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Sensor data fusion and interpretation, sensor failure detection, isolation and
identification are extremely important activities for the safety of a nuclea power plant.
In particular, they become aitical in case of conflicts among the data. If the monitored
system’s description model is correct and its components work properly, then
incompatibilities among data may only be dtributed to temporary deterioraion or
permanent bregkage of one or more sensors. This paper introduces and discusses three
simple ideas:

1. classical “Model-Based Diagnosis’ can be extended straightforwardly to encompass
the sensors models into the system’s description in order to diagnose even their
own faults

2. from the “log-file” of the diagnosed minimal conflicts among the sensors, one can
draw interesting conclusion regarding their relative reliability (e.g., through
Bayesian Conditioning)

3. the ettimated reliability of the sensors is useful when assessng (e.g., through
Dempster’s Rule of Combination) the actua state of the monitored physicd system,
even in cases of conflicting data.

These ideas lead to the cnception of a distributed monitoring system able to attach

eat sensor a datisticdly-evaluated relative reliability, which is espedally useful for

devices stuated in dangerous zones or areas, difficult to read inside huge and complex
production dants.

1INTRODUCTION

Safety in nuclea power plants requires reliable information concerning the state of the
process Elaboration of data coming from the sensors of these complex plants is thus
extremely important, and becomes critical when some sensors gop working properly.
Failure detection, isolation and identification of sensor are indispensable adivities for
the monitoring system of a nuclea power plant. In recent years different approaces to
the problem have been proposed. In [22], Kratz et a. presented a method based on the
analytic redundancy for deteding and isolating sensor failures in a steam generator used
in nuclea power plants. Keith and Belle in [23] developed signal validation software
for applicaion to nuclea power plant. Their system combines me previously



established fault detedion methodologies as well as sme newly developed modules.
Again Keith, in [24] presented a sudy on the feasibility of using a feed-forward badk
propagation reural network in a signal fault detection cgpadty. The sensor data used in
this gudy are taken from various subsystems within an operating nuclea power plant.
More recently [25,26,27], Dorr and his colleague eraluated the cntribution of analytic
redundancy on the state etimation acaracy of linea systems. In these works, they
caried out a omparative study of different methods of sensor fault detection using
dired or indirea analytic redundancies on measurements obtained from a nuclea power
plant.

Normally, colleded data are confronted with a theoretical model of the monitored
procesgphenomenon in order to specify its current sate (in case of a cntrol system) or
to validate the theory (in case of a scientific experiment). Discrepancies between
theoretical models and sensor data can be imputed either to the sensors or to the theory
(or to both of them). We may distinguish between threebasic cases.

1. at least one sensor did not adequately report the quantity it should have measured

2. thetheoreticd model is not (completely) applicable to the adua monitored system
because:

a) the (scientific) theory hasto be refined (objedive interpretation)

b) thephysical system is not working asit “should” (teleonamic interpretation)
Case 1, often referred to as Sensor Data Validation (SDV), gained much interest in the
last few yeas [1,2,3,4]. As illustrated in [5], methods can be distinguished into three
caegories:

SDV 1.data-based: they rely on statistical models obtained from observed data
SDV 2. model-based: they rely on an analytical model of the monitored system
SDV 3. knowl edge-based: they rely on human expertise

Case 2 has been deeoly studied in Artificial Intelligence, both as a knowledge revision
problem (BR for short, see [6] for an overview) and as a model-based dagnagtic
problem (MBD for short, see[7] for a survey). It seems evident to usthat BR and MBD
are dual problems. In the last decale, MBD moved from its theoretical foundation
[8][9] to some pradicd applications (see for instance [10]). In MBD, diagnoses are
found from discrepancies between observation and prediction. The intermediate step is
the exhaustive generation of the “conflict sets’ for the tuple (SD,COMPSO0BYS), in
which System Description and OBServations are sets of first order sentences,
COMPonentS is a finite set of constants eat one representing a wmponent of the
system [11]. A diagnosisis a subset of COMPSthat covers all the conflict sets.

