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ABSTRACT Previous ROV approaches using simulation have main-
tained the requirement of market replication assumed by
Real options valuation (ROV) considers the managerial flex- other real options valuation methods. These approaches as-
ibility to make ongoing decisions regarding implementation sume that the risk of the project underlying the real option
of investment projects and deployment of real assets. This can be duplicated by assets in financial markets. Addi-
paper introduces a simulation-optimization approachto valu- tionally, an implicit assumption of financial options pricing
ing real investment options based on a model containing methods is that the value of the underlying asset is known
several decision variables and realistic stochastic inputs. Us- at the time the exercise decision is made. For instance, a
ing this approach, the value of a portfolio of real investment European put option on a traded stock should always be
projects is determined by maximizing the mean discounted exercised if the market price is less than the exercise price.
cash flows calculated by the model over many combinations As a result, financial option pricing methods are most con-
of the decision variables. This yields an optimal decision cerned with providing a value for the option so an investor
rule that significantly increases the value extracted from can determine whether to invest in the option. In contrast,
the investment projects in comparison to arbitrary decision the optimal decision rule for exercising real options is not

rules. always as apparent as for financial options.
Real asset investment decisions also differ from finan-
1 INTRODUCTION cial option exercise decisions because the optimal decision

rule is not based on the observable market price of an un-
Discounted cash flow approaches, such as net present valuederlying asset. The decision rule for a real asset investment
(NPV), have traditionally been the preferred methods for may be based on observation of project performance indi-
evaluating investments in real assets. Recently, real options cators in the periods leading up to the exercise date; for
valuation (ROV) emerged as an alternative to simplistic instance, a decision to expand a product line may be based
discounted cash flow methods. ROV values the managerial on the market demand for a similar product during the past
flexibility to make ongoing decisions regarding implemen- year. In some instances, the decision rule might be based on
tation of investment projects and deployment of real assets. an updated forecast of expected future performance. Nei-
ROV extends valuation models used to price financial ther performance indicators or updated estimates, however,
options and applies them to investments in real assets. Black provide perfect information, so a value placed on a real
and Scholes (1973) developed a model to value financial option by a method that assumes the underlying asset value
options that focuses on factors affecting the value of the is observable is an upper bound.
underlying financial asset over time, which is assumed to Our approach relaxes the assumptions of market repli-
follow a geometric Brownian motion stochastic process. cation and perfect knowledge of the project value. We
Several ROV methods have been implemented that rely develop a model containing decision variables and stochas-
on similar assumptions to those made in the Black-Scholes tic assumptions, then maximize the mean discounted cash
model. These include lattice models and dynamic program- flows calculated by the model over many combinations of
ming methods, both of which are are based on a simple the decision variables. The decision variables are used to
representation of the evolution of the value of the underlying determine a decision rule which is stated in terms of ob-
asset. servable stochastic variables. Thus, the output of the model
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™ 2.2 Notation
- o _ _
Docision Variables NPV This section defines variables that will be used throughout
;‘;fﬁ;{if&sumpﬁm Calculation Engine the remainder of t'he paper. .
20858, The K potential investment projects are denoted by

Wzg(dp@%,---adk;

{Ra“domo“mm,eww o) subscripts on variablek = 1,..., K. Subscri_ptst =
1,..., T are used to denote the value of variables in a
. : : specific time period. Two sets of decision variables are
Option Valuation Toolfinds .
max required:

[ FeT e e A - - -1 |

., d, ak = Intercept parameter of the linear cash flow thresh-

old for projectk
Bk = Slope parameter of the linear cash flow threshold
for projectk.

