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ABSTRACT 

A method for measuring the spatial profiles of the second-order nonlinear susceptibility 
(2) ( )zχ  in the bulk of periodically poled crystals and other structures was developed. The 

method is based on the general relation between the Fourier harmonics of (2) ( )zχ  and the 

parametric signal line shape in the ω − k  space which is governed by the dependence of the 

output signal intensity on the phase mismatch.  The special cases of nonlinear interferometers, 

and periodically poled crystals with the stepwise or smoothed space (2) ( )zχ  profiles, and 

Fibonacci-type nonlinear superlattices were considered. The experimental schemes based on 

spontaneous parametric down-conversion and the second harmonic generation were compared 

and discussed. 
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1.Introduction. 

The possibility for electromagnetic radiation frequency conversion is one of the major 

achievements of nonlinear optics. Two basic approaches are now used for the effective 

frequency conversion in a nonlinear medium: (1) matching phases of interacting waves using 

the optical birefringence [1], or (2) organizing quasi-synchronous processes using sign 

reversals of the second-order nonlinear susceptibility (2)χ  in nonlinear superlattices [2]. 

Presently, the second approach attracts a growing interest, since it enables to operate with the 

largest components of the (2)χ  tensor and to obtain collinear parametric processes in wider 

spectral ranges. One-dimensional nonlinear superlattices are intensively used in a quasi-phase 

matching regime for high-efficient frequency conversion [2-6], optical parametric generation 

[7-9], cascaded parametric processes [9-11],  all-optical switching [12,13], and light squeezing 

[14,15]. In practice, these structures are formed in multidomain ferroelectric crystals, in which 

periodic or quasi-periodic reversals in the polar axis direction at the domain boundaries 

correlate with the sign reversals of the effective value of the nonlinear coefficient for a single 

domain [16]. The photonic band-gap structures with periodic linear susceptibility are currently 

attracting much attention also [17-19]. Coupled-mode equations for dielectric stacks of 

periodic linear and non-linear optical susceptibilities are usually considered numerically for 

the regime of high-gain parametric amplification and frequency conversion [18].  

The problem of manufacturing and testing bulk regular multidomain structures is of 

current importance [20]. Mostly, the structure control consists of the imaging chemically 

etched surface of a multidomain crystal [21]. In the literature [22-24] there are methods based 

on the second harmonic generation, where nonlinear optical signals from different parts of the 
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internal structure volume are compared and analyzed. We propose a new method for the 

diagnostics of the spatial (2)χ profile in the bulk of periodically and non-periodically poled 

crystals. The method is based on the analysis of the signal intensity dependence on the phase 

mismatch under the three-wave parametric interaction.  A theoretical basis of this method is 

formulated in the Section 2 of this paper. Special cases of nonlinear interferometers, 

periodically poled crystals with the stepwise and smoothed space profiles of (2) ( )zχ , quasi-

periodic structures are considered. The Section 3 contains examples of the signal intensity 

distribution obtained experimentally for various periodically poled crystals in different 

parametric processes, spontaneous parametric down-conversion (SPDC) and second harmonic 

generation (SHG). The proposed schemes of diagnostics are discussed in the Section 4.  

2. Parametric signal from a one-dimensional nonlinear superlattice as a function of the 

phase mismatch. 

   Consider the parametric interaction between three waves in a nonlinear multidomain 

crystal, where domains form a sequence of plane crystal layers with negative and positive 

orientation of polar axes. In each domain the convolution of polarization vectors of the waves 

with the components of the tensor (2)€χ  determines the effective value of nonlinear 

susceptibility (2)χ  for this process. Due to the symmetry breakdown at the domain 

boundaries, (2)χ  occurs to be different in positive and negative domains, in the central parts 

of domains and near their walls, and so on.  In the general case, the one-dimensional spatial 

distribution of (2)χ  in these crystals is presented in the form of a Fourier-series as 
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(2) (2) imqz(z) m
m

eχ χ
∞

=−∞
= ∑ ,          (1) 

where (2)
mχ    are amplitudes of Fourier harmonics: 

2
(2) (2)

- 2

1= (z)exp(-imqz)dz
d

d

m
d

χ χ∫ ,   (2)  

