
HOW GOOD IS RECURSIVE BISECTION?∗

HORST D. SIMON† AND SHANG-HUA TENG‡

SIAM J. SCI. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 18, No. 5, pp. 1436–1445, September 1997 011

Abstract. The most commonly used p-way partitioning method is recursive bisection (RB).
It first divides a graph or a mesh into two equal-sized pieces, by a “good” bisection algorithm,
and then recursively divides the two pieces. Ideally, we would like to use an optimal bisection
algorithm. Because the optimal bisection problem that partitions a graph into two equal-sized
subgraphs to minimize the number of edges cut is NP-complete, practical RB algorithms use more
efficient heuristics in place of an optimal bisection algorithm. Most such heuristics are designed to
find the best possible bisection within allowed time.

We show that the RB method, even when an optimal bisection algorithm is assumed, may produce
a p-way partition that is very far way from the optimal one. Our negative result is complemented
by two positive ones: first we show that for some important classes of graphs that occur in practical
applications, such as well-shaped finite-element and finite-difference meshes, RB is within a constant
factor of the optimal one “almost always.” Second, we show that if the balance condition is relaxed
so that each block in the p-way partition is bounded by 2n/p, where n is the number of vertices of
the graph, then a modified RB finds an approximately balanced p-way partition whose cost is within
an O(log p) factor of the cost of the optimal p-way partition.

Key words. communication cost, data and computation mapping on parallel machines, load
balancing, mesh partitioning, parallel processing, recursive bisection, scalable parallel algorithms,
well-shaped finite-element and finite-difference meshes

AMS subject classifications. 05C50, 68R10

PII. S1064827593255135

1. Introduction. For a variety of applications, such as parallel scientific pro-
cessing, VLSI layout, circuit testing and simulation, and sparse linear system solv-
ing, we need to partition the vertices of a graph into a given number of subsets
such that the total number of edges whose endpoints are in different subsets is small
[2, 5, 6, 7, 15, 16, 17, 20, 22, 23, 24, 26, 27, 29]. If p subsets are required, the problem
is called the graph p-way partition problem. The most commonly used method for
p-way partitioning, when p is a power of two, is RB. It first divides a graph into two
equal-sized pieces, by a “good” bisection algorithm, and then recursively divides the
two pieces. When p is not a power of two, simple variants of RB are used [8].

Ideally, we would like to use an optimal bisection algorithm in RB. However, be-
cause the optimal bisection problem that divides a graph into two equal-sized sub-
graphs to minimize the number of edges cut is NP-complete, practical RB algo-
rithms use more efficient heuristics in place of an optimal bisection algorithm. Most
such heuristics are designed to find the best possible bisection within allowed time
[2, 3, 7, 24, 29, 32]. Some extended heuristics have been proposed that apply quad-
section or octsection in place of bisection [18]. The published experimental results of

∗Received by the editors September 9, 1993; accepted for publication (in revised form) December
6, 1995.

http://www.siam.org/journals/sisc/18-5/25513.html
†NERSC Division, Lawrence Berkeley National Laboratory, Mail Stop 50B/4230, University of

California, Berkeley, CA 94720 (simon@nersc.gov). The research of this author was partially sup-
ported through NASA contract NAS 2-12961, NASA Ames Research Center, MS T27A-1, Moffett
Field, CA 94035.

‡Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139.
Current address: Department of Computer Science, University of Minnesota, Minneapolis, MN 55455
(steng@cs.umn.edu). The research of this author was partially supported through NASA contract
NAS 2-12961, while the author was visiting NASA Ames Research Center.

1436

HOW GOOD IS RECURSIVE BISECTION? 1437

Hendrickson and Leland [18] seems to indicate that in the context of spectral parti-
tioning quadsectioning and octsectioning, though more expensive than bisecting, give
the recursive scheme better quality. Little is known, however, about how good indeed
is RB even when optimal or near-optimal bisection algorithms are used, and whether
more global optimization schemes should be sought.