Figure 1: Graphical Depiction of the Links Be- Two stochastic time series assumptions are used:
tween the Option Valuation Tool and the NPV B; = Customer base in period
Calculation Engine R = Unit revenue in period.
Deterministic assumptions are defined as follows:
is both a value of the real option(s) and an optimal decision Ct = Unit variable cost in period
rule. Ikt = Indicator variable representing availability of
The remainder of this paper is organized as follows. projectk in periodt
Section 2 outlines the simulation-optimization approach. Nyj = Indicator variable representing availability of
Section 3 describes the problem and the cash flow model. projectk on project]
Section 4 explains the methods used to simulate first-order ~ Fk = Investment required to initiate projekt
autoregressive, AR(1), processes. Section 5 illustrates the Gkt = Unit variable cost decrease provided by project
simulation-optimization approach with an example problem. k (if active) in periodt (stated as a percentage of
Section 6 provides a summary and conclusions. Ct)
rke = Unit revenue increase provided by projéctif
2 A SIMULATION-OPTIMIZATION APPROACH active) in periodt (stated as a percentage Bf).
The remaining variables are deterministic, given a spe-
2.1 Overview cific instantiation of the decision variables and stochastic
assumptions:
The simulation-optimization method proposed relies on an Ykt = Linear cash flow decision threshold for project
“NPV Calculation Engine” to determine the value of poten- k'in periodt
tial investment projects. The assumptions used in the NPV Dkt = Indicator variable representing comparison of
Calculation Engine are classified as follows: baseline cash flows in peridd- 1 to a specified

linear threshold for projedt

Akt = Indicator variable representing activation of
projectk in periodt

Gkt = Indicator variable representing timing of fixed
investment cost made for projektin periodt.

1. Decision variables — these assumptions are those
under the control of the decision makers and can
be adjusted to increase project value as required.

2. Stochastic assumptions — these assumptions are
random variables with known or estimated proba-
bility distributions.

3. Deterministic assumptions — these assumptions
are based on established benchmarks.

The second component of the simulation-optimization
model is an “Option Valuation Tool” which interacts with the
NPV Calculation Engine by selecting different combinations
of the decision variables and generating random simulation
trials using the stochastic assumptions. The Option Valua-
tion Tool tracks the mean net present value of investment
projects for each combination of the decision variables to
determine the optimal decision rule. Figure 1 provides a
graphical depiction of the simulation-optimization model.

3 PROBLEM DESCRIPTION

This paper addresses the general problem of making invest-
ment decisions to facilitate ongoing operations of a business.
An embedded base of assets provides service to an estab-
lished base of customers at a given level of unit revenue
per period. The number of customers in this bae,and

the amount of the unit revenue per periéd, both follow
stochastic processes. In this paper, we assume both follow
AR(1) processes. Additionally, the customer base and unit
revenue processes are cross-correlated. The unit variable
cost, Cq, is deterministic.
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The ROV methodology proposed here is not limited

must be activated, which requires one of two conditions to

to use with AR(1) processes. Indeed, one of our method’s be met:

advantages is that it can be used with virtually any stochastic
inputs or processes selected by the analyst. We have chosen
to use cross-correlated AR(1) processes in this paper so

that we can study the behavior of the investment value

1. Cash flows in period — 1 exceed the linear cash
flow threshold for projeck and each project on
which projectk is dependent, or

2. The project was activated in an earlier period.

due to systematic changes in the autocorrelation and cross-In this model, projects are assumed to remain active once

correlation parameters.
The company must make decisions on potential en-

hancements and upgrades to the embedded base of assets,

they are initiated. However, the option to abandon active
projects can also be valued readily with our approach.
If indicator variableGy; is assigned a value of Fyg

each considered as a separate investment project. Althoughis expended in period. Values of Gx; are assigned as
the projects are separate, there are logical interdependenciegollows:

between the potential investment projects.

The embedded base of assets and the investment

projects—if pursued—provide cash flows for a specified
time horizon of T periods. The project availability vari-
able, Ixt, equals 1 if projeck is available in period and

0 otherwise. The project interdependency variatg;,
equals 1 if projeck is logically dependent on projegt(or

if k= j), and O otherwise.

Projectk is said to be logically dependent on projgat
some functional aspect of projdcts necessary for success-
ful implementation of projecj. For instance, a telecom-
munications company that installs a voice-over-packet call
server (projeck) has the future option to install a multi-
media call server (projeg) that provides videophone service
only if projectk is undertaken. Thus, the installation of
the voice-over-packet call server provides the telecommu-
nications company with the right, but not the obligation,
to provide videophone service later. This is an example
of a real option that can be valued with simulation and
optimization.

