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ABSTRACT
A geospatial system is one in which the state space in-
cludes one, two or three-dimensional space and time. A
geospatial event is one in which an event impacts points
in space over time. Examples of geospatial events include
floods, tsunamis, earthquakes, and emission of toxic plumes.
This paper discusses aspects of the theory of geospatial dis-
tributed event based systems (GDEBS). The paper describes
algorithms for rapid detection of geospatial events which
can be used on Cloud computing architectures, in which
many servers collaborate to detect events by analyzing data
streams from large numbers of sensors. Sensor noise and
timing errors may result in false detection or missed detec-
tion as well as incorrect identification of event attributes
such as the location of the event source. The paper presents
mathematical analyses and simulations dealing with rapid
event detection for geospatial events of varying speeds in the
presence of substantial sensor noise and timing error. The
paper also describes some of the algorithmic and machine-
learning techniques for improving event detection in the
Cloud with large numbers of noisy sensors. Experience with
GDEBS using a seismic network is described.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; G.3 [Probability and Statis-
tics]: Experimental Design

General Terms
Algorithms, Design, Experimentation
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1. INTRODUCTION
Geospatial distributed event based systems (GDEBS) are

used for three main goals [1]:

1. Providing early warning so that people or machine
components can react before a disaster hits; for exam-
ple alerting people about impending intensive shaking
from earthquakes.

2. Providing continuing situational awareness as a dis-
aster unfolds; for instance, giving first responders in-
formation about which areas have been most badly
damaged.

3. Providing data that is useful for scientific analysis such
as data about background radiation measured in an
area over time.

This paper describes event detection algorithms and theo-
ries, and data from a working system implemented to satisfy
all three goals of GDEBS.

Accuracy is crucial in achieveing all three goals. For ex-
ample, the onset of earthquakes must be detected in a few
seconds so that people can take action before they experi-
ence intensive shaking. People ignore systems that produce
too many false alerts. If a significant event to which peo-
ple must respond occurs once every five years, then they
may pay inadequate attention to a system that generates
false alerts at a rate of once every three months. Therefore
GDEBS must detect events accurately.

A focus of this paper is on community based systems in
which members of different communities — ordinary resi-
dents, power and water utilities, and government agencies
— participate by hosting sensors, actuators, and computa-
tion engines. Multi-community systems have to deal with
extremes of heterogeneity, uncertainty, distribution, poor
deployment, unreliable operation, and high load variabil-
ity. Therefore, these systems are good vehicles for studying
some of the limits of event detection. Fig. 1 shows the sensor
distribution in an existing community-based system.



Figure 1: CSN[2] sensors in the Pasadena, CA area.

Geospatial event detection is based on models of the prop-
agation of activity across space and time. Streams of data
from sensors are used to estimate the model that best fits
the data. If a specific model fits the data with high confi-
dence, then that model is used to determine the appropriate
responses; otherwise the system waits for additional data. A
difficulty with building general-purpose GDEBS event pro-
cessing notations is the wide difference in models for the
propagation of different types of geospatial activity, such as
earthquakes and floods.

In this paper, we do not attempt to address the differences
in models for all geospatial events. Instead, we introduce a
general high-level event propagation and detection model
(Sec. 2) and apply them to a seismology application. The
model is supplied with a distributed, efficient Bayesian de-
tection algorithm (Sec. 3) whose theoretical properties are
analyzed (Sec. 4) and validated (Sec. 6).

2. MODELS OF GEOSPATIAL EVENT DE-
TECTION

2.1 Models of Geospatial Events
We describe a model of geospatial activity and then de-

scribe its limitations for different applications. This model
is adapted in the rest of the paper.

A geospatial event is initiated at a point in space-time. For
3-D space, the event initiation point is specified by the space-
time coordinates (x0, y0, z0, t0). For example, the model as-
sumes that an earthquake starts at a point in 3-D space
(the hypocenter) at an instant in time. Likewise, the model
assumes that a forest fire starts with a spark at a specific
location and time.

Associated with an event initiation are parameters that
describe the event. For example, the parameters that de-
scribe an earthquake include its magnitude; the parameters
for a toxic plume include the concentration and type of toxic
material. Let M be the set of parameters that describe the
event. Then, an event initiation is completely described by
the 5-tuple (M,x0, y0, z0, t0). For example, a simple model
of earthquake initiations has M as the magnitude of the
quake.

The manifestation of a geospatial event at any space-
time point (x, y, z, t) is given by a vector H(x, y, z, t) of en-
vironmental factors such as temperature, concentration of

Figure 2: Snapshot of H(x, y, t) of a seismic event
with an event initiation in the upward left direction

pollutants, and acceleration at point (x, y, z) in space and
time t. The model of propagation of geospatial activity is
specified by a function f that gives the manifestation H of
the event at each point in space time, given an initiation
(M,x0, y0, z0, t0) of a geospatial event:

H(x, y, z, t) = f(M,x0, y0, z0, t0, x, y, z, t)

In this paper, we will often consider functions that are hor-
izontally isotropic (invariant under horizontal translation)
and that are independent of vertical distance z.

H(x, y, t) = f ′(M,d(x− x0, y − y0), t− t0)

where d(u, v) is the length of the 2-D vector (u, v). Fig. 2 is
a snapshot of H visualized during a seismic event.

In the presence of multiple events, the net manifestation
is assumed to be the sum of the manifestations due to each
of the events. This is a simplistic model because it assumes
that the net effect of multiple events is additive. For ex-
ample, the model assumes that the acceleration at a point
due to two separate concurrent earthquakes is the sum of
the accelerations due to each quake. This simplistic model
gives useful results in situations for which the probability of
concurrent events is low — i.e., the effect of one quake at
a point dies down before the effect of the next quake is felt
at that point. The model is also relevant for the case where
the impact of a single geospatial event is small at each point
in space-time, so that a linear model gives accurate results.