A main problem with MBD is that ead of its three fundamental steps, prediction,
conflict recognition and candidate generation, exhibits a combinatorial explosion for
large devices [12]. However, the worst problem with MBD is related to the cae 2a
before, i.e., the fad that it is at least difficult to find out a corred model for the system
to dagnose. This paper does not deal with these problems. both of them will be
cravenly avoided by imposing the relative simplicity of the gparatusto be controlled or
diagnosed. Instead, this paper introduces, discusses and reports experimental results
about the following threeisaues:

1. the problem of remgnizing sensors’ faults can be gproaded entirely within the

framework of MBD (sedion 2)



2. from the diagnostics of the sensors faults one can formulate interesting conclusions
regarding the various snsors’ relative reliability (sedion 3)

3. from the estimated reliability of the sensors one can hypothesize the adua state of
the monitored physical system even in cases of not-redundant and conflicting data
(sedion 4).

Normally, sensors come labeled with many important qualifications (acaracy, average
life-time, ..) which are necessary to estimate their a priori current reliability. By
“reliability” of a sensor we mean the “probabllity that the sensor is providing the
corred measure,” whatever the term “correct” may signify. However, the actual
current reliabil ity of a sensor may be lesser than the “a priori” one due to unpredictable
and/or unknown events that might have been occurred to it from its assembly to its
current employment into the monitoring system. Of course, any sensor’s current
conditions can be gpraised through appropriate testing devices'. But, apart from the
academic problem of infinite regression (which devices will test the testing devices, and
SO on, ...), a concrete question is that “testing” has its own costs. For instance, in the
monitoring apparatus of an automatic production line, some optical sensors might have
been altered after a temporary fault of the conditioning device that cleans the air from
the pollution particles produced by the power generator. Since testing the sensors
implies dopping the manufaduring process other evidence dout their possible
deterioration would be gpreciated. In the cae of thermic sensors situated in proximity
to kernel of a nuclea power plant, evidence about the weaing away of a limited
number of sensors will drastically reduce the msts of maintenance. Isuue 2 before
suggests that such an evidence may come from the theoretical model of the monitored
procesgphenomenon and from the globd datum provided by the distributed monitoring
apparatus. The group of the sensors acts as a testing device for ead one of its own
members. Of course, this evaluation depends on the average reliability of all the sensors
in the group (hence including the crrupted ones) and on the acarracy of the monitored
entity’s model. In any case, these estimates will not be cwmparable (nor for quality
neither for typology) with the evaluations made by specifically designed testing
devices. Their point is that they do not interfere in any way with the manufacuring
process thus they have no expenses at al (apart from the fixed costs of a CPU, some
data-aqquisition boards and a mass dorage device). A key idea with this distributed
auto-egtimate is that of “minimal conflicts’. Intuitively, if it has been deteded a
minimal conflict between the sensors A and B (by confronting the wllected data with
the theoreticd model) and, subsequently, another minimal incompatibility is found
involving B and C, then one may suppose more probable the deterioration of B than
those of both, A and C. Dealing with probabilities, we do not want to reinvent the wheel
since Bayesian Conditioning [13] (section 3) seems an appropriate tool to accomplish
the task. Basically, the new reliability of a sensor S will be computed as the probability
that S gave the correct value provided that it has been involved in some minimal
conflicts. The greater the cadinality of these minimal conflicts, the higher the dhance
that S isworking properly. The worgt case iswhen S in involved in a singleton minimal
conflict (i.e., it went, by itself, out of the range compatible with the theoretical model)
so that its new reliability is 0. We will estimate statistically the arrent reliability of
each sensor (over al itsworking life) w.r.t. the other ones.

! Actually, the maintenance of a nuclear power plant’s monitoring system consists of systematic controls and calibration of sensors
during the annual shutdown of the plant.



There ae cases in which the st of testing a sensor is infinite, i.e., the examination is
impossible or not convenient. Let us think about the sensor equipment of unmanned
satellite stations or about red-time domains in which you receive impossible (or
absolutely improbable) global data and have no time to test the sensors. These caes fall
into the classic discipline of dedsion support under uncertainty. In these circumstances,
the estimated current ranking of reliability plays an important role since, although very
rough, it provides a more justified and upto date (hence more alequate) estimate than
the “a priori” one. To acmmplish this task, the fundamental tool we alopted in our
method is the Dempster’s Rule of Combination in the special guise in which Shafer and
Srivastava gply it to the “auditing” domain [14] (sedion 4).

