
ACM Symposium on Prin
iples of Programming Languages (POPL), January 2003
Ownership Types for Object Encapsulation

Chandrasekhar Boyapati
Laboratory for Computer Science

Massachusetts Intitute of Technology
Cambridge, MA 02139
chandra@lcs.mit.edu

Barbara Liskov
Laboratory for Computer Science

Massachusetts Intitute of Technology
Cambridge, MA 02139

liskov@lcs.mit.edu

Liuba Shrira
Department of Computer Science

Brandeis University
Waltham, MA 02454

liuba@cs.brandeis.eduAbstra
tOwnership types provide a stati
ally enfor
eable way of spe
-ifying obje
t en
apsulation and enable lo
al reasoning aboutprogram 
orre
tness in obje
t-oriented languages. However,a type system that enfor
es stri
t obje
t en
apsulation istoo 
onstraining: it does not allow eÆ
ient implementationof important 
onstru
ts like iterators. This paper arguesthat the right way to solve the problem is to allow obje
tsof 
lasses de�ned in the same module to have privileged a
-
ess to ea
h other's representations; we show how to do thisfor inner 
lasses. This approa
h allows programmers to ex-press 
onstru
ts like iterators and yet supports lo
al reason-ing about the 
orre
tness of the 
lasses, be
ause a 
lass andits inner 
lasses together 
an be reasoned about as a module.The paper also sket
hes how we use our variant of owner-ship types to enable eÆ
ient software upgrades in persistentobje
t stores.Categories and Subje
t Des
riptorsD.3.3 [Programming Languages℄: Language Constru
ts;D.2.4 [Software Engineering℄: Program Veri�
ationGeneral TermsLanguages, Veri�
ation, TheoryKeywordsOwnership Types, Obje
t En
apsulation, Software Upgrades1 Introdu
tionThe ability to reason lo
ally about program 
orre
tness is
ru
ial when dealing with large programs. Lo
al reasoningallows 
orre
tness to be dealt with one module at a time.Ea
h module has a spe
i�
ation that des
ribes its expe
tedbehavior. The goal is to prove that ea
h module satis�es itsThe resear
h was supported in part by DARPA Contra
tF30602-98-1-0237, NSF Grant IIS-98-02066, and NTT.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-628-5/03/0001 ...$5.00

spe
i�
ation, using only the spe
i�
ations but not 
ode ofother modules. This way the 
omplexity of the proof e�ort(formal or informal) 
an be kept under 
ontrol.This lo
al reasoning approa
h is sound if separate veri�
a-tion of individual modules suÆ
es to ensure the 
orre
tnessof the 
omposite program [43, 28℄. The key to sound lo-
al reasoning in obje
t-oriented languages is obje
t en
ap-sulation. Consider, for example, a Sta
k obje
t s that isimplemented using a linked list. Lo
al reasoning about the
orre
tness of the Sta
k implementation is possible if obje
tsoutside s do not dire
tly a

ess the list nodes, i.e., the listnodes are en
apsulated within the s.This paper presents a variant of ownership types for spe
-ifying and stati
ally enfor
ing obje
t en
apsulation. Withownership types, a program 
an de
lare that s owns all thelist nodes. The type system then stati
ally ensures that thelist nodes are en
apsulated within s.A type system that enfor
es stri
t obje
t en
apsulation, how-ever, is too 
onstraining [55℄: it does not allow eÆ
ient im-plementation of important 
onstru
ts like iterators [48, 32℄.Consider, for example, an iterator over the above-mentionedSta
k obje
t s. If the iterator is en
apsulated within s, it
annot be used outside s. If the iterator is not en
apsulatedwithin s, it 
annot dire
tly a

ess the list nodes in s, andhen
e 
annot run eÆ
iently.Previous ownership type systems were either too 
onstrain-ing to support 
onstru
ts like iterators [22, 21℄, or too per-missive to support lo
al reasoning [20, 14, 11℄; for examplethey allowed obje
ts outside the above-mentioned Sta
k ob-je
t s to temporarily get dire
t a

ess to the list nodes.This paper argues that the right way to solve the problemis to provide spe
ial a

ess privileges to obje
ts belonging to
lasses in the same module; we show how to do this for inner
lasses [50, 38℄. Our variant of ownership types allows inner
lass obje
ts to have privileged a

ess to the representationsof the 
orresponding outer 
lass obje
ts. This prin
ipled vi-olation of en
apsulation allows programmers to express 
on-stru
ts like iterators using inner 
lasses, yet supports lo
alreasoning about the 
orre
tness of the 
lasses. Our systemsupports lo
al reasoning be
ause a 
lass and its inner 
lasses
an be reasoned about together as a module.The paper also des
ribes how our variant of ownership typesenables eÆ
ient software upgrades in persistent obje
t stores.213



Our interest in software upgrades led us to work on owner-ship types. The paper shows how our ownership types 
anbe used to ensure that 
ode for upgrading obje
ts does notobserve broken invariants or interfa
es unknown at the timeit was written; this makes it possible for programmers toreason about the 
orre
tness of their upgrades.This paper is organized as follows. Se
tion 2 dis
usses obje
ten
apsulation. Se
tion 3 des
ribes our variant of ownershiptypes for enfor
ing obje
t en
apsulation. Se
tion 4 presentsa formal des
ription of the type system. Se
tion 5 shows howownership types 
an be used to enable modular upgrades.Se
tion 6 dis
usses related work and Se
tion 7 
on
ludes.2 Obje
t En
apsulationObje
t en
apsulation is important be
ause it provides theability to reason lo
ally about program 
orre
tness. Rea-soning about a 
lass in an obje
t-oriented program involvesreasoning about the behavior of obje
ts belonging to the
lass. Typi
ally obje
ts point to other subobje
ts, whi
h areused to represent the 
ontaining obje
t.Lo
al reasoning about 
lass 
orre
tness is possible if the sub-obje
ts are fully en
apsulated, that is, if all subobje
ts area

essible only within the 
ontaining obje
t. This 
ondi-tion supports lo
al reasoning be
ause it ensures that outsideobje
ts 
annot intera
t with the subobje
ts without 
allingmethods of the 
ontaining obje
t. And therefore the 
on-taining obje
t is in 
ontrol of its subobje
ts.However, full en
apsulation is often more than is needed.En
apsulation is only required for subobje
ts that the 
on-taining obje
t depends on [43, 28℄:D1. An obje
t x depends on subobje
t y if x 
alls meth-ods of y and furthermore these 
alls expose mutablebehavior of y in a way that a�e
ts the invariants of x.Thus, a Sta
k obje
t s implemented using a linked list de-pends on the list but not on the items 
ontained in the list.If 
ode outside 
ould manipulate the list, it 
ould invalidatethe 
orre
tness of the Sta
k implementation. But 
ode out-side 
an safely use the items 
ontained in s be
ause s doesn't
all their methods; it only depends on the identities of theitems and the identities never 
hange. Similarly, a Set ofimmutable elements does not depend on the elements evenif it invokes a.equals(b) to ensure that no two elements a andb in the Set are equal, be
ause the elements are immutable.Lo
al reasoning about a 
lass is possible if obje
ts of that
lass en
apsulate every obje
t they depend on. But stri
tobje
t en
apsulation is too 
onstraining [55℄: it prevents ef-�
ient implementation of important 
onstru
ts like iterators.For example, to run eÆ
iently, an iterator over the above-mentioned Sta
k obje
t s needs a

ess to the list nodes in s.To provide this a

ess, we have to allow obje
ts like iteratorsto violate en
apsulation.Lo
al reasoning is still possible provided all violations of en-
apsulation are limited to 
ode 
ontained in the same mod-ule. For example, if both the Sta
k and its iterator are imple-