The behavior of the entire geospatial system is captured
by the function f . In the case of dispersion of a toxic plume,
conditions such a wind patterns, humidity, and precipitation
are captured by f . The function f for any realization of a
propagating geospatial event is drawn from a distribution
F . For example, the speed of seismic waves depends on
the geological structure of the material through which the
waves propagate, and the structure may not be known. We
assume that there is some speed with which waves travel in a
given earthquake, but the speed is unknown to the designers
of the GDEBS application, though designers may know the
distribution from which f is drawn.
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Figure 3: Geospatial event model illustrated in space-time plots. (x0, t0) is the event origin in space-time.

2.2 Models of Isotropic Events
We introduce models for geospatial events by first con-

sidering isotropic events in which the impact of an event
propagates equally in all directions. In reality, the impact
propagates faster and with greater intensity in some direc-
tions, and we will deal with this effect later.

Without loss of generality, first consider a 1-D model with
the 1-D space dimension on the x-axis and time t on the y-
axis. An event initiated at a point (x, t) in space time will
propagate along a cone with apex (x, t) where the boundary
rays of the cone have an angle θ where tanθ = v (Fig. 3(a)).
Generally, the speed of propagation is not constant, and
variable speeds give rise to non-conic shapes as in Fig. 3(b).

In most cases, the impact of a geospatial event at a point
in space continues for some time. For example, shaking from
an earthquake may continue for many seconds and even min-
utes. Likewise, dangerous levels of radioactive material may
remain at a point in space for days. Thus the region of
impact of a geospatial event is represented by the points be-
tween two cones if the velocities of arrival and departure of
the impact are constant; more generally the region of im-
pact is represented by the space-time points between two
upwardly increasing shapes (Fig. 3(c)).

The intensity of the impact of an event also varies with
space and time. If waves of intensity emanate in all di-
rections from a point source, like ripples in a pond, then
the points of maximum intensity correspond to collections
of cones with the same apex. Generally, intensities vary in
complex and random ways.

2.3 Metrics for Evaluating GDEBS
Fig. 3(b) shows an event detection at a time τ . Alerts

about the event are sent electronically to the impacted re-
gion, and as a first approximation, we assume that alerts
reach all points in the region after a delay of δ seconds. The
warning time for a point x in space is the delay between the
instant (τ + δ) and the instant at which dangerous intensi-
ties are experienced at point x. As shown in Fig. 3(b), some
locations may have adequate warning while other locations
do not. One of the metrics for evaluating the effectiveness
of GDEBS is the amount of area, or more appropriately, the
fraction of the population in the region, that gets adequate
warning time.

A system may generate false warnings. Warnings gener-
ated a short interval after the initiation of an event are based
on data gathered over short times, and hence are more likely

to be erroneous. Some GDEBS systems associate probabili-
ties with warnings, generally giving higher probability warn-
ings as time progresses. Another metric for evaluating the
effectiveness of GDEBS systems is the rate of false positives.

A warning sent to a location can be a single bit — “You
are about to feel the impact of a geospatial event,” or it can
have an associated probability and it can have an estimate
of the magnitude of the impact of the event at that loca-
tion. For example, Southern California has had six earth-
quakes reported by the U.S. Geological Service in the last six
months, but all of them were too small to require any sort of
reaction. Warnings about such events would be considered
to be false by most people who only want to be alerted when
they have to respond.

The appropriate metrics for the evaluation of GDEBS de-
pend on which of the three goals the application is used for
— (1) warning, (2) ongoing situational awareness, or (3) sci-
ence. The metrics for warning applications include the time-
liness of the warning, the rate of generation of false positives,
and the accuracy of the estimation of the magnitude of the
impact at each location and time. The metrics for ongoing
situational awareness are similar, with the goal of detecting
changes to an unfolding situation. Usually, first responders
react in minutes whereas an elevator can be slowed down or
a gas valve can be shut in seconds. Generally, constraints on
the timeliness for situational awareness are less acute than
for early warning. Science applications use data streams for
data mining rather than event detection. For example, ge-
ologists are interested in tiny earthquakes that aren’t felt by
anybody; the detection and characterization of such quakes
can be carried out days after the event.

2.4 Models of Sensors
A sensor of type s that experiences a manifestation H at

time tmeasures a manifestation as(H). The functions as, for
example, maps true acceleration to measured acceleration
for an expensive 20-bit accelerometer will be more accurate
and more precise (i.e., closer to the identity function) than
the function for a 10-bit accelerometer in a phone. Similiarly,
sensors may report incorrect timestamps or they may not be
located where designers think they are. Errors in location,
timing, and measurement are captured by as that impact
the efficacy of GDEBS applications.

A sensor may send continuous measurements periodically
to event processing engines (which are servers in the Cloud
in our implementation). Communication bandwidth is re-
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Figure 4: Sensor detection models illustrated in space-time plots

duced by having sensors send event messages to processing
engines only when sensors detect events — local anomalies.
An event message sent by the sensor has bits that iden-
tify the anomaly, the timestamp of the anomaly, and possi-
bly measurements made during a short interval around the
anomaly. The size and the frequency of event messages play
a crucial role in the cost of the system and on its efficacy.

Fig. 4(a) shows the difference between the true impact
of an event shown by the straight lines of a cone and the
measured impact shown by the dots identifying anomalies
detected by sensors. Some sensors may not detect anomalies
and the number of sensors near the source of the event may
be small, and as a consequence the problem of identifying the
geospatial event from the sensor readings (i.e. identifying
the lines of the cone from the dots) can be difficult.

