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Abstract

We present a method based on statistical properties of local image neighbourhoods
for the location of text in real-scene images. This has applications in robot vision,
and desktop and wearable computing. The statistical measures we describe extract
properties of the image which characterise text, invariant to a large degree to the
orientation, scale or colour of the text in the scene. The measures are employed by
a neural network to classify regions of an image as text or non-text. We thus avoid
the use of different thresholds for the various situations we expect, including when
text is too small to read, or when the text plane is not fronto-parallel to the camera.
We briefly discuss applications and the possibility of recovery of the text for optical
character recognition.

1 Introduction

Automatic location and digitisation of text in arbitrary scenes, where the text may or may
not be fronto-parallel to the viewing plane, is an area of computer vision which has not
yet been extensively researched. The problems involved are to first locate the text, then
align it correctly to obtain a fronto-parallel view, and finally pass it to an OCR system or
a human observer for higher level interpretation. In this paper we are concerned with the
first stage of this task.

The research into retrieval of text from 3D scenes has applications for navigating
robots that need to gain information from the text in their surroundings, replacing the
document scanner with a point and click camera, as an aid for the visually impaired,
general Wearable Computing tasks benefiting from knowledge of local text, and other
automated tasks requiring the ability to read where it is not possible to use a scanner.

A major area of recognition of text in non-fronto-parallel views is number plate recog-
nition. Cui et al. [4] initially locate a licence-plate in an image using the assumptions that
the plate is black-on-white, and has high horizontal spatial variance. They then track
features of the plate’s characters over a sequence of images and use this to correct the
plate’s perspective distortion. Barroso et al. [1] locate the number plate by examining the
troughs and peaks in horizontal cross-sections of the image. They segment the characters
using projection profiles. In most examples of this application area much of the activity is
based around useful constraints and assumptions of the orientation of the text, its colour
and approximate size.

In other related work, Messelodi and Modena [7] extract lines of text of unknown
orientation from images of book covers. They initially threshold the image and then apply
a heuristic filter to the resulting binary regions to reject those not associated with text. The






image is then repeatedly split until separate paragraphs are found. The orientation of each
paragraph is estimated by finding the projection profile with the minimum entropy, and
this is used to separate text lines. Their approach works well but the text being examined
was on a fronto-parallel plane to the camera. The projection profile may not perform so
well on text under a perspective transformation. Wu et al. [8] useK-means clustering of
the average local energy of an image’s derivatives to differentiate the text regions from
the rest of the image. This is performed for three different sizes of Gaussian derivative
filters at different angles to find text of different size and orientation. In their experiments,
all image pixels were classified into one ofK = 3 segments. Their further processing to
identify the text strings within this segment is dependent on the assumption that the text
is orientated horizontally in the image (in other words, not skewed or rotated). Li et al.
[6] use different moments of wavelet data applied at different resolutions and classified
using a neural network to locate text such as film credits and overlaid text, and also some
fronto-parallel horizontal text embedded in the original scene. Chen and Chen [2] made
some interesting observations when they tried to differentiate text regions from graphics
on journal covers. They found that across a text region there is a low variance in the
”spatial density”, i.e. the ratio of text to background pixels. This is due to the even
spacing of text, and the fact that most characters have a similar ratio of their area to the
amount of space they take up. They noted that the distribution of edge angles in a text
region has peaks at0� and90�, due to the large number of horizontal and vertical edges
that appear in characters.

The research mentioned above are amongst many other examples which assume the
text to be face-on in the image, usually a scanned document. Much of the body of work on
text identification for document processing is not applicable to images of the real world.
In our work we wish to locate text which is at an orientation to the camera, and embedded
in a real-world scene. The camera may be hand-held or be positioned on the body in
the context of wearable computing. In [3] we presented a method to locate as well as
recover the fronto-parallel view of all regions of text in the image by first extracting local
information such as page borders and edges around text. While this method provided
good results, the edge extraction and line finding stages of the proposed technique relied
on thresholds that can vary from one scenario to another. The main assumption in [3] is
that each document in the scene has borders to be recovered. However, some documents
may be overlaid or their edges may not contrast well enough against their background to
provide the required rectangular frame. Here, we therefore report on an alternative method
to locate regions of text which eliminates such problems and which is based around the
local image statistics. We combine a number of locally performed measures and use a
neural network to classify the text regions. As part of future work, we plan to use the
characteristics of each text region to first locate its plane’s vanishing points, and then
project the region on the plane on which the text lies, to create a fronto-parallel view.

