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ABSTRACT

In this paper, we design techniques that exploit data cor-
relations in sensor data to minimize communication costs
(and hence, energy costs) incurred during data gathering in
a sensor network.  Our proposed approach is to select a
small subset of sensor nodes that may be sufficient to re-
construct data for the entire sensor network. Then, during
data gathering only the selected sensors need to be involved
in communication. The selected set of sensors must also
be connected, since they need to relay data to the data-
gathering node. We define the problem of selecting such
a set of sensors as the connected correlation-dominating set
problem, and formulate it in terms of an appropriately de-
fined correlation structure that captures general data corre-
lations in a sensor network.

We develop a set of energy-efficient distributed algorithms
and competitive centralized heuristics to select a connected
correlation-dominating set of small size. The designed dis-
tributed algorithms can be implemented in an asynchronous
communication model, and can tolerate message losses. We
also design an exponential (but non-exhaustive) centralized
approximation algorithm that returns a solution within
O(logn) of the optimal size. Based on the approximation
algorithm, we design a class of efficient centralized heuris-
tics that are empirically shown to return near-optimal so-
lutions. Simulation results over randomly generated sensor
networks with both artificially and naturally generated data
sets demonstrate the efficiency of the designed algorithms
and the viability of our technique — even in dynamic condi-
tions.
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1. INTRODUCTION

Sensor nodes in a wireless sensor network must be pow-
ered by small batteries, making energy efficiency a critical
design goal. In this article, we focus on designing tech-
niques to conserve energy by exploiting existing data cor-
relations, typically that exist in a dense, highly redundant
sensor network. Our targeted applications are those that
need to sense or sample a signal over the geographic region
represented by the sensor network. Such sensor network
applications have two types of nodes: sensing nodes and
data-gathering nodes [6]. The data-gathering node gathers
periodic snapshots of signal data values measured at the in-
dividual sensors and use interpolation to derive the signal
value at all points in the geographic region. We exploit the
correlations in the sensor data by selecting a small subset
of sensor nodes called connected correlation-dominating set
which forms a connected communication graph and whose
signal data values are sufficient to derive the signal value at
all points with sufficient accuracy. In this article, we de-
sign a correlation structure that captures general data cor-
relation relationships among sensor nodes in a sensor net-
work, and formulate the connected correlation-dominating
set problem in terms of a hypergraph describing the corre-
lation structure. We design various distributed and central-
ized algorithms for computing a small connected correlation-
dominating set. Using extensive simulations on artificially
and naturally generated data, we show that the energy sav-
ings achieved by the above described approach is substantial.

Our work is complementary to the approaches that use
compression techniques to exploit correlation in order to re-
duce the total amount of data transmitted [6, 8,9, 22, 27].
These techniques still require all sensor nodes to transmit
their data. Interestingly, [22] shows that compression schem-
es are of limited use for very dense sensor networks. In
particular, [22] shows that any compression scheme is in-
sufficient to transport required amount of data for a given
accuracy, when the density of the sensor network increases
to infinity. A necessary fallout of this thesis is that “over-
sampling” beyond network capacity is possible for a suffi-
ciently dense sensor network, and the only way to prevent
this would be to suppress data transmission by some nodes.
This provides credence to approaches such as ours that se-
lect only a subset of sensors for data transmission.

The rest of the paper is organized as follows. In the next
section, we motivate and formally define the problem of con-
nected correlation-dominating set. In the following two sec-
tions, we present the designed distributed and centralized
algorithms respectively. Section 5 presents our simulation



results. We end with sections on related work and conclu-
sions.

2. MOTIVATION AND PROBLEM FORM U-
LATION

In this section, we motivate the problem addressed in the
article through an application and an example, and give a
formal definition of the problem. We start with presenting
our sensor network model.

