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ON THE INTERSECTION FORMS
OF CLOSED 4-MANIFOLDS

ALBERTCO CAVICCHIOLI AND FRIEDRICH HEGENBARTH

Abstract

Given a closed 4-manifold M, lel A7* be the simply-connected
4-manifold obtained from M by killing the lundamental group.
We study the relation between the intersection forms Ay and
Apre. Finally some topological consequences and cxamples are
described.

1. Introduction.

Let M* be a closed connected orientable (PL) 4-manifold with funda-
mental group I1; .

Denote by Aps the intersection form of M

)\M:FHQ(M] XFHQ(M) —_— Z

where FHy(M) = Ha(M; Z)/torsion (sec for example (5], [10]).

Let M* be the simply-connected closed 4-manifold obtained from M
by killing the fundamental group II; (see [6]).

QOur purpose is to study what relation links Aps to Ape . Then we
obtain some topological consequences about A* . Finally we give some
examples which illustrate the results.

2. Main results,

Let [a] be a generator of I1;. Since M is orientable, we can extend
o: 8! — M to an embedding v : §' x D® — M.

Recall that therc are two ways to extend o since I1{(SO(3)) = Z,.
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Denote by M’ = M\9{5! x 53) U D? x 82 the closed 4-manifold
obtained from M by surgery on ¢ .

Since IT1 (M) = IT; (M) /[0], iterated surgeries on generators of I1; (M)
give a simply-connected closed 4<manifold M* .

Problem. Study the relations between Ay, Apse and Aps, Aps- respec-
tively.
First we have the following

Propoéition 1. FI (M) has no elements of finite order, then Apse
is tsomorphic over the integers to Ay .

The proof is given for example in [1] .
Therefore from now on we will consider manifolds with IT, (M) finite.

Proposition 2. If [o] has finite order, then

s (® 1)
a even
0 1)~ MPL1 0

1a_A 10 dd
M@(O_l)ao

/\MrEAMGB(

for some integera € Z.

In any case App is indefinite. For these forms there is the following
well-known classification:

1) Am even = /\Mr'épqu;q(? é)

2) Am odd=> Am Zpl)@q(-1)

for some non negative integers p,q € 2 .
Furthermore, S. K. Donaldson (see [2]) proved the followmg

Theorem 3. Let M4 be a closed connected orientable 4-manifold uith
arbitrary fundamental group. If Apr is definite, then Ane is isomorphic
over the integers to etther () O --- @ (1) or {(-1)©--- & (-1).

The parity of Aar is related to the second Stiefel-Whitney class
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we{M) € H?(M; Z5) as follows. Using the universal coefficient sequence
0 — Ext(H1(M); Z0) — H*(M;Z3) — Hom(Hay(M); Z3) — 0,

it is easily proved that Aps iseven if and only if we (M) € Ext{H (M), Z,).

In particular, if Hy(M) has no 2-torsion, then Aps is even if and only
if wz (M) =0
Thus proposition 2 implies the following

Proposition 4. If wa(M) #0, then

wr=won (g %) =rnes-y
for some non negative integers p,r,5€ Z .

Further, M* is homeomorphic to the connected sum r(C PA#s(—CP?,
being CP? the projective complex plane.

Now we can also apply theorem 2 of [2] to obtain the following conse-
quence of proposition 2.

Corollary 5. Let M* be a closed connected orientable spin 4-manifold
with fundamental group II; (M) = Z,,, .

If Apr has o positive part of rank 1, then M* is homeomorphic to either
2(CPY#(2 — o (M) (—CP?) or 2(5? x §2%).

In the lost case, Ay = (0 1

) 0). Here a(M) denotes the sz’gnaiun’: of

Proof: By proposition 2, we have either Ape = Ay @ ((1] (1)) or

Apes ZAp P ((1} _01 ), hence Aps has a positive part of rank 2.

In the first case, Aps- is even. Since Hi(M™*) = 0 has no 2-torsion,
theorem 2 of [2] implies that

{0 1\ . [0 1\ . 0 1
wex (1 0) 2 (1 o) =me( 0),
0
1

In the second case, Apse = 2(1} ® (2 — o(M})(-1), hence

M = ACP )2~ o(M)(~CP?).

hence Aps = ( (1}) (see [7). [9]) and M = 2(5? x §?) as required.
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3. Examples.
3.1) Let K = {2 + 2z} + 23 + 25 = 0} € CP? be the Kummer surface
and let T: CP? — CP? be the fixed point free involution defined by
T(ZO: 21, 22,4 33) = (21 » =20, 23, —22).
Since T(K) = K, we can consider the orbit space M = K/T, called the

Hzbegger manifold (see [4]).
It is known that II,{M) = Z3 and the intersection form

A E(—Es} @ ((IJ (1])

is even with a positive part of rank 3.
Since wy (M) # 0, proposition 2 gives

Ange = (—Es) ® (‘1] (1]) ® (é _”1) = 10(~1) @ 2(1),

hence M~ -1%') 10(—C P2Y#2(CP?) by the Freedman classification (see
(3])-

We also recall that C. Okonek (see [8]} has shown that all homotopy
Enriques surfaces are homeomorphic to the Habegger manifold.