O1. Every obje
t has an owner.O2. The owner 
an either be another obje
t or world.O3. The owner of an obje
t does not 
hange over time.O4. The ownership relation forms a tree rooted at world.Figure 1: Ownership Properties
o5 o6

o7
o2 o4

o1

o3

world

Figure 2: An Ownership Relationmented in the same module, we 
an still reason about their
orre
tness lo
ally, by examining the 
ode of that module.3 Ownership Types for En
apsulationOwnership types [22, 20, 14, 11℄ provide a stati
ally enfor
e-able way of spe
ifying obje
t en
apsulation. The idea isthat an obje
t 
an own subobje
ts it depends on, thus pre-venting them from being a

essible outside. This se
tionpresents our ownership type system. This system is simi-lar to the one des
ribed in [20℄|the main di�eren
e is thatto support 
onstru
ts like iterators, the type system in [20℄allows temporary violations of en
apsulation. We disallowthis violation. Instead, we support 
onstru
ts like iteratorsusing inner 
lasses.The key to the type system is the 
on
ept of obje
t owner-ship. Every obje
t has an owner. The owner 
an either beanother obje
t or a spe
ial owner 
alled world. Our type sys-tem stati
ally guarantees the ownership properties shown inFigure 1. Figure 2 presents an example ownership relation.We draw an arrow from x to y if x owns y. In the �gure, thespe
ial owner world owns obje
ts o1, o5, and o6; o1 owns o2and o4; o2 owns o3; and o6 owns o7.Ownership allows a program to stati
ally de
lare en
apsula-tion boundaries that 
apture dependen
ies:D2. An obje
t should own all the obje
ts it depends on.The system then enfor
es en
apsulation: if y is inside theen
apsulation boundary of z and x is outside, then x 
annota

ess y. (An obje
t x a

esses an obje
t y if x has a pointerto y, or methods of x obtain a pointer to y.) In Figure 2, o7is inside the en
apsulation boundary of o6 and o1 is outside,so o1 
annot a

ess o7. An obje
t is only allowed to a

ess:1) itself and obje
ts it owns, 2) its an
estors in the ownershiptree and obje
ts they own, and 3) globally a

essible obje
ts,namely obje
ts owned by world.1 Thus, o1 
an a

ess allobje
ts in the �gure ex
ept for o3 and o7.1Note the analogy with nested pro
edures: pro
 P1 fvar x2;214



1 
lass TSta
k<sta
kOwner, TOwner> {2 TNode<this, TOwner> head = null;34 void push(T<TOwner> value) {5 TNode<this, TOwner> newNode =6 new TNode<this, TOwner>(value, head);7 head = newNode;8 }9 T<TOwner> pop() {10 if (head == null) return null;11 T<TOwner> value = head.value(); head = head.next();12 return value;13 }14 }1516 
lass TNode<nodeOwner, TOwner> {17 TNode<nodeOwner, TOwner> next; T<TOwner> value;1819 TNode(T<TOwner> v, TNode<nodeOwner, TOwner> n) {20 this.value = v; this.next = n;21 }22 T<TOwner> value() { return value; }23 TNode<nodeOwner, TOwner> next() { return next; }24 }2526 
lass T<TOwner> { }2728 
lass TSta
kClient<
lientOwner> {29 void test() {30 TSta
k<this, this> s1 = new TSta
k<this, this> ();31 TSta
k<this, world> s2 = new TSta
k<this, world>();32 TSta
k<world, world> s3 = new TSta
k<world, world>();33 /* TSta
k<world, this> s4 = new TSta
k<world, this> (); */34 }} Figure 3: Sta
k of T Obje
ts
s1.head
(TNode)

s1 (TStack)

(TNode)
s1.head.next

s2 (TStack)

s2.head
(TNode) (TNode)

s2.head.next

s3 (TStack)

s3.head
(TNode) (TNode)

s3.head.next

(TStackClient)

s1.head.value
(T)

s2.head.value
(T)

(T)
s1.head.next.value

(T)
s2.head.next.value

(T)
s3.head.next.value

s3.head.value
(T)

world

Figure 4: Ownership Relation for TSta
ks s1, s2, s33.1 Owner PolymorphismWe present our type system in the 
ontext of a Java-likelanguage augmented with ownership types. Every 
lass def-inition is parameterized with one or more owners. The �rstowner parameter is spe
ial: it identi�es the owner of the
orresponding obje
t. The other owner parameters are usedto propagate ownership information. Parameterization al-lows programmers to implement a generi
 
lass whose ob-je
ts have di�erent owners. This parameterization is similarto parametri
 polymorphism [54, 16, 1, 61℄ ex
ept that ourparameters are owners, not types.An owner 
an be instantiated with this, with world, or withanother owner parameter. Obje
ts owned by this are en-
apsulated obje
ts that 
annot be a

essed from outside.Obje
ts owned by world 
an be a

essed from anywhere.pro
 P2 fvar x3; pro
 P3 f...ggg. Say xn+1 and Pn+1 are
hildren of Pn. Pn 
an only a

ess: 1) Pn and its 
hildren, 2)the an
estors of Pn and their 
hildren, and 3) global variablesand pro
edures.

1 
lass C<
Owner, sOwner, tOwner> where (sOwner <= tOwner) {2 ...3 TSta
k<sOwner, tOwner> s;4 }Figure 5: Using Where Clauses to Constrain OwnersFigure 3 shows an example.2 A TSta
k is a sta
k of T ob-je
ts. It is implemented using a linked list. The TSta
k
lass is parameterized by sta
kOwner and TOwner. sta
k-Owner owns the TSta
k obje
t; TOwner owns the T obje
ts
ontained in the TSta
k. The 
ode spe
i�es that the TSta
kobje
t owns the nodes in the list; therefore the list nodes
annot be a

essed from outside the TSta
k obje
t.The type of TSta
k s1 is instantiated using this for boththe owner parameters. This means that TSta
k s1 is ownedby the TSta
kClient obje
t that 
reated it and so are the Tobje
ts in s1. TSta
k s2 is owned by the TSta
kClient obje
t,but the T obje
ts in s2 are owned by world. TSta
k s3 isowned by world and so are the T obje
ts in s3. The ownershiprelation for s1, s2, and s3 is depi
ted in Figure 4 (assumingthe sta
ks 
ontain two elements ea
h). (The dotted lineindi
ates that every obje
t is dire
tly or indire
tly ownedby world.)3.2 Constraints on OwnersFor every type T hx1; :::; xni with multiple owners, our typesystem stati
ally enfor
es the 
onstraint that (x1 � xi) forall i 2 f1::ng. Re
all from Figure 1 that the ownershiprelation forms a tree rooted at world. The notation (y � z)means that y is a des
endant of z in the ownership tree. Thenotation (y � z) means that y is either the same as z, or yis a des
endant of z in the ownership tree. Thus, the typeof TSta
k s4 in Figure 3 is illegal be
ause (world 6� this).The above 
onstraint is the same as in [20℄. However, weextend it to parameterized methods as well. For a methodmhxn+1; :::; xki(...)f...g of an obje
t of type T hx1; :::; xni, therestri
tion is that (x1 � xi) for all i 2 f1::kg. (These 
on-straints are needed to provide en
apsulation in the presen
eof subtyping. [11℄ illustrates this point with an example.)To 
he
k ownership 
onstraints modularly, it is sometimesne
essary for programmers to spe
ify additional 
onstraintson 
lass and method parameters. For example, in Figure 5,the type of s is legal only if (sOwner � tOwner). We al-low programmers to spe
ify su
h additional 
onstraints us-ing where 
lauses [25, 54℄, and our type system enfor
es the
onstraints. For example, in Figure 5, 
lass C spe
i�es that(sOwner � tOwner). An instantiation of C that does notsatisfy the 
onstraint is illegal.3.3 SubtypingThe rule for de
laring a subtype is that the �rst owner pa-rameter of the supertype must be the same as that of thesubtype; in addition, of 
ourse, the supertype must satisfythe 
onstraints on owners. The �rst owners have to mat
h2The example shows type annotations written expli
itly.However, many of them 
an be automati
ally inferred. SeeSe
tion 4.3 for details.215