Sensors may detect anomalies that are not associated with
geospatial events. For example, an accelerometer may detect
an anomalous situation when a heavy truck passes nearby.
Our experiments show that sensors also generate erroneous
signals due to electronic noise. The detection of an anomaly
by a sensor is called a sensor event. Thus a sensor event may
be due to a true geospatial event or due to local activity or
due to noise. We generally assume that sensors generate
noisy sensor events in a random Poisson manner (though
measurements show that a few sensors generate noise events
in more predictable ways).

By choosing sensor parameters, sensors can be sensitive to
small signals, or relatively insensitive and detects only large
signals. Setting parameters so that sensors are more sensi-
tive results in sensors generating more noisy sensor events.
The optimum settings of sensor parameters will depend on
the network constraints and detection algorithm limitation.

2.5 Accuracy of Geospatial Event Detection
Next, we discuss issues that impact the accuracy and

speed of geospatial event detection in terms of simple ge-
ometrical concepts.

Consider a simple model, that assumes that we know the
precise speed of propagation of an event, i.e., the angle of
the cone. Errors in timestamps are represented by a time
interval [−e,+e], where the probability of errors outside this
interval are low. The timing error is represented by a band
around the cone with vertical thickness 2e (Fig. 4(b)).

Consider a geospatial event that is initiated at time t at
location x. The measured impact of this event is represented
by a cone of thickness 2e with apex (x, t). A sensor event
generated because a sensor detects the local manifestation
of a geospatial event is a true (local) positive, while a sensor
event generated for other reasons (such as local activity or
electronic noise) is a false positive. In Fig. 4(c) sensor events
that are true positives are shown as crosses while false pos-
itive are shown as dots.

A simple algorithm to detect geospatial events is as fol-
lows: detect a geospatial event when the number of sensors
reporting events within a cone exceeds some multiple of the
number of sensors that don’t report events in that cone. We
don’t know the position of the apex of the cone, and there-
fore we consider all possible values of (x, t) for the location
of the apex. (We use faster methods in our implementation).
Fig. 4(d) shows two cones where the apex of each cone repre-
sents a true geospatial event. All the sensors generate sensor
events in one of the cones, and no sensors generate events
in the other cone. A geospatial event will be detected for
the first cone — a true positive — but not for the second
— which would be a false negative. Fig. 4(e) shows a false



positive detection of a geospatial event because sensors gen-
erated detections due to local noise in a cone.

The rate of false positives increases with: uncertainty
about the propagation of geospatial events, constraints on
the speed of detection, and noise in sensors. Uncertainty
about propagation speed is represented by cones with greater
thickness in Fig. 4(f). Constraints on the speed of detection
are represented by cones of shorter height, since the height of
the cone represents the time from event initiation to detec-
tion; the number of sensors that can produce signals within
a cone decreases with the height of the cone, and so detect-
ing collections of true sensor events from false sensor events
gets more difficult.

3. EVENT DETECTION AND ESTIMATION
Sensor activity, without true geospatial events, may vary

over time. For example, accelerometers in homes and offices
generally show more acceleration during the day when peo-
ple and equipment are moving about than they do at night.
Therefore, sensors detect local anomalies based on analysis
of activity in a time window from the current time to a time
in the past. In the Community Seismic Network[2], sensors
detect a local anomaly if a measured value is more than K
standard deviations away from the mean (we call such an
event a “pick”), where the standard deviation and mean are
estimated for the time window. The value of K is set to
control the rate at which sensors send event messages to the
event processing engine.

Sensors may be distributed across space in different ways.
Ideally, sensors would be placed to optimize detection given
prior knowledge of the kinds of geospatial events and the
locations of their initiation points. In the case of commu-
nity networks, members of the community deploy sensors in
their homes and offices, and in this case sensor distribution
depends on population distribution. We begin by study-
ing two distributions: (a) sensors distributed in clusters in
larger cities and towns and (b) sensors distributed in a uni-
form grid. Comparison between the two extreme distribu-
tions provides insight into the impact of sensor distributions
on GDEBS applications.

3.1 Detection with Clustered Sensors
We first consider the case of sensors placed in a single

cluster. The current community seismic network has sen-
sors placed around a city with about 100 sensors distributed
across a 10 km2 area. We present a simple model for event
detection that ignores spatial placement of sensors and treats
all the sensors in a cluster as being at the same location, i.e.
all sensors in the cluster detects equal amount of signal from
an event but with different local noise profile.

Let T be the length of the interval during which the sensor
determines whether it should generate an event. In the case
of seismic applications, T is the time for a quake to travel
across all the sensors in the cluster plus additional time to
account for errors in sensor event timestamps. For example,
when the cluster lies within a 10 km2 region, the value of T
is approximately 2 seconds.

Sensor Noise and True Events. Let λj be the rate
at which sensor j generates noise events (i.e., the rate at
which sensor events occur when there is no ongoing geospa-
tial event). Assuming that sensor noise events are random,
the probability qj that sensor j will generate a noise event

in an interval of duration T is:

qj = 1− e−λjT

Let a be the manifestation of a geospatial event and let pj(a)
be the probability that a sensor will generate an event in an
interval T due to experiencing a passing seismic wave of
magnitude M . In general p(a) is monotone increasing with
a. Then qj is the probability of a noise event, and pj(a) is
the probability of a true event given a, for sensor j.