Decisions on whether to invest in projects are made

based on observations of baseline cash flows. The value of
the linear cash flow decision threshold parameter for project

k in periodt is

Values of Dkg1 = 0, fork = 1,..., K. Whent # 1,
values ofDy; equal 1 wherBi_1(Ri—1 — Ci—1) > Ykt and
0 otherwise.

For projectk at periodt = 1, the project activation
variable Ax1 = Di1lka. Fort > 1: if Agt—1 # 1, then

H (1t Djt);
j
Nkj #0

Axt =

else if Axt—1 = 1, then Ay = 1. The project activation
variable represents the assumption that for prdjettt be
active, all projects on which projektis logically dependent
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1 Yl Ai=1

Gk = { 0 otherwise

Let ICFK be the incremental cash flows from the invest-
ment projects. Incremental cash flows include variable cost
savings and/or additional unit revenue and are calculated as

K
ICF =) (BtAxt(ckiCt + ke R)) — Gkt Fi).
k=1

fort =1,...,T. These incremental cash flows are dis-
counted to determine the net present value of the portfolio
of projects using the formula

.
NPV => (ICF)e ™",
t=1

wherer is the appropriate discount rate.

4 SIMULATING CROSS-CORRELATED
AR(1) PROCESSES

To study the behavior of the investment value due to sys-
tematic changes in the autocorrelation and cross-correlation
parameters, we assume tHat and R; follow AR(1) pro-
cesses.

Define Zrt as the AR(1) process for the deviation of
unit revenueR;, from its long-run average qfr in yeart,
andZpg; as the AR(1) process for the deviation of customer
base,B;, from its long-run average qig in yeart. These
processes evolve as

ZRrt = ¢RZRt—1 + ARt
and

Zgt = ¢BZB -1+ agt,

where ar; and ag; are defined as Gaussian white noise
terms, each having mean zero and having variances equal
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to o3 ando3, respectively. Unit revenue and customer base and uncorrelated white noise terms. Thus, the expression
for yeart can be represented as follows: for the covariance of the unit revenue process for terms
with lag ¢ can be written as

R = ur + Zrt
YRt = PRYR 1.
Bt = g + Zat- For¢ =0, yro = aé. The general covariance term for the
An AR(L) process can also be represented as an infinite CUStomer base process can be found similarly.
series in terms of all past white noise terms as The correlation between two terms with lags defined
as
= 2 YRe _ VRe
Zrt = art + ¢RARt-1 T PRARt-2+ ... PR = T = T = g
YRO  Of

and Thus, the ternpr in the AR(1) process is equal gr1. The

Zgt = apt + #BaB.t 1+ ¢3aBt 2+ . ... correlation terms in the customer base deviation process are
) o defined similarly.
From these representations, it is easy to observe that that 1o simulate the AR(1) processes for unit revenue and
E[Zri=E[Zgt] = 0. The variance of the unit revenue  cystomer base, initial terms are generated randomly as
process is calculated as
) Zro ~ N[O, 0R/(1 - $R)]
Var[Zrt] = Varart+ ¢rari-1+ ¢rart-—2+...1.
) ) ) _ ) ~and
Since the white noise terms are independent and identi- 5 5
cally distributed, the covariance terms all equal zero. Thus, Zpo ~ N[0, 05/(1 - ¢p)].
the variance of the unit revenue process can be rewritten as

Standard normal random variableég1, ..., XrT and
XB1, ..., XpT are drawn for each period in the time horizon.
Var[Z = Vara AVCIEE Bl ..., ABT ;
(2R 5 Rtl + ¢RVaMaR (-1l These standard normal random variables are transformed
+orVarart-2] + ... into cross-correlated random variablé%: and Ygt, each
Var[Zril = 03+ ¢pioi + ¢poi+ ... with a standard deviation equal to the underlying white
VarlZgil = Varlard + ¢RVarlar 1l noise variable, as
+opVarlag—2] + ... Yrt = XRtoR
VarlZril = of+¢hok+oRoi+ ...

and

VarZri = ok/(1 - $R). Yo = (thpc +/1- pé) o8

The variance in the deviation from the long-run average for

e where pc is the cross-correlation between the price and
customer base can be calculated similarly as

demand processes.