Sedion 5 describes two of the various simulation experiments that we caried out last
yea; sedion 6 compares our approaches with others related works and sedion 7 reports
some tentative wnclusions that might be drawn from our experiments, pointing the
attention to the biggest obstacle we were facead with: the relative overexposition of some
SENsors.

2 DIAGNOSING SENSOR FAULT S

Although these ideas come from an independent line of reseach [15, 16|, diagnosing
sensor faults can be done a well within the framework of MBD by extending the
system’s description (e.g., figure 1-A) to encompass the sensors models (e.g., figure 1-
B).

A
Figure 1. Extending the notion of system to encompassthe sensors models

Of course, the system’s description will be extended congruously (in bold below):
COMP { A1, A2, O1,NX1, Sy, Ss, Sc, Sar S0y S Su }
D : ANDG(x) O-AB(x) O out(x) = and(in1(x), in2(x))
NXORG(x) O-AB(x) O out(x) = nxor(inl(x),in2(x))
ORG(x) O-~AB(x) O out(x) = or(in1(x),in2(x))
SENS(x) O=AB(x) O out(x) =in(x)
ANDG(A1), ANDG(A2), NXORG(NX1), ORG(O1)
SENS(Sa), SENS(Sg), SENS(Sc), SENS(S,), SENS(S,), SENS(S;), SENS(Sy)
out(A1) = in1(01), out(Al) = in1(A2), out(A2) = in2(NX1), out(O1) = in1(NX1)
in2(A1) = in2(01), in(S) = INL(AL), in(Ss) = IN2(AL), in(Sc) = IN2(A2),
in(Sy) = OUT(AL), in(S,) = OUT(A2), in(S) = OUT(01), in(Sy) = OUT(NX1)
in1(A1) =00inl(A1) =1,in2(Al) =0 0in2(Al) =1,in2(A2) =00in2(A2) = 1
OBS: afinite set of first order ground sentences



Realling from [9], aminimal conflict set for (SD,COMPSOBS) is a subset {x,,....x} Of
COMPS such that SDOOBSI{ -AB(xy)....,mAB(xJ)} IS inconsistent and such that the same
holds for no proper subset of {x,.....x}. Any minimal hitting set on the wlledion of all
the minimal conflict setswill be adiagnasis for (SD,COMPS 0BS).

The strength of this framework is its ability to diagnose the mntemporary faults of
components and sensors (thus treaing both the caes 1 and 2a before). However, often
sensors observe physical systems in which there is no notion of component at al (e.g.,
distributed seismic monitoring systems [17,18]). In these caes, COMPS contains only
the sensors, SD reduces to a mathematical model (maybe very complex) of the observed
phenomenon and OBS is a simple aray of numerical and/or boolean data. As an
example, let us consider a metallic bar, heaed at an extremity and monitored by some
thermometers as depicted in figure 2.

S1 82 83 Sn

— S s—

Figure 2. Diagnosing faults of pure sensor systems

Even ignoring the bar’'s heat transfer equation, we may yet model the system with
simple congtraints (in bold face below for the cae of only threethermometers):
COMP {S,, Sy, Sg}
D : SENSOR(x) 0-AB(x) [ out(x) =in(x), SENS(Sy), SENS(S;), SENS(S)