Probability of a geospatial event from cluster data.
Let V be a vector of sensor events in a certain duration of
time; V [j] = 1 if sensor j generated an event; V [j] = 0
otherwise. Let α be the prior probability of the occurrence
of an event in the given amount of time. Denote random
variable E as an event. Assuming sensor measurements are
independent, the probability P (E = 1|V ) of the presence of
a geospatial event given V , and the probability P (E = 0|V )
of the absence of an event given V are:

P [E = 1|V ] = C α
Y

{j|V [j]=1}

p[j]
Y

{j|V [j]=0}

(1− p[j])

P [E = 0|V ] = C (1− α)
Y

{j|V [j]=1}

q[j]
Y

{j|V [j]=0}

(1− q[j])

where C is a constant of proportionality so that

P [E = 1|V ] + P [E = 0|V ] = 1

Therefore,

C = α
Y

{j|V [j]=1}

p[j]
Y

{j|V [j]=0}

(1− p[j]) +

(1− α)
Y

{j|V [j]=1}

q[j]
Y

{j|V [j]=0}

(1− q[j])

Let

β =
1− α
α

, r[j] =
q[j]

p[j]
, s[j] =

(1− q[j])
(1− p[j])

then

P [E = 1|V ] =

0@1 + β
Y

{j|V [j]=1}

r[j]
Y

{j|V [j]=0}

s[j]

1A−1

which is calculated rapidly in the cloud while maintaining
adequate numerical accuracy. Grouping some terms into γ,
then

P [E = 1|V ] =
1

1 + γ

γ can be calculated rapidly after log(r[j]) and log(s[j]) have
been computed by summing the logs.

log(γ) = log(β) +
X

{j|V [j]=1}

log(r[j]) +
X

{j|V [j]=0}

log(s[j])

Speeding up the computation. Sensors can be put
into categories based on their values of p[j] and q[j] which
enables precomputations of log(r[j]) and log(s[j]) for each
category. Let M be a vector where M [i] is the number of
sensors in category k for k = 1, . . . ,K, and let the values of
p and q for category k be p[k] and q[k]. Let W be a vector
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Figure 5: Simple arrival time algorithm for event localization with earthquake data from Japan. (a) inland
epicentre, (b) offshore epicentre, (c) blue dots: sensors, black cross: epicenter identified by JMA, green
crosses: epicenter determined by the simple algorithm in each time step.

Table 1: Seismic events of M ≥ 3 in southern Cali-
fornia since September 2011.

LOCATION MAGNITUDE DIST(Km) IMPACT
Newhall 4.2 37.7 80
Yucaipa 4.1 100 15
Irvine 3.5 65 7
Saugas 3.3 46.9 7
Ontario 3.5 52.6 9

Table 2: Detection probability jumps to one as wave
comes in.

TIME (sec) 703 707 711 715 719

P [E = 1|V ] 10−40 10−37 1.0 10−22 10−37

where W [k] is the count of the number of sensors in category
k that “picked” in an interval of duration T . Then

log(γ) = log(β)+
X
k

[W [k] log(r[k]) + (M [k]−W [k]) log(s[k])]

Statistics. Tab. 1 shows earthquakes of magnitude 3 or
higher within 100 km of the cluster since September 2011.
During this period the network had at least 30 sensors. The
impact is the manifestation of the event measured in terms
of relative acceleration according to the Kanamori model[3].

All these events were detected by the system, in seconds
after the wave reached the cluster. No false alerts were de-
tected except for a strong clap of thunder on December 15,
2011 for which the system reported a geospatial event with
probability 0.69. Tab. 2 shows the probability of a geospatial
event reported by the system immediately before and after
an event. The posterior probability quickly jumps from al-
most 0 to 1 as the wave arrives.

3.2 Characterization with Sparse Sensors
Next, we describe a simple arrival time based algorithm to

estimate the location of the origin of a geospatial event. The
model ignores the vertical coordinate of the event initiation
location and it assumes that the event propagation velocity
is fixed. These assumptions are necessary for a generalized
discussion but simplistic. For example, the depth at which

strain in the earth is first released impacts how waves prop-
agate through the earth, and velocity of the wave changes
quite significantly with distance.

Let (x0, y0, t0) be the event initiation point in the space-
time dimension. The time tj at which the event first reaches

a sensor j at location (xj , yj) is tj =
dj
v

+ t0, where dj is
the distance of sensor j from the event origin and v is the
velocity of the propagation. Therefore:

tj =

p
(xj − x0)2 + (yj − y0)2

v
+ t0

If sensor j generates a pick corresponding to observation of
the event, let the time at which it generates the pick be t̂j .
The error ej in the time that sensor picks, according to this
model is: ej = t̂j − tj Let z be the sum of error squared,
z =

P
j e

2
j . Our goal of this analysis is to compute (x, y, t)

to minimize z given the set (xj , yj , tj), j = 1, . . . , n of sensor
measurements while discarding outlier picks.

A local minimum of z is the solution to the nonlinear
equations: X

j

(tj − dj
v
− t)(xj − x0)

dj
= 0

X
j

(tj − dj
v
− t0)(yj − y0)

dj
= 0

where t = tj − dj
v

.

Case Study. We analyzed two independent events from
publicly available seismic data from Japan, one with an in-
land epicenter (Fig. 5(a)), the other with an offshore epicen-
ter (Fig. 5(b)). These high quality sensors are roughly 20
km apart. Fig. 5 shows the error in the estimate of the epi-
center in kilometers based on this simple and relatively fast
calculation compared with the epicenter calculated by geo-
logical services based on extensive data analysis and more
sophisticated models [4, 5].

4. THEORETICAL ANALYSIS
Sensors in community networks are subject to higher lev-

els of noise in comparison to professionally deployed net-
works. In addition to ambient noise and electronic noise,



noise also arises from errors in timing, reported sensor loca-
tion, and measured signal strengths, to name a few. Given a
network of noisy sensors, what can we say about the quality
of the estimates of a geospatial event with that network? To
answer this question we study how event and network pa-
rameters such as event propagation speed and magnitude,
sensor numbers and quality, and timing errors affect detec-
tion and location estimates.