1 
lass TSta
k<sta
kOwner, TOwner> {2 TNode<this, TOwner> head = null;3 ...4 TSta
kEnum<enumOwner, TOwner> elements<enumOwner>()5 where (enumOwner <= TOwner) {6 return new TSta
kEnum<enumOwner, TOwner>();7 }8 
lass TSta
kEnum<enumOwner, TOwner>9 implements TEnumeration<enumOwner, TOwner> {1011 TNode<TSta
k.this, TOwner> 
urrent;1213 TSta
kEnum() { 
urrent = TSta
k.this.head; }1415 T<TOwner> getNext() {16 if (
urrent == null) return null;17 T<TOwner> t = 
urrent.value();18 
urrent = 
urrent.next();19 return t;20 }21 boolean hasMoreElements() {22 return (
urrent != null);23 }24 }25 }2627 
lass TSta
kClient<
lientOwner> {28 void test() {29 TSta
k<this, world> s = new TSta
k<this, world>();30 TEnumeration<this, world> e1 = s.elements();31 TEnumeration<world, world> e2 = s.elements();32 }}3334 interfa
e TEnumeration<enumOwner, TOwner> {35 T<TOwner> getNext();36 boolean hasMoreElements();37 } Figure 6: TSta
k With Iteratorbe
ause they are spe
ial, in that they own the 
orrespond-ing obje
ts. Thus, TSta
khsta
kOwner, TOwneri is a subtypeof Obje
thsta
kOwneri. But ThTOwneri is not a subtype ofObje
thworldi be
ause the �rst owners do not mat
h.3.4 Inner ClassesOur inner 
lasses are similar to the member inner 
lasses inJava. Inner 
lass de�nitions are nested inside other 
lasses.Figure 6 shows an example. The inner 
lass TSta
kEnumimplements an iterator for TSta
k; the elements method ofTSta
k provides a way to 
reate an iterator over the TSta
k.The TSta
k 
ode is otherwise similar to that in Figure 3.Re
all from before that an owner 
an be instantiated withthis, with world, or with another owner parameter. Withinan inner 
lass, an owner 
an also be instantiated with C.this,where C is an outer 
lass. This feature allows an inner obje
tto a

ess the obje
ts en
apsulated within its outer obje
ts.In Figure 6, the owner of the 
urrent �eld inTSta
kEnum isinstantiated with TSta
k.this. The 
urrent �eld a

esses listnodes en
apsulated within its outer TSta
k obje
t.An inner 
lass is parameterized with owners just like a reg-ular 
lass. In our system, the outer 
lass parameters arenot automati
ally visible inside an inner 
lass. If an inner
lass uses an outer 
lass parameter, it must expli
itly in
ludethe outer 
lass parameter in its de
laration. In Figure 6,the TSta
kEnum de
laration in
ludes the owner parameterTOwner from its outer 
lass. TOwner is therefore visibleinside TSta
kEnum. But the TSta
kEnum de
laration does

1 
lass TSta
k<sta
kOwner, TOwner> {2 TNode<this, TOwner> head = null;3 ...4 
lass TSta
kEnum<enumOwner, TOwner>5 implements TEnumeration<enumOwner, TOwner> {67 TNode<TSta
k.this, TOwner> 
urrent;8 ...9 T<TOwner> getNext() writes(this) reads(TSta
k.this){...}10 boolean hasMoreElements() reads(this){...}11 }12 }1314 interfa
e TEnumeration<enumOwner, TOwner> {15 T<TOwner> getNext() writes(this) reads(world);16 boolean hasMoreElements() reads(this);17 } Figure 7: TSta
k Iterator With E�e
tsnot in
lude sta
kOwner. Therefore, sta
kOwner is not visibleinside TSta
kEnum.Note that in this example, the elements method is parame-terized by enumOwner. This allows a program to 
reate dif-ferent iterators that have di�erent owners. elements returnsan iterator of type TSta
kEnumhenumOwner, TOwneri. Forthis type to be legal, it must be the 
ase that (enumOwner �TOwner). This requirement is 
aptured in the where 
lause.Note also that TSta
khsta
kOwner, TOwneri.TSta
kEnum-henumOwner, TOwneri is de
lared to be a subtype of TEnu-merationhenumOwner, TOwneri. This allows TSta
kClient to
reate an unen
apsulated iterator e2 over an en
apsulatedTSta
k s; the program 
an then pass e2 to obje
ts outsidethe TSta
kClient. In general, inner 
lasses 
an be used to im-plement wrappers [32℄ that expose a limited interfa
e to anouter obje
t. A program 
an then 
reate a wrapper aroundan en
apsulated subobje
t, and pass the wrapper obje
t out-side the en
apsulation boundary.3.5 En
apsulation TheoremOur system provides the following en
apsulation property:Theorem 1. x 
an a

ess an obje
t owned by o only if:1. (x � o), or2. x is an inner 
lass obje
t of o.Proof. Consider the 
ode: 
lass Chf; :::if::: T ho; :::i y :::g.Variable y of type T ho; :::i is de
lared within the stati
 s
opeof 
lass C. Owner o 
an therefore be either 1) this, or 2)world, or 3) a formal 
lass parameter, or 4) a formal methodparameter, or 5) C0.this, where C0 is an outer 
lass. We willshow that in the �rst four 
ases, the 
onstraint (this � o)holds. In the �rst two 
ases, the 
onstraint holds trivially.In the last two 
ases, (f � o) and (this� f), so the 
onstraintholds. In the �fth 
ase, (C0.this = o). Therefore an obje
t xof a 
lass C 
an a

ess an obje
t y owned by o only if either1) (x � o), as in the �rst four 
ases, or 2) x is an inner obje
tof o, as in the �fth 
ase.216



1 
lass IntVe
tor<vOwner> {2 int elementCount = 0;3 int size() reads (this) { return elementCount; }4 void add(int x) writes(this) { elementCount++; ... }5 ...6 }78 
lass IntSta
k<sOwner> {9 IntVe
tor<this> ve
 = new IntVe
tor<this>();10 void push(int x) writes (this) { ve
.add(x); }11 ...12 }1314 void m<sO,vO> (IntSta
k<sO> s, IntVe
tor<vO> v)15 writes (s) reads (v) where !(v <= s) !(s <= v) {1617 int n = v.size(); s.push(3); assert(n == v.size());18 }Figure 8: Reasoning About Aliasing and Side E�e
ts3.6 Dis
ussionOur variant of ownership types supports lo
al reasoning pro-vided the programmer de
lares that all depended-on obje
tsare owned. The above theorem implies that owned obje
ts
an only be a

essed from inside the owner, and by inner ob-je
ts. Therefore if ownership 
aptures the depends relationdes
ribed in Se
tion 2, lo
al reasoning about the 
orre
tnessof a 
lass is possible, be
ause the 
lass and its inner 
lassestogether 
an be reasoned about as a module.Our ownership types are also expressive. They allow eÆ-
ient implementation of 
onstru
ts like iterators and wrap-pers [32℄. Furthermore, they also allow programs to 
reatewrappers that 
an be used in 
ontexts where the underlyingobje
t is ina

essible. This ability was illustrated in Figure 6;iterator e2 
an be used globally even though the TSta
k itis iterating over 
an only be used in TSta
kClient.Ours is the �rst ownership type system to support 
onstru
tslike iterators and generally a

essible wrappers while also en-suring lo
al reasoning. We dis
uss this further in Se
tion 6.3.7 E�e
ts ClausesOur system also 
ontains e�e
ts 
lauses [49℄ be
ause theyare useful for spe
ifying assumptions that hold at methodboundaries and enable modular reasoning and 
he
king ofprograms. We use e�e
ts with ownership types to enablemodular upgrades; we des
ribe this in Se
tion 5.Our system allows programmers to spe
ify reads and writes
lauses. Consider a method that spe
i�es that it writes(w1; :::; wn) and reads (r1; :::; rm). The method 
an writean obje
t x (or 
all methods that write x) only if (x � wi)for some i 2 f1::ng. The method 
an read an obje
t y (or
all methods that read y) only if (y � wi) or (y � rj), forsome i 2 f1::ng, j 2 f1::mg. We thus allow a method toboth read and write obje
ts named in its writes 
lause.Figure 7 shows a TSta
k iterator that uses e�e
ts, but isotherwise similar to the TSta
k iterator in Figure 6. In theexample, the hasMoreElements method reads the this obje
t.The getNext method reads obje
ts owned by TSta
k.this andwrites (and reads) the this obje
t.