In the case of a periodic spatial (2) ( )zχ  variation,  d is period, q is the vector which 

characterizes the inverse nonlinear superlattice. For a non-periodic spatial (2) ( )zχ variation, d 

equals to the crystal thickness  along the normal to domain layers. The direction of q is 

perpendicular to domain layers, q= 2π d . Each harmonic of the m-th order determines an 

efficiency of a parametric process under the quasi-phase matching condition [2,25]:  

0m∆ − =k q .                      (3) 

Here, 3 1 2( )∆ = − ±k k k k  is the phase mismatch for the considered parametric process, in 

which the frequencies of three waves are related as 3 1 2ω = ω + ω  or as 3 1 2ω = ω −ω . The 

changes in the linear optical susceptibility at the domain boundaries are usually negligibly 

small [26]. At the same time, there exists a possibility to achieve a highest modulation of 

(2) ( )zχ  due to the reversals of the (2)χ  sign in periodically poled structures. As a result, the 

(2)
1χ±  amplitudes of the same order as (2)

0χ  in a spatially uniform crystal are obtained. To set 

up an effective energy transfer between the waves, periodically poled structures are 

advantageous because of the quasi-phase matching conditions (3) are easy of access, instead of 
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the usual condition 0∆ =k . In most cases, for any given 0∆ ≠k  the proper period of domain 

poling is taken to satisfy (3).  

  While it was well known that the conversion efficiency is maximal in the directions 

given by (3), for a long time, in the literature there were no papers studying the overall 

distribution of the output signal intensity in different directions, for the whole possible range 

of phase mismatches ∆k . In [25], the theory of spontaneous and stimulated frequency 

conversion in a medium with arbitrary inhomogeneous one-dimensional (2)χ distribution was 

developed. It was found that under conditions of low gain and constant pump, the intensity of 

the parametric signal is expressed explicitly in terms of phase mismatches and spatial Fourier 

harmonics (2)
mχ . When absorption at signal frequency 1ω , idler frequency 2ω , and pump 

frequency 3ω  considered to be negligible, the expression for the output signal intensity 

1 1( , )P ω θ  can be written as follows:  

2

1 1 0 2 2 2( , ) ( , ) sinc( / 2)m m
m

P C Nω θ ω θ χ
∞

=−∞
= ∆∑  .                                 (4) 

Here ( )∆km z mq∆ ≡ −  is the dimensionless projection of the quasi-phase mismatch 

∆ −k qm  onto the normal to the domain layers. The factors 0 2 2 2( , )C N ω θ  are the same as 

in the case of a homogenous nonlinear medium, where the signal distribution is described by 

the well-known expression 

[ ]21 1 0 2 2 2( , ) ( , ) sinc( / 2)P C N kω θ ω θ χ= ∆  .                               (4a) 

2 2 2( , )N ω θ  is the number of photons per each input idler mode inside the crystal (in the case 
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of  SPDC, 2 2 2( , )N ω θ =1 [27]), 0C  is a common coefficient: 

    4 5 2
0 1 2 0 1 2 1 3 3 3 1 3 1 2( / ) (cos cos / cos cos cos )C c n n n T T P≡ ω ω θ θ ϑ ϑ ϑ ,   

3P  is the pump power, 1T  and 3T  are the transmission coefficients for the signal and pump 

waves at the crystal output and input surfaces, respectively, iϑ  and iθ  are the angles of 

incidence inside and outside the crystal for the signal (i=1), idler (i=2) and pump (i=3) waves, 

determined by Snell’s law. For the case of SHG, the pump and idler waves are the same and 

the corresponding coefficients take simpler forms. Usually, a nonlinear crystal is regarded as 

completely homogenous in directions normal to Z. Thus, the projection of the phase mismatch 

onto the domain layers k⊥∆  should be equal to 0 if the transverse dimensions of the 

interacting beams are sufficiently large [28]. The exact phase matching condition k⊥∆ =0 

determines a strict relation between the angles 1 2 0, , andϑ ϑ ϑ  of the interacting 

monochromatic beams.  

 The third factor in (4), 
2

( ) sinc( / 2)m m
m

I χ
∞

=−∞

∆ ≡ ∆∑ , depends directly on 

inhomogeneous behavior of the crystal nonlinear susceptibility.  It describes the signal line 

shape under SPDC and under stimulated up- and down-conversion of the uniformly distributed 

input idler radiation (when 2 2 2( , )N ω θ =const). In principle, the measurement of ( )∆I  

provides the method to determine the Fourier harmonics mχ  and, finally, to reproduce the 

inhomogeneous distribution  (2) ( )zχ  by means of the Fourier transformation (1). Let us 

consider this line shape factor for different models of nonlinear superlattices. 
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a. Periodically poled multidomain crystal. 

