOwner> value) {
5 TNode<this, TOwner> newlNode =
6 new TNode<this, TOwner>(value, head);
7 head = newNode;

8 }

9 T<TOwner> pop() {

10 if (head == null) return null;

11 T<TOwner> value = head.value(); head = head.next();
12 return value;

13 }

14 }

15

16 class TNode<nodeOwner, TOwner> {

17 TNode<nodeOwner, TOwner> next; T<TOwner> value;

18

19 TNode (T<TOwner> v, TNode<nodeOwner, TOwner> n) {

20 this.value = v; this.next = n;

21 }

22 T<TOwner> value() { return value; }

23 TNode<nodeOwner, TOwner> next() { return next; }

24 }

25

26 class T<TOwner> { }

27

28 class TStackClient<clientOwner> {

29 void test() {

30 TStack<this, this> s1 = new TStack<this, this> ();
31 TStack<this, world> s2 = new TStack<this, world>();
32 TStack<world, world> s3 = new TStack<world, world>();
33 /* TStack<world, this> s4 = new TStack<world, this> (); */
34 3}

Figure 3: Stack of T Objects
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Figure 4: Ownership Relation for TStacks s1, s2, s3

3.1 Owner Polymorphism

We present our type system in the context of a Java-like
language augmented with ownership types. Every class def-
inition is parameterized with one or more owners. The first
owner parameter is special: it identifies the owner of the
corresponding object. The other owner parameters are used
to propagate ownership information. Parameterization al-
lows programmers to implement a generic class whose ob-
jects have different owners. This parameterization is similar
to parametric polymorphism [54, 16, 1, 61] except that our
parameters are owners, not types.

An owner can be instantiated with this, with world, or with
another owner parameter. Objects owned by this are en-
capsulated objects that cannot be accessed from outside.
Objects owned by world can be accessed from anywhere.

proc Py {var x3; proc Py {...}}}. Say xn41 and P,4; are
children of P,,. P, can only access: 1) P,, and its children, 2)
the ancestors of P,, and their children, and 3) global variables
and procedures.
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class C<cOwner, sOwner, tOwner> where (sOwner <= tOwner) {

1

2 o

3 TStack<sQwner, tOwner> s;
4

Figure 5: Using Where Clauses to Constrain Owners

Figure 3 shows an example.? A TStack is a stack of T ob-
jects. It is implemented using a linked list. The TStack
class is parameterized by stackOwner and TOwner. stack-
Owner owns the TStack object; TOwner owns the T objects
contained in the TStack. The code specifies that the TStack
object owns the nodes in the list; therefore the list nodes
cannot be accessed from outside the TStack object.

The type of TStack sl is instantiated using this for both
the owner parameters. This means that TStack sl is owned
by the TStackClient object that created it and so are the T
objects in s1. TStack s2 is owned by the TStackClient object,
but the T objects in s2 are owned by world. TStack s3 is
owned by world and so are the T objects in s3. The ownership
relation for s1, s2, and s3 is depicted in Figure 4 (assuming
the stacks contain two elements each). (The dotted line
indicates that every object is directly or indirectly owned
by world.)

3.2 Constraints on Owners

For every type T(z1,..., z») with multiple owners, our type
system statically enforces the constraint that (z1 < ;) for
all i € {l.n}. Recall from Figure 1 that the ownership
relation forms a tree rooted at world. The notation (y < 2)
means that y is a descendant of z in the ownership tree. The
notation (y < z) means that y is either the same as z, or y
is a descendant of z in the ownership tree. Thus, the type
of TStack s4 in Figure 3 is illegal because (world £ this).

The above constraint is the same as in [20]. However, we
extend it to parameterized methods as well. For a method
M(Tnt1, ..., Tk)(...){...} of an object of type T(z1, ..., z»), the
restriction is that (z1 < ;) for all i € {1..k}. (These con-
straints are needed to provide encapsulation in the presence
of subtyping. [11] illustrates this point with an example.)

To check ownership constraints modularly, it is sometimes
necessary for programmers to specify additional constraints
on class and method parameters. For example, in Figure 5,
the type of s is legal only if (sOwner < tOwner). We al-
low programmers to specify such additional constraints us-
ing where clauses [25, 54], and our type system enforces the
constraints. For example, in Figure 5, class C specifies that
(sOwner < tOwner). An instantiation of C that does not
satisty the constraint is illegal.