A sensor network consists of a large number of sensors
distributed randomly in a geographical region. Each sensor
has a unique ID, and a radio interface, which is used to
communicate directly with some of the sensors around it.
A sensor s is said to be correlated to a set of sensors S if
the data measured by s can be inferred/computed from the
data measured by the sensors of S within an acceptable error
bound as defined by the application. Such correlations can
be discovered by prior data analysis (as described later).

2.1 Motivating Application and Example

In this article, we focus on data-gathering applications [6],
where data-gathering nodes are responsible for gathering
periodic snapshots of sensor data of interest. All sensor
nodes transmit their measured data of interest to the data-
gathering node upon being queried. The focus of this article
is to exploit inherent data correlations and reduce the num-
ber of sensors that need to transmit data. For example, if a
sensor s is correlated to a set of sensors S and each sensor in
S is transmitting its data to the data-gathering node, then s
need not transmit its data to the data-gathering node. Such
suppression of transmissions enables gathering of snapshots
with lower communication without compromising much on
the data quality.

Our article addresses the following optimization problem
(formally defined later) that arises in sensor networks with
data correlations. Given a sensor network, select a minimum
set of sensors M, called connected correlation-dominating
set, such that (a) each sensor that is not in M is corre-
lated to a subset of sensors in M, and (b) the selected set of
sensors M forms a connected communication graph. The
requirement for connectivity in the communication graph is
due to the fact that the selected sensor set needs to collec-
tively relay data to the data-gathering node.

It is conceivable that if the sensor data values are rich in
correlations, then |M| could be very small compared to n,
the total number of nodes in the sensor network. To develop
a complete technique based on the above idea, we need to
first discover correlations in the sensor data, and then, ex-
ploit the data correlations effectively to select a small set
of sensors M that forms a connected communication graph
and is sufficient to infer data of all the n sensors in the
sensor network. The data is relayed to the data-gathering
node over a communication tree spanning over M using one
message per node per snapshot. Now, if the application
is required to gather ¢ snapshots, and D is the total en-
ergy cost incurred by a distributed algorithm for computing
the set M, then the condition (D + g|M]) < gn would en-
sure overall energy cost savings. Moreover, a small D (low
energy-cost of the distributed algorithm), large ¢ (long run-
ning data-gathering queries), and n >> | M| (high degree of
data correlation and good solution quality of the algorithm)
will ensure D << g(n — |M|) and hence, significant overall

Figure 1: Connected Correlation-Dominating Set
Problem.

energy savings.

EXAMPLE 1. Consider the sensor network in Figure 1.
The sensor network region has been divided into five regions
numbered 1 to 5. Each region is shaded differently and has
highly correlated signal values. Thus, sensors in the same
region are measuring very similar signal data values. Let us
assume that the data correlations between the sensor nodes
can be represented by a simple rule: for a given region, any
two sensor data values are sufficient to infer the data values
of all other sensors in the region. This correlation structure
could be represented by a correlation hypergraph where ev-
ery sensor node s has a hyperedge ((s;, s;), s) incident on it
for every pair of sensors nodes s; and s; that belong to the
same region as S.

Let M be the set of dark nodes in the figure. Following
the above mentioned data correlation rule, it is easy to see
that the sensors in M are sufficient to infer the signal data
of all the sensors in the sensor network, as M contains at
least two nodes from every region. Since, the set M also
forms a connected communication graph, it is a connected
correlation-dominating set. Note that M contains 4 nodes
from region 3 to ensure connectivity even though only 2 are
sufficient to infer all others in the region. In this exam-
ple, the total number of sensors is 30, while the size of the
connected correlation-dominating set is only 12. |

2.2 Formal Problem Definition

We now formally define the connected correlation-domin-
ating set problem addressed in this article. We start with a
few definitions.

DEFINITION 1. (Communication Graph; Communication
Distance) Given a sensor network consisting of a set of sen-
sors I, the communication graph for the sensor network is
the undirected graph CG with I as the set of vertices and
an edge between any two sensors if they can communicate
directly with each other. The communication subgraph in-
duced by a set of sensors M is the subgraph of CG involving
only the vertices/sensors in M.