P ::= defn* edefn ::= 
lass 
nhformal+i extends 
 where 
onstr* bodybody ::= finner
lass* �eld* meth*g
 ::= 
nhowner+i j Obje
thowner+i j 
.
nhowner+iowner ::= formal j world j 
n.this
onstr ::= (owner � owner) j (owner 6� owner)inner
lass ::= defnmeth ::= t mnhformal*i(arg* ) e�e
ts where 
onstr* fege�e
ts ::= reads (owner* ) writes (owner* )�eld ::= t fdarg ::= t xt ::= 
 j intformal ::= fe ::= new 
 j x.new 
 j x j let (arg=e) in feg jx.fd j x.fd = y j x.mnhowner*i(y* )
n 2 
lass namesfd 2 �eld namesmn 2 method namesx,y 2 variable namesf 2 owner namesFigure 9: GrammarWhen e�e
ts 
lauses are used in 
onjun
tion with subtyping,the e�e
ts of an overridden method must subsume the e�e
tsof the overriding method. This sometimes makes it diÆ
ultto spe
ify pre
isely all the e�e
ts of a method. For example,it is diÆ
ult to spe
ify pre
isely all the read e�e
ts in thegetNextmethod of the TEnumeration 
lass be
ause TEnumer-ation is expe
ted to be a supertype of subtypes like TSta
k-Enum and TEnumeration 
annot name the spe
i�
 obje
tsused in the getNext methods of these subtypes. To a

om-modate su
h 
ases, we allow an es
ape me
hanism, where amethod 
an in
lude world in its e�e
ts 
lauses.Ownership types and e�e
ts 
an be used to lo
ally reasonabout the side e�e
ts of method 
alls. Consider, for example,the 
ode in Figure 8, whi
h shows an IntSta
k implementedusing an IntVe
tor ve
. (We adopted this example from [44℄.)The example has a method m that re
eives two arguments:an IntSta
k s and an IntVe
tor v. The 
ondition in the assertstatement in m 
an be true only if v is not aliased to s.ve
.In the example, the method m uses a where 
lause to spe
ifythat (v 6� s) and (s 6� v). Sin
e the ownership relation formsa tree (see Figure 1), this 
onstraint implies that v 
annot bealiased to s.ve
. Furthermore, IntVe
tor.size de
lares that itonly reads obje
ts owned by the IntVe
tor, and IntSta
k.pushde
lares that it only writes (and reads) obje
ts owned bythe IntSta
k. Therefore, it is possible to reason lo
ally thatv.size and s.push 
annot interfere, and thus the 
ondition inthe assert statement in m must be true.4 The Type SystemThis se
tion presents a formal des
ription of our type system.To simplify the presentation of key ideas, we des
ribe ourtype system in the 
ontext of a 
ore subset of Java [33℄ knownas Classi
 Java [31℄. We add inner 
lasses to Classi
 Javaand augment its type system with ownership types. Ourapproa
h, however, extends to the whole of Java and othersimilar languages.4.1 Type Che
kingFigure 9 presents our grammar. The 
ore of our type systemis a set of rules for reasoning about the typing judgment: P ;217



` P : t[PROG℄WFClasses(P) ClassOn
e(P) IClassOn
e(P)FieldsOn
e(P) MethodsOn
e(P) OverridesOK(P)P = defn1::n e P ` defni 2 ; P ; ;; world; world ` e : t` P : t P ` defn 2 
[CLASS℄OFields(
.
nhf1::ni) def= 
.
nhf1::ni 
n.this, OFields(
) OFields(;) def= ;E = OFields(
.
nhf1::ni), owner f1::n, 
onstr� P ; E ` wfP ; E ` 
0 P ` i
lassi 2 
.
nhf1::ni P ; E ` �eldi P ; E ` methiP ` 
lass 
nhf1::ni extends 
0 where 
onstr� fi
lass� �eld� meth�g 2 
P ; E ` 
onstr[� WORLD℄P ; E `owner oP ; E ` (o � world) [CONSTR ENV℄E = E1, 
onstr, E2P ; E ` 
onstr [� OWNER℄P ; E ` e : 
nho1::niP ; E ` (e � o1) [� REFL℄P ; E `owner oP ; E ` (o � o) [� TRANS℄P ; E ` (o1 � o2) P ; E ` (o2 � o3)P ; E ` (o1 � o3)P ; E ` X � Y[X � Y ℄X = x1::n Y = y1::m8i2f1::ng 9j2f1::mg (xi � yj)P ; E ` (X � Y ) P ; E `owner o[OWNER WORLD℄P ; E `owner world [OWNER FORMAL℄E = E1, owner f , E2P ; E `owner f [OWNER THIS℄E = E1, 
 
n.this, E2P ; E `owner 
n.this P ; E ` t[TYPE INT℄P ; E ` int [TYPE OBJECT℄P ; E `owner oP ; E ` Obje
thoi[TYPE C℄P ` 
lass 
nhf1::ni... where 
onstr� ... 2 
nhfi P ; E ` 
nhoiP ; E `owner oi P ; E ` o1 � oi P ; E ` 
onstr [o1=f1℄::[on=fn℄(fij 2 f) ^ (oij 2 o) ^ (fk = fij ) =) (ok = oij)P ; E ` 
nhoi.
nho1::ni P ; E ` t1 <: t2[SUBTYPE C℄ P ; E ` 
nhoi.
nho1::niP ` 
lass 
nhf1::ni extends 
n0ho0i.
n0hf1 o�i ... 2 
nhfiP ; E ` 
nhoi.
nho1::ni <: 
n0ho0i.
n0hf1 o�i [o1=f1℄::[on=fn℄[SUBTYPE REFL℄P ; E ` tP ; E ` t <: t [SUBTYPE TRANS℄P ; E ` t1 <: t2P ; E ` t2 <: t3P ; E ` t1 <: t3 P ; E ` wf[ENV ;℄P ; ; ` wf [ENV X℄P ; E ` wfx =2 Dom(E)P ; E ` tP ; E, t x ` wf [ENV OWNER℄P ; E ` wff =2 Dom(E)P ; E, owner f ` wf [ENV CONSTR℄
onstr = (o � o0) _ 
onstr = (o 6� o0)P ; E ` wf P ; E `owner o, o0E0 = E, 
onstr6 9x;y (P ; E0 ` x � y) ^ (P ; E0 ` x 6� y)P ; E, 
onstr ` wfP ` meth 2 
[METHOD DECLARED℄P ` 
lass 
nhf1::ni... f... meth ...g 2 
P ` meth 2 
.
nhf1::ni [METHOD INHERITED℄P ` meth 2 
nhfi.
nhf1::niP ` 
lass 
n0hg1::mi extends 
nhoi.
nho1::ni... 2 
0P ` meth [o1=f1℄::[on=fn℄ 2 
0.
n0hg1::mi P ; E ` method[METHOD℄E0 = E, owner f1::n, 
onstr�, arg�P ; E0 ` wf P ; E0; r�; w�; w� ` e : tP ; E ` t mnhf1::ni(arg�) reads(r�)writes(w�) where 
onstr� fegP ` �eld 2 
[FIELD DECLARED℄P ` 
lass 
nhf1::ni... f... �eld ...g 2 
P ` �eld 2 
.
nhf1::ni [FIELD INHERITED℄P ` �eld 2 
nhfi.
nhf1::niP ` 
lass 
n0hg1::mi extends 
nhoi.
nho1::ni... 2 
0P ` �eld [o1=f1℄::[on=fn℄ 2 
0.
n0hg1::mi P ; E ` �eld[FIELD℄P ; E ` tP ; E ` t fd P ; E ` e : t[EXP TYPE℄P ; E; world; world ` e : tP ; E ` e : tP ; E; R; W ` e : t[EXP SUB℄P ; E; R; W ` e : t0P ; E; R; W ` t0 <: tP ; E; R; W ` e : t [EXP REF℄P ; E; R; W ` x : 
nhoi P ` (t fd) 2 
nhfiR = R1, r, R2 x � rP ; E; R; W ` x:fd : t [o=f ℄ [EXP REF ASSIGN℄P ; E; R; W ` x : 
nhoi P ` (t fd) 2 
nhfiW = W1, w, W2 x � w P ; E; R; W ` y : t [o=f ℄P ; E; R; W ` x:fd = y : t [o=f ℄[EXP NEW℄ P ; E ` 
nho1::niP ; E; R; W ` new 
nho1::ni : 
nho1::ni [EXP X.NEW℄P ; E ` x : 
 P ; E ` 
.
nho1::niP ; E; R; W ` x.new 
nho1::ni : 
.
nho1::ni [EXP VAR℄E = E1, t x, E2P ; E; R; W ` x : t[EXP LET℄arg = t x P ; E; R; W ` e : tP ; E, arg; R; W ` e0 : t0P ; E; R; W ` let (arg = e) in fe0g : t0 [EXP INVOKE℄P ` (t mnhf(n+1)::mi(tj yj j21::k) reads(r1::r) writes(w1::w) where 
onstr� feg) 2 
nhfi.
nhf1::niP ; E; R; W ` x : 
nhoi.
nho1::ni P ; E; R; W ` xj : tj [o1=f1℄..[om=fm℄P ; E `owner oi P ; E ` o1 � oi P ; E ` r1::r [o1=f1℄..[om=fm℄ � RP ; E ` 
onstr [o1=f1℄::[om=fm℄ P ; E ` w1::w [o1=f1℄..[om=fm℄ � WP ; E; R; W ` x.mnho(n+1)::mi(x1::k) : t [o1=f1℄..[om=fm℄Figure 10: Type Che
king Rules218