In this paper, we show that due to its greedy nature and the lack of global
information, RB may, in the worst case, produce a partition that is very far away
from being optimal. In other words, optimal RB may not lead to a good p-way
partition. Our results hold even for sparse graphs and more structured graphs such
as planar graphs and geometric graphs [24].

On the optimistic side, our negative result is complemented by two positive re-
sults.

First, we show that for some important classes of graphs that occur in practical
applications such as well-shaped finite-element and finite-difference meshes [4, 9, 24,
25, 28], RB is within a constant factor of the optimal one in the expected case. In
particular, it follows from a result of Miller, Teng, Thurston, and Vavasis [24] that RB
finds a p-way partition of cost O(p1/dn1−1/d) for well-shaped meshes [30] embedded
in d dimensions.

Second, we show that if we relax the balance condition so that each subgraph
in the partition is bounded by 2n/p, then there exists an approximately balanced
recursive partitioning algorithm (see section 5) that finds a partition whose cost is
within an O(log p) factor of the cost of the optimal p-way partition. Our result implies
that it may not be a good idea to insist upon the perfect bisection condition of each
step of the RB scheme.

Section 2 introduces the definitions and notations that will be used in this paper.
Section 3 gives a class of dense graphs and a class of sparse graphs for which optimal
four-way partition has cost 12 and RB has cost Ω(n2) and Ω(n), respectively. It also
gives a tight bound of Θ(n2/p2) and Θ(n/p), respectively, for dense graphs and sparse
graphs on the approximation ratio of RB. Section 4 shows that for well-shaped meshes
in d dimensions, RB always finds a p-way partition of cost O(p1/dn1−1/d). Section
5 introduces the notion of an approximately balanced p-way partition and gives a
recursive partitioning algorithm that is within an O(log p) factor of the cost of the
optimal p-way partition.

2. Definitions. A bisection of a graph G is a division of its vertices into two
disjoint subsets A and B of exactly equal sizes (for simplicity we assume that the
graph has an even number of vertices). The cost of a bisection is the number of edges,
one of whose endpoint is in A and another is in B. Similarly, a p-way partition of G
is a division of its vertex set into p disjoint subsets of size n/p, where n is the number
of vertices in G (again we assume that n is a multiple of p). The cost of a p-way
partition is the number of edges whose endpoints are in different subsets.

When p is a power of two, the most commonly used method to find a p-way
partition is to recursively apply a bisection procedure to divide the graph into p
subgraphs. Assume we have a bisection function BISECTION.

Associated with RB is a tree, called the partition tree. Notice that the height of
the partition tree is log p.

If we use an optimal bisection function, the resulting RB is called an ideal RB.
However, notice that the problem of finding an optimal bisection itself is NP-hard
[11]. The RB scheme given above is a template of practical implementations, where
we use the best available bisection algorithm. Our results can be extended to the case
where BISECTION is an approximately optimal bisection algorithm.

1438 H. D. SIMON AND S.-H. TENG

A1

A2

A3

A4

B1

B2

B3

B4

FIG. 1. An example of four-way partitions where the optimal cost is 12 and ideal recursive

bisection has cost Ω(n2) in the dense case and Ω(n) in the sparse case.

Algorithm Recursive Bisection Scheme(G, p)
Input: (a graph G of n vertices and an integer p, K = n/p.)
Output: (a p-way partition of G).

1. Apply BISECTION to find a bisection GL and GR of G;
2. If |GL| > K then

• Recursive Bisection Scheme(GL, p/2);
• Recursive Bisection Scheme(GR, p/2);

3. Return the subgraphs G1, ..., Gp so obtained;

For 1/2 ≤ δ ≤ 1, a δ-bisection (or a δ-edge-separator) is a partition of a graph G
into two disjoint subgraphs GL and GR such that both |GL| ≤ δ|G| and |GR| ≤ δ|G|,
where the notation |G| stands for the number of vertices of a graph G. The cost of a
δ-bisection is the number of edges between GL and GR. By definition, a bisection is
a 1/2-edge-separator.

