
SELF-MONITORING DISTRIBUTED MONITORING SYSTEM
FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)

Aldo Franco Dragoni
Paolo Giorgini

Istituto di Informatica, Università di Ancona,
via Brecce Bianche, 60131, Ancona (Italy)

Sensor data fusion and interpretation, sensor failure detection, isolation and
identification are extremely important activities for the safety of a nuclear power plant.
In particular, they become critical in case of conflicts among the data. If the monitored
system’s description model is correct and its components work properly, then
incompatibil ities among data may only be attributed to temporary deterioration or
permanent breakage of one or more sensors. This paper introduces and discusses three
simple ideas:
1. classical “Model-Based Diagnosis” can be extended straightforwardly to encompass

the sensors’ models into the system’s description in order to diagnose even their
own faults

2. from the “log-file” of the diagnosed minimal conflicts among the sensors, one can
draw interesting conclusion regarding their relative reliabilit y (e.g., through
Bayesian Conditioning)

3. the estimated reliabil ity of the sensors is useful when assessing (e.g., through
Dempster’s Rule of Combination) the actual state of the monitored physical system,
even in cases of conflicting data.

These ideas lead to the conception of a distributed monitoring system able to attach
each sensor a statistically-evaluated relative reliabilit y, which is especially useful for
devices situated in dangerous zones or areas, diff icult to reach inside huge and complex
production plants.

1 INTRODUCTION

Safety in nuclear power plants requires reliable information concerning the state of the
process. Elaboration of data coming from the sensors of these complex plants is thus
extremely important, and becomes critical when some sensors stop working properly.
Failure detection, isolation and identification of sensor are indispensable activities for
the monitoring system of a nuclear power plant. In recent years different approaches to
the problem have been proposed. In [22], Kratz et al. presented a method based on the
analytic redundancy for detecting and isolating sensor failures in a steam generator used
in nuclear power plants. Keith and Belle in [23] developed signal validation software
for application to nuclear power plant. Their system combines some previously



established fault detection methodologies as well as some newly developed modules.
Again Keith, in [24] presented a study on the feasibil ity of using a feed-forward back
propagation neural network in a signal fault detection capacity. The sensor data used in
this study are taken from various subsystems within an operating nuclear power plant.
More recently [25,26,27], Dorr and his colleague evaluated the contribution of analytic
redundancy on the state estimation accuracy of linear systems. In these works, they
carried out a comparative study of different methods of sensor fault detection using
direct or indirect analytic redundancies on measurements obtained from a nuclear power
plant.
Normally, collected data are confronted with a theoretical model of the monitored
process/phenomenon in order to specify its current state (in case of a control system) or
to validate the theory (in case of a scientific experiment). Discrepancies between
theoretical models and sensor data can be imputed either to the sensors or to the theory
(or to both of them). We may distinguish between three basic cases:
1. at least one sensor did not adequately report the quantity it should have measured
2. the theoretical model is not (completely) applicable to the actual monitored system

because:
a) the (scientific) theory has to be refined (objective interpretation)
b) the physical system is not working as it “should” (teleonomic interpretation)

Case 1, often referred to as Sensor Data Validation (SDV), gained much interest in the
last few years [1,2,3,4]. As illustrated in [5], methods can be distinguished into three
categories:
SDV1. data-based: they rely on statistical models obtained from observed data
SDV2. model-based: they rely on an analytical model of the monitored system
SDV3. knowledge-based: they rely on human expertise
Case 2 has been deeply studied in Artificial Intelli gence, both as a knowledge revision
problem (BR for short, see [6] for an overview) and as a model-based diagnostic
problem (MBD for short, see [7] for a survey). It seems evident to us that BR and MBD
are dual problems. In the last decade, MBD moved from its theoretical foundation
[8][9] to some practical applications (see for instance [10]). In MBD, diagnoses are
found from discrepancies between observation and prediction. The intermediate step is
the exhaustive generation of the “conflict sets” for the tuple (SD,COMPS,OBS), in
which System Description and OBServations are sets of first order sentences,
COMPonentS is a finite set of constants each one representing a component of the
system [11]. A diagnosis is a subset of COMPS that covers all the conflict sets.
A main problem with MBD is that each of its three fundamental steps, prediction,
conflict recognition and candidate generation, exhibits a combinatorial explosion for
large devices [12]. However, the worst problem with MBD is related to the case 2a
before, i.e., the fact that it is at least difficult to find out a correct model for the system
to diagnose. This paper does not deal with these problems: both of them will be
cravenly avoided by imposing the relative simplicity of the apparatus to be controlled or
diagnosed. Instead, this paper introduces, discusses and reports experimental results
about the following three issues:
1. the problem of recognizing sensors’  faults can be approached entirely within the