3.2) Let M = 5{n® & n) be the sphere bundle of 7 ® 7 @ 1, where
n — RP? is the canonical bundle over the real projective 2-space.

Then we have Apr 2 0, wo{M) # 6 and IT; (M) = 25, hence

1 0
A & (0 —1)

and M* CP2#(—CP?) 5% x §2.

TOP roP
3.3} Let M? = 5{n ® ¢*) be the sphere bundle of 1 @ ¢, where
€2 = @ ! — RP? is the 2-dimensional trivial bundle over RP2
Then wc have Agr = 0, wz(M) =0 and Hl(M)

It is very easy to sce that -

H2(M; Z,) — H*(My, Zy) — H>(M*; Zy)

where Mg = M\#{S! x D3), ¢ : §' x D — M represents the generator
of IT; (M) and ¢ : Mg — M, ¢ : My — M™ are the natural inclusions.

Thus wy (M*) = 0, hence Ay = (O 52x 52

1y, .
1 0)1&;(.\enandM op
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4, Proofs.
Proof of proposition 2: For convenience we assume that TI,(M) =
Zm,m > (0, with generator {a] = [Y|g1p]. For the general case, see

remark 1 below.

We set My = M\p(S! x 1033) and consider the cobordism

W=MxIu,D*xD* (I=10,1))

between M and M' = My U D? x §2.

Obviously the pairs (W, M), (W, M’} are homology equivalent to
(D? x D3, 8 x D?) and (D? x D?, D? x 5?) respectively.

We have the following diagram

0

g
0 — Hy(M, M) 2 Z —  Hy(My) — Hy(M) —0

.| b

.

2.
0 — H(WM)Y=2Z — MM} — H(W) —0

lk. \ l

Z = Hy(M', My) — Hp(W, M)

l

Hl(MQ) = HI(M) =Zm

!

0
where 7,7, §, k are inclusions.

Obvicusly Hy(M') is a free group of rank rkHo(M) + 2 and Hp(My)
is free of rank rhkH(M) + 1 since it injects into Hy(M').

Here we often identify an clement of Hy(Mp) with its image under 4.

Now we have ' _ .

Ap (i (1), 2. (0)) = Apg (2L(u), 22 (v))
for every u, v € Ho(My).

Let ¢ € Hy(My) be a primitive element such that i.(e) generates the
subgroup TorHy{M) = Z,, and suppose that f € Ho(M’) maps to the
integer m € Z = Hy(M’, My). Similarly f is chosen to be primitive.
Furthermore, denote by V' the span of {e, f} in Hy(M').
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Lemma 6. With the above notation, we have

01
Amely = (1 a)

where Appe(f, f)=a€ 2.

Proof: From the diagram, it follows that

(1) A (BL(),9) = Aw (2, 5.())
for every x € Ha(W, M) and y € Hy{M’). .
Note that

8. [D* x D® D? x 8% = mil{e) =
and
J(fy=m[D* x D*,§" x D%,
where [, ] denotes the fundamental ¢lass.
Thus relation (1) implies

Aut(me, f) = A (9,|D? x D%, D* x §%), f)
= AW([D2 X JD:!\:JD.2 X Sg]ajt(f))
= miw ([D? x D3, D* x §%,[D? x D*,S' x D*]) = m,
hence App(e, f) = 1 as required.
Furthermore, we have
m2 iy (e, €) = Ay (me, me)
= A (8L|D? x D3, D? x §2),8.(D? x D?, D? x §%))
= A ([D? x D*,D* x 84,5, 0 8,|D* x D¥, D* x §%)) = 0
since j, o & = 0 by the exactness. Thus Ay {e,e) = 0 and the proof of

Lemma. 6 is completed. B

Lemma 7. Let V1 C Hy(M') be the orthogonal complement of V.
Then V4 C Ha(Mp) and the restriction

t|ys : VI — FHo (M)
1§ an isomorphism.

Proof: To prove that V+ C Ha(Mp), we have to show that for every
v € Ho(M'") with
Apr(y,€) = Am (3, f) =0,
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theny € Ho(Mp) , 1 e 7.{y)=0.
Suppose, on the contrary, 7.(y) # 0, . e. j.{y) = ¢[D? x D*, 8 x D?)
for some integer ¢ # 0. Then we have

Ane{me,y) = A (81[D? x D3, D% x §%),4)
= Aw([D? x D°, D% x §%,j.(y))
= pw([D? x D, D? x §8%),[D* x D*,8' x D)} = ¢ £ 0,

hence Aps:(e,y) # 0, which is a contradiction.
To prove that i,|y 1 is mono, let z € V1 be an clement such that
t.{r) € TorH{M) = Z,.
Then we have i.{z} = hi.{e} for some integer h, and so it.{z— he) = 0.
By the exactness, it. follows that