4.1 Preliminaries
The theoretical results in this section are based on the

following assumptions.

• the event can be modeled as a point source with origin
location x0 and start time t0
• the event propagates through the network at a con-

stant speed v,
• the sensor timing error can be modeled as a Gaussian

random variable N (0;σ),
• the prior probability distribution is uniform, i.e. the

event can start anywhere in space-time,
• the n sensors in the network are semi-randomly dis-

tributed (e.g. they don’t all lie on a single point or
single line)

4.2 Detection Performance
Detection performance of geospatial events is measured

by the tradeoff between true detection rate (TPR =
P [detect = 1|E = 1]) and false detection rate (FPR =
P [detect = 1|E = 0]). For detection of geospatial events,
sensors in the network can be spread out over a large area.
It is unreasonable to calculate TPR and FPR for the whole
network. Instead, we calculate those values over some unit
area.

4.2.1 Sensor Model
In this analysis, we consider a sensor model as(H) that

closely models two types of real sensors. Suppose the sensors
are randomly distributed over the infinite plane such that on
average there are d sensors per km2. We model the sensor
detection probability di = 1 as a function of distance to the
source ri.

P [di = 1|E = 1] = α e−βr
2
i (1)

where α and β are functions of sensor quality and event
magnitude and are specific to the type of geospatial event.
Fig. 6(a) compares this model to experimental results for
earthquake detection with two types of sensors of different
quality — Phidget and Android.

4.2.2 TPR Bound
Let the detection metric be such that at least m out of n

sensors detect within a certain amount of time t in an area of
size πR2, R = vt, where v is speed the event propagates at.
Since the sensors are randomly distributed in an infinite field
with density d, let this area be centered at the event origin
location. The probability that exactly k sensors detect the
event in t is

P [K = k|E = 1] =
X
A∈Fk

Y
i∈A

pi
Y
j∈Ac

(1− pj)

where Fk is all the subset of size k of the set {1, 2, · · · , n},
n = πR2d. Ac is the complement of setA. p = P [d = 1|E = 1].

Since p is different for every sensor i depending on its dis-
tance ri to the event, this is a Poisson Binomial Distribution
(PBD) with expectation

E [K] =
X
i

pi =

Z R

r=0

(2πrd)
“
αe−βr

2
”

dr =
παd

b

“
1− e−βR

2
”

The network’s true detection rate is then for m < E [K]

P [K ≥ m|E = 1] = 1− P [K < m|E = 1]

≥ 1− exp
`
−2(E [K]−m)2/πR2d

´
(2)

The inequality comes directly from the special case of the
Chernoff/Hoeffding bounds for the PBD tail [6].

Similarly, the probability that exactly k sensors detect
within the same amount of time from noise is

P [K = k|E = 0] =
X
A∈Fk

Y
i∈A

λit
Y
j∈Ac

(1− λjt)

λ = P [d = 1|E = 0]. Assume that all sensors have the same
noise rate λ. The false detection rate is for m > E [K]

P [K ≥ m|E = 0] ≤ exp
`
−2(E [K]−m)2/πR2d

´
= exp

 
−2

„
λdπR3

v
−m

«2

/πR2d

!
(3)

To ensure the maximum tolerable false positive rate FPR =
g ≤ 1 is not exceeded, set P [K ≥ m|E = 0] ≤ g and solve
for m

m ≥ λdπR3

v
+R

r
ln(g)dπ

2
(4)

Plugging (4) into Eq. (2), we acquire the lower bound on
TPR. Setting g = 1× 10−7 which is roughly equivalent to 1
false alarm a month, Fig. 6(b) shows how the TPR changes
as the event speed increases in a fixed size region.

Optimal integration window size. Fig. 6(c) suggests
that while keeping the speed constant, there is an optimal
integration window size, or in other words, an optimal num-
ber of sensors considered in the calculation. This result may
be counter intuitive since having more information should
always improve the detection performance. Indeed, this re-
sult is an artifact from ignoring magnitude parameter in the
Bayesian computation.

The probability pj(a) that a sensor j detects an event is
determined by the manifestation of the event a and noise qj .

P [detect = 1|E = 1] = pj(a) + qj − pj(a)q

pj(a) depends on the magnitude of the event. For a large
event, the probability of an event detection is higher for
larger window because the impact propagates over a larger
region. Likewise the probability is higher for shorter win-
dow when the magnitude is low because of the impact falls
off and the difference between the impact and noise cannot
be differentiated. An optimal integration window size can
be derived by optimizing (2) for a specific sensor layout and
magnitude. Since magnitude information can’t be assumed
a priorly, a good choice of window size is the one that opti-
mizes (2) for the minimum magnitude one wishes to detect.

4.3 Parameter Estimation Accuracy
Event parameters such as origin location and time can

be elegantly estimated with Bayes estimation theory. The
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Figure 6: (a) Sensor detection probability - comparison between the model and experimental results from
synthetic data on detection of a large event. (b) TPR lower bound for increasing event velocity R = 50,
d = 0.006, λ = 0.01. (b) TPR lower bound for increasing integration time window v = 5.5, d = 0.014 ≈ 100
sensors, λ = 0.01.

distribution of the posterior probability measures the qual-
ity of the estimates. The ”sharper” the distribution is, or
equivalently, the lower the variance of the distribution, the
more confidence we can have on the estimates. The results
presented here give a lower bound on the variance for Bayes
estimates in terms of the number of sensors, timing error,
and the speed of the event propagation.