3.3 Subtyping

The rule for declaring a subtype is that the first owner pa-
rameter of the supertype must be the same as that of the
subtype; in addition, of course, the supertype must satisfy
the constraints on owners. The first owners have to match

2The example shows type annotations written explicitly.
However, many of them can be automatically inferred. See
Section 4.3 for details.



1 class TStack<stackOwner, TOwner> {

2 TNode<this, TOwner> head = null;

3 L.

4 TStackEnum<enumQwner, TOwner> elements<enumQwner> ()
5 where (enumOwner <= TOwner) {

6 return new TStackEnum<enumOwner, TOwner>();

7 }

8 class TStackEnum<enumOwner, TOwner>

9 implements TEnumeration<enumQwner, TOwner> {
10

11 TNode<TStack.this, TOwner> current;

12

13 TStackEnum() { current = TStack.this.head; }
14

15 T<TOwner> getNext() {

16 if (current == null) return null;

17 T<TOwner> t = current.value();

18 current = current.next();

19 return t;

20 }

21 boolean hasMoreElements() {

22 return (current != null);

23 }

24 }

25 }

26

27 class TStackClient<client(Owner> {

28 void test() {

29 TStack<this, world> s = new TStack<this, world>();
30 TEnumeration<this, world> el = s.elements();
31 TEnumeration<world, world> e2 = s.elements();
32 }}

33

34 interface TEnumeration<enumOwner, TOwner> {

35 T<TOwner> getNext();

36 boolean hasMoreElements () ;

37 }

Figure 6: TStack With Iterator

because they are special, in that they own the correspond-
ing objects. Thus, TStack(stackOwner, TOwner) is a subtype
of Object(stackOwner). But T(TOwner) is not a subtype of
Object(world) because the first owners do not match.

3.4 Inner Classes

Our inner classes are similar to the member inner classes in
Java. Inner class definitions are nested inside other classes.
Figure 6 shows an example. The inner class TStackEnum
implements an iterator for TStack; the elements method of
TStack provides a way to create an iterator over the TStack.
The TStack code is otherwise similar to that in Figure 3.

Recall from before that an owner can be instantiated with
this, with world, or with another owner parameter. Within
an inner class, an owner can also be instantiated with C'this,
where C is an outer class. This feature allows an inner object
to access the objects encapsulated within its outer objects.
In Figure 6, the owner of the current field inTStackEnum is
instantiated with TStack.this. The current field accesses list
nodes encapsulated within its outer TStack object.

An inner class is parameterized with owners just like a reg-
ular class. In our system, the outer class parameters are
not automatically visible inside an inner class. If an inner
class uses an outer class parameter, it must explicitly include
the outer class parameter in its declaration. In Figure 6,
the TStackEnum declaration includes the owner parameter
TOwner from its outer class. TOwner is therefore visible
inside TStackEnum. But the TStackEnum declaration does
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1 class TStack<stackOwner, TOwner> {

2 TNode<this, TOwner> head = null;

3 o

4 class TStackEnum<enumQOwner, TOwner>

5 implements TEnumeration<enumOwner, TOwner> {

6

7 TNode<TStack.this, TOwner> current;

8 o

9 T<TOwner> getNext() writes(this) reads(TStack.this){...}
10 boolean hasMoreElements () reads (this){...}
11 }

12}

13

14 interface TEnumeration<enumOwner, TOwner> {

15 T<TOwner> getNext() writes(this) reads(world);

16 boolean hasMoreElements () reads (this);

17}

Figure 7: TStack Iterator With Effects

not include stackOwner. Therefore, stackOwner is not visible
inside TStackEnum.

Note that in this example, the elements method is parame-
terized by enumOwner. This allows a program to create dif-
ferent iterators that have different owners. elements returns
an iterator of type TStackEnum(enumOwner, TOwner). For
this type to be legal, it must be the case that (enumOwner <
TOwner). This requirement is captured in the where clause.

Note also that TStack(stackOwner, TOwner).TStackEnum-
(enumOwner, TOwner) is declared to be a subtype of TEnu-
meration(enumOwner, TOwner). This allows TStackClient to
create an unencapsulated iterator e2 over an encapsulated
TStack s; the program can then pass e2 to objects outside
the TStackClient. In general, inner classes can be used to im-
plement wrappers [32] that expose a limited interface to an
outer object. A program can then create a wrapper around
an encapsulated subobject, and pass the wrapper object out-
side the encapsulation boundary.