The communication distance between two sensors I; and
I, is the length of the shortest path between I; and I> in
the communication graph. O

DEFINITION 2. (Correlation Graph; Correlation Neigh-
bors) Given a sensor network consisting of a set of sensors
I, the correlation graph over the sensor nodes is a directed
hypergraph with I as the set of vertices, and a subset of
(P(I) x I) as the set of directed hyperedges, where P(I) is
the power set of I. In other words, the correlation graph



is a hypergraph G(V =1,E C (P(I) x I)). An edge (S, s)
(where s ¢ S) in the correlation graph signifies that the sen-
sor data of the node s is correlated to the data of the set of
sensors S and hence, the data of s can be computed (within
some' error bound) from the data of the sensors in S. The
correlation graph for the sensor network in Example 1 will
have a hyperedge ((s;,s;),sr) for any three sensors s;, sj,
and si that belong to the same region (1 to 5).

A hyperedge in the correlation graph is also referred to as
correlation edge. In a correlation edge (S,s), s is the sink
node, S is the source set, and for any x € S, s and z are
called correlation neighbors. We assume that in a hyperedge

(S,s),s¢S. 0

DEFINITION 3. (Connected Correlation-Dominating Set)
Consider a sensor network consisting of n sensors. Let C
be the correlation graph over the sensor nodes in the net-
work. A set of sensors M is called a connected correlation-
dominating set if the following two conditions hold:

1. For each sensor node s ¢ M, there is a set of sensors
S C M such that (S, s) is a correlation edge in C.

2. The communication subgraph induced by M is con-
nected.

A set of sensors that satisfies only the first condition is called
a correlation-dominating set in the network. a

Connected Correlation-Dominating Set Problem:

Given a sensor network and a correlation graph over the
sensors, the connected correlation-dominating set problem
is to find the smallest connected correlation-dominating set.

The connected correlation-dominating set problem is NP-
hard as the less general minimum dominating set problem
is well known to be NP-hard [16]. Constructing a minimum
connected correlation-dominating set enables an energy- effi-
cient gathering of sensor data of interest in a sensor network
with data correlations.

2.3 Distributed Computation of Correlation
Graph

In this subsection, we briefly describe how the correlation
graph of a sensor network is constructed by piggybacking ad-
ditional messages over the normal data-gathering messages,
and adding correlation hyperedges. We start with describing
when a correlation edge is added, and how are the associated
correlation parameters computed.

Computing Correlation Hyperedge Parameters. We
use the least squares (LS) approach to determine existence
of a hyperedge. In particular, we draw a hyperedge (S, s)
from a set of nodes S to a node s, if the data readings of
sensor s can be inferred from the readings of sensors in S
within a certain bound. Let z[k] and z'[k] denote the actual
and predicted values of a sensor z at k" time instant. Let
S = {s1,82,...,51}. We choose to use a linear predictive
model to model the correlation, i.e., we draw a hyperedge

!The choice of error bound depends on the accuracy and
energy-efficiency requirements of the application. If the er-
ror bound allowed is higher, the correlation graph will have
more number of correlation edges, which will result in a more
energy-efficient solution.

(S, s) if s'[k] can be represented as a linear combination of
si[k], s2[k], ..., si[k] for all k. More formally,

s'Tk] =) csilk],

where a; are weighting coefficients. The above equation can
be easily generalized to handle temporal correlations as well.
A similar model has been used to model correlation in prior
work [6]. We use the LS approach to minimize the error
between the predicted and actual readings, and draw an
hyperedge (5, s) if the minimum error is within a certain
application-dependent bound. In particular, the weighted
coefficients are chosen to minimize the least square error

K

E(@) = ) (s[k]—s'[k])? (1)

k=1
where K is the number of samples, and the weighted coeffi-
cients are given [6,20] by

[1,az,...,a.]" = (S7S) 'STs. (2)