out(S;) 2 out(S,), out(S;) = out(Ss)
OBS: atriple of numerical data
For instance from OBS={out(s)=153’C, out(s)=175C, out(s;)=168C} we draw the
minimal conflict sets{{ s., s;}, {s. Ss}} and the diagnoses{{ s.}, {s. S3}} -
The strongest point with the adoption of MBD in SDV relies in the notion of good (as
we alled it for the obvious duality with de Klea’s nogood cdled “minimal conflict
set” by Reiter), that is a subset {x,.x} of COMPS such that
SDOOBII{-AB(xy)....,.mAB(x)} IS consistent and such that the same holds for no proper
superset of {x,...x}. Eadh good is the mmplement of a diagnosis w.r.t. COMP, i.e., a
maximally consistent set of sensors. Goods play an important role when trying to
hypothesize the system’s gatus in presence of conflicting data. In fad, becaise of the
duality between goods and diagnoses, choosing a most probable diagnosis means
choosing a most probable good, i.e., a most probable (and complete) reconstruction of
the system’s gatus.
A problem with MBD applied to SDV is that, independently of the acerracy of SD, the
theory SDOOBS{-AB(x)| xdCcOMPS} may be consistent even in cases of sensor faults.
These hidden faults may occur, for instance, in cases of contemporary breaage of more
than one sensor such that the global output is gill a possible (although wrong) one.

3ESTIMATING THE SENSORS ACTUAL RELIABILITY

Whereas hidden faults constitute a problem, successful reagnition of minimal conflicts
offers an invaluable opportunity to esimate, statitically, the ad¢ual current sensors
reliability from the “a priori” one. The most obvious way to do this is through Bayesian
Conditioning, since we defined “sensor’ s reliability” as the probalility that the sensor is



returning the correct value. Let us denote with R and NR,, respedively, the “a priori”

and the “a poderiori” reliability of the sensor S, and let us denote with S the set

COMPS redtricted to the sensors. Under the assumption that the deterioration of each

sensor is an independent event (!?1), the hypothesis that only those belonging to ®oS

are working properly has the combined “a priori” probability R(®) = |_| R D|_| (1— R).
SO0  s0o

It holds that ) R(®)=1. Of course, after the recognition of a minimal conflict ¢,
o028

NR(®P)=0 for ead P, and any other @ is subjected to Bayesian Conditioning so that
Z NR(®)=1. The “a posteriori” reliability of S is defined as NR= Y NR(®). If § is
o025 Dedd

sO®
involved in minimal conflicts, then NR<R,;, otherwise NR=R..

Estimating the arrent reliability CR, of a sensor § from R, and from the history of the
recognized minimal conflicts is a (debatable) statistical matter. In the experiments
below, we took for CR; the average of all the NR, calculated duing the life of the
distributed monitoring system?. Aswe' |l see such a CR, furnishes an interesting relative
ordering of reliability. Things go as the overall distributed sensor system ads as a
testing devicefor ead of its member, hencethe (quite overstating) title of this paper.

4 CHOOSING THE PREFERRED GOOD

In Shafer’ s and Srivastava’ s multi-source version of the belief function framework [14],
the sources degrees of reliability are “translated” into belief-function values on the
given pieces of information. In our method we follow them by taking the estimated
reliability CR; as primary evidencein favor of the datum's furnished by S. Let Q denote

the set of all the possible mnfigurations of the monitored system, and let [s]0Q denote
only those wmpatible with s. The key assumption is that a reliable sensor cannd give

false information, while an urreliable sensor can gve @rred data; the hypothesis that
“S isreliable” is compatible only with [s], while the hypothesis that “S is unreliable” is

compatible with the entire Q. Each S gives an evidence for Q and generates the

following basic probaltility assignment (bpa) m over the elements X of 202

%Fﬁ it x =[s]
m(X)=-CR ifX=Q

otherwise

All these bpas will be then combined through the Dempster's Rule of Combination
(DRO):

2 NR; is calculated only on the reception of conflicting data. Another important question is that of the length of the temporal
window, i.e., how far we go back in the past to record conflicting data; intuitively, the wider the window the higher the inertia of
the mechanismin registering the sensors' deterioration.



Y m (X)), (X,,)
X) = m(X)0...0 m(X) = X008
m(X) =m(X)0...0m,(X) m,(X,) .0, (X,)

Xyn...n Xnz0

From the combined bpam, the aedibility of aset of data (hence of agood) sis given by

Bel(s) = ;m(x)
XU s]

A major problem with the belief function formalism is the computational complexity of
DRC,; the straightforward application of the rule is exponential in the cadinality of Q
and in the number of sensors. However, much effort has been spent in reducing its
complexity. Such methods range from “efficient implementations’ [19] to “qualitative
approaches’ [20] through “approximate techniques’ [21].