3.5 Encapsulation Theorem

Our system provides the following encapsulation property:

THEOREM 1. x can access an object owned by o only if:
1. (x < 0), or

2. x 1is an inner class object of o.

Proor. Consider the code: class C(f,...){... T{o,...) y ...}.
Variable y of type T'{o, ...) is declared within the static scope
of class C. Owner o can therefore be either 1) this, or 2)
world, or 3) a formal class parameter, or 4) a formal method
parameter, or 5) C'.this, where C’ is an outer class. We will
show that in the first four cases, the constraint (this < o)
holds. In the first two cases, the constraint holds trivially.
In the last two cases, (f =< 0) and (this < f), so the constraint
holds. In the fifth case, (C'.this = 0). Therefore an object =
of a class C can access an object y owned by o only if either
1) (z < 0), as in the first four cases, or 2) z is an inner object
of o, as in the fifth case. [



class IntVector<vOwner> {
int elementCount = 0;
int size() reads (this) { return elementCount; }
void add(int x) writes(this) { elementCount++; ... }

)

0 ~N U D WN -

class IntStack<sOwner> {
9 IntVector<this> vec = new IntVector<this>();
void push(int x) writes (this) { vec.add(x); }

12}

void m<s0,v0> (IntStack<s0> s, IntVector<v0O> v)
writes (s) reads (v) where !(v <=s) !(s <= v) {

int n = v.size(); s.push(3); assert(n == v.size());

18 }

Figure 8: Reasoning About Aliasing and Side Effects

3.6 Discussion

Our variant of ownership types supports local reasoning pro-
vided the programmer declares that all depended-on objects
are owned. The above theorem implies that owned objects
can only be accessed from inside the owner, and by inner ob-
jects. Therefore if ownership captures the depends relation
described in Section 2, local reasoning about the correctness
of a class is possible, because the class and its inner classes
together can be reasoned about as a module.

Our ownership types are also expressive. They allow effi-
cient implementation of constructs like iterators and wrap-
pers [32]. Furthermore, they also allow programs to create
wrappers that can be used in contexts where the underlying
object is inaccessible. This ability was illustrated in Figure 6;
iterator e2 can be used globally even though the TStack it
is iterating over can only be used in TStackClient.

Ours is the first ownership type system to support constructs
like iterators and generally accessible wrappers while also en-
suring local reasoning. We discuss this further in Section 6.

3.7 Effects Clauses

Our system also contains effects clauses [49] because they
are useful for specifying assumptions that hold at method
boundaries and enable modular reasoning and checking of
programs. We use effects with ownership types to enable
modular upgrades; we describe this in Section 5.

Our system allows programmers to specify reads and writes
clauses. Consider a method that specifies that it writes
(w1, ..., w,) and reads (ri,...,7,). The method can write
an object z (or call methods that write z) only if (z < w;)
for some 7 € {1..n}. The method can read an object y (or
call methods that read y) only if (y < w;) or (y < r;), for
some ¢ € {1..n}, j € {1.m}. We thus allow a method to
both read and write objects named in its writes clause.

Figure 7 shows a TStack iterator that uses effects, but is
otherwise similar to the TStack iterator in Figure 6. In the
example, the hasMoreElements method reads the this object.
The getNext method reads objects owned by TStack.this and
writes (and reads) the this object.

217

P = defn*e
defn ::= class cn(formal+) extends ¢ where constr* body
body ::= {innerclass* field* meth*}
¢ u= cn(owner+) | Object{owner+) | c.cn{owner+)
owner = formal | world | cn.this
constr 1= (owner < owner) | (owner A owner)
innerclass = defn
meth =t mn(formal*)(arg*) effects where constr* {e}
effects = reads (owner*) writes (owner*)
field = tfd
arg = tz
t == c|int
formal = f
e u= new c| znew c | z | let (arg=e) in {e} |
z.fd | z.fd = y | z.mn(owner*)(y*)
cn € class names
fd € field names
mn € method names
T,y € variable names
f € owner names

Figure 9: Grammar

When effects clauses are used in conjunction with subtyping,
the effects of an overridden method must subsume the effects
of the overriding method. This sometimes makes it difficult
to specify precisely all the effects of a method. For example,
it is difficult to specify precisely all the read effects in the
getNext method of the TEnumeration class because TEnumer-
ation is expected to be a supertype of subtypes like TStack-
Enum and TEnumeration cannot name the specific objects
used in the getNext methods of these subtypes. To accom-
modate such cases, we allow an escape mechanism, where a
method can include world in its effects clauses.