We distinguish between two classes of graphs: dense graphs and sparse graphs. A
dense graph may have O(n2)-edges while a sparse graph has only O(n) edges. We can
further restrict that each vertex in a sparse graph has a bounded degree. As shown
in [31], all well-shaped finite-element meshes in three dimensions are sparse.

A p-way partition algorithm has approximation ratio α, where α ≥ 1, if for each
graph G it finds a p-way partition of cost at most α times the cost of an optimal
p-way partition.

3. How bad can ideal recursive bisection be? In this section, we give two
families of graphs, a dense family and a sparse family, that admit a constant costed
p-way partition, but ideal RB produces a p-way partition of cost Ω(n2/p2) in the
dense case and Ω(n/p) in the sparse case.

3.1. Four-way partition. We first consider four-way partitions. We consider
the class of graphs given in Figure 1.

Each graph in this class has n vertices (assuming n is a power of two) and contains
eight subgraphs, A1, A2, A3, A4, B1, B2, B3, B4, where Ai has (1/8+ ǫi)n vertices, and
Bi has (1/8 − ǫi)n vertices. The ǫi’s (1 ≤ i ≤ 4) satisfy the following conditions:

1. −1/8 < ǫi < 1/8 and ǫi 6= 0;
2. ǫ1 + ǫ2 + ǫ3 + ǫ4 = 0; and
3. there is no pair of i and j ∈ {1, 2, 3, 4} such that ǫi + ǫj = 0.

Such set of ǫi’s exists. One simple way is to choose ǫ1, ǫ2, and ǫ3 randomly and
then choose ǫ4 so that condition 2 holds. We can show that with high probability
condition 3 holds as well.

HOW GOOD IS RECURSIVE BISECTION? 1439

In the dense case, Ai and Bi are cliques, while in the sparse case Ai and Bi are
sparse expanders. Notice that for each constant δ such that 0 < δ < 1, all δ-edge-
separators of a clique of n vertices have cost Ω(n2) and all δ-edge-separators of a
sparse expander of n vertices have cost Ω(n). One way to construct an expander is to
choose a random bounded degree graph. It follows from a result of Erdös, Graham,
and Szemerědi [10] that all δ-edge-separators of almost all such linear-sized graphs
have cost Ω(n).

The optimal four-way partition divides the graph into Ai∪Bi, 1 ≤ i ≤ 4. The total
cut size is 12. In contrast, ideal RB first decomposes the graph into A1 ∪A2 ∪A3 ∪A4

and B1 ∪ B2 ∪ B3 ∪ B4. But then, because of condition 3, at least one of A1, A2, A3,
A4 and one of B1, B2, B3, B4 will be divided in the next level of RB. Hence, ideal RB
produces a four-way partition of cost Ω(n2) in the dense case and Ω(n) in the sparse
case.

3.2. p-way partitions. Our four-way example can be used to construct a tight
lower bound on the approximation ratio of ideal RB for p-way partitions. We will
present two classes.

In the first class, each graph contains (p − 4) disjoint subgraphs G1, ..., Gp−4 of
size n/p and a graph from our four-way example of size 4n/p. Each subgraph is a
clique in the dense case and a sparse expander in the sparse case.

Clearly, the optimal partition has cost 12, which is the cost of decomposing the
subgraph from the four-way example. In the first (log p − 2) levels, ideal RB simply
decomposes the graph into blocks of four subgraphs each. The four-way example is
assigned as one block. The cost so far is zero. To complete the p-way partition, ideal
RB has to divide the four-way example into four subgraphs. Hence, it yields a p-way
partition of cost Ω(n2/p2) in the dense case and Ω(n/p) in the sparse case.

In the second class, each graph contains p/4 disjoint subgraphs from our four-way
example of size 4n/p. The optimal p-partition has cost 3p, while the partition of ideal
RB has cost Ω(n2/p) in the dense case and Ω(n) in the sparse case.

Interestingly, on both classes, the approximation ratio of ideal RB is Ω(n2/p2) in
the dense case and Ω(n/p) in the sparse case. Does RB always achieve approximation
ratios of these orders, respectively? We now show that the answer is “yes.”