framework of MBD (section 2)



2. from the diagnostics of the sensors’ faults one can formulate interesting conclusions
regarding the various sensors’ relative reliability  (section 3)

3. from the estimated reliabil ity of the sensors one can hypothesize the actual state of
the monitored physical system even in cases of not-redundant and conflicting data
(section 4).

Normally, sensors come labeled with many important quali fications (accuracy, average
life-time, ...) which are necessary to estimate their a priori current reliabil ity. By
“reliabil ity” of a sensor we mean the “probabilit y that the sensor is providing the
correct measure,” whatever the term “correct” may signify.  However, the actual
current reliabil ity of a sensor may be lesser than the “a priori” one due to unpredictable
and/or unknown events that might have been occurred to it from its assembly to its
current employment into the monitoring system. Of course, any sensor’s current
conditions can be appraised through appropriate testing devices1. But, apart from the
academic problem of infinite regression (which devices will test the testing devices, and
so on, ...), a concrete question is that “testing” has its own costs. For instance, in the
monitoring apparatus of an automatic production line, some optical sensors might have
been altered after a temporary fault of the conditioning device that cleans the air from
the pollution particles produced by the power generator. Since testing the sensors
implies stopping the manufacturing process, other evidence about their possible
deterioration would be appreciated. In the case of thermic sensors situated in proximity
to kernel of a nuclear power plant, evidence about the wearing away of a limited
number of sensors will drastically reduce the costs of maintenance. Issue 2 before
suggests that such an evidence may come from the theoretical model of the monitored
process/phenomenon and from the global datum provided by the distributed monitoring
apparatus. The group of the sensors acts as a testing device for each one of its own
members. Of course, this evaluation depends on the average reliabil ity of all the sensors
in the group (hence including the corrupted ones) and on the accuracy of the monitored
entity’s model. In any case, these estimates will not be comparable (nor for quality
neither for typology) with the evaluations made by specifically designed testing
devices. Their point is that they do not interfere in any way with the manufacturing
process, thus they have no expenses at all (apart from the fixed costs of a CPU, some
data-acquisition boards and a mass storage device). A key idea with this distributed
auto-estimate is that of “minimal conflicts” . Intuitively, if it has been detected a
minimal conflict between the sensors A and B (by confronting the collected data with
the theoretical model) and, subsequently, another minimal incompatibility is found
involving B and C, then one may suppose more probable the deterioration of B than
those of both, A and C. Dealing with probabilities, we do not want to reinvent the wheel
since Bayesian Conditioning [13] (section 3) seems an appropriate tool to accomplish
the task. Basically, the new reliabil ity of a sensor S will be computed as the probability
that S gave the correct value provided that it has been involved in some minimal
conflicts. The greater the cardinality of these minimal conflicts, the higher the chance
that S is working properly. The worst case is when S in involved in a singleton minimal
conflict (i.e., it went, by itself, out of the range compatible with the theoretical model)
so that its new reliability is 0. We will estimate statistically the current reliabil ity of
each sensor (over all its working life) w.r.t. the other ones.

                                                       
1 Actually, the maintenance of a nuclear power plant’s monitoring system consists of systematic controls and calibration of sensors

during the annual shutdown of the plant.