Judgment Meaning` P : t program P yields type tP ` defn 2 
 defn is a well-formed 
lass in 
lass 
P ; E `owner o o is an ownerP ; E ` 
onstr 
onstraint 
onstr is satis�edP ; E ` X � Y e�e
t X is subsumed by e�e
t YP ; E ` t t is a well-formed typeP ; E ` t1 <: t2 t1 is a subtype of t2P ; E ` wf typing environment E is well-formedP ` �eld 2 
 
lass 
 de
lares/inherits �eldP ` meth 2 
 
lass 
 de
lares/inherits methP ; E ` �eld �eld is a well-formed �eldP ; E ` meth meth is a well-formed methodP ; E ` e : t expression e has type tP ; E; R; W ` e : t expression e has type t and read/writee�e
ts of e are subsumed by R/WFigure 11: Typing JudgmentsE; R; W ` e : t. P , the program being 
he
ked, is in-
luded here to provide information about 
lass de�nitions.E is an environment providing types for the free variablesof e. R and W must subsume the read and write e�e
tsof e. t is the type of e. We de�ne a typing environmentas E ::= ; j E, t x j E, owner f j E, 
onstr . We de�ne ef-fe
ts as R, W ::= o1::n. We de�ne the type system using thejudgments in Figure 11. We present the rules for these judg-ments in Figure 10. The rules use a number of predi
atesthat are shown in Figure 12. These predi
ates are based onsimilar predi
ates from [31℄. For simpli
ity, we sometimestreat outermost 
lasses in our rules as if they were inner
lasses of 
lass ;. We also sometime use 
nhfi to denote
n1hf11::1n1 i.
n2hf21::2n2 i..
nkhfk1::knk i.4.2 Soundness of the Type SystemOur type 
he
king rules ensure that for a program to bewell-typed, the program respe
ts the properties des
ribed inFigure 1. A 
omplete synta
ti
 proof [63℄ of type soundness
an be 
onstru
ted by de�ning an operational semanti
s (byextending the operational semanti
s of Classi
 Java [31℄) andthen proving that well-typed programs do not rea
h an er-ror state and that the generalized subje
t redu
tion theoremholds for well-typed programs. The subje
t redu
tion theo-rem states that the semanti
 interpretation of a term's typeis invariant under redu
tion. The proof is straightforwardbut tedious, so it is omitted here.4.3 Type Inferen
eAlthough our type system is expli
itly typed in prin
iple, itwould be onerous to fully annotate every method with theextra type information. Instead, we 
an use a 
ombinationof inferen
e and well-
hosen defaults to signi�
antly redu
ethe number of annotations needed in pra
ti
e. [14, 11℄ de-s
ribe an intrapro
edural type inferen
e algorithm and somedefault types; we 
an use a similar approa
h. (In [14, 11℄,about one in thirty lines of 
ode had to be 
hanged to expressJava programs in an ownership type system.) We emphasizethat this approa
h to inferen
e is purely intrapro
edural anddoes not infer method signatures or types of instan
e vari-ables. Rather, it uses a default 
ompletion of partial typespe
i�
ations in those 
ases to minimize the required anno-tations. This approa
h permits separate 
ompilation.

Predi
ate MeaningWFClasses(P) There are no 
y
les in the 
lass hierar
hyClassOn
e(P) No 
lass is de
lared twi
e in PIClassesOn
e(P) No 
lass 
ontains two inner 
lasses withsame name, either de
lared or inheritedFieldsOn
e(P) No 
lass 
ontains two �elds with samename, either de
lared or inheritedMethodsOn
e(P) No 
lass 
ontains two methods withsame nameOverridesOK(P) Overriding methods have the same returntype and parameter types as the methodsbeing overridden. The read and writee�e
ts of an overriding method must besuperseded by those of the overriddenmethodsFigure 12: Predi
ates Used in Type Che
king Rules4.4 Runtime OverheadThe system we des
ribed is a purely stati
 type system.The ownership relations are used only for 
ompile-time type
he
king and are not preserved at runtime. Consequently,our programs have no runtime overhead 
ompared to regular(Java) programs. In fa
t, one way to 
ompile and run a pro-gram in our system is to 
onvert it into a regular programafter type 
he
king, by removing the owner parameters, the
onstraints on owners, and the e�e
ts 
lauses.A language like Java, however, is not purely stati
ally-typed.Java allows down
asts that are 
he
ked at runtime. Sup-pose an obje
t with de
lared type Obje
thoi is down
ast toVe
torho,ei. Sin
e the result of this operation depends on in-formation that is only available at runtime, our type 
he
ker
annot verify at 
ompile-time that e is the right owner pa-rameter even if we assume that the obje
t is indeed a Ve
-tor. To safely support down
asts, a system has to keep someownership information at runtime. This is similar to keepingruntime information with parameterized types [54, 61℄. [10℄des
ribes how to do this eÆ
iently for ownership by keepingruntime information only for obje
ts that 
an be potentiallyinvolved in down
asts into types with multiple parameters.5 Upgrades in Persistent Obje
t StoresThis se
tion shows how ownership types and e�e
ts 
lauses
an be used to enable modular reasoning about the 
orre
t-ness of upgrades in a persistent obje
t store. The desire toa
hieve su
h reasoning was the motivation for our work onownership types for en
apsulation.A persistent obje
t store [46, 5, 9, 17, 18, 29, 56℄ 
ontains
onventional obje
ts similar to what one might �nd in anobje
t-oriented language su
h as Java. Appli
ations a

esspersistent obje
ts within atomi
 transa
tions, sin
e this isne
essary to ensure 
onsisten
y for the stored obje
ts; trans-a
tions allow for 
on
urrent a

ess and they mask failures.Upgrades are needed in su
h a system to improve obje
timplementations, to 
orre
t errors, or even to 
hange inter-fa
es in the fa
e of 
hanging appli
ation requirements; thisin
ludes in
ompatible 
hanges to interfa
es where the newinterfa
e does not support the same methods as the old one.Providing a satisfa
tory solution for upgrades in persistentobje
t stores has been a long-standing 
hallenge.219