4.3.1 Bayesian Estimation Algorithm
Given that an event has been detected, the posterior prob-

ability of event parameters can be computed with a list of
sensor detection data around the detection time. The Bayes
posterior distribution of the event origin (x) and origin time
(t) is:

P [x, t|·] ∝
nY
i=1

[1ipi + (1− 1i)(1− pi)]

1i is the indicator function. 1i = 1 when sensor i at location
si has at least one detection for the event, propagating at
speed v, in the time interval»

t+
‖si − x‖

v
− k, t+

‖si − x‖
v

+ k

–
k is the window width. pi is the probability of detection for
a sensor at distance ri from the event. pi = p(as(H)).

4.3.2 Estimate Variance Bounds
Assuming that the magnitude of the event is large enough

such that for all sensors, pi = 1, ∀i = 1, . . . , n and the detec-
tion threshold is high enough that there are no detections
due to noise, we have the following results for the variance
of location and time estimates.

Theorem 1. Under the aforementioned assumptions, the
variance of the Bayes posterior probability for event location
estimate x and event origin time estimate t is bounded below
in terms of sensor timing error (σ), number of sensors (n),
and the speed the event travel at (v).

V ar [x] ≥
r

2π

n

(4σ2 + nt2)v2

2n+3σ
(5)

V ar [t] ≥
r

2π

n

4σ2v2 + nx2

2n+3σv3
(6)

These results show that the quality of the location esti-
mate is influenced by timing error (V ar [x] ∝ σ) and how
fast the event travels (V ar [x] ∝ v2). The same factors affect
the quality of the time estimate (V ar [t] ∝ σ), but the error
in timing actually improves for fast events V ar [t] ∝ 1/v.

To prove these results, we first state the following lemma
with its proof included in the appendix.

Lemma 1. Let f(x) be the probability density function of
a Gaussian distribution N (µ, σ2). Let G(x) be the area un-
der curve of f(x) in the interval [x −mσ, x + mσ], m ≥ 0
then

G(x) =

Z x+mσ

x−mσ
f(x) dx =

Z x+mσ

x−mσ

1

σ
√

2π
e−(x−µ)2/2σ2

G(x) is bounded below and above

C e−(x−µ)2/2σ2
≤ G(x) ≤ 2 C e−(x−µ)2/4σ2

(7)

where C = m
q

2
πem

.

Proof of Theorem 1. If ti is the actual time when a
sensor i first detects the event and t̂i is the timestamp it

reports, then the timing error e = t̂i−ti ∼ N (0;σ), assuming
the error can be modeled as Gaussian. Let k(·) be the time
difference between tix0,t0 (expected sensor detection time for

an event at (x0, t0)) and tix,t (expected sensor detection time
for an event at (x, t))

k(si, x, t) = tix,t − tix0,t0 =
‖si − x‖ − ‖si − x0‖

v
+ (t− t0)

where si is the sensor location, and

0 ≤ |k| ≤ ‖x− x0‖
v

+ |t− t0| (8)

The probability that p is the detection time for an event
(x, t) is the probability that q falls between the interval
[k −mσ, k +mσ] which is a window of arbitrary width 2mσ
centered at k(·). Let’s call this probability G(k). Assuming
a uniform prior, the posterior probability is then

P [x, t|·] =
P [·|x, t] P0 [x, t]R

P [·|x, t] P0 [x, t] d(x, t)
=

1

S
P [·|x, t] =

1

S

nY
i=1

G(ki)
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Figure 7: Simulation results from 10,000 runs with 16 sensors (a) variance in Bayes location estimates (b)
variance in Bayes time estimates (c) variance in Bayes time estimates with fixed x

Without loss of generality, let x0 = (0, 0, 0), t0 = 0,
m = 1. Assuming the sensors are semi-randomly placed,
from Eq. (8), G(ki) can be approximated with G(k), k =
1
2

“
|x|
v

+ |t|
”
≥ 0.

P [x, t|·] ≈ 1

S
[G(k)]n ≥ 1

S

„
2

πe

«n
2

e
−nk

2

2σ2

The inequality comes directly from the lower bound in
Lemma 1. To simplify the notation, denote x = |x| and
t = |t|. S is the normalizing factor and can be computed by
integrating over all x ≥ 0 and t ≥ 0. Using the upper bound
in Lemma 1 and substituting k,

S =

Z ∞
0

Z ∞
0

[G(k)]n dx dt

≤
Z ∞

0

Z ∞
0

2

„
2

πe

«n
2

e
−nk

2

4σ2 dx dt =

„
2

πe

«n
2 2(n+3)σ2v

n

Substituting S and k into (9), we get

P [x, t|·] ≥ n

2(n+3)σ2v
exp

„
− n

8σ2

“x
v

+ t
”2
«

With a simple calculation, we know E
ˆ
x
v

+ t
˜

= 0. Since
x ≥ 0 and t ≥ 0, we have E [x] = 0 and E [t] = 0 as expected.
The variance of x and t can be computed as

V ar [x] = E
ˆ
x2˜− E [x]2 =

Z ∞
0

x2 P [x, t|·] dx− 0

≥ n

2(n+3)σ2v

Z ∞
0

x2 exp

„
− n

8σ2

“x
v

+ t
”2
«

dx

≥ n

2(n+3)σ2v

»
1

2

Z ∞
−∞

x2 exp

„
− n

8σ2

“x
v

+ t
”2
«

dx

–
=

r
2π

n

(4σ2 + nt2)v2

2n+3σ
(9)

The second inequality comes from the observation that the
exponential function is symmetrical and centered at a neg-
ative value. Therefore the integral from 0 to ∞ is smaller
than the integral from −∞ to 0. Similarly

V ar [t] ≥
r

2π

n

4σ2v2 + nx2

2n+3σv3
(10)

5. EVENT DETECTION WITH MULTIPLE
SERVERS IN THE CLOUD

The ability to easily utilize multiple servers is one of the
benefits of working with Cloud platforms, but it poses obsta-
cles for conventional event detection strategies. Most event
detection algorithms, including those proposed in this work,
rely on aggregated state. This does not necessitate central-
ized processing, but does require that information be shared
between disparate nodes in a processing network. That is,
computing the result of these algorithms cannot rely on in-
formation private to an individual processing node. Algo-
rithms which rely on incomplete information about the net-
work will be explored in a future work.