Each period of a periodic multidomain structure consists of two domains – the “positive” 

domain with the thickness +  and the nonlinear susceptibility χ , and the “negative” domain 

with the thickness −  and the nonlinear susceptibility χ− . In the general case, there can be a 

narrow intermediate layer of thickness 2∆  between each pair of domain layers, in which 

(2)χ  is not constant and changes from χ  to χ− . The Fourier spectrum of such a structure can 

be simulated as  

( ) ( ) ( ){ }
( )2

1 cos1 sin 1 cos 1
1 2

mn
m m

m
mm i m

m m

χ πδχ πρ πρ
π δ

− ⎡ ⎤= − + − −⎢ ⎥⎣ ⎦ ⎡ ⎤−⎢ ⎥⎣ ⎦

  .   (5) 

Here, the difference between domain thicknesses is characterized by the factor 

( ) / dρ + −≡ − , 2 / dδ ≡ ∆  is the relative thickness of the intermediate layer.  

 Practically, the thickness of the intermediate area is negligible in comparison with the 

domain thicknesses and, hence, 0δ ≈ . In this case, the signal line shape has the simple form 

2 2
2

2
sinc ( / 2)( ) 1 2cos cos cos

2 2 2sin ( / 2 )
∆ ∆ ∆ ∆⎡ ⎤∆ = − +⎢ ⎥∆ ⎣ ⎦

I
n n nn

χ ρ
 .    (6) 

Fig.1 illustrates the parametric signal line shape for asymmetric domain structures with 

different distinction between the domain thicknesses ρ . When ρ =0 ( + −= ), the signal line 

shape contains odd-number maximums only. An asymmetry between the positive and negative 

domain thicknesses leads to the appearance of the even-number maximums also. When ρ  

approaches its maximal value ( 1→ρ ), the signal line shape transforms to the usual line 

shape of a homogeneous medium with the central peak at 0∆ = .  
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 The existence of rather thick intermediate layers, where the sign of (2)χ  changes, leads 

to the suppression of all maximums for which 1>m . The relation between different-order 

peak values of ( )∆I , measured for ∆ = ∆m , contains the information about  the model 

parameters ρ  and δ : 

( )
( )

( )

( )

⎧⎡ ⎤⎪⎢ ⎥⎪⎣ ⎦⎪
⎡ ⎤ ⎨
⎢ ⎥≡ ∆ = ×⎪⎡ ⎤⎢ ⎥ ⎪− ⎢ ⎥⎣ ⎦ ⎪⎣ ⎦⎩

2

2
2 2

2

cos / 2
for odd m,

/ 2

cos( ) sin / 2
1 2 for even m.

/ 2

m m

m
m

mI I m
m

m

πρ
πρ

πδχρ πρ
δ

πρ

    
 

(7)

 

It is possible to determine these parameters by measuring relative intensities of quasi-

synchronous maximums of different order.  

b. Quasi-periodically poled multidomain crystal. 

Quasi-periodically poled crystals can be treated by the similar approach. Consider the 

Fibonacci nonlinear optical superlattice [29-31]. It is a special sequence of building blocks A 

and B, each block consisting of one positive and one negative domain with susceptibilities χ  

and χ− . The thicknesses of the building blocks A and B are ( ) ( )
a a a

+ −= +  and 

( ) ( )
b b b

+ −= + . The structure parameter a b/ τ=  is taken as 1 5
2
+

τ =  below. The 

thicknesses of positive domains in different blocks are the same: ( )( )
a b

++ = ≡ , but the  

thicknesses of negative domains are different: ( )
a (1 )− = + η  , ( )

a (1 )+ = − τη . The 

sequence of A and B is formed according to the rule 1S A= , 2S A B= , 1 2j j jS S S− −=  for 

j>2. The dependence (2) ( )zχ  in such structures is represented as a binary Fourier sequence 

[30]: 
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mniG z
mn

m n
(z) e

∞ ∞

=−∞ =−∞
χ = χ∑ ∑ .    (8) 

Here mnG (m n )
D
π

= + τ
2 , mn

mn mn
Gsinc sincX

2
χ = χ× × , a bD = τ + , 

2

mn a bX (m n )
D
πτ

= − .  The signal line shape is described by 

2
2 mn mn

mn
m n

G GI( ) sinc sincX sinc
2 2

∞ ∞

=−∞ =−∞

∆ −
∆ = χ × ×∑ ∑   (9) 

Signal line shapes calculated for 4 and 5 generations of the Fibonacci sequence, are presented 

in Fig.2.  

c. Periodic stack of linear and nonlinear layers. 