LEMMA 3.1. Ideal RB has worst-case approximation ratio of Θ(n2/p2) in the

dense case and Θ(n/p) in the sparse case for p-way partitions.

Proof. The two classes of graphs presented in this subsection provide the lower
bound on the approximation ratio of ideal RB. So we only need to prove the upper
bound. We give a proof for the sparse case only. The proof for the dense case is
essentially the same.

The cost of the p-way partition of ideal RB is bounded from above by the total
number of edges in the graph. Hence, by our sparsity assumption, it is O(n). Thus,
if the cost of the optimal p-way partition is Ω(p), then the recursive bisection has
approximation ratio O(n/p) because it has cost at most O(n).

To complete the proof, we assume that the cost of the optimal p-way partition is
k < p. Let C1, C2, ..., Cp be the subgraphs in an optimal p-partition. Note that the
number of subgraphs that are connected to some other subgraphs is at most k. We
call them the connecting blocks. Ideal RB has zero cost except when the subgraph
containing those connecting blocks. Because we have at most k connecting blocks and
the total number of edges in connecting blocks is at most O(kn/p), this implies that
ideal RB generates a p-way partition of cost at most O(kn/p). Since the cost of the
optimal p-way partition has cost k, the approximation ratio is again O(n/p).

1440 H. D. SIMON AND S.-H. TENG

f(m)

f(m/2)

f(m/4)

f(m/2)

f(m/4)

f(2m/p)f(2m/p)

FIG. 2. The partition tree generated by RB and the upper bound of its cost.

4. Graphs with a family of small edge bisectors. Many graphs from prac-
tical applications have a family of small separators [24]; i.e., they have the property
that each of its subgraphs has a bisector of size sublinear in the number of vertices
of the subgraph. Formally, for a given integer function f , a graph G has a family

of f-bisectors if each of its subgraphs of s vertices has a bisector of size bounded by
f(s). How good is RB on the class of graphs that has a family of f -bisectors?

LEMMA 4.1. If G has a family of f-bisectors, then RB finds a p-way partition of

cost

log p−1
∑

i

2if(n/2i).

Proof. Figure 2 illustrates the partition tree of the p-way partition given by RB
and the upper bound on the cost of the bisectors at each level of partition tree.

Notice that the partition tree has (log p − 1) levels of internal nodes. The total
cost of the ith level (where the root is at level 0) is no more than 2if(n/2i). Hence,
the total cost of the p-way partition generated by RB is at most

log p−1
∑

i

2if(n/2i).

In theory as well as in practice, the condition of a family of f -bisectors can be
relaxed to the condition of a family of f-separators; that is, every subgraph of G of
s vertices has a δ-bisection, for some constant δ, of cost bounded by f(s). Lipton
and Tarjan [21] and Gilbert and Tarjan [14] showed that if a graph has a family of
f -separators, then it has a family of O(f)-bisectors. The following are some classes
of graphs that have a family of small separators and hence have a family of small
bisectors as well.

• Planar graphs [21] have a family of O(
√

n)-separators.
• Bounded genus graphs [12] have a family of O(

√
gn)-separators, where g is

the genus of the graphs.
• Bounded minor graphs [1] have a family of O(h1.5

√
n)-separators, where h is

the size of the largest minor clique. A minor of a graph is a subgraph obtained
from the original graph by contracting edges. For example, no planar graph
has a minor isomorphic to a five-clique.

HOW GOOD IS RECURSIVE BISECTION? 1441

• Well-shaped meshes [24] have a family of O(n1−1/d)-separators, where d is
the dimension of the space in which the meshes are embedded.

• k-nearest neighborhood graphs [24] have a family of O(k1/dn1−1/d)-separators.
The following lemma follows directly from Lemma 4.1.
LEMMA 4.2. If f(n) = n1−1/d, then RB finds a p-way partition of cost O(p1/dn1−1/d).
Proof. The cost of the p-way partition constructed by RB is bounded from above

by

log p−1
∑

i

2i(n/2i)1−1/d

= n1−1/d

(

log p−1
∑

i=1

2i/d

)

= O(p1/dn1−1/d).