Ownership types and effects can be used to locally reason
about the side effects of method calls. Consider, for example,
the code in Figure 8, which shows an IntStack implemented
using an IntVector vec. (We adopted this example from [44].)
The example has a method m that receives two arguments:
an IntStack s and an IntVector v. The condition in the assert
statement in m can be true only if v is not aliased to s.vec.

In the example, the method m uses a where clause to specify
that (v £ 's) and (s A v). Since the ownership relation forms
a tree (see Figure 1), this constraint implies that v cannot be
aliased to s.vec. Furthermore, IntVector.size declares that it
only reads objects owned by the IntVector, and IntStack.push
declares that it only writes (and reads) objects owned by
the IntStack. Therefore, it is possible to reason locally that
v.size and s.push cannot interfere, and thus the condition in
the assert statement in m must be true.

4 The Type System

This section presents a formal description of our type system.
To simplify the presentation of key ideas, we describe our
type system in the context of a core subset of Java [33] known
as Classic Java [31]. We add inner classes to Classic Java
and augment its type system with ownership types. Our
approach, however, extends to the whole of Java and other
similar languages.

4.1 Type Checking

Figure 9 presents our grammar. The core of our type system
is a set of rules for reasoning about the typing judgment: P;



Pk defn € ¢

[CLASS]
WFClasses(P)  ClassOnce(P) IClassOnce(P) OFields(c.cn{f1. »)) =" c.cn(f1.n) cn.this, OFields(c)  OFields(9) =" ¢
FieldsOnce(P) MethodsOnce(P) OwverridesOK(P) E = OFields(c.cn(fi. n)), owner f1_,, constrx P, EFwf
P =defny n e Pl defn; €0 P;0; world; world - e : ¢ P;EF ¢ PFiclass; € cen{fi..) P; E + field; P; E + meth;
FP:t P I~ class en(f1..n) extends ¢’ where constr* {iclass* fieldx meth*} € c
[X WORLD] [CONSTR ENV] [< OWNER] [< REFL] < TRANS]
P; E Fowner 0 E = E;, constr, E P,EtFe: cnfor. ) P; E Fowner 0 P; EF (01 R02) P; EF (02 = o03)
P; E + (o < world) P; E F constr P; E+ (e < 01) P; E+ (0 = 0) P; E+ (01 < 03)
[X <= Y] [OWNER WORLD] [OWNER FORMAL] [OWNER THIS] [TYPE INT] [TYPE OBJECT)]
X=z1.. Y=y1.m
Vie{1.n} Jje{r.m} (xi 2 y;) E = E1, owner f, Es E = FEi, ccenthis, By P; E Fowner 0
P;E+ (X <XY) P; E Fowner world P; E Fowner [ P; E Fowner cn.this P; E+ int P; E + Object(o)
[TYPE C] [SUBTYPE C]
P F class cn{fi..n)... where constrx ... € cn(f) P; E + ¢n(o)
P; E Fowner 0i P; E+ o1 Ro; P; E + constr [o1/f1]..[on/ fn] P, E m<5>-C_n(01..n> _
(fij € F) A (0ij €0) A (fx = fij) == (or = 0i5) P - class cn{f1. n) extends cn’(o").cn'(f1 o*) ... € en(f)
P; E F ci(0).cn{o1. ) P; E Fen(o).cn{o1.n) <: cn'(0").cn’(f1 ox) [o1/f1]..[0n/ fn]
[SUBTYPE REFL] [SUBTYPE TRANS] [ENV 0] [ENV X] [ENV OWNER] [ENV CONSTR]
P;Er-uwf constr = (0 < 0') V constr = (0 £ 0')
P; EFt; <:to z ¢ Dom(E) P,EFwf P,EF wf P; E Fowner 0, 0
P, E+t P; EFts <:tg P,EFt f ¢ Dom(E) E' = E, constr
PiEFt<:t P, EFty <it3 PO+ wf P,E, tz+wf P;E, owner fF wf Ay (PE' Fa=y)AN(PiE'FzZAy)