An upgrade for a persistent obje
t store is de�ned as a setof 
lass-upgrades, one for ea
h 
lass whose obje
ts need to
hange. A 
lass-upgrade is a triple: hold-
lass, new-
lass,TFi. It indi
ates that all obje
ts belonging to old-
lassshould be transformed, through the use of the transformfun
tion TF provided by the programmer, into obje
ts ofnew-
lass. TF takes an old-
lass obje
t and a newly al-lo
ated new-
lass obje
t and initializes the new-
lass obje
tfrom the old-
lass obje
t. The upgrade infrastru
ture 
ausesthe new-
lass obje
t to take over the identity of the old-
lassobje
t, so that all obje
ts that used to point to the old-
lassobje
t now point to the new-
lass obje
t.An upgrade is exe
uted by transforming all obje
ts whose
lasses are being repla
ed. However, transforms must notinterfere with appli
ation a

ess to the store, and must beperformed eÆ
iently in both spa
e and time. In addition,they must be done safely so that important persistent stateis not 
orrupted. Previous approa
hes [4, 7, 29, 45, 56, 57℄do not provide a satisfa
tory solution to these 
hallenges;they either stop appli
ation a

ess to the database whilerunning the upgrade, or they keep 
opies of the database, orthey limit the expressive power of transforms (e.g., transformfun
tions are not allowed to make method 
alls).Our system provides an eÆ
ient solution. It performs up-grades lazily. An obje
t is transformed just before an appli-
ation a

esses it: the appli
ation transa
tion is interruptedto run the transform fun
tion. The transform runs in itsown transa
tion; when this transa
tion 
ommits, the appli-
ation transa
tion is resumed. Our system also allows laterupgrades to run in parallel with earlier ones. If an obje
t hasseveral pending transforms, they are run one after another,in upgrade order. Furthermore, if a transform transa
tionT en
ounters an obje
t with a pending transform from anearlier upgrade, T is interrupted (just like an appli
ationtransform) to run the pending transform, and 
ontinues ex-e
ution after the pending transform 
ommits.More details 
an be found in [13, 12, 47℄.5.1 Ownership Types for Safe UpgradesOur upgrade system is eÆ
ient and expressive: it does notdelay appli
ation transa
tions, avoids the use of versions(
opies of obje
ts), and does not limit the expressive powerof transform fun
tions. But it also needs to support modu-lar reasoning about the 
orre
tness of transform fun
tions.This is possible if ea
h transform fun
tion en
ounters onlyobje
t interfa
es and invariants that existed when its up-grade started, even though in reality the transform fun
-tion might run mu
h later, after appli
ation transa
tionsand other transform transa
tions.We use our variant of ownership types to enable modularreasoning about the 
orre
tness of transform fun
tions. Oursystem 
he
ks stati
ally whether transform fun
tions satisfythe following 
onstraint, using ownership and e�e
ts de
la-rations (e�e
ts 
lauses state what obje
ts TFs a

ess):S1. TF(x) only a

esses obje
ts that x owns (dire
tly ortransitively).

Transform fun
tions often satisfy S1 be
ause ownership fre-quently 
aptures the depends relation dis
ussed in Se
tion 2,and typi
ally transform fun
tions only a

ess the depended-on obje
ts. (We dis
uss in [13℄ how we support modularreasoning of transform fun
tions when S1 does not hold.)Our implementation also ensures the following:S2. For any obje
t x a�e
ted by an upgrade, x is a

essedbefore any obje
t owned by x.We ensure S2 using two me
hanisms. If the owned obje
t isen
apsulated within x, the type system guarantees that x isa

essed �rst. If the owned obje
t is shared with an inner
lass obje
t of x, our system 
auses x to be a

essed justbefore the inner 
lass obje
t is �rst used after the upgrade.This latter me
hanism is des
ribed in more detail in [13℄.When S1 holds, we 
an prove that out-or-order pro
essingof transforms does not 
ause problems. In parti
ular, we
an show that: appli
ations do not interfere with transformfun
tions, transform fun
tions of unrelated obje
ts do notinterfere with ea
h other, and transform fun
tions of relatedobje
ts run in a pre-determined order (namely an obje
t istransformed before its owned subobje
ts). (The proofs aregiven in [13℄).Thus when S1 holds, we 
an ensure that transform fun
tionsen
ounter the expe
ted interfa
es and invariants. This sup-ports modular reasoning: ea
h transform fun
tion 
an bereasoned about as extra method of its old 
lass.6 Related WorkEu
lid [41℄ is one of the �rst languages that 
onsidered theproblem of aliasing. [37℄ stressed the need for better treat-ment of aliasing in obje
t-oriented programs. Early work onIslands [36℄ and Balloons [3℄ fo
used on fully en
apsulatedobje
ts where all subobje
ts an obje
t 
an a

ess are not a
-
essible outside the obje
t. Universes [53℄ also enfor
es fullen
apsulation, ex
ept for read-only referen
es. However, fullen
apsulation signi�
antly limits expressiveness, and is oftenmore than is needed. The work on ESC/Java pointed outthat en
apsulation is required only for subobje
ts that the
ontaining obje
t depends on [43, 28℄, but ESC/Java wasunable to always enfor
e en
apsulation.6.1 Ownership Types and En
apsulationOwnership types provide a stati
ally enfor
eable way of spe
-ifying obje
t en
apsulation. They were proposed in [22℄ andformalized in [21℄. These systems enfor
e stri
t obje
t en-
apsulation, but do so by signi�
antly limiting expressive-ness. They require that a subtype have the same ownersas a supertype. So TSta
khsta
kOwner, TOwneri 
annot bea subtype of Obje
thsta
kOwneri. Moreover, they do notsupport iterators.PRFJ [14℄, SCJ [11℄, and JOE [20℄ extended ownership typesto support a natural form of subtyping. To do so withoutviolating en
apsulation, JOE introdu
es the 
onstraint thatin every type with multiple owners, the �rst owner � all220



other owners. As a result, in JOE, a program 
an 
reate apointer from obje
t x to an obje
t owned by o only if (x �o). PRFJ and SCJ allow an obje
t to 
ontain pointers tosubobje
ts owned by a di�erent obje
t, but they have e�e
ts
lauses that prevent a program from following su
h point-ers. The above systems e�e
tively enfor
e en
apsulation forobje
t �elds. However, to support 
onstru
ts like iterators,they allow method lo
al variables to violate en
apsulation.Therefore they do not support lo
al reasoning.AliasJava [2℄ uses ownership types to aid program under-standing. Like other ownership type systems, AliasJava al-lows programmers to use ownership information to reasonabout aliasing. AliasJava is also more 
exible than otherownership type systems. However, unlike other ownershiptype systems, AliasJava does not enfor
e any en
apsulationproperties. (This is illustrated with an example in [11℄.)Ownership types have been extended to inner 
lasses in [19,2℄. However, these systems do not enfor
e the propertystated in Se
tion 3.5, and do not support lo
al reasoning.Ownership types have also been used to enfor
e other prop-erties. Parameterized Ra
e-Free Java (PRFJ) [14℄ uses anownership based type system to prevent data ra
es in multi-threaded programs. Safe Con
urrent Java (SCJ) [11℄ extendsthis to prevent both data ra
es and deadlo
ks. These sys-tems 
an be 
ombined with our approa
h to enfor
e obje
ten
apsulation as well as prevent data ra
es and deadlo
ks.[11℄ sket
hes a way of doing this.Re
ent work [15, 59℄ 
ombines region types [60, 24, 35℄ withour type system to stati
ally ensure both obje
t en
apsula-tion and safe region-based memory management.6.2 Related Type SystemsLinear types [62℄ and unique pointers [51℄ 
an also be usedto 
ontrol obje
t aliasing. Linear types have been used inlow level languages to support safe expli
it memory deallo-
ation [24℄ and to tra
k resour
e usage [26, 27℄. Linear typesand unique pointers are orthogonal to ownership types, butthe two 
an be used in 
onjun
tion to provide more expres-sive systems. PRFJ [14℄ is the �rst system that 
ombinesownership types with 
onventional unique pointers. Re
entwork [23℄ proposes a better approa
h that allows a programto spe
ify a unique external pointer to an obje
t; there 
anbe other internal pointers to the obje
t from its subobje
ts.E�e
ts 
lauses [49℄ are useful for spe
ifying assumptions thatmust hold at method boundaries. E�e
ts enable modular
he
king of programs. PRFJ [14℄ is the �rst system to 
om-bine e�e
ts with ownership types to stati
ally prevent datara
es. [11℄ and [20℄ also 
ombine e�e
ts with ownership forpreventing deadlo
ks and for program understanding. Thispaper uses e�e
ts with ownership to enable lazy upgrades.Data groups [42, 44℄ 
an be used to name groups of obje
ts inan e�e
ts 
lause to write modular spe
i�
ations in the pres-en
e of subtyping. Ownership types provide an alternateway of writing modular spe
i�
ations. Ownership types 
analso be used to name groups of obje
ts in an e�e
ts 
lause|