There are cases in which the cost of testing a sensor is infinite, i.e., the examination is
impossible or not convenient. Let us think about the sensor equipment of unmanned
satell ite stations or about real-time domains in which you receive impossible (or
absolutely improbable) global data and have no time to test the sensors. These cases fall
into the classic discipline of decision support under uncertainty. In these circumstances,
the estimated current ranking of reliabil ity plays an important role since, although very
rough, it provides a more justified and up to date (hence more adequate) estimate than
the “a priori” one. To accomplish this task, the fundamental tool we adopted in our
method is the Dempster’s Rule of Combination in the special guise in which Shafer and
Srivastava apply it to the “auditing” domain [14] (section 4).
Section 5 describes two of the various simulation experiments that we carried out last
year; section 6 compares our approaches with others related works and section 7 reports
some tentative conclusions that might be drawn from our experiments, pointing the
attention to the biggest obstacle we were faced with: the relative overexposition of some
sensors.

2 DIAGNOSING SENSOR FAULT S

Although these ideas come from an independent line of research [15, 16], diagnosing
sensor faults can be done as well within the framework of MBD by extending the
system’s description  (e.g., figure 1-A) to encompass the sensors’ models (e.g., figure 1-
B).

A B
Figure 1. Extending the notion of system to encompass the sensors models

Of course, the system’s description will be extended congruously (in bold below):
COMP :{ A1, A2, O1, NX1, SA, SB, SC, Sa, Sb, Sc, Sd }

SD : ANDG(x) ∧ ¬AB(x) ⇒ out(x) = and(in1(x), in2(x))

NXORG(x) ∧ ¬AB(x) ⇒ out(x) = nxor(in1(x),in2(x))

ORG(x) ∧ ¬AB(x) ⇒ out(x) = or(in1(x),in2(x))

SENS(x) ∧∧ ¬¬AB(x) ⇒⇒ out(x) = in(x)

ANDG(A1), ANDG(A2), NXORG(NX1), ORG(O1)

SENS(SA), SENS(SB), SENS(SC), SENS(Sa), SENS(Sb), SENS(Sc), SENS(Sd)

out(A1) = in1(O1), out(A1) = in1(A2), out(A2) = in2(NX1), out(O1) = in1(NX1)

in2(A1) = in2(O1), in(SA) = IN1(A1), in(SB) = IN2(A1), in(SC) = IN2(A2),
in(Sa) = OUT(A1), in(Sb) = OUT(A2), in(Sc) = OUT(O1), in(Sd) = OUT(NX1)

in1(A1) = 0 ∨ in1(A1) = 1, in2(A1) = 0 ∨ in2(A1) = 1, in2(A2) = 0 ∨ in2(A2) = 1

OBS : a finite set of first order ground sentences



Recall ing from [9], a minimal conflict set for (SD,COMPS,OBS) is a subset { x1,…,xk} of
COMPS such that SD∪OBS∪{ ¬AB(x1),…,¬AB(xk)} is inconsistent and such that the same
holds for no proper subset of { x1,…,xk} . Any minimal hitting set on the collection of all
the minimal conflict sets will be a diagnosis for (SD,COMPS,OBS).
The strength of this framework is its abil ity to diagnose the contemporary faults of
components and sensors (thus treating both the cases 1 and 2a before).  However, often
sensors observe physical systems in which there is no notion of component at all (e.g.,
distributed seismic monitoring systems [17,18]). In these cases, COMPS contains only
the sensors, SD reduces to a mathematical model (maybe very complex) of the observed
phenomenon and OBS is a simple array of numerical and/or boolean data. As an
example, let us consider a metallic bar, heated at an extremity and monitored by some
thermometers as depicted in figure 2.