P; E, constr - wf

P + meth € ¢ P; E F method

[METHOD DECLARED)] [METHOD INHERITED)] [METHOD]
P+ meth € ea(f).en(fi..n) E' = E, owner f1..,, constrs, argx
P - class en(f1..n)... {... meth ...} € ¢ P I class cn/(g1..m) extends cn(o).cn{o1 »)... € ¢’ P; E' - wf P;E';re,wk; wkbe:t
P F meth € c.cn(f1..n) P+ meth [01/f1].-[on/fn] € ¢'.cn'(g1..m) P; E =t mn(fi.n)(arg) reads(rx)

writes(w#) where constr* {e}

P I field € c |P;Eb—ﬁem| |P;E|—e:t|

[FIELD DECLARED] [FIELD INHERITED] [FIELD] [EXP TYPE]
P field € en(f).cn{f1. »)
P+ class cn(fi..n)... {... field ...} € ¢ P - class e¢n’(g1..m) extends en(d).cn(o1. ,)... € ¢ P,E+t P; E; world; world Fe : ¢
P~ field € c.en(f1..n) Pt field [01/f1].-[on/fn] € c".cn'(g1..m) P, E+tfd P,EFe:t
[EXP SUB] [EXP REF] [EXP REF ASSIGN]
PiE;RWEe:t P, E; R, Wt a:en(e) Pr(tfd) €en(f) P, E; R, Wtka:en(e) P (tfd) €en(f)
P E R Wt <t R=Ri,r,Ra z=r W=W,w Wo z=w P, ERWEFy:t[c/f]
P,E;RWkhe:t P, E; R, W Fa.fd: t [o/f] P, E; Ry Wha.fd=y: t[o/f]
[EXP NEW] [EXP X.NEW] [EXP VAR]
P; E+ cn{o1..n) P;Etz:c P;EFccen(o1.n) E=EFE;, tzx Es
P; E; Ry W F new cn(o1..n) : ¢n{o1..n) P; E; Ry W F z.new cn(o1..n) ¢ c.cn{o1..n) P, E; RyWtkua:t
[EXP LET] [EXP INVOKE]
P+ (t mn(fng1y.m)(t; yj J€T-kY reads(ry. ) writes(wy. . ) where constrs {e}) € ea(f).cn{f1. n)
P; E; Ry W 2z : en(0).cn(o1..») P; E; R W F aj : tj [o1/f1]..[om/fm]
arg =tz P;E;R Wke:t P; E Fowner 0i P, Et o1 =o; P; Etri ., [o1/f1]..lom/fm] 2= R
P; E,arg; R, WFe :t P; E + constr [0o1/f1]..[0m /[ fm] P; E & wi.w [01/f1]..[om/fm] S W
P, E; R, W F let (arg =e) in {e'}: t/ P E; By W F 2.mn(o(ni1)..m)(T1..%) : t [01/f1]..[0m/ fm]

Figure 10: Type Checking Rules
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[ Judgment | Meaning
FP:t program P yields type ¢
P+ defn € ¢ defn is a well-formed class in class ¢
P; E Fowner 0 o0 is an owner

constraint constr is satisfied
effect X is subsumed by effect YV

P; E - constr
P;EFX <Y

P;EFt t is a well-formed type

P; EFt; <:ty t1 is a subtype of

P; EFuwf typing environment E is well-formed
P+ field € ¢ class ¢ declares/inherits field

P+ meth € ¢ class ¢ declares/inherits meth

P; E+ field field is a well-formed field

P; E+ meth meth is a well-formed method
P;EFe:t expression e has type t

P; E; R; Wk e: t | expression e has type ¢ and read/write

effects of e are subsumed by R/W

Figure 11: Typing Judgments

E; R, W F e: t. P, the program being checked, is in-
cluded here to provide information about class definitions.
E is an environment providing types for the free variables
of e. R and W must subsume the read and write effects
of e. t is the type of e. We define a typing environment
as Ex=0| E, tz| E,owner f | E, constr. We define ef-
fects as R, W ::= 01.,. We define the type system using the
judgments in Figure 11. We present the rules for these judg-
ments in Figure 10. The rules use a number of predicates
that are shown in Figure 12. These predicates are based on
similar predicates from [31]. For simplicity, we sometimes
treat outermost classes in our rules as if they were inner

classes of class ). We also sometime use ¢n(f) to denote
Cnl(fll..1n1)-Cn2<f21..2n2)--cnk(fkl..knk)-

4.2 Soundness of the Type System

Our type checking rules ensure that for a program to be
well-typed, the program respects the properties described in
Figure 1. A complete syntactic proof [63] of type soundness
can be constructed by defining an operational semantics (by
extending the operational semantics of Classic Java [31]) and
then proving that well-typed programs do not reach an er-
ror state and that the generalized subject reduction theorem
holds for well-typed programs. The subject reduction theo-
rem states that the semantic interpretation of a term’s type
is invariant under reduction. The proof is straightforward
but tedious, so it is omitted here.