When the AR(1) processes are cross-correlated, the
equations used to calculate the values of the processes in
the remaining time horizon are

VarZgt] = 0§/(1— ¢3).

Note the covariance between two terms in the time
series for deviation from long-run unit revenue averdge
years apart agr;. The covariance for the unit revenue
process can be calculated as

ZRrt = ¢rRZRt—1 + YRt

Zgt = ¢BZBt-1+ YBt.
YrRe=E[ZRrtZRt—¢]

YRe=E[ZRt—¢(#RZR -1 + ar0)]— E[ZRIE[ZR t—¢]
YRe=E[ZRt—¢tPRZRt-1+ ZRt—cARt]
YRe=E[ZRt—¢¢RZRt-1] + E[ZR t—¢aRt].

The values for price and demand are then calculated by
adding theur andupg to Zrt and Zg;.

The last term on the right hand side is zero, because this
term can be re-written as a sumproduct of the independent
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5 EXAMPLE PROBLEM AND RESULTS
5.1 Problem Inputs and Deterministic Approximation

For this problem, the time horizon is five annual periods
(t =1,...,5) and there are three available enhancement
projects K = 3). Other parameters are listed in Table 1.
The total expected value of cash flows from all three
projects in this example—assuming all projects are exercised
as soon as available—is calculated (in millions) as follows:

ICFL = $0
ICF, = Byc12C— F1
= (3.0)(50%)($175 — $975
= —$71250
ICF3 = Bs(c13C3+r23R3) — F2
(3.0)(50%) ($175
+(3.0)(25%) ($450 — $925
—$325
ICF4 B4((Cr1a+ €34)Ca +r2aRg) — F3
= (3.0)((50%+ 25%)($175
+(25%) ($450) — $245
$48625
ICFs Bs((C15+ €35)Cs + rasRs)
= (3.0)((50%+ 25%)($175
+(25%) ($450)
= $73125.

A single discount rate, = 7%, is used in this problem.

Table 1: Parameters for the Example Problem

Parameter Value(s)

PrOJ_ect__ co=lpg=lzg = Igs =1, all
availability other valuedy; =0
Revenue rit =ra = 0% andx = 25%
increases fort=1,...,5

Variable cost

cit = 50%, cx = 0%, and

decreases Cat =25% fort=1,...,5

Unit variable cost ~ Ct=%175fort=1,....5

Long-run average
unit revenue
Long-run average
customer base

ur = $450

ue = 3 million

Variance of unit
02 = $900
revenue process
Variance of
customer base o = 0.06 million
process
Required F1 = $975, F, = $925, and

investment costs Fs = $245

cash flows were calculated based on these sample paths
using the assumption that all projects are exercised as soon
as available. Given the general formulation from Section 3,

The calculation of expected inc.remental cash flows assumesthis assumption is implemented by setting arbitrarily low
that the customer base and unit revenue processes are equalalues ofxx andgx for all projects. Correlation assumptions

to their long-run averages qfg and ur in each year.

The following formula is used to determine the net
present value of the expected incremental cash flows and
the required investment cash flows,

5
NPV = (ICF)e " = —$0.05 million.
t=1

Incremental cash flows for Projects 1, 2, and 3 (in
millions) are —$2327, $1669, and $652, respectively.
While Projects 2 and 3 have positive net present values,
only Projects 1 and 2 can be exercised individually, as
Project 3 is dependent on Projects 1 and 2.

5.2 Simulation Results

To better understand the results of the deterministic approx-
imation, 50,000 different sample paths of the customer base

. - o
and unit revenue processes were simulated. Incremental K
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are set alpr = ¢ = 0.45 andpc = —0.45. Figure 2
shows a frequency distribution of the total net present value
of incremental cash flows for the 50,000 trials.

The mean of the frequency distribution-is52.22 mil-
lion and a 95% confidence interval for the mean is from
—$3.18 million to —$1.28 million. In this distribution, 95%
of the observations of total net present value of incremental
cash flows are betweer$21259 million to $20791 million.
Since cross-correlation exists in the AR(1) processes, the
mean of the frequency distribution does not equal the mean
net present value from the deterministic approximation.