Several important structures can be presented as a periodic sequence of plane nonlinear layers 

of constant nonlinear susceptibility χ  and plane linear layers with (2)χ =0. If the linear-

optical parameters do not vary in different layers, and absorption of idler waves is essential, 

and the thicknesses of linear and nonlinear layers are equal, then the signal line shape is 

represented as follows [32]: 

( )
( ) ( )

( ) ( )

2

2

2 2
22 2 2 2

2 2 2 22 2
2 22 22

22 2
22 2 2 2

2 2 2 2 22 2 2
2 2 22 22

sh sin1 ch cos 2cos 1
ch cos ch cos

sh sin4 2 1 ch cos( ) sin
ch cos ch cos

y

y

yy y ye
y yy y

yy y yI e
y y yy y

y

−

−

⎡ ⎤′ ′∆′ ′− ∆ + ∆ ∆⎢ ⎥∆ − ⋅ − ⋅ −
⎢ ⎥+ ∆ + ∆′ ′+ ∆ ′ ′+ ∆⎣ ⎦

⎡ ⎤′ ′∆′ ′χ ∆ + ∆ −∆⎢ ⎥∆ = − ∆ ⋅ ⋅ + ⋅ +
⎢ ⎥+ ∆ + ∆ + ∆′ ′+ ∆ ′ ′+ ∆⎣ ⎦

+
2 2

2 2 2
2 2 22 22 222 2

sh sin2 2
ch cos ch cos

y y yn
y yy y

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪

⎡ ⎤⎪ ⎪′ ′− ∆ ∆ ∆
− ⋅ ⋅ + ⋅⎢ ⎥⎪ ⎪

′ ′ ′ ′+ ∆ + ∆+ ∆ + ∆⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭    

. 

  

(10) 

Here 2 2 2/ 2cos≡ α ϑy ,  2α  is the absorption coefficient for idler waves, k′ ′∆ ≡ ∆ , 
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2 2 2/ 2cos′ ′≡ α ϑy ,  ′  is the thickness of each layer. 

 The intensity distribution (10) is important for symmetric nonlinear interferometers 

[28,33]. Another example of a periodic stack can be obtained in a kind of periodic 

multidomain crystal where susceptibility (2)χ  is vanishingly small in each domain, but, due to 

a symmetry break-down, the sufficiently high values of (2)χ  (χ ) are achieved at the domain 

boundaries. These structures are strongly asymmetric; the spectrum of periodic (2)χ  

distribution may be written as ( )2 1≈ − mn
m xχ χ , where x  is a relative thickness of the 

nonlinear layers at the domain boundaries: 1 ( / ) 1′≡ − <<x d  ( ′  is the thickness of each 

domain). In this case the signal line shape has the following form: 

   

( )
( ) ( )

( )( )2

2

2 2 22
2

2 2 2

1 cos 1 sh sin( ) 4sh
ch cos 2 ch cos 2 sin sin sh

−

−

⎧ ⎫⎡ ⎤χ ′′∆− − ∆ +⎪ ⎪′∆ = ⋅ + ⎢ ⎥⎨ ⎬
′ ′′ ′ ′ ′− ∆ ⋅ − ∆ + ∆ ∆⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

y

y

x n e yI y
y n y e y

.    (11)

 

Figure 3 shows the signal line shapes in nonlinear stacks with various differences between the 

thicknesses of linear ( ′ ) and nonlinear ( ′′ ) layers. The latter case is close to a limiting one 

and is described by (11). 

d. Non-periodic structures. 

Any inhomogeneous nonlinear media with an arbitrary non-periodical variation of  
(2) ( )zχ  can be treated in the framework of the same approach also, conditionally being 

considered as one period of a periodic structure. The general expression (4) is valid if d is 

taken equal to the thickness of the whole structure . 