Our solution to the creation, retrieval, and maintenance
of shared information relies on the use of Geocell objects[7]
to separate the state needed for a given region into disparate
objects. This technique is analogous to counter sharding[8];
contention over shared state is managed by splitting that
state into related objects that can be easily aggregated. This
makes the performance for access to shared state manage-
able even under the real time processing constraints our tar-
get applications require.

A further obstacle with distributed servers is the issue of
resolving the time at which events occur. As time is a critical
component for event detection, any algorithm that operates
on the Cloud must determine how it is going to achieve an
accurate estimate of event times. In the CSN network, we
achieve this by operating a time server that all clients must
coordinate with. We then accept client times, rather than
server times, as the true time. This does not imply that
client times are always accurate; rather, it is a reflection of
the fact that we do not control the system time on Cloud
servers, and, as servers are constantly moving in and out of
usage, we cannot accurately estimate the time drift of a sin-
gle server. This is one reason why our algorithms allow for
time inconsistency. A forthcoming publication will specif-
ically address the amount of time variation we experience
and tactics for managing that error.

6. EXPERIMENTS
We carried out Monte Carlo simulation experiments for

two types of sensor distributions: (1) idealized uniform with
event initiation in the center of the network, and (2) distri-
bution according to real population distribution in South-



Figure 8: An entire simulation with a uniform sensor
distribution. Green dots mark sensor detection due
to the event; red dots mark detection due to noise.

ern California. In both sets, we assumed an isotropic event
model as discussed in Sec. 2.2 and a sensor model as in
Sec. 2.4 with a measurement-based signal attenuation model.
The detection and estimation algorithm were described in
Sec. 3.2.

6.1 Effect of Event Propagation Speed
We ran simulations with n = 16 uniform sensors in a

region of size of 100x100 km2. In each simulation, the
Bayesian posterior distribution for x and t was computed.
The average of variances across the simulations is shown
in Fig. 7 for increasing event speed v. From Fig. 7(a) and
Fig. 7(b), it is clear that the estimates are negatively af-
fected by increased sensor timing error from σ = 0.2 to
σ = 0.4 as Theorem 1 suggests. Moreover, V ar [x] grows
as v2 (Fig. 7(a)) whereas V ar [t] decreases as v for a fixed
location (Fig. 7(c)). However, the overall variance in time
estimates still grows with v since the location estimate gets
increasingly less accurate more quickly as v gets larger.

6.2 Uniform Distribution
Again with uniformly distributed sensors, simulations were

run with a variety of parameters to test the effects of differ-
ent variables. All of the simulation results discussed oper-
ated with a region size of 100x100 km2, a potential timing
error of standard deviation σ = 1 second, sensor noise rate
at 1 per 100 seconds (λ = 0.01), and an unknown randomly
chosen seismic wave speed between v = 5 − 6 km/sec. The
simulation set utilizes a uniformly distributed set of sensors
with an event initiation in the center of the region. We var-
ied the number and distribution of sensors, the strength of
the earthquake, and the size of the search space (integration
window) to find changes in the true positive rate (TPR)
and location error (LocErr, expressed in kilometers). Since
it requires a large number of simulation rums to acquire a
reliable false alarm rate (FPR), we derive them mathemat-
ically. Fig. 8 is a space-time plot that helps visualize the
sensor detections during an event.

Tab. 3 shows a subset of results from these runs. Aside

Figure 9: 1,000 sensors drawn from a basic model
based on population density in southern California.

Table 3: Uniform distribution

# Sensors M Integration Window TPR LocErr
10x10 2 2 0.90 16.0
10x10 2 4 1.00 5.0
10x10 2 6 0.97 3.0
10x10 2 8 0.62 3.5
10x10 2 10 0.09 3.3
25x25 2 2 1.00 2.0
25x25 2 4 1.00 1.4
25x25 2 6 1.00 1.2
25x25 2 8 0.97 3.5
25x25 2 10 0.02 3.6

from the first row — 100 sensors with 2-second integration
window — that has a hight FPR of 1.0 × 10−5, all other
configurations have FPR close to 0. These results show that
while the location estimates improve as the integration win-
dow size increases, the TPR decreases, but a small window
size has poor FPR performance. This was well predicted in
Sec. 4. Note that the TPR values in column 4 (highlighted
column) shows the same trend as in Fig. 6(c), as explained
in Sec. 4.2.2.

6.3 Population-Based Distribution
In this simulation set, we used a sensor distribution model

based on population density in Southern California. We then
placed the earthquake origin at the epicenter of the historic
1994 Northridge earthquake, just outside the network (illus-
trated in Fig. 9).

These simulations utilized 300 sensors in the same region
size and timing error as before, but increased the sensor
noise rate (λ = 0.1). FPR estimates were also derived for
this distribution and noise rate. The value is approximated
to be at most 1.0× 10−7 for all runs. TPR results in Tab. 4
are comparatively lower than in Tab. 3 because of the out-
of-network effect. However, the algorithm is still capable to
detect a medium size event 80% of the time with a small
number of sensors (N = 300). It should be noted that the
location errors in Tab. 4 are computed differently from those
in Tab. 3 and should not be compared together.