The solution above is based on an arbitrary decision rule
to invest in all projects regardless of prior cash flows. Other
arbitrary decision rules could be used to produce different
solutions; for instance, we could establish a decision rule
that dictates investing in a project if cash flows in the prior
year are greater than or equal to the expected value of $825.
This decision rule is implemented in the model by setting
= $825 andpx = $0 fork = 1,2, 3. Figure 3 shows
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Figure 2: Frequency Distribution of Simulation Results for
the Example Problem with all Projects Exercised as Soon
as Available
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Figure 3: Frequency Distribution of Simulation Results for
the Example Problem Where all Projects are Exercised when
Prior Year Cash Flows are Greater than the Expected Value

the frequency distribution for 50,000 simulation trials using
this decision rule and the same correlation assumptions as
the prior example.

The mean of the frequency distribution 319471
million and a 95% confidence interval for the mean is from
—$197.38 million to —$19204 million. In this distribu-
tion, 95% of the observations of total net present value of
incremental cash flows are betwee$100731 million to
$167.94 million.

Given the correlation assumptions for the customer base
and unit revenue processes, it is difficult to determine a deci-
sion rule for exercising the enhancement projects arbitrarily,
as illustrated by this example. The next section discusses
the selection of an approximately optimal decision rule for
exercising investment projects based on the information re-
vealed by the realizations of the customer base and unit
revenue processes.
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5.3 Simulation-Optimization Results

The solutions from the previous section use arbitrary deci-
sion rules to make investment decisions regarding the three
projects. To improve the effectiveness of the investment de-
cisions, a method that analyzes multiple potential decision
rules is required. The decision rules are based on observ-
able information, namely the realizations of the customer
base and unit revenue processes. To simplify the process
of determining an optimal decision rule, we will consider a
rule based on cash flows from the embedded base of assets,
since this variable depends on both the customer base and
unit revenue processes.

Using the same simulation model, the optimal decision
rule is determined by considering many possible combi-
nations of the decision variables (the intercept and slope
parametersyx andgk) for the three projects. Using Crystal
Ball along with OptQuest software, which employs a scat-
ter search algorithm to select decision variable scenarios,
an approximately optimal solution can be obtained without
testing a complete enumeration of the possible combina-
tions of the decision variables (for more information on the
scatter search algorithm, see Gloetral. (1996)).

For this example, possible values of the slope parame-
ters, 81, B2, andps, ranging from—%$2000 million to $2000
million in increments of $250 million, and possible values
of the intercept paramete#s, a2, andas from $0 to $1000
million in increments of $250 million are considered. Using
smaller increments for the decision variables might provide
a more precise decision rule, but will require more time
to obtain a solution. Since the decision rule is in terms
of estimated, future cash flows, an approximately optimal
decision rule in $250 million increments is satisfactory for
demonstration purposes.

Using the scatter search algorithm, 50,000 (out of a
possible 3,581,577) distinct combinations of decision vari-
able values are considered, with 500 trials used on each
simulation run. The combination that produces the largest
mean net present value of incremental cash flows is con-
sidered the approximately optimal decision rule. Using the
assumptions thapg = ¢r = 0.45 andpc = —0.45, the
approximately optimal decision rule includes the following
values of the decision variables (in millions),

a1 = $125Q ap = $75Q a3 = $0,
B1 = $0, B2 = $25Q B3 = $1250.

Given the values in this example fdg;, the decision
rule can be interpreted as follows. Project 1 will be exercised
in year 2, 3, or 4 if cash flows in the prior year are $1250
million or greater. Project 2 will be exercised in year 3 if
year 2 cash flows are $750 million or greater, in year 4 if
year 3 cash flows are $1000 million or greater, or in year 5
if year 4 cash flows are $1250 million or greater. Project
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Figure 4. Frequency Distribution of Simulation Results for
the Example Problem Using the Optimal Solution from the
Optimization Routine

3 will be exercised in year 4 if year 3 cash flows are $0 or
greater, or in year 5 if year 4 cash flows are $1250 million
or greater.