(W [D? x D, D* x 8%)) = il{z — he),

hence mh'e =z — he, h, i/ € Z.
But we have {use (1))
@ S
A (BL(W[D? x D%, D? x §%)), f) = Aw{k'(D* x D®, D* x §%, 5.(f))
= A (#'[D? x D*, D% x §%],m[D? x D*, S x D*)) = mb’

and
{3
A (BL(R'(D® x D*, D* x §%)), f) = Am (il{z — he), f)
—- AM!(.T.' — }.’-e,f)
= )\M'(xvf) - h/\M'({:, f) = —h.
Comparing relations (2) and (3) gives mh’ = —h, hence mh'e = = — he

implies that z = { as required.
To prove that i}y is epi, let z € Ho{M) and let u € Ha{Mp) be an
element such that i, {u} = 2.

We consider the element w' = u — Ape(u, fle € Hy{My).
Then we have '
Ay (me,w’) = Ay (81| D? x D®, D? x §%), )
=Awl{[D? x D* D? % 8%, j.0il(u)) =0

since 7, o i, = 0; therefore Ay {u',e) = 0.
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Furthermore
AM-‘ (?Lf,f) = /\M:(T}, - /\Ma(u,f)e, f)
= )\M’.{usf) - /\M’(usf) = 0:
e uw=iu)evl

Finally

RUSESRVEPWAUN NG
= t.(u) = z mod TorHa{M).
This completes the proof. B
By Lemmas 6 and 7, we have the resulf

AM’CV—"!\M@(? 1>-

@

Proof of Proposition 4:

Suppose now we{M) # 0. Because (M, Mg) and {(M’, Mp) are homol-
ogy equivalent to (8" x D%, 8? x §%) and (D? x 52, 8§ x §?) respectively,
we have also the disgram '

]

I

HY(My; Z3) —— HX(M; Zy) —— 0

K
‘[2 )

H3(M'; Zy)
which implies
(4 " (w2 (M) = wa(Mo) = " (wa(M")).
Since i* is injective, relation (4) and w2 (M) # 0 give wa(M) # O,I hence

Asmr s odd. |

Remark 1. The proof of proposition 2 can be casily generalized to
manifolds with arbitrary fundamental groups. Indeed, this follows from
Lemma 8 below.
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Suppose now M a closed connccted orientabie (PL) 4-manifold with
fundamental group ;.

Let
Do, .. SEx DB — M

be disjoint embeddings which kill [T,

Setting
P 0
Mo = M\ || 9,(S* x D%
§=1
and
P
M= Mo | J(D? x 8%,
=1
we have
Lemma 8.

(1) Hi(Mo) = Hi (M), Hy(Mg) = ;EBIZ

(2) Hy(Mg) s o direct summand of the free group Hy(M*)
(3}

00— H’_,_\(M(]) — HQ(M*) — H?(M*.MO) o G;?Z ——
e HY (M) = Hy (M) — 0
(4)

0 — Hg(M) —t Ha(M, M{)) = @Z —* HZ(MQ) — HQ(M) — 0
P

(5)

Hy(M) = Hy(My) = Hy(M*) =
= Hy(M) = Hy(M) = Ho(M, Mp) = &2.
kg

The proof is straightforward.

Now we indicate how Lemma 8 yields Proposition 2 in the general
casc.
Suppose T1; (M) finitcly generated by elements of finite orders, hence
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Hy(M) = Zm, @+ ® Zy,,. Since Hy(M) = H' (M) ~ FH (M) ~ 0,
by Lemma 8 we have the same diagram as at the beginning of section 4
with

Hg(M,MD) o~ Hg(W, M') o (—B,,Z,
HQ(M*,MD) ’L“'-HQ(W, M) o EBPZ

and
HI(M) o H](MQ) s Z‘rru = I @Zmp.

Obscrve that He(M*) is a frec group of rank rkHy{M)} + 2p and
Hy(My) is free of rank rkHy (M) + p.

Now we can choose primitive elements
€1:62,. ., Ep € H?(MU) and fl ' f?: e :fp = H’.E(M*)

such that i.(es) generates the subgroup Z,., C TorHo(M) and fi

maps to the integer m), which belongs to the corresponding A% factor of
Hy(M* , Mp), for h =1,2,...,p.

Now we apply the previous results by replacing V' with the span V), of
{en, fr.}. As a consequence we also obtain

0 1 0 1
)\M.:AM@(I a])@@(l a)
g

Remark 2. Let M be a closed connected orientable spin 4-manifold
with IT; (M) finite.

Let 2 81 x D3 — M be an embedding which represents a generator
[a) € I (M).

Then

Amxﬁz\m@(? ])

a

by proposition 2 and a defines a map

a: T (M) — Z

where H;‘(‘};ﬁ') is a certain extension of II, (M) by Zo which takes care
not only of [o] but also of its extension i (for details sec [10, p. 44]).
What type of invariant is & 7 : the examples show that & is not trivial.
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