Figure 2. Diagnosing faults of pure sensor systems

Even ignoring the bar’ s heat transfer equation, we may yet model the system with
simple constraints (in bold face below for the case of only three thermometers):
COMP :{ S1, S2, S3}

SD : SENSOR(x) ∧ ¬AB(x) ⇒ out(x) = in(x), SENS(S1), SENS(S2), SENS(S3)

out(S1) ≥≥ out(S2), out(S2) ≥≥ out(S3)

OBS : a triple of numerical data

For instance, from OBS={ out(S1)=153°C, out(S2)=175°C, out(S3)=168°C} we draw the
minimal conflict sets {{ S1, S2} , { S1, S3}} and the diagnoses {{ S1} , { S2, S3}} .
The strongest point with the adoption of MBD in SDV relies in the notion of good (as
we called it for the obvious duality with de Kleer’ s nogood, called “minimal conflict
set” by Reiter), that is a subset { x1,…,xk} of COMPS such that
SD∪OBS∪{ ¬AB(x1),…,¬AB(xk)} is consistent and such that the same holds for no proper
superset of { x1,…,xk} . Each good is the complement of a diagnosis w.r.t. COMP, i.e., a
maximally consistent set of sensors. Goods play an important role when trying to
hypothesize the system’s status in presence of conflicting data. In fact, because of the
duality between goods and diagnoses, choosing a most probable diagnosis means
choosing a most probable good, i.e., a most probable (and complete) reconstruction of
the system’s status.
A problem with MBD applied to SDV is that, independently of the accuracy of SD, the
theory SD∪OBS∪{ ¬AB(x)| x∈COMPS} may be consistent even in cases of sensor faults.
These hidden faults may occur, for instance, in cases of contemporary breakage of more
than one sensor such that the global output is still a possible (although wrong) one.

3 ESTIMATING THE SENSORS’ ACTUAL RELIABIL ITY

Whereas hidden faults constitute a problem, successful recognition of minimal conflicts
offers an invaluable opportunity to estimate, statistically, the actual current sensors’
reliability from the “a priori” one. The most obvious way to do this is through Bayesian
Conditioning, since we defined “sensor’s reliability” as the probabilit y that the sensor is



returning the correct value. Let us denote with Ri and NRi, respectively, the “a priori”
and the “a posteriori” reliabil ity of the sensor Si, and let us denote with S the set
COMPS restricted to the sensors. Under the assumption that the deterioration of each
sensor is an independent event (!?!), the hypothesis that only those belonging to Φ⊆S
are working properly has the combined “a priori” probabil ity ( )∏∏
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Estimating the current reliabil ity CRi of a sensor Si from Ri and from the history of the
recognized minimal conflicts is a (debatable) statistical matter. In the experiments
below, we took for CRi the average of all the NRi calculated during the li fe of the
distributed monitoring system2. As we’ ll see, such a CRi furnishes an interesting relative
ordering of reliability. Things go as the overall distributed sensor system acts as a
testing device for each of its member, hence the (quite overstating) title of this paper.

4 CHOOSING THE PREFERRED GOOD

In Shafer’ s and Srivastava’s multi-source version of the belief function framework [14],
the sources’ degrees of reliability are “translated” into belief-function values on the
given pieces of information. In our method we follow them by taking the estimated
reliability CRi as primary evidence in favor of the datum s
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All these bpas will be then combined through the Dempster’s Rule of Combination
(DRC):

                                                       
2 NRi is calculated only on the reception of conflicting data. Another important question is that of the length of the temporal

window, i.e., how far we go back in the past to record conflicting data; intuitively, the wider the window the higher the inertia of
the mechanism in registering the sensors’ deterioration.
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A major problem with the belief function formalism is the computational complexity of
DRC; the straightforward application of the rule is exponential in the cardinality of Ω
and in the number of sensors. However, much effort has been spent in reducing its
complexity. Such methods range from “efficient implementations” [19] to “qualitative
approaches” [20] through “approximate techniques” [21].