The largest mean net present value of incremental cash
flows was obtained on the 409th distinct combination of
decision variable values selected by the optimization routine.
The mean net present value of incremental cash flows for the
500 trials in the simulation-optimization routine is $&88
million. To analyze the risk associated with following
this strategy, a longer simulation run of 50,000 trials is
performed with the approximately optimal decision values.
The mean net present value of incremental cash flows for
this simulation run is $188 million (see Figure 4), with a
95% confidence interval for the mean running from 315
million to $16.29 million. In this simulation, 95% of
the 50,000 observations fell betweei$7248 million and
$11838 million. Approximately 25% of the simulation
trials produced $0 in incremental net present value because
the decision rules for exercising Projects 1 and 2 are not
satisfied.

The optimal decision rule changes significantly if the
correlation inputs to the model are adjusted. To test the

optimization routine to obtain an optimal decision rule for
each of the eight scenarios, this rule was used in a longer
simulation run of 50,000 trials for each scenario. Table 2
lists the correlation assumptions for each scenario and the
mean net present value for 50,000 simulation trials, Table 3
lists the optimal values of the decision variables for each
correlation scenario, and Table 4 lists standard errors and
risk analysis statistics.

Table 2: Simulation-Optimization NPV Results
for Various Correlation Scenarios (Mean NPV in
Millions of $)

Scenario  pc o8B ¢r Mean NPV
1 —090 045 045 $1207
2 —-090 045 090 $3919
3 —090 090 045 $6301
4 —0.90 090 090 $6510
5 —-045 045 045 $1588
6 —-045 045 090 $4347
7 —-045 090 045 $6911
8 —-045 090 090 $7653

Table 3: Simulation-Optimization Optimal Decision
Rules for Various Correlation Scenarios (Billions of $)

Scen. a1 B1 a B2 a3 B3

1 200 125 050 -2.00 000 125
2 200 200 Q75 200 200 200
3 075 025 075 050 125 050
4 100 050 075 025 100 000
5 125 000 075 025 000 125
6 150 100 075 050 125 050
7 075 025 075 075 050 Q00
8 100 025 Q75 050 100 000

The highest mean net present value occurs in Scenario 8

effect of changing these inputs, combinations of inputs Whenthe customer base and unitrevenue processes are highly

were tested for two levels of each parameter. Customer
base autocorrelatiorpg) and unit revenue autocorrelation

autocorrelatedds = ¢r = 0.90) and have lower cross-
correlation pc = —0.45), with a maximum mean NPV of

(#r) values of 0.45 and 0.90, along with cross-correlation $76.53. When the stochastic processes are simulated with

between customer base and unit revenpg) (values of
—0.90 and —0.45. This created an experiment with 8
different combinations of inputs.

In this extended experiment, the optimization routine is
allowed to run for 180 minutes using 500 simulation trials
for each combination. This is adequate time to test approx-
imately 10,000 distinct combinations of decision variables
values when running the routine on a workstation with a 1.0
GHz Pentium 11l processer. On average, the scatter search
algorithm identified the largest mean net present value on
the 219th distinct combination of decision variable values
after an average run time of 4.75 minutes. After using the
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these correlation assumptions, the approximately optimal

decision rule is determined by the following values of the
decision variables (in millions),

a1 = $100Q a2 = $75Q a3 = $1000,
B1 = $25Q B> = $50Q B3 = $0.

Note that the assumptions used to simulate the stochastic
processes can significantly change the mix of projects that

are most likely to be implemented. For instance, given that
¢r = 0.45 andpc = —0.45, Project 3 is more likely to
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in the underlying stochastic assumptions affect the decision e-mail address isjmc@ku.edu> .
rules and net present value of the portfolio of projects.

Extensive future research will be required to adapt this
approach to a broader range of investment problems. More
complicated net present value functions and stochastic time
series assumptions may be required to model more com-
plex portfolios of investment projects. This paper has not
addressed the issue of assigning discount rates on a project-
by-project basis. Our conjecture is that the approximately
optimal decision rules are largely insensitive to perturba-
tions in the discount rate, but this remains to be determined
by additional research.
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