S EXPERIMENTSAND RESULTS

We developed a simulation testbed to study the performances of the proposed
mechanism. We made aseries of experiments aimed at value its sensibility (cgpacity to
distinguish little diff erences among sensors' reliabilities) and its robustness (cgpacity to
perform acceptably in very degraded situations). The simulator takes in input the
sensors real degrees of capacity (C;), their degrees of “a priori” reliability (R), the
model R of the monitored system and the length of the simulation. At any cycleit:

1. simulates a mrrect data aquisition

2. simulates an error (it alters the datum of each § acwrding to C; taken as a fault
frequency)
3. if the resulting global data contradicts with R it starts the proposed mechanism.

In the experimentsthat follow, the sensors’ degrees of “apriori” reliability were fixed at
R=0.9.

5.1 EXPERIMENTSWITH THE SSIMULATED HEATED BAR

We made several experiments with the heaed bar of figure 2 modeled as described in
sedion 2. In order to evaluate the eventual dependence of the system’s performances on
the number of the sensors and on the range of their possible output (discrete) values, we
made the following diff erent simulations:

A. Threesensors with output values[0,1,2,3,4,5,6,7,8,9]

B. Five sensors with output values [0,1,2,3,4]

C. Five sensors with output values[0,1,2]

D. Seven sensors with output values [0,1,2].

Sengibility
Trying to evaluate the system’s sensibility, we ran some simulations with only one
deteriorated sensor. Figure 3 shows typical trends of the cae B above.
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We recaitulate here the main results:

the system is always able to find the orrupted sensor almost immediately
independently of its cgpacity
the time neaessary to find out the corrupted sensor grows with its cgpacity

these results do not depend on the sensors' output range (probably, this is due to the
very particular error typology we considerate)

results improve with the number of the sensors (more sensors, better results).

Of course, having found always the arrupted sensor, the mechanism has been
invariably able to recognize the mrrect maximal consistent set of data through the
DRC.

Robustness

We made other simulations with two or more deteriorated sensors. Figure 4 and figure 5
show typical trends; in particular, figure 4 concerns a cae of two corrupted sensors (S,
and S: C,;=C3=0.2), and figure 5 a cae with three orrupted sensors (S;, S and S::
C,=C,=C;3=0.2). We can say that:

the mechanism is gill able to find the rrupted sensors

the estimated degrees of reliability of the arrupted sensors are dose to those of the
properly working ones

the mechanism needs more time to find out the crrupted sensors

corred sensors are innocently involved in more minimal conflicts @ that their
degrees of reliability decrease.
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In figure 6, ead curve represents the percentage of choices of the @rrect good (pcc)
obtained with DRC (after 50 cycles) for different number of deteriorated sensors (2,3,4
and 5 and with different capacities (0.9, ...,0.2). We can compare the results obtained
with DRC with those obtained with a purely random seledion (figure 7).
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5.2 EXPERIMENTSWITH A DIGITAL CIRCUIT

Sensibility

We simulated the monitoring system for the digital circuit in figure 1.B. Again, we tried
some simulations with only one deteriorated sensor (with a caacity of 0.5), for
example, the sensor d in figure 8 and the sensor A in figure 9.

In these caes we can say that:

» the mechanism is gill always able to find out the crrupted sensor amost
immediately independently of its reliability

» thetime necessary to find out the corrupted sensor grows with its reliabil ity

 the mechanism finds the crrupted sensor but its esteemed reliabil ity depends on the

particular sensor (seein figure 8 and 9the different trends of the sensor A and d).
Again, having found always the wrrupted sensor, the system choaoses always the @rrect
maximal consistent set of data.
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Robustness

In this case to evaluate the robustness we ran some simulations with two or more
sensors with reliability 0.5. Tab.1 and Tab.2 show the results of two meaningful
simulations with two deteriorated sensors.