There is another way to describe sequences of different uniform layers, developed in 

[34]. Further developing this approach, the relationship for a one-dimensional non-periodic 

stack of N layers can be calculated as:  
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   1

2
/ 2

1 1 2
1

1( , ) sinc( / 2)ω θ χ
′

′=
− ∆ + ∆

=

∑
= ∆∑

j

j j
j

i iN

j j j
j

I e .                                     (12) 

Here j is the number of the layer, χ j  is its nonlinear susceptibility,
 j  is its thickness, 

(j) (j) (j)
1z 2z 3z(k k k ) ∆ ≡ + ±j j  is the dimensionless phase mismatch in each layer (measured 

normally to the layers),  (j) (j)
i i ik n / cω= is the wave-vector of the signal (if i=1), idler (if i=2), 

or pump (if i=3) wave in the layer j, (j)
in is the corresponding refractive index of the j-th  layer, 

1

N

j
j=

=∑ is the total thickness of the stack. 

  

3. Measurement of the signal line shape of the second harmonic generation and the 

spontaneous parametric down-conversion. 

 Theoretically, any three-wave low-gain parametric processes can be used for the 

experimental measurement of the ( )∆I  distribution. The stimulated and spontaneous 

processes, right up to the near-forward Raman scattering by phonon polaritons [35], can be 

considered as well. The main problem is obtaining signals corresponding to a large continuous 

variety of phase mismatch values ∆ . In the layered structures, the transverse phase matching 

conditions k⊥∆ =0 are usually satisfied. Thus, if the frequency and direction of the pump 

incidence are fixed, then for each pair of parameters 1 1,ω θ , characterizing the frequency and 

orientation of the signal output wave, one can indicate a pair of corresponding values of  

2 2,ω θ  for the input idle wave and unambiguously calculate  the  value of mismatch ∆ . To 
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change ∆ , one should tune the signal parameters 1 1,ω θ , the idler parameters 2 2,ω θ , or the 

same pumping characteristics. In the case of SHG the two last groups coincide, since the idler 

and the pump waves are the same. Another problem arises when the stimulated processes are 

used. The inhomogeneous intensity distribution of the input idler radiation within the tuning 

ranges of angles and frequencies should be taken into account.  

 Figure 4 shows the signal line shape measured experimentally under the SHG of oo-e 

type in a periodically poled crystal layer of the total thickness 480 mµ . The crystal layer was 

cut parallel to the z-axis and to domain surfaces, from the as-grown periodically poled crystal 

LiNbO3:Y:Mg [36]. To tune the mismatch ∆  we changed the incidence angle of the pump 3θ  

under a constant pumping wavelength (1248 mm or 1254 mm). The values of ( )∆I  were 

calculated from the measured SHG intensity 3( )SHGI θ , taking into account the reflection 

losses for pump and signal waves, as well as the variation of an effective nonlinear coefficient 

for each domain under the crystal rotation. Location of the main maximum at 2 ( 8)π∆ = × −  

indicates that there are 8 periods of the domain structure in the crystal layer, each period to be 

of µd 60  m . Dotted line in Fig.4 shows the theoretical curve, which was calculated 

accounting the first harmonics only in (4). The comparison between this first approximation 

and the experimental results shows that the distribution of (2)χ  in the sample  should be 

described by a larger spectrum of harmonics (2)
mχ . To estimate their values it is necessary to 

obtain the signal line shape in a wider range of phase mismatches.  

 The usage of stimulated processes enables one to study distribution of the signal 

intensity between the main peaks. In particular, here the distribution contains more detailed 
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information about domain structures.  In case of SPDC, the signal intensity in these intervals is 

sufficiently lower than in the case of stimulated processes. Nevertheless, the SPDC-based 

schemes have a fundamental advantage: there is no necessity to use tunable sources of 

radiation at the crystal input. The idler modes are always uniformly occupied due to the zero 

vacuum fluctuations and the signals can be observed simultaneously within a very large range 

of mismatches ∆ . An example of a two-dimensional spectrum of SPDC in a periodically 

poled crystal of Ba2NaNb5O15 is presented in Fig.5, registered in coordinates { 1 12 / ,cλ π ω≡  

1θ } by a photographic film at the exit of a spectrograph [37]. Different tuning curves  

correspond to different orders m of quasi-synchronous interaction. By measuring their 

positions, we have determined orientation and period of the domain superlattices with a rather 

high accuracy in previous works [37,38]. To obtain more detailed  information about the 

internal distribution of (2)χ   it is necessary to analyze the precise intensity behavior ( )∆I  

across such spectra. The scanning of the mismatch ∆  can be obtained here by scanning the 

signal frequency 1ω  or by scanning the signal angle 1θ . 