Here, s = [s[1], 5[2], ..., s[K]]” are the actual readings of the
node s, and S is the K x L (K > L) matrix of full rank L
representing the actual readings of sensors in S, over time
instants 1 to K. Equation (2) can be executed on an individ-
ual sensor node within affordable energy cost for reasonable
values of K and L, and the energy cost expended in com-
puting Equation (2) is proportional to K2LS. For instance,
for L = 3 and K = 5, some profiling shows that the above
matrix equation uses around 100,000 CPU instructions on
Atmel 128L micro-controller used in Berkeley motes [19]. In
addition, from power profiling data in [26], we can estimate
that energy used is transmitting a single default-sized (30
bytes) message on TinyOS [10] at the maximum power is the
same as that used in computation the above Equation (2) 6
times.

Computing Correlation Graph. Let N(s,d) denote the
set of d-hop neighbors of s in the communication graph of the
sensor network. To compute all the correlation edges a node
s is involved in, each node s in the sensor network should col-
lect sufficient samples from nodes in N(s,d), where d is suffi-
ciently large to capture all data correlations. Initially, when
the correlation structure in unknown, all the network nodes
are periodically involved in transmitting data to the data-
gathering node using a communication tree. To computed
correlation graph, we can collect d-hop neighbors’ data at
each node by piggybacking over data-gathering messages for
d snapshots as follows. Let us assume that each node has col-
lected data from all i-hop neighbors after ¢ snapshots. The
inductive step is as follows. During the (i + 1)* snapshot,
when a node v is transmitting the data-gathering message
to its parent, it (i) piggybacks the i-hop neighbors’ data it
has already collected, and (ii) instead of unicast transmis-
sion uses a broadcast transmission. Thus, all of v’s 1-hop
neighbors receive v’s i-hop neighbors’ data. Since, the above
piggybacking is also done by all the 1-hop neighbors of v dur-
ing the i** snapshot, the node v would have collected i-hop
neighbors’ data of all its 1-hop neighbors which is equivalent
to data from all its (¢ + 1)-hop neighbors. As data correla-
tions in sensor networks are spatially local, a low value of d
is sufficient to capture all data correlations. Hence, the size
of above piggyback messages will be bounded.
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Figure 2: Condition for marking deleted of a node
s. The condition C2 involves communication edges,
while C3 and C4 involve correlation edges.

3. ENERGY-EFFICIENT DISTRIBUTEDAL-

GORITHM

In this section, we present a set of energy-efficient dis-
tributed algorithms to select a connected correlation-domin-
ating set in a sensor network. We start with a description
of the basic distributed algorithm. In the later paragraphs,
we will optimize the basic algorithm further to develop two
distributed algorithms viz. 2-Rounds and Handshake algo-
rithms.

Basic Distributed Algorithm. The basic distributed al-
gorithm works as follows. Initially, each node assigns itself a
priority, which could be its own ID or an appropriately cho-
sen number (as described later). Next, each node collects k-
hop neighborhood information, i.e., information about com-
munication neighbors of all nodes that are within a commu-
nication distance of K — 1. Here, k is a small constant; we
chose k = 3 for our simulations. The neighborhood infor-
mation can be gathered during the data-gathering process
using the piggyback strategy described in the previous sec-
tion. In the remaining part of the algorithm, each node pe-
riodically tests for a set of conditions to be satisfied. If the
conditions are satisfied, the node marks itself deleted and
instructs some of its correlation neighbors to mark them-
selves selected. The selected marking on a node signifies
that it is being used to infer another node and hence, should
not be marked deleted in future. The deleted or selected
marking of a node is permanent and in the end, some of the
nodes may be left unmarked. If the communication graph
of the initial sensor network is connected, the set of nodes
that have not been marked deleted at any stage form a con-
nected correlation-dominating set. The data-gathering node
of the sensor network marks itself as selected initially, since
it must be part of the connected correlation-dominating set.