4.3 Type Inference

Although our type system is explicitly typed in principle, it
would be onerous to fully annotate every method with the
extra type information. Instead, we can use a combination
of inference and well-chosen defaults to significantly reduce
the number of annotations needed in practice. [14, 11] de-
scribe an intraprocedural type inference algorithm and some
default types; we can use a similar approach. (In [14, 11],
about one in thirty lines of code had to be changed to express
Java programs in an ownership type system.) We emphasize
that this approach to inference is purely intraprocedural and
does not infer method signatures or types of instance vari-
ables. Rather, it uses a default completion of partial type
specifications in those cases to minimize the required anno-
tations. This approach permits separate compilation.
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Predicate

WFClasses(P)
ClassOnce(P)
IClassesOnce(P)

Meaning |

There are no cycles in the class hierarchy
No class is declared twice in P

No class contains two inner classes with
same name, either declared or inherited
No class contains two fields with same
name, either declared or inherited

No class contains two methods with

same name

Overriding methods have the same return
type and parameter types as the methods
being overridden. The read and write
effects of an overriding method must be
superseded by those of the overridden
methods

FieldsOnce(P)
MethodsOnce(P)

OwerridesOK(P)

Figure 12: Predicates Used in Type Checking Rules

4.4 Runtime Overhead

The system we described is a purely static type system.
The ownership relations are used only for compile-time type
checking and are not preserved at runtime. Consequently,
our programs have no runtime overhead compared to regular
(Java) programs. In fact, one way to compile and run a pro-
gram in our system is to convert it into a regular program
after type checking, by removing the owner parameters, the
constraints on owners, and the effects clauses.

A language like Java, however, is not purely statically-typed.
Java allows downcasts that are checked at runtime. Sup-
pose an object with declared type Object{(o) is downcast to
Vector(o,e). Since the result of this operation depends on in-
formation that is only available at runtime, our type checker
cannot verify at compile-time that e is the right owner pa-
rameter even if we assume that the object is indeed a Vec-
tor. To safely support downcasts, a system has to keep some
ownership information at runtime. This is similar to keeping
runtime information with parameterized types [54, 61]. [10]
describes how to do this efficiently for ownership by keeping
runtime information only for objects that can be potentially
involved in downcasts into types with multiple parameters.

5 Upgrades in Persistent Object Stores

This section shows how ownership types and effects clauses
can be used to enable modular reasoning about the correct-
ness of upgrades in a persistent object store. The desire to
achieve such reasoning was the motivation for our work on
ownership types for encapsulation.

A persistent object store [46, 5, 9, 17, 18, 29, 56] contains
conventional objects similar to what one might find in an
object-oriented language such as Java. Applications access
persistent objects within atomic transactions, since this is
necessary to ensure consistency for the stored objects; trans-
actions allow for concurrent access and they mask failures.
Upgrades are needed in such a system to improve object
implementations, to correct errors, or even to change inter-
faces in the face of changing application requirements; this
includes incompatible changes to interfaces where the new
interface does not support the same methods as the old one.
Providing a satisfactory solution for upgrades in persistent
object stores has been a long-standing challenge.



An upgrade for a persistent object store is defined as a set
of class-upgrades, one for each class whose objects need to
change. A class-upgrade is a triple: (old-class, new-class,
TF). It indicates that all objects belonging to old-class
should be transformed, through the use of the transform
function TF provided by the programmer, into objects of
new-class. TF takes an old-class object and a newly al-
located new-class object and initializes the new-class object
from the old-class object. The upgrade infrastructure causes
the new-class object to take over the identity of the old-class
object, so that all objects that used to point to the old-class
object now point to the new-class object.

An upgrade is executed by transforming all objects whose
classes are being replaced. However, transforms must not
interfere with application access to the store, and must be
performed efficiently in both space and time. In addition,
they must be done safely so that important persistent state
is not corrupted. Previous approaches [4, 7, 29, 45, 56, 57]
do not provide a satisfactory solution to these challenges;
they either stop application access to the database while
running the upgrade, or they keep copies of the database, or
they limit the expressive power of transforms (e.g., transform
functions are not allowed to make method calls).