the name of an owner 
an be used to name all the obje
tstransitively owned by the owner. Figure 8 presents an exam-ple from [44℄ expressed using ownership types. Data groupsare implemented using a theorem prover, and in prin
iple,they 
an be very 
exible. However, pivot uniqueness in [44℄imposes drasti
 restri
tions on pivot �elds. Ownership typesdo not impose su
h restri
tions; they only require that theowner of an obje
t be unique. In [44℄, the owner ex
lusion
onstraint is hard 
oded. In our system, programmers 
anspe
ify arbitrary 
onstraints on owners using where 
lauses;owner ex
lusion 
an be used as a default.Systems su
h as TVLA [58℄, PALE [52℄, and Roles [40℄ spe
-ify the shape of a lo
al obje
t graph in more detail thanownership types. TVLA 
an verify properties su
h as whenthe input to the program is a tree, the output is also atree. PALE 
an verify all the data stru
tures that 
an beexpressed as graph types [39℄. Roles 
an verify global prop-erties su
h as the parti
ipation of obje
ts in multiple datastru
tures. Roles also support 
ompositional interpro
eduralanalysis. In 
ontrast to these systems that take exponentialtime for veri�
ation, ownership types provide a lightweightand pra
ti
al way to 
onstrain aliasing.7 Con
lusionsObje
t en
apsulation enables sound lo
al reasoning aboutprogram 
orre
tness in obje
t-oriented languages. Owner-ship types provide a way of spe
ifying and stati
ally en-for
ing obje
t en
apsulation. However, a type system thatenfor
es stri
t obje
t en
apsulation is too 
onstraining: itdoes not allow eÆ
ient implementation of important 
on-stru
ts like iterators.This paper argues that the right way to solve the problemis to allow obje
ts of 
lasses de�ned in the same module tohave privileged a

ess to ea
h other's representations. Weshow how to do this for inner 
lasses. Our variant of owner-ship types allows obje
ts of inner 
lasses to have privilegeda

ess to the representations of the 
orresponding obje
tsof outer 
lasses. This prin
ipled violation of en
apsulationallows programmers to express 
onstru
ts like iterators andwrappers using inner 
lasses. Our system also allows wrap-pers to be used in more global 
ontexts than the obje
tsthey wrap. Yet our system supports lo
al reasoning aboutthe 
orre
tness of 
lasses, be
ause a 
lass and its inner 
lasses
an be reasoned about together as a module.Thus the paper des
ribes the �rst ownership type systemthat is expressive enough to support iterators and wrappers,while also supporting lo
al reasoning. In addition, the pa-per des
ribes an appli
ation of the te
hnique to enable mod-ular reasoning about upgrades in persistent obje
t stores.Ownership types have been used for other purposes as well,su
h as for preventing data ra
es and deadlo
ks, and for saferegion-based memory management. Sin
e ownership typesrequire little programming overhead, their type 
he
king isfast and s
alable, and they provide several bene�ts, theyo�er a promising approa
h to making obje
t-oriented pro-grams more reliable.221



A
knowledgmentsWe thank Daniel Ja
kson, Viktor Kun
ak, Greg Nelson,Martin Rinard, and Alexandru Sal
ianu for useful dis
us-sions and 
omments on earlier drafts of this paper.Referen
es[1℄ O. Agesen, S. N. Freund, and J. C. Mit
hell. Adding typeparameterization to the Java language. In Obje
t-OrientedProgramming, Systems, Languages, and Appli
ations(OOPSLA), O
tober 1997.[2℄ J. Aldri
h, V. Kostadinov, and C. Chambers. Aliasannotations for program understanding. In Obje
t-OrientedProgramming, Systems, Languages, and Appli
ations(OOPSLA), November 2002.[3℄ P. S. Almeida. Balloon types: Controlling sharing of statein data types. In European Conferen
e for Obje
t-OrientedProgramming (ECOOP), June 1997.[4℄ M. P. Atkinson, M. A. Dmitriev, C. Hamilton, andT. Printezis. S
alable and re
overable implementation ofobje
t evolution for the PJama 1 platform. In PersistentObje
t Systems (POS), September 2000.[5℄ M. P. Atkinson, M. J. Jordan, L. Daynes, and S. Spen
e.Design issues for persistent Java: A type-safe,obje
t-oriented, orthogonally persistent system. InPersistent Obje
t Systems (POS), May 1996.[6℄ A. Banerjee and D. A. Naumann. Representationindependen
e, 
on�nement, and a

ess 
ontrol. InPrin
iples of Programming Languages (POPL), January2002.[7℄ J. Banerjee, W. Kim, H. Kim, and H. F. Korth. Semanti
sand implementation of s
hema evolution in obje
t-orienteddatabases. In ACM SIGMOD International Conferen
e onManagement of Data, May 1987.[8℄ B. Bokowski and J. Vitek. Con�ned types. InObje
t-Oriented Programming, Systems, Languages, andAppli
ations (OOPSLA), O
tober 1999.[9℄ C. Boyapati. JPS: A distributed persistent Java system. SMthesis, Massa
husetts Institute of Te
hnology, September1998.[10℄ C. Boyapati, R. Lee, and M. Rinard. Safe runtimedown
asts with ownership types. Te
hni
al Report TR-853,MIT Laboratory for Computer S
ien
e, June 2002.[11℄ C. Boyapati, R. Lee, and M. Rinard. Ownership types forsafe programming: Preventing data ra
es and deadlo
ks. InObje
t-Oriented Programming, Systems, Languages, andAppli
ations (OOPSLA), November 2002.[12℄ C. Boyapati, B. Liskov, and L. Shrira. Ownership types andsafe lazy upgrades in obje
t-oriented databases. Te
hni
alReport TR-858, MIT Laboratory for Computer S
ien
e,July 2002.[13℄ C. Boyapati, B. Liskov, L. Shrira, C. Moh, and S. Ri
hman.Lazy modular upgrades in persistent obje
t stores.Submitted for publi
ation, November 2002.[14℄ C. Boyapati and M. Rinard. A parameterized type systemfor ra
e-free Java programs. In Obje
t-OrientedProgramming, Systems, Languages, and Appli
ations(OOPSLA), O
tober 2001.[15℄ C. Boyapati, A. Sal
ianu, W. Beebee, Jr., and M. Rinard.Ownership types for safe region-based memory managementin Real-Time Java. Submitted for publi
ation, November2002.[16℄ G. Bra
ha, M. Odersky, D. Stoutamire, and P. Wadler.Making the future safe for the past: Adding generi
ity tothe Java programming language. In Obje
t-OrientedProgramming, Systems, Languages, and Appli
ations(OOPSLA), O
tober 1998.