Table 4: Population density distribution

# Sensors M Integration Window TPR LocErr
300 4 2 0.30 0.3
300 4 4 0.81 0.8
300 4 6 0.73 0.7
300 4 8 0.21 0.2
300 4 10 0.06 1.6

7. RELATED WORK

Geospatial Event Detection. Detection of radiation
sources with sensor networks has been widely studied in
terms of theory and algorithms [9, 10, 11, 12]. While this is
a simple form of geospatial event (speed =∞), it affords in-
sight into methods of detection and estimation formulation
for geospatial events. For other classes of geospatial events,
in earthquake detection, [13] looks into the development of a
self-organizing wireless mesh information network made up
of low cost sensors, for the purpose of providing earthquake
early warning in Europe. [14] studies the feasibility of a fast
early warning system inspired by recent dense accelerometer
sensor network deployments. While the goals of fast and ac-
curate detection are similar, these works do not address the
problem with the same fidelity for a highly heterogeneous
network managed by volunteers. Similar work in geospatial
event detection includes wildfire detection using mesh net-
works [15], tsunami detection with radar arrays [16], and
flood detection and prediction [17], most of which do not
generalize to other geospatial problems.

Community and Participatory Sensing. There are a
growing number of projects that aim to take advantage of
sensors owned and operated by citizen scientists to aid in re-
search — this is facilitated by advances in, and availability
of, inexpensive sensing technology, e.g.[18, 19]. These appli-
cations stand to be benefit from greater sensor densities, but
their general aim is to monitor ongoing phenomena rather
than to detect rare events with a low false positive rate re-
quirement. [20] and [7] took the initiative by studying such
problems using more simplistic models for event and sensor
behavior that do not give sufficient accuracy or intuition for
realistic network constraints such as timing error and event
speed.

8. CONCLUSION
We describe a general model for detection of geospatial

events with realistic networks of sensors. Based on this
model, we develop robust Bayesian algorithms that can be
computed efficiently on distributed cloud servers. The algo-
rithms are supplied with theoretical analysis that bounds the
detection and parameter estimation performance in terms of
true positive rate, false alarm rate, and variance in event ini-
tiation location and time estimates. The theoretical results
are verified by simulation experiments, using seismic events
as an example, both in an idealized setting with uniform
sensor distribution and a more realistic setting with sen-
sors distributed according to population in Southern Cal-
ifornia. The results show that with only 300 sensors we
can, with good confidence, detect an event smaller than the
Northridge earthquake in 4 seconds. This would provide

ample time to warn the populace outside of the immediate
area of the epicenter.
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APPENDIX
A. PROOF OF LEMMA 1

Proof. Let F (x) be the cumulative density function of a
Gaussian distribution N (µ, σ2). Without loss of generality,
set µ = 0, then

G(x) =

Z x+mσ

x−mσ
f(x) dx

= F (x+mσ)− F (x−mσ)

=
1

2

»
erf

„
x+mσ√

2σ2

«
− erf

„
x−mσ√

2σ2

«–

The erf function doesn’t have closed form solution, however,
we can derive an upper and lower bound that has one. Take
the derivative of G(x) with respect to x, we have

G′(x) =
−1

σ
√

2πem
e
− x2

2σ2
“
e
mx
σ − e−

mx
σ

”
(11)

=
−1

σ
√

2πem
e
− x2

2σ2 g(x) (12)

First we prove the lower bound. Observe that g(x) =
“
e
mx
σ − e−

mx
σ

”
is smooth, is convex and positive ∀x ≥ 0 and concave and
negative ∀x ≤ 0, then g(x) and the line tangent to g(x) at
x = 0 is

h(x) = g′(0) x =
2m

σ
x

Note sgn(g(x)) = sgn(h(x)) and |g(x)| ≥ |h(x)|. With
this and substituting h(x) for g(x) in Eq. (12), we get a new
function

H ′(x) =
−1

σ
√

2πem
e
− x2

2σ2

„
2m

σ
x

«
=
−m
σ2

r
2

πem
x e
− x2

2σ2

and ˛̨
G′(x)

˛̨
≥
˛̨
H ′(x)

˛̨
(13)

Integrating H ′(x), we get

H(x) =

Z
H ′(x) dx = m

r
2

πem
e
− x2

2σ2

Observe that sgn(G(x)) = sgn(H(x)), then it follows from
Eq. (13) that

G(x) ≥ H(x) = m

r
2

πem
e
− (x−µ)2

2σ2

Similarly we prove the upper bound. Rewriting Eq. (11)

G′(x) =
−1

σ
√

2πem
e
− x2

4σ2

»
e
− x2

4σ2
“
emx/σ − e−mx/σ

”–
=

−1

σ
√

2πem
e
− x2

4σ2 g(x) (14)

Observe that g(x) is smooth, g(−x) = −g(x), limx→−∞ g(x) =
limx→∞ g(x) = 0. For x ≥ 0, g(x) is first concave then con-
vex, then the line tangent to g(x) at x = 0 is

h(x) = g′(0) x =
2m

σ
x

Note sgn(g(x)) = sgn(h(x)) and |g(x)| ≤ |h(x)|. With
this and substituting h(x) for g(x) in Eq. (14), we get a new
function

H ′(x) =
−1

σ
√

2πem
e
− x2

4σ2

„
2m

σ
x

«
=
−m
σ2

r
2

πem
x e
− x2

4σ2

Integrating H ′(x), we get

H(x) =

Z
H ′(x) dx = 2m

r
2

πem
e
− x2

4σ2

Observe that sgn(G(x)) = sgn(H(x)) and since |G′(x)| ≤
|H ′(x)|, we have

G(x) ≤ H(x) = 2m

r
2

πem
e
− (x−µ)2

4σ2
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