Our system provides an efficient solution. It performs up-
grades lazily. An object is transformed just before an appli-
cation accesses it: the application transaction is interrupted
to run the transform function. The transform runs in its
own transaction; when this transaction commits, the appli-
cation transaction is resumed. Our system also allows later
upgrades to run in parallel with earlier ones. If an object has
several pending transforms, they are run one after another,
in upgrade order. Furthermore, if a transform transaction
T encounters an object with a pending transform from an
earlier upgrade, T is interrupted (just like an application
transform) to run the pending transform, and continues ex-
ecution after the pending transform commits.

More details can be found in [13, 12, 47].

5.1 Ownership Types for Safe Upgrades

Our upgrade system is efficient and expressive: it does not
delay application transactions, avoids the use of versions
(copies of objects), and does not limit the expressive power
of transform functions. But it also needs to support modu-
lar reasoning about the correctness of transform functions.
This is possible if each transform function encounters only
object interfaces and invariants that existed when its up-
grade started, even though in reality the transform func-
tion might run much later, after application transactions
and other transform transactions.

We use our variant of ownership types to enable modular
reasoning about the correctness of transform functions. Our
system checks statically whether transform functions satisfy
the following constraint, using ownership and effects decla-
rations (effects clauses state what objects TFs access):

S1. TF(x) only accesses objects that z owns (directly or
transitively).
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Transform functions often satisfy S1 because ownership fre-
quently captures the depends relation discussed in Section 2,
and typically transform functions only access the depended-
on objects. (We discuss in [13] how we support modular
reasoning of transform functions when S1 does not hold.)

Our implementation also ensures the following:

S2. For any object x affected by an upgrade, x is accessed
before any object owned by x.

We ensure S2 using two mechanisms. If the owned object is
encapsulated within x, the type system guarantees that x is
accessed first. If the owned object is shared with an inner
class object of x, our system causes x to be accessed just
before the inner class object is first used after the upgrade.
This latter mechanism is described in more detail in [13].

When S1 holds, we can prove that out-or-order processing
of transforms does not cause problems. In particular, we
can show that: applications do not interfere with transform
functions, transform functions of unrelated objects do not
interfere with each other, and transform functions of related
objects run in a pre-determined order (namely an object is
transformed before its owned subobjects). (The proofs are
given in [13]).

Thus when S1 holds, we can ensure that transform functions
encounter the expected interfaces and invariants. This sup-
ports modular reasoning: each transform function can be
reasoned about as extra method of its old class.

6 Related Work

Euclid [41] is one of the first languages that considered the
problem of aliasing. [37] stressed the need for better treat-
ment of aliasing in object-oriented programs. Early work on
Islands [36] and Balloons [3] focused on fully encapsulated
objects where all subobjects an object can access are not ac-
cessible outside the object. Universes [53] also enforces full
encapsulation, except for read-only references. However, full
encapsulation significantly limits expressiveness, and is often
more than is needed. The work on ESC/Java pointed out
that encapsulation is required only for subobjects that the
containing object depends on [43, 28], but ESC/Java was
unable to always enforce encapsulation.

6.1 Ownership Types and Encapsulation
Ownership types provide a statically enforceable way of spec-
ifying object encapsulation. They were proposed in [22] and
formalized in [21]. These systems enforce strict object en-
capsulation, but do so by significantly limiting expressive-
ness. They require that a subtype have the same owners
as a supertype. So TStack(stackOwner, TOwner) cannot be
a subtype of Object(stackOwner). Moreover, they do not
support iterators.

PRFJ [14], SCJ [11], and JOE [20] extended ownership types
to support a natural form of subtyping. To do so without
violating encapsulation, JOE introduces the constraint that
in every type with multiple owners, the first owner < all



other owners. As a result, in JOE, a program can create a
pointer from object = to an object owned by o only if (z <
0). PRFJ and SCJ allow an object to contain pointers to
subobjects owned by a different object, but they have effects
clauses that prevent a program from following such point-
ers. The above systems effectively enforce encapsulation for
object fields. However, to support constructs like iterators,
they allow method local variables to violate encapsulation.
Therefore they do not support local reasoning.

AliasJava [2] uses ownership types to aid program under-
standing. Like other ownership type systems, AliasJava al-
lows programmers to use ownership information to reason
about aliasing. AliasJava is also more flexible than other
ownership type systems. However, unlike other ownership
type systems, AliasJava does not enforce any encapsulation
properties. (This is illustrated with an example in [11].)