4. Diagnostics of the spatial distribution of the second-order nonlinear susceptibility.  

Basically, two approaches to determine the spatial (2)χ  distribution from the 

experimental signal line shape ( )∆I  can be proposed. Based on a previous theoretical 

simulation, the first one can be applied if any certain prior information about the character of 

the (2)χ  distribution is available. For example, if one-dimensional and periodic character is 

ascertained for the (2)χ distribution, one can determine the period, domain thicknesses and the 
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thickness of the intermediate layers using the relation (7) between different-order peak values 

of ( )∆I .   

The second approach, which is a more general one, can be used if the fitting is 

ineffective. It consists of the direct determination of the phases mϕ  and the amplitudes mχ  of 

complex Fourier harmonics (2) mi
m me ϕχ χ≡ . Since the values of (2)χ  are real, m mχ χ−=  , 

0ϕ =0, m mϕ ϕ= − − . First, the relations between amplitudes mχ  are to be determined after 

measuring the intensities at points where quasi-phase mismatches are zero. As it follows from 

the general relation (4), all amplitudes mχ  can be expressed in terms of the maximal first-

order harmonics  

1 (2 ) (2 )m I mn I nχ χ π π= .      (13) 

Here, n / d= , to be the number of periods in a periodic structure; n 1=  in a non-periodic 

structure. Second, the relations between the phases mϕ  are to be determined by fitting the 

intensity behavior in the intervals between the quasi-synchronous maxima with the expression 

(4). A method of fitting depends on the results on amplitudes mχ , which are obtained at the 

first step of the whole procedure. Finally, the spatial dependence of  (2)χ  is to be reconstructed 

as ( ) ( )2(2)
1 1( )

∞
+

=−∞
= ∑ π ϕχ χ χ χ mi m z

m
m

z e . 

Conclusions. 
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We propose the method for measuring of the spatial (2) ( )zχ  profiles in periodically poled 

structures by analysing the frequency/angular line shapes of low-gain parametric signals. The 

line shapes are governed by the signal intensity dependences on the wave mismatches, which 

are expressed in terms of Fourier harmonics of (2) ( )zχ .  The diagnostics of one-dimensional 

periodically, quasi-periodically, and non-periodically poled structures can be made by direct 

determining the Fourier spectrum of (2) ( )zχ  or using the relationships, which we have 

obtained theoretically for a number of the most common models. For both approaches, it is 

necessary to measure the output signal intensity as a function of the phase mismatch under a 

three-wave parametric process. If the signal intensity exceeds the noise level, the use of the 

SPDC-based experimental schemes is more preferable, since the use of stimulated processes 

requires widely tunable sources of the input radiation whose non-uniform intensity distribution 

has to be taken into account. The developed approach can be applied for the study of spatial 

distribution of nonlinear susceptibilities in regular and non-regular multidomain ferroelectrics, 

in stochastic lamellar domain structures, sequences of domain walls, and for testing nonlinear 

photonic crystals.  
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Figure captions 

 

Fig.1. The signal line shape in a periodically poled crystal with unequal thicknesses of positive 

and negative domain, ( ) ( )/ρ + − + −= − + , 0δ = . 

 

Fig.2. The signal line shape in a quasi-periodically poled crystal consisting of four and five 

generations of the Fibonacci sequence. 

 

Fig.3. The signal line shapes in periodic stacks with different ratios between thicknesses of 

linear ( ′ ) and nonlinear ( ′′ ) layers, ( ) ( )/ρ ′′ ′ ′ ′′= − + . 

 

Fig.4. The signal line shapes measured experimentally under SHG in the periodically poled 

crystal LiNbO3:Y:Mg. Filled circles: pumping at 1.254 mµ , open circles: pumping at 1.248 

mµ . Dotted line: calculations taking into account the first harmonics in (4). 

 

Fig.5. SPDC spectrum of the multidomain crystal of Ba2NaNb5O15. 
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