Most well-shaped meshes (in d dimensions) in practical applications have no p-
way partition of size o(p1/dn1−1/d) [31]. For example, a d-dimensional regular grid
has no p-way partition of size o(p1/dn1−1/d). So the p-way partition of RB is optimal
(up to a constant factor).

Notice that we did not require the RB scheme to find optimal bisections in order
to achieve the result of this section. All we require is that the RB scheme should
use a bisection algorithm that finds an f -bisector in a graph that has a family of
f -bisectors.

We can extend the lower-bound argument of section 3 to graphs discussed in this
section.

THEOREM 4.3. Ideal RB has worst-case approximation ratio of Θ(
√

n/p) for

planar graphs and Θ((n/p)1−1/d) for well-shaped meshes in d dimensions.

5. Approximately balanced p-way partition. We observe that even though
we use general edge separators (not necessarily bisection [13, 21, 24]) or use minimum

quotient separator of [19] at each level of a recursive partitioning scheme, we still can
not guarantee the approximation ratio as long as the final partition is required to
be a (perfectly balanced) p-way partition. All of the results in the previous sections
generalize. Can we trade the balance condition for a better approximation ratio of a

recursive partitioning scheme?

Let β ≥ 1 be a real number. A (β, p)-way partition decomposes G into disjoint
G1, ..., Gp such that |Gi| ≤ β|G|/p for all 1 ≤ i ≤ p. Thus, a p-way partition is a
(1, p)-way partition. The cost of a (β, p)-way partition is the number of edges of G
whose two endpoints are in different subgraphs.

Recall that a δ-bisection, 1/2 ≤ δ < 1, divides G into two disjoint subgraphs GL

and GR such that both |GL| ≤ δ|G| and |GR| ≤ δ|G|. The cost of a δ-bisection is the
number of edges between GL and GR.

We now give a recursive partitioning scheme. We use an APPROXIMATE BI-
SECTION function to divide the graph into two disjoint subgraphs.

Notice that the procedure recursive cutting above may return less than p sub-
graphs (see case h < p) because the recursion terminates once the size of the subgraph
is no more than 2n/p. In this case, we simply assume that other p − h subgraphs are
empty.

We now show that if we use an APPROXIMATE BISECTION that finds an
optimal (1/2 + 1/s)-bisection of G, then the recursive partition scheme finds a (2, p)-

1442 H. D. SIMON AND S.-H. TENG

way partition whose cost is at most O(log p) times the cost of the optimal p-way
partition. We then extend the result to the case when an approximately optimal
(1/2 + 1/s)-bisection algorithm is used.

Algorithm (Recursive Partitioning Scheme)
Input: (a graph G of n vertices and an integer p).
Output: (a (2, p)-way partition of G).

1. Let K = n/p
2. Let G1, ..., Gh be the h subgraphs obtained from running the subroutine

Recursive Cutting(G,K) below;
3. If h ≤ p, then return (G1, ..., Gh) else repeatedly merge the smallest two

subgraphs until p subgraphs remain.
Subroutine (Recursive Cutting(G, K))

1. Let s = |G|/K;
2. Apply APPROXIMATE BISECTION to find a (1/2+1/s)-bisection GL

and GR of G;
3. If |GL| > 2K then Recursive Cutting(GL,K);
4. If |GR| > 2K then Recursive Cutting(GR, K);

We first prove a simple lemma that is useful for our main result.
LEMMA 5.1. Suppose X = {x1, ..., xm} is a set of positive reals such that 0 ≤

xi ≤ 1. Then X can be divided into two subsets X1 and X2 such that

∣

∣

∣

∣

∣

∣

∑

x∈X1

x −
∑

y∈X2

y

∣

∣

∣

∣

∣

∣

≤ 1.

Proof. We can construct the two subsets by a greedy approach: first we put all
elements from X in a queue and maintain two sets that are initially empty. Then
we assign the largest element from the queue to the set with smaller total sum (and
of course delete the chosen element from the queue). We repeat this process until
the queue is empty. Since all elements from X are no more than one, the sums of
the two sets so constructed differ by the value of at most one element, which is at
most one.