In this paper, the focus is on the location of a wide range of text, from single words
and lines of text to larger paragraphs and blocks. As well as highly visible text, we also
desire recognition of any text which may not be readable due to being too small in the
image, or at too extreme an angle to the camera. This could facilitate an autonomous
robot to decide to move into a suitable position to read the text, or a computer controlled
camera (wearable or otherwise) which can zoom in on the text in order to read it. The
advantage this approach gives these applications is that the resolution of the camera may
be minimised.






2 Statistical Measures

We wish to locate all regions of text in greylevel images of real-world scenes, under vari-
able lighting conditions. The human visual system can quickly identify text-like regions
without having to examine individual characters, even when the text is too far away to
read. This is because text has textural properties that differentiate it from most of the rest
of a scene. We now present five statistical measures geared towards identifying specific
properties of visible text that can differentiate it from most other parts of an image. The
measuresMs; s 2 f1::5g will be applied to each input image and a neural network will
use them to determine likely text-regions in the image.

Each of the statistical measures considered here responds differently to different prop-
erties of text. The measuresMs are engaged in small neighbourhoods across the image.
For each measure a new image is generated where each pixel in the new image repre-
sents the result of the measurement applied to the neighbourhood of the corresponding
pixel in the original image. The values chosen for the radii of the neighbourhood masks
employed vary for each measure and are discussed later. Figure 1(a) will be used as a
running example to illustrate the application of each measure.
Measure M1: The variance of the greylevel histogramH over a circular neighbourhood

of radius3 (total areaN = 29 pixels) at each pixel is used as a measure of how much
local information there is:

M1 =

NX

i=1

(H(i)� �H)2 (1)

where �H is the mean intensity of histogramH . We are interested in areas of medium
variance since text has information, but small and medium scale text undergoes alias-
ing at the boundaries where text and background greylevels mix, which results in
regions of not vastly contrasting intensities. High variance regions generally indicate
extreme high frequency changes, such as a single sharp edge. A visualisation of the
output of this measure is shown in Figure 1(b).

Measure M2: Text regions have a high density of edges. This density is measured in a
circular neighbourhood of radius6 centred at each pixel by summing all edge mag-
nitudes located with a Sobel filter:

M2 =

MX

i=1

E(i) (2)

whereE(i) is the edge magnitude at pixeli, andM = 113 is the number of pixels
in the window. Although this measure is similar to the variance of measureM1, the
visualisation shown in Figure 1(c) demonstrates that it is more invariant to changes
in lighting (that can be seen in Figure 1(a)).

Measure M3: Chen and Chen’s [2] continuous spatial density assumption (given a flat-
bed scanner view of a document) states that the ratio of text to non-text intensity
greylevels should not vary greatly as we pass over a text region. We apply this prin-
ciple and hypothesise that that there will be only a small change in local greylevel
histograms across a text region (the histograms computed for measureM1 are reused
here). The distance between histogramH and its eight-connected neighbouring his-
togramsGi is computed as:






(a) Original image (b) MeasureM1 output

(c) MeasureM2 output (d) MeasureM3 output

(e) MeasureM4 output (f) MeasureM5 output

Figure 1: Example image and visualisation of the results of applying each of the five
statistical measures.






M3 =

8X

i=1

BX

j=1

(H(j)�Gi(j))
2 (3)

whereB is the number of histogram bins. By evaluating the difference between one
region and its neighbours, the stability of the spatial density is found. The measure
produces results like those in Figure 1(d) which shows little change across the text
regions.