Sensor Real Estimated Sensor Real Estimated
Reliability | Reliability Reliability | Reliability
A 100 86.7 A 100 83.67
B 50 56.3 B 100 71.68
C 100 84.1 C 50 80.42
a 50 454 a 50 37,9
b 100 84.7 b 100 85.76
c 100 826 c 100 8881
d 100 84.9 d 100 87.55
Tab. 1 Tab. 2

We seethat in the first simulation (tab.1) the system finds corredly the deteriorated
sensors, but in the second one (tab.2) it gives areliability value too high to the sensor C.
Figurel0 shows the percentage of choices of correct good (pcc) obtained with DRC on
the varying of the particular couple of corrupted sensors (cs§. We can compare these
results with those obtained with a random choice (figurell).
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Figure 10. Figure 11.

From figurel0 we @n observe that there is a dependence of the system’s performances
from the particular (couple of) corrupted sensor. We alled this effect over-expasition:
by over-exposition of a sensor we mean its higher probability of being involved in
minimal conflicts. We tried to find some rrection fadors to limit the impad of this
ugly effed; the problem is that such factors are not fixed nhumbers but are function of
the unknown real cgpacity of the sensors.

6 RELATED WORK

The system presented in this paper belongs to both SVD1 and SVD2 category of the
sensor data validation. The model-based methods presuppose the eistence of analytic
model of the system and are based on a common methodology: generating and
analyzing of the signals sensitive to the fault residues [28]. The main approades to
generate the residues can be classified in approades based on andytic redundarty [27]
(e.g. parity space) and approadies based on the observator (e.g. Kalman filter). The



model-based methods are very efficient when there is a linear and well-known model of
the system. The problem has been also deeply studied in Artificial Intelligence. In [2]
Lee presents a technique based on the analytic redundancy that neals of an acarate
knowledge of the process Also in[22], Washio proposes a method to find the sensors
faults based on the model of the monitored process The individuation of the sensors
faults and the diagnosis of the components are performed contextually in the same
framework. In particular, the method allows diagnosing no linear components, sensors
and components, and the width of the fault.

There ae gplicaions where the model of the monitored processis gatic, that is the
time variable is not considered; for instance, Scarl et a. in [16] have presented a system
(LES) to control the loading of the liquid oxygen on the Shuttle. LES works in domains
that can be represented as a dired hierarchy of control without feedbadk and where
there ae no objects related with the state. From the functional relation among the given
commands, components of the monitored system, and the measured values, LES
analyses the differences between awaited values and measured ones, and determines the
state of the components and of the sensors. A failing of this system is that it can
diagnose only single-fault.

Even if the methods belong to the atificial intelligencefield overcome the non-linearity
problem, all the model-based methods are sensitive to the erors of the modeling. So,
when it is not possible have an acarate model of the system, an alternative way is using
a qualitative description based on the human experience knowledge-based methods.
Typical examples of this category are the classical expert systems (formed by a
knowledge base and an inferential engine) and fuzzy expert systems.

In this paper we presented a method based on the knowledge of the system that is not
necessarily expressed by a mathematical model. The method needs any kind of
knowledge to extract the minimal conflicts. This allows using both equation and
constraints of real situations like "if the temperature is bigger than 100° C, then the
alarm hasto gart"; the model-based methods cannot manage these mnstraints.

In the SVD, it is supposed that the cmponents are not corrupted. In our approad this
constraint can be overcome extending properly the method.

The historical analysis of the data dlows exploiting information formerly draw out for
solve the future conflicting situations. The systems proposed in [22] and [16] dont give
indicaions concerning how solve the mnflicts and how choose one of the possible
diagnosis.

7 CONCLUSIONS

Elaboration of data coming from multiple sensorsiis critical when conflicts among them

emerge. This paper introduced, discussed and reported experimental results about three

issues:

1. the problem of remgnizing sensors’ faults can be gproaded entirely within the
framework of model-based diagnosis

2. from the history of the sensors faults it is possible to formulate interesting
conclusions regarding the various gnsors relative reliability, by means of Bayesian
Conditioning



3. from the estimated reliability of the sensors it is possible to hypothesize the adual
state of the monitored physicd system even in cases of not-redundant and conflicting
data, by means of the Dempster’s Rule of Combination.

The hardest problem with this method is what we cdled “over-exposition effed”. We

believe that effedive solutions to this problem depend on the particular application

domain.
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