THEOREM 5.2. Let G be a graph and p be a positive integer. If the cost of the

optimal p-way partition of G is C, then the recursive partitioning scheme that uses

an optimal (1/2 + 1/s)-bisection algorithm finds a (2, p)-way partition of cost at most

O(C log p).
Proof. The basic idea of the proof is to argue that the cost induced at each level

of the partitioning tree is at most C. Because the partitioning tree has O(log p) levels,
the theorem then follows. Without loss of generality, we assume that p is a power of
two.

Clearly, the partition associated with the root of the partitioning tree has cost at
most C. This can be shown by the following argument which is more complex than
needed but useful for bounding the cost of other levels of the partition tree.

Let B1, ..., Bp be the p subgraphs of an optimal p-way partition of G. We call an
edge a bridging edge if its endpoints are in different subgraphs from B1, ..., Bp. After
removing all the bridging edges, we can group B1, ..., Bp into two subsets of equal
size. This implies that G has a (1/2 + 1/p)-bisection, in fact a perfect bisection, of
cost at most C.

HOW GOOD IS RECURSIVE BISECTION? 1443

The size of Bi, |Bi|, is equal to K = n/p. We now show that there exists an
approximately balanced bisection for each node at level i so that the total cost of
level i is at most C. Because we assume that the recursive partitioning scheme uses
an optimal (1/2 + 1/s)-bisection algorithm for each node, the total cost of bisectors
generated at level i can only be smaller, and hence is no more than C.

Implicitly, B1, ..., Bp themselves may be decomposed into pieces after the top i−1
levels of the partition tree. Each node of the partitioning tree has a subgraph that is
formed by a subset of these pieces of Bi’s. Notice that the size of those pieces is at
most K. Now imagine that we delete all the bridging edges which are not removed in
the top (i − 1) levels of the partition tree. The total cost of these bridging edges is at
most C because these edges connect B1, ..., Bp of the optimal p-way partition. After
removing these bridging edges, each node at level i of the partition tree contains a
subset of the pieces of Bi’s, whose size is at most K.

We now apply Lemma 5.1 to divide the pieces of each node into two groups. By
Lemma 5.1, if the subgraph of a node at level i has size sK, then the larger group
has size at most sK/2 + K. Hence, the grouping gives a (1/2 + 1/s)-bisection.

After deleting the bridging edges, we did not remove any other edges, and hence
the total cost of bisectors at level i is at most C, completing the proof.

We can extend Theorem 5.2 to more practical case, where an approximately
optimal (1/2 + 1/s)-bisection algorithm is used in the recursive partitioning scheme.
The argument is very similar.

THEOREM 5.3. Let G be a graph and p be a positive integer. If the cost of the

optimal p-way partition of G is C, then the recursive partitioning scheme that uses a

(1/2+1/s)-bisection algorithm with approximation ratio α finds a (2, p)-way partition

of cost at most O(αC log p).
In practice, we can use the best available approximate bisection algorithms, such

as the spectral algorithm [18, 29] and the geometric algorithm [24]. We can use
Theorem 5.3 to justify their performance. Theoretically, we can apply Theorem 5.3
in conjunction with the following result of Leighton and Rao [19] to obtain the first
provably good approximately balanced p-way partition algorithm.

THEOREM 5.4 (Leighton and Rao). Let δ0 and δ be two constants such that

1/2 < δ0 < δ < 1. Let G be a graph such that G has a δ0-bisection of cost C. There

is a polynomial time algorithm, using multicommodity flow, to find a δ-bisection of G
of cost at most O(C log n), where n is the number of vertices of G and the constant

hidden in big-O depends only on δ and δ0.

COROLLARY 5.1. There is a polynomial time algorithm that finds a (2, p)-way

partition of cost O(C log n log p), where C is the cost of the optimal p-way partition.

If we choose K = ǫn/p in step 1 of the recursive partitioning scheme, then we
have the following strengthened result. The proof is similar to that of Theorem 5.3.