Ownership types have been extended to inner classes in [19,
2]. However, these systems do not enforce the property
stated in Section 3.5, and do not support local reasoning.

Ownership types have also been used to enforce other prop-
erties. Parameterized Race-Free Java (PRFJ) [14] uses an
ownership based type system to prevent data races in multi-
threaded programs. Safe Concurrent Java (SCJ) [11] extends
this to prevent both data races and deadlocks. These sys-
tems can be combined with our approach to enforce object
encapsulation as well as prevent data races and deadlocks.
[11] sketches a way of doing this.

Recent work [15, 59] combines region types [60, 24, 35] with
our type system to statically ensure both object encapsula-
tion and safe region-based memory management.

6.2 Related Type Systems

Linear types [62] and unique pointers [51] can also be used
to control object aliasing. Linear types have been used in
low level languages to support safe explicit memory deallo-
cation [24] and to track resource usage [26, 27]. Linear types
and unique pointers are orthogonal to ownership types, but
the two can be used in conjunction to provide more expres-
sive systems. PRFJ [14] is the first system that combines
ownership types with conventional unique pointers. Recent
work [23] proposes a better approach that allows a program
to specify a unique ezternal pointer to an object; there can
be other internal pointers to the object from its subobjects.

Effects clauses [49] are useful for specifying assumptions that
must hold at method boundaries. Effects enable modular
checking of programs. PRFJ [14] is the first system to com-
bine effects with ownership types to statically prevent data
races. [11] and [20] also combine effects with ownership for
preventing deadlocks and for program understanding. This
paper uses effects with ownership to enable lazy upgrades.

Data groups [42, 44] can be used to name groups of objects in
an effects clause to write modular specifications in the pres-
ence of subtyping. Ownership types provide an alternate
way of writing modular specifications. Ownership types can
also be used to name groups of objects in an effects clause

221

the name of an owner can be used to name all the objects
transitively owned by the owner. Figure 8 presents an exam-
ple from [44] expressed using ownership types. Data groups
are implemented using a theorem prover, and in principle,
they can be very flexible. However, pivot uniqueness in [44]
imposes drastic restrictions on pivot fields. Ownership types
do not impose such restrictions; they only require that the
owner of an object be unique. In [44], the owner exclusion
constraint is hard coded. In our system, programmers can
specify arbitrary constraints on owners using where clauses;
owner exclusion can be used as a default.

Systems such as TVLA [58], PALE [52], and Roles [40] spec-
ify the shape of a local object graph in more detail than
ownership types. TVLA can verify properties such as when
the input to the program is a tree, the output is also a
tree. PALE can verify all the data structures that can be
expressed as graph types [39]. Roles can verify global prop-
erties such as the participation of objects in multiple data
structures. Roles also support compositional interprocedural
analysis. In contrast to these systems that take exponential
time for verification, ownership types provide a lightweight
and practical way to constrain aliasing.

7 Conclusions

Object encapsulation enables sound local reasoning about
program correctness in object-oriented languages. Owner-
ship types provide a way of specifying and statically en-
forcing object encapsulation. However, a type system that
enforces strict object encapsulation is too constraining: it
does not allow efficient implementation of important con-
structs like iterators.

This paper argues that the right way to solve the problem
is to allow objects of classes defined in the same module to
have privileged access to each other’s representations. We
show how to do this for inner classes. Our variant of owner-
ship types allows objects of inner classes to have privileged
access to the representations of the corresponding objects
of outer classes. This principled violation of encapsulation
allows programmers to express constructs like iterators and
wrappers using inner classes. Our system also allows wrap-
pers to be used in more global contexts than the objects
they wrap. Yet our system supports local reasoning about
the correctness of classes, because a class and its inner classes
can be reasoned about together as a module.

Thus the paper describes the first ownership type system
that is expressive enough to support iterators and wrappers,
while also supporting local reasoning. In addition, the pa-
per describes an application of the technique to enable mod-
ular reasoning about upgrades in persistent object stores.
Ownership types have been used for other purposes as well,
such as for preventing data races and deadlocks, and for safe
region-based memory management. Since ownership types
require little programming overhead, their type checking is
fast and scalable, and they provide several benefits, they
offer a promising approach to making object-oriented pro-
grams more reliable.
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