5 EXPERIMENTS AND RESULTS

We developed a simulation testbed to study the performances of the proposed
mechanism. We made a series of experiments aimed at value its sensibilit y (capacity to
distinguish little differences among sensors’ reliabilities) and its robustness (capacity to
perform acceptably in very degraded situations).  The simulator takes in input the
sensors’ real degrees of capacity (Ci), their degrees of “a priori” reliability (Ri), the
model R of the monitored system and the length of the simulation. At any cycle it:
1. simulates a correct data acquisition
2. simulates an error (it alters the datum of each Si according to Ci taken as a fault

frequency)
3. if the resulting global data contradicts with R it starts the proposed mechanism.
In the experiments that follow, the sensors’ degrees of “a priori” reliabil ity were fixed at
Ri=0.9.

5.1 EXPERIMENTS WITH THE SIMULATED HEATED BAR

We made several experiments with the heated bar of figure 2 modeled as described in
section 2. In order to evaluate the eventual dependence of the system’s performances on
the number of the sensors and on the range of their possible output (discrete) values, we
made the following different simulations:
A. Three sensors with output values [0,1,2,3,4,5,6,7,8,9]
B. Five sensors with output values [0,1,2,3,4]
C. Five sensors with output values [0,1,2]
D. Seven sensors with output values [0,1,2].

Sensibilit y
Trying to evaluate the system’s sensibil ity, we ran some simulations with only one
deteriorated sensor. Figure 3 shows typical trends of the case B above.



Figure 3.

We recapitulate here the main results:

• the system is always able to find the corrupted sensor almost immediately
independently of its capacity

• the time necessary to find out the corrupted sensor grows with its capacity

• these results do not depend on the sensors’ output range (probably, this is due to the
very particular error typology we considerate)

• results improve with the number of the sensors (more sensors, better results).
Of course, having found always the corrupted sensor, the mechanism has been
invariably able to recognize the correct maximal consistent set of data through the
DRC.

Robustness
We made other simulations with two or more deteriorated sensors. Figure 4 and figure 5
show typical trends; in particular, figure 4 concerns a case of two corrupted sensors (S1

and S3: C1=C3=0.2), and figure 5 a case with three corrupted sensors (S1, S2 and S3:
C1=C2=C3=0.2). We can say that:

• the mechanism is still able to find the corrupted sensors
• the estimated degrees of reliability of the corrupted sensors are close to those of the

properly working ones

• the mechanism needs more time to find out the corrupted sensors

• correct sensors are innocently involved in more minimal conflicts so that their
degrees of reliabil ity decrease.

Figure 4. Figure 5.
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In figure 6, each curve represents the percentage of choices of the correct good (pcc)
obtained with DRC (after 50 cycles) for different number of deteriorated sensors (2,3,4
and 5) and with different capacities (0.9, …,0.2). We can compare the results obtained
with DRC with those obtained with a purely random selection (figure 7).

Figure 6. Figure 7.

5.2 EXPERIMENTS WITH A DIGITAL CIRCUIT

Sensibilit y
We simulated the monitoring system for the digital circuit in figure 1.B. Again, we tried
some simulations with only one deteriorated sensor (with a capacity of 0.5), for
example, the sensor d in figure 8 and the sensor A in figure 9.
In these cases we can say that:

• the mechanism is still always able to find out the corrupted sensor almost
immediately independently of its reliability

• the time necessary to find out the corrupted sensor grows with its reliabil ity
• the mechanism finds the corrupted sensor but its esteemed reliabil ity depends on the

particular sensor (see in  figure 8 and 9 the different trends of the sensor A and d).
Again, having found always the corrupted sensor, the system chooses always the correct
maximal consistent set of data.

Figure 8. Figure 9.
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Robustness
In this case to evaluate the robustness we ran some simulations with two or more
sensors with reliabil ity 0.5. Tab.1 and Tab.2 show the results of two meaningful
simulations with two deteriorated sensors.