THEOREM 5.5. Let G be a graph and p be a positive integer. If the cost of

the optimal (p/ǫ)-way partition of G is C, then the modified recursive partitioning

scheme that uses an optimal (1/2 + 1/s)-bisection algorithm finds a (1 + ǫ, p)-way

partition of cost at most O(C log p). The modified recursive partitioning scheme that

uses a (1/2 + 1/s)-bisection algorithm with approximation ratio α finds a (1 + ǫ, p)-
way partition of cost at most O(αC log p). Therefore, there exists a polynomial time

algorithm that finds a (1 + ǫ, p)-way partition of cost O(C log n log p).

6. Final remarks. We address a fundamental issue in graph partitioning. Our
results of section 3 can be extended to the case when recursive quadsectioning or
octsectioning is used, providing some theoretical evidence to the experimental claim

1444 H. D. SIMON AND S.-H. TENG

that recursive quadsectioning and octsectioning usually find a better p-way partition.
The result in section 4 is mainly observational and follows quite directly from the
previous separator results [1, 12, 21, 24]. These results give an absolute upper bound
on the cut-size of the p-way partition. It shows that the ratio of cut-size to the
graph size is O((p/n)1/d) < 1. So the ratio of computations to communication in
processing well-shaped meshes is reasonably balanced as p and especially n increase,
demonstrating that the partitioning-based parallel algorithms are scalable. The result
of section 5 gives a theoretical justification to the recursive approach taken in [7, 13,
24, 31] and many similar heuristics currently implemented. We expect to see these
ideas extended for better, perhaps more global, schemes for approximating p-way
partitioning.

Acknowledgments. We would like to thank David Bailey and Jim Ruppert for
their careful proofreading of the draft and helpful comments.

REFERENCES

[1] N. ALON, P. SEYMOUR, AND R. THOMAS, A separator theorem for graphs with an excluded

minor and its applications, in ACM STOC, Baltimore, MD, 1990, pp. 293–299.
[2] S. T. BARNARD AND H. D. SIMON, A fast multilevel implementation of recursive spectral

bisection for partitioning unstructured problems, Concurrency: Practice and Experience,
6(2) 1994, pp. 101–117.

[3] M. J. BERGER AND S. BOKHARI, A partitioning strategy for nonuniform problems on multi-

processors, IEEE Trans. Comput., C-36 (1987), pp. 570–580.
[4] M. BERN, D. EPPSTEIN, AND J. R. GILBERT, Provably good mesh generation, in 31st An-

nual Symposium on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1990,
pp. 231–241.

[5] H. BERRYMAN, J. SALTZ, AND J. SCROGGS, Execution time support for adaptive scientific

algorithms on distributed memory machines, Concurrency: Practice and Experience, 3(3)
(1991), pp. 159–178.

[6] P. E. BJØRSTAD AND O. B. WIDLUND, Iterative methods for the solution of elliptic problems

on regions partitioned into substructures, SIAM J. Numer. Anal., 23 (1986), pp. 1097–1120.
[7] G. E. BLELLOCH, A. FELDMANN, O. GHATTAS, J. R. GILBERT, G. L. MILLER, D. R.

O’HALLARON, E. J. SCHWABE, J. R. SHEWCHUK, AND S.-H. TENG, Automated parallel

solution of unstructured PDE problems, CACM, 1998, to appear.
[8] P. K. CHAN, M. SCHLAG, AND J. ZIEN, Spectral k-way ratio cut partitioning and clustering, in

Proc. Symposium on Integrated Systems, Seattle, WA, 1993.
[9] L. P. CHEW, Guaranteed Quality Triangular Meshes, Tech. report, TR 89-893, Department of

Computer Science, Cornell University, Ithaca, NY, 1989.
[10] P. ERDÓS, R. L. GRAHAM, AND E. SZEMERÉDI, On sparse graphs with dense long paths,

Comput. Math. Appl., 1 (1975), pp. 365–369.
[11] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of

NP-Completeness, W. H. Freeman, San Francisco, CA, 1979.
[12] J. R. GILBERT, J. P. HUTCHINSON, AND R. E. TARJAN, A separator theorem for graphs of

bounded genus, J. Algorithms, 5 (1984), pp. 391–407.
[13] J. R. GILBERT, G. L. MILLER, AND S.-H. TENG, Geometric mesh partitioning: Implementation

and experiments, SIAM J. Sci. Comput., to appear.
[14] J. R. GILBERT AND R. E. TARJAN, The analysis of a nested dissection algorithm, Numer.