Measure M4: In high resolution images one expects to find a high number of edges in
a text region, and the angles of the edges to be well distributed due to the presence
of curves on many characters. However, this will not be the case at low resolution,
where individual characters merge and edges follow the tops and bottoms of text
lines. Figure 2 shows the distribution of edge angles in the large text region of Figure
1(a). The angle of an edge is determined by the direction of the gradient of the image
at that pixel. We observe that there is a tendency for the magnitude of edges in one
direction to be matched by edges in the opposite direction of equal magnitude. More
specifically, each edge of a character is likely to be accompanied by an edge in the
opposite direction, found on the opposite side of the text character or stroke. We draw
the hypothesis that over a text region the histogram of the edge angles has rotational
symmetry. Hence,M4 is a measure of the strength ofasymmetryusing a localised
edge angle histogram,A:

M4 =
1

E

�X

�=0

(A(�) �A(� + �))2 (4)

whereA(�) is the total magnitude of edges in direction�, andE is the overall edge
magnitude which normalises the result.� is incremented in steps of�

8
which was

found to be an adequate resolution. This is performed across the image in a circular
neighbourhood of radius16 centred at each pixel. The image in Figure 1(e) illustrates
the results of applying measureM4. It responds well at strong edges such as page
borders and other non-text image structures due to the bias of edges in one direction.
Text areas, on the other hand, have a very low strength outcome.

Figure 2: Histogram of edge angle values between0� � 360� for the large text region
from Figure 1, shown here on the right.






Measure M5: As well as cancelling well, we also expect edges in a text region to be
well distributed. The first four measures respond in the same way to straight image
features as to coarse or curved features. This measure is employed to reject those
areas of the image with tight distributions of edges corresponding to straight ramps,
canals or ridges in the image. It examines how evenly spread the edge magnitudes
areover all the directions:

M5 =

2�X

�=0

(A(�) � �A)2 (5)

where �A is the average magnitude of all the directions. If this measure returns a
large value, then there is a large variance in the edge magnitudes in different orienta-
tions, suggesting a dominant orientation. Since text has a coarse or curved perimeter,
large responses suggest that the region under examination is not text. We can see
in Figure 1(f) how this measure has responded well to the straight lines in the origi-
nal image. This allows our proposed method to drop regions that otherwise may be
regarded by the other measures as containing text.

3 Characteristics of the Measures

None of the measuresMs; s 2 f1::5g uniquely identifies a text region. Each one also
responds to some non-text areas of the image. The measures are designed to complement
each other, so that incorrect decisions by one of them can be corrected by others. In
Section 4 it will be shown how the measures are combined to classify text regions.

Circular masks are employed for generating the histograms, finding means and search-
ing for edges. The radii of these masks are important. If they are too small then text
regions may be broken up where there are gaps between words and paragraphs. If they
are too large, different text regions may overlap, small text regions may be missed, and
processing time is wasted. The different measures also operate with different mask sizes.
For example, measureM4 requires a larger area of the image than the other measures
because it is sensitive to overlapping one half of a text line. The optimum size of the
masks depends on the size of the text we are looking for. Multiresolution methods (per-
forming processing at different scales) such as in [8] offer one solution to this problem.
Alternatively, to scan at a higher or lower scale we can change the size of our masks. For
the experiments reported here the radii were determined empirically to work for medium
sized text in the image and are kept constant for all the images used. However, the train-
ing presented in the next section was applied for all scales of text, and our results reflect
reasonable recognition across a wide range of text sizes.

4 Combining Measures

The outputs of the five measures can be thresholded and then combined with a boolean
AND operation to produce a new image with all the text regions classified. This is not
a stable approach due to variation in the measure caused by scene properties such as
illumination, and also due to the loss of information caused by considering each measure
separately. It is also preferable to avoid the use of thresholds. Instead, we have introduced






a three-layer neural network to use the data from all of the measures simultaneously and
make a classification based on the combination of measure values for each pixel. The five
measures are provided as inputs to the network, and the final result is a total classification
of the image into text and non-text regions.

The measures are normalised before input to the network to have zero mean and stan-
dard deviation of 1. This avoids the network having to learn the different distributions of
values for each measure. Five nodes are provided in the hidden layer to find consistencies
and relationships in the distribution of the measures. The network has two output nodes,
which compete to classify a pixel as text or non-text. We trained the network by taking
measures from200 positive (text) and200 negative (non-text) regions from each of11
hand-labelled images resulting in4400 training patterns. The size of text in the training
images ranged from large text to text that is too small to read but still recognisable to a
human, such as the text in the example image in Figure 1(a). The desired outputs were
given as probabilitiesf1:0; 0:0g for a text region, andf0:0; 1:0g for a non-text region.
Learning was performed using a standard back-propagation algorithm for300 iterations.
During testing, each image is scanned using the circular windows. The measures for each
pixel are put into the neural network, and each output node returns a probability value. We
subtract the non-text probability from the text probability to get a value ranging between
�1:0 for non-text to+1:0 for text, visualised in Figure 3(a). This result is then smoothed
over the local neighbourhood to gain a local consensus (Figure 3(b)), and thresholded at
0:0 to yield the final text or non-text classification (Figure 3(c)).