[17℄ R. Bretl et al. The GemStone data management system. InW. Kim and F. H. Lo
hovsky, editors, Obje
t-OrientedCon
epts, Databases, and Appli
ations. 1989.[18℄ M. J. Carey et al. Shoring up persistent appli
ations. InACM SIGMOD International Conferen
e on Managementof Data, May 1994.[19℄ D. G. Clarke. Obje
t ownership and 
ontainment. PhDthesis, University of New South Wales, Australia, July 2001.[20℄ D. G. Clarke and S. Drossopoulou. Ownership,en
apsulation and disjointness of type and e�e
t. InObje
t-Oriented Programming, Systems, Languages, andAppli
ations (OOPSLA), November 2002.[21℄ D. G. Clarke, J. Noble, and J. M. Potter. Simple ownershiptypes for obje
t 
ontainment. In European Conferen
e forObje
t-Oriented Programming (ECOOP), June 2001.[22℄ D. G. Clarke, J. M. Potter, and J. Noble. Ownership typesfor 
exible alias prote
tion. In Obje
t-OrientedProgramming, Systems, Languages, and Appli
ations(OOPSLA), O
tober 1998.[23℄ D. G. Clarke and T. Wrigstad. External uniqueness. InWorkshop on Foundations of Obje
t-Oriented Languages(FOOL), January 2003.[24℄ K. Crary, D. Walker, and G. Morrisett. Typed memorymanagement in a 
al
ulus of 
apabilities. In Prin
iples ofProgramming Languages (POPL), January 1999.[25℄ M. Day, R. Gruber, B. Liskov, and A. C. Myers. Subtypesvs. where 
lauses: Constraining parametri
 polymorphism.In Obje
t-Oriented Programming, Systems, Languages, andAppli
ations (OOPSLA), O
tober 1995.[26℄ R. DeLine and M. Fahndri
h. Enfor
ing high-level proto
olsin low-level software. In Programming Language Design andImplementation (PLDI), June 2001.[27℄ R. DeLine and M. Fahndri
h. Adoption and fo
us: Pra
ti
allinear types for imperative programming. In ProgrammingLanguage Design and Implementation (PLDI), June 2002.[28℄ D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestlingwith rep exposure. Resear
h Report 156, Compaq SystemsResear
h Center, July 1998.[29℄ O. Deux et al. The story of O2. In IEEE Transa
tions onKnowledge and Data Engineering (TKDE) 2(1), Mar
h1990.[30℄ C. Flanagan and S. N. Freund. Type-based ra
e dete
tionfor Java. In Programming Language Design andImplementation (PLDI), June 2000.[31℄ M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes andmixins. In Prin
iples of Programming Languages (POPL),January 1998.[32℄ E. Gamma, R. Helm, R. Johnson, and J. Vlissides. DesignPatterns: Elements of Reusable Obje
t-Oriented Software.Addison-Wesley, 1995.[33℄ J. Gosling, B. Joy, and G. Steele. The Java LanguageSpe
i�
ation. Addison-Wesley, 1996.[34℄ A. Greenhouse and J. Boyland. An obje
t-oriented e�e
tssystem. In European Conferen
e for Obje
t-OrientedProgramming (ECOOP), June 1999.[35℄ D. Grossman, G. Morrisett, T. Jim, M. Hi
ks, Y. Wang,and J. Cheney. Region-based memory management inCy
lone. In Programming Language Design andImplementation (PLDI), June 2001.[36℄ J. Hogg. Islands: Aliasing prote
tion in obje
t-orientedlanguages. In Obje
t-Oriented Programming, Systems,Languages, and Appli
ations (OOPSLA), O
tober 1991.[37℄ J. Hogg, D. Lea, A. Wills, and D. de Champeaux. TheGeneva 
onvention on the treatment of obje
t aliasing. InOOPS Messenger 3(2), April 1992.222



[38℄ JavaSoft. Inner 
lass spe
i�
ation, February 1997. Availableat http://java.sun.
om/produ
ts/JDK/1.1.[39℄ N. Klarlund and M. I. S
hwartzba
h. Graph types. InPrin
iples of Programming Languages (POPL), January1993.[40℄ V. Kun
ak, P. Lam, and M. Rinard. Role analysis. InPrin
iples of Programming Languages (POPL), January2002.[41℄ B. W. Lampson, J. J. Horning, R. L. London, J. G.Mit
hell, and G. J. Popek. Report on the programminglanguage Eu
lid. In Sigplan Noti
es, 12(2), February 1977.[42℄ K. R. M. Leino. Data groups: Spe
ifying the modi�
ation ofextended state. In Obje
t-Oriented Programming, Systems,Languages, and Appli
ations (OOPSLA), O
tober 1998.[43℄ K. R. M. Leino and G. Nelson. Data abstra
tion andinformation hiding. Resear
h Report 160, Compaq SystemsResear
h Center, November 2000.[44℄ K. R. M. Leino, A. Poetzs
h-He�ter, and Y. Zhou. Usingdata groups to spe
ify and 
he
k side e�e
ts. InProgramming Language Design and Implementation(PLDI), June 2002.[45℄ B. S. Lerner and A. N. Habermann. Beyond s
hemaevolution to database reorganization. In Obje
t-OrientedProgramming, Systems, Languages, and Appli
ations(OOPSLA), O
tober 1990.[46℄ B. Liskov, M. Castro, L. Shrira, and A. Adya. Providingpersistent obje
ts in distributed systems. In EuropeanConferen
e for Obje
t-Oriented Programming (ECOOP),June 1999.[47℄ B. Liskov, C. Moh, S. Ri
hman, L. Shrira, Y. Cheung, andC. Boyapati. Safe lazy software upgrades in obje
t-orienteddatabases. Te
hni
al Report TR-851, MIT Laboratory forComputer S
ien
e, June 2002.[48℄ B. Liskov, A. Snyder, R. R. Atkinson, and C. S
ha�ert.Abstra
tion me
hanisms in CLU. In Communi
ations of theACM (CACM) 20(8), August 1977.[49℄ J. M. Lu
assen and D. K. Gi�ord. Polymorphi
 e�e
tsystems. In Prin
iples of Programming Languages (POPL),January 1988.[50℄ O. L. Madsen, B. Moller-Pedersen, and K. Nygaard.Obje
t-Oriented Programming in the Beta ProgrammingLanguage. Addison-Wesley, 1993.[51℄ N. Minsky. Towards alias-free pointers. In EuropeanConferen
e for Obje
t-Oriented Programming (ECOOP),July 1996.[52℄ A. Moeller and M. I. S
hwartzba
h. The pointer assertionlogi
 engine. In Programming Language Design andImplementation (PLDI), June 2001.[53℄ P. Muller and A. Poetzs
h-He�ter. Universes: A typesystem for 
ontrolling representation exposure. InA. Poetzs
h-He�ter and J. Meyer, editors, ProgrammingLanguages and Fundamentals of Programming. 1999.[54℄ A. C. Myers, J. A. Bank, and B. Liskov. Parameterizedtypes for Java. In Prin
iples of Programming Languages(POPL), January 1997.[55℄ J. Noble. Iterators and en
apsulation. In Te
hnology ofObje
t-Oriented Languages and Systems (TOOLS), June2000.[56℄ Obje
t Design In
. Obje
tStore Advan
ed C++ API UserGuide Release 5.1, 1997.[57℄ D. J. Penney and J. Stein. Class modi�
ation in theGemStone obje
t-oriented DBMS. In Obje
t-OrientedProgramming, Systems, Languages, and Appli
ations(OOPSLA), O
tober 1987.

[58℄ M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysisproblems in languages with destru
tive updating.Transa
tions on Programming Languages and Systems(TOPLAS) 20(1), January 1998.[59℄ A. Sal
ianu, C. Boyapati, W. Beebee, Jr., and M. Rinard. Atype system for safe region-based memory management inReal-Time Java. Te
hni
al Report TR-869, MITLaboratory for Computer S
ien
e, November 2002.[60℄ M. Tofte and J. Talpin. Region-based memory management.In Information and Computation 132(2), February 1997.[61℄ M. Viroli and A. Natali. Parametri
 polymorphism in Java:An approa
h to translation based on re
e
tive features. InObje
t-Oriented Programming, Systems, Languages, andAppli
ations (OOPSLA), O
tober 2000.[62℄ P. Wadler. Linear types 
an 
hange the world. In M. Broyand C. Jones, editors, Programming Con
epts and Methods.1990.[63℄ A. K. Wright and M. Felleisen. A synta
ti
 approa
h totype soundness. In Information and Computation 115(1),November 1994.

223