Math., 50 (1987), pp. 377–404.
[15] J. A. GEORGE, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10

(1973), pp. 345–363.
[16] J. A. GEORGE AND J. W. H. LIU, Computer Solution of Large Sparse Positive Definite Systems,

Prentice–Hall, Englewood Cliffs, NJ, 1981.
[17] S. HAMMOND AND R. SCHREIBER, Solving Unstructured Grid Problems on Massively Parallel

Computers, Tech. report TR 90.22, RIACS, Mountain View, CA, 1990.
[18] B. HENDRICKSON AND R. LELAND, An improved spectral graph partitioning algorithm for

mapping parallel computations, SIAM J. Sci. Comput., 16 (1995), pp. 452–469.
[19] F. T. LEIGHTON AND S. RAO, An approximate max-flow min-cut theorem for uniform multi-

commodity flow problems with applications to approximation algorithms, in 29th Annual
Symposium on Foundations of Computer Science, White Plains, NY, 1988, pp. 422–431.

HOW GOOD IS RECURSIVE BISECTION? 1445

[20] C. E. LEISERSON, Area efficient VLSI computation, in Foundations of Computing, MIT Press,
Cambridge, MA, 1983.

[21] R. J. LIPTON AND R. E. TARJAN, A separator theorem for planar graphs, SIAM J. Appl.
Math., 36 (1979), pp. 177–189.

[22] R. J. LIPTON, D. J. ROSE, AND R. E. TARJAN, Generalized nested dissection, SIAM J. Numer.
Anal., 16 (1979), pp. 346–358.

[23] J. W. H. LIU, The solution of mesh equations on a parallel computer, in 2nd Langley Conference
on Scientific Computing, NASA, Langley, VA, 1974, pp. 17–24.

[24] G. L. MILLER, S.-H. TENG, W. THURSTON, AND S.A. VAVASIS, Automatic mesh partition-

ing, in Sparse Matrix Computations: Graph Theory Issues and Algorithms, A. George,
J. Gilbert, and J. Liu, eds., IMA Vol. Math. Appl., Springer-Verlag, New York, 1993,
pp. 57–84.

[25] S. A. MITCHELL AND S. A. VAVASIS, Quality mesh generation in three dimensions, in Proc.
ACM Symposium on Computational Geometry, ACM, Berlin, 1992, pp. 212–221.

[26] V. PAN AND J. REIF, Efficient parallel solution of linear systems, in Proc. 17th Annual ACM
Symposium on Theory of Computing, Providence, RI, May 1985, pp. 143–152.

[27] A. POTHEN, H. D. SIMON, AND K.-P. LIOU, Partitioning sparse matrices with eigenvectors of

graphs, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430–452.
[28] J. RUPPERT, Results on Triangulation and High Quality Mesh Generation, Ph.D. thesis, Uni-

versity of California at Berkeley, Berkeley, CA, 1992.
[29] H. D. SIMON, Partitioning of unstructured problems for parallel processing, Comput. Systems

Engrg., 2 (1991), pp. 135–148.
[30] G. STRANG AND G. J. FIX, An Analysis of the Finite Element Method, Prentice–Hall, Engle-

wood Cliffs, NJ, 1973.
[31] S.-H. TENG, Points, Spheres, and Separators: A Unified Geometric Approach to Graph Par-

titioning, Ph.D. thesis, CMU-CS-91-184, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, 1991.

[32] R. D. WILLIAMS, Performance of dynamic load balancing algorithms for unstructured mesh

calculations, Concurrency, 3 (1991), pp. 457–469.