(a) Neural network output visualisa-
tion

(b) Smoothed probability to take a lo-
cal consensus

(c) Final located text regions

Figure 3: Output from the neural network and final classification.






Figure 4: More example images and their located text.

The statistical measures point out areas of the image which are likely to contain text
(regions with significant variance), whilst rejecting other areas which cannot contain text
due to properties such as an asymmetrical distribution of edges, or over-tightly distributed
edge angles. In Figure 3(c) parts of the keyboard region have been picked up as text.
This is because the texture of the keyboard has caused the five measures to respond in
a similar way to the texture of text. Since the network attempts to deal with all sizes of
text simultaneously, it may be confusing the keyboard region with an area of very poor
resolution text. In general, the network will often fail to exclude some regions which are
not text. While this is an effect we would like to minimise, we prefer to suffer some false
positives which can be rejected at a higher level processing stage, rather than miss out
any true text regions. Unfortunately, some of the text on the page under the main sheet of
paper has not been picked up. It would however be detected in the following frames of
the sequence either as the viewer moves into a better viewing angle or gets closer for the
size of the text to increase slightly.

Some more classified images are shown in Figures 4 and 5 with the latter containing
selected frames from a sequence. It can be seen from the first image in the sequence
in Figure 5 that the classification is less accurate at a distance. Although measureM5

recognises some straight lines on the filing cabinet, the neural network’s training on low
resolution text suggests that that region of the image could be a very small text line. As the
camera moves closer however, the obvious sharpness of the cabinet’s edge becomes more
apparent, because there are more edge pixels to support that hypothesis. This causes the
response of measureM5 to increase, until it outweighs that of the others, and the network
classifies the region as non-text.

For the results shown here, we have thresholded the neural network’s output to pro-
duce a true/false classification. However, it may be preferable to consider the output as a
probability that a region contains text. This corresponds with our own judgement when






perceiving text at a distance. With some of the low-resolution text in our images, even
a human cannot tell for sure whether a region of the image actually contains text or just
something which appears to be text-like from a distance. In some applications, we may
wish to take into account the probabilities as an indicator of which regions are most likely
to contain text. This would allow further processing of the image to start with the most
favourable regions.

The correct identification of text of an unknown size, including text which is unread-
able, is difficult for any algorithm to verify. In fact, we can only ever hope to retrieve a
probability that a distant surface contains text. However, at recognisable scales, it may
be possible to estimate the size of text from simple image features (under the assumption
that text is present) and use this information to guide the network. If text is present, and
the estimated scale correct, the measures should be able to make an accurate conclusion.
If there is no text, the estimated scale will be irrelevant, and it will be unlikely for the
measures to support the hypothesis for text of that size.

Figure 5: Some results from a sequence of images with the viewer approaching a poster.






5 Conclusions and Future Work

We presented a novel method of finding text regions in images where the document is
not aligned on a plane fronto-parallel to the camera view, and the size and greylevel
of the text is unknown. Five complementary local pixel neighbourhood measures were
introduced. These were fed as input features into a neural network to classify pixels as
text. By focusing attention on text regions we can direct higher level processing steps
more efficiently. We have avoided the use of thresholds and the parameters we employ,
such as circular masks radii, are kept constant throughout. From the results in Figures 4
and 5 it can be seen that small, medium, and large text can be detected in the image. In
the future we would like to provide a more detailed analysis of the performance of the
technique.

In order to digitise the located text, we need to remove the perspective effects of
the text plane and recover a fronto-parallel view of it in readiness for an OCR system.
Our perceived method would initially segment paragraphs and lines of text in each local
text region, as in [5] or [7]. Once a paragraph has been robustly segmented, its horizontal
vanishing point can be calculated as the intersection of the separate lines in the paragraph,
and its vertical vanishing points can be calculated either from the paragraph’s margins or
from the spacing between adjacent lines. With estimates for the vanishing points, we
can then recover a face-on view of the paragraph which would be suitable for digitisation
by OCR. We are also investigating the use of an active camera which can zoom in on
interesting regions for more detailed analysis.
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