Sensor Real
Reliability

Estimated
Reliability

A 100 86.7
B 50 56.3
C 100 84.1
a 50 45.4
b 100 84.7
c 100 82.6
d 100 84.9

Sensor Real
Reliability

Estimated
Reliability

A 100 83.67
B 100 71.68
C 50 80.42
a 50 37,9
b 100 85.76
c 100 88.81
d 100 87.55

Tab. 1 Tab. 2

We see that in the first simulation (tab.1) the system finds correctly the deteriorated
sensors, but in the second one (tab.2) it gives a reliability value too high to the sensor C.
Figure10 shows the percentage of choices of correct good (pcc) obtained with DRC on
the varying of the particular couple of corrupted sensors (css). We can compare these
results with those obtained with a random choice (figure11).

Figure 10. Figure 11.

From figure10 we can observe that there is a dependence of the system’s performances
from the particular (couple of) corrupted sensor. We called this effect over-exposition:
by over-exposition of a sensor we mean its higher probabil ity of being involved in
minimal conflicts. We tried to find some correction factors to limit the impact of this
ugly effect; the problem is that such factors are not fixed numbers but are function of
the unknown real capacity of the sensors.

6 RELATED WORK

The system presented in this paper belongs to both SVD1 and SVD2 category of the
sensor data validation. The model-based methods presuppose the existence of analytic
model of the system and are based on a common methodology: generating and
analyzing of the signals sensitive to the fault residues [28]. The main approaches to
generate the residues can be classified in approaches based on analytic redundancy [27]
(e.g. parity space) and approaches based on the observator (e.g. Kalman filter). The
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model-based methods are very efficient when there is a linear and well-known model of
the system. The problem has been also deeply studied in Artificial Intelligence. In [2]
Lee presents a technique based on the analytic redundancy that needs of an accurate
knowledge of the process. Also in [22], Washio proposes a method to find the sensors'
faults based on the model of the monitored process. The individuation of the sensors'
faults and the diagnosis of the components are performed contextually in the same
framework. In particular, the method allows diagnosing no linear components, sensors
and components, and the width of the fault.
There are applications where the model of the monitored process is static, that is the
time variable is not considered; for instance, Scarl et al. in [16] have presented a system
(LES) to control the loading of the liquid oxygen on the Shuttle. LES works in domains
that can be represented as a direct hierarchy of control without feedback and where
there are no objects related with the state. From the functional relation among the given
commands, components of the monitored system, and the measured values, LES
analyses the differences between awaited values and measured ones, and determines the
state of the components and of the sensors. A fail ing of this system is that it can
diagnose only single-fault.
Even if the methods belong to the artificial intell igence field overcome the non-linearity
problem, all the model-based methods are sensitive to the errors of the modeling. So,
when it is not possible have an accurate model of the system, an alternative way is using
a qualitative description based on the human experience: knowledge-based methods.
Typical examples of this category are the classical expert systems (formed by a
knowledge base and an inferential engine) and fuzzy expert systems.
In this paper we presented a method based on the knowledge of the system that is not
necessarily expressed by a mathematical model. The method needs any kind of
knowledge to extract the minimal conflicts. This allows using both equation and
constraints of real situations like "if the temperature is bigger than 100° C, then the
alarm has to start"; the model-based methods cannot manage these constraints.
In the SVD, it is supposed that the components are not corrupted. In our approach this
constraint can be overcome extending properly the method.
The historical analysis of the data allows exploiting information formerly draw out for
solve the future conflicting situations. The systems proposed in [22] and [16] don't give
indications concerning how solve the conflicts and how choose one of the possible
diagnosis.

7 CONCLUSIONS

Elaboration of data coming from multiple sensors is critical when conflicts among them
emerge. This paper introduced, discussed and reported experimental results about three
issues:
1. the problem of recognizing sensors’  faults can be approached entirely within the

framework of model-based diagnosis
2. from the history of the sensors’ faults it is possible to formulate interesting

conclusions regarding the various sensors’ relative reliabil ity, by means of Bayesian
Conditioning



3. from the estimated reliabil ity of the sensors it is possible to hypothesize the actual
state of the monitored physical system even in cases of not-redundant and conflicting
data, by means of the Dempster’s Rule of Combination.

The hardest problem with this method is what we called “over-exposition effect” . We
believe that effective solutions to this problem depend on the particular application
domain.
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