Conditions for marking deleted. Informally, a node is
marked deleted if: (i) it can be inferred (using a correlation
edge) from a set of non-deleted nodes, and (ii) its deletion
preserves the connectivity of the communication subgraph
induced over the non-deleted nodes. Priorities are used to
avoid cyclic dependency of conditions. = More formally, a
node s with priority p(s) is marked deleted if the following
conditions are satisfied (see Figure 2):

C1: The node s has not been marked selected.

C2: In the communication subgraph induced over the set
of non-deleted nodes and using only the k-hop neigh-
borhood information, every pair of neighbors (u,v) of
s are connected by a communication path wherein all
the intermediate nodes have a priority less than p(s).
This condition ensures that deletion of s will preserve
the connectivity of the communication subgraph in-
duced by the set of nodes not marked deleted.?

C3: There is a correlation edge (S,s) in the correlation
graph, such that every node in the set S is either
marked selected or has a priority less than p(s).2
This condition selects a set of nodes (S) that can be
used to infer s through a correlation edge.

C4: For every correlation edge (R,r) where s € R, either
r is marked deleted or is marked selected or has a
priority less than p(s). This condition is to ensure that
the set of nodes in R are not being chosen for selected
markings by the node r at the same time.

When a node s is marked deleted, the nodes in a source

set S that satisfy the C3 condition are instructed by s to
mark themselves selected. A node already marked select-
ed can be used to infer other nodes without comparison of
priorities.
Termination. The selected or deleted markings of a
node are permanent, and hence, the distributed algorithms
discussed in this section are guaranteed to terminate. At any
intermediate stage of the algorithm, the set of non-deleted
nodes forms a connected correlation-dominating set. Thus,
any intermediate solution is usable by an application, and it
may not be critical to explicitly detect termination of the al-
gorithm. If required, the algorithm can be considered termi-
nated after sufficient time (message latency times the upper
bound on the number of messages) has elapsed. The upper
bound on the number of messages is derived later.

Communication Messages. Let d be the maximum com-
munication distance between two correlation neighbors. Ini-
tially, each node needs to gather k-hop neighborhood infor-
mation and priorities of its correlation neighbors, where k is
the constant in condition C2. After the initial accumulation
of information from close neighbors, additional communica-
tion is incurred by the algorithm whenever a node marks
itself deleted or selected. In particular, when a node s is
marked deleted or selected, the following communication
steps are executed.

1. Node s informs its correlation neighbors of its deleted
status, so that they could retest their C4 condition. In
the same! message, node s also instructs nodes of a
source set S that satisfies C3 condition to mark them-
selves selected.

2. Node s informs its communication neighbors of its del-
eted status, so that they could retest their C2 condi-
tion.’

*Wu et al. in [28] use a similar condition for computing a
connected dominating set.

*Note that by virtue of the next C4 condition, no node in S
could be marked deleted.

*If we use different messages, then we need to worry about
the possibility of only the deleted message reaching a node
in S. See proof of Theorem 1.

Note that an unsatisfied C2 condition of a node can become



3. Node s informs its correlation neighbors of its selected
status, so that they could retest their C3 and C4 con-
ditions.

In the following theorem, we prove the correctness of the
basic distributed algorithm, which is unaffected by mes-
sage losses.  Also, the distributed algorithms designed in
this section do not require any synchrony in the underlying
communication model and can be easily implemented in an
asynchronous system.

THEOREM 1. The above described basic distributed algo-
rithm correctly computes a connected correlation-dominating
set, even if there are message losses.

Proof: (sketch) We start with observing that a node s
marks itself deleted based upon its condition C1-C4 being
true at some point of time. Below, we will show that irre-
spective of any additional messages being received, the set
of such deleted nodes do not disconnect the sensor network,
and that each such deleted node s can always be inferred by
a set of non-deleted nodes S. Thus, proving the correctness
of the algorithm even in the presence of message losses.

First, we show that the removal of nodes that are marked
deleted does not disconnect the original communication
graph of the sensor network. It is easy to see that removal
of any single node s that satisfies the C2 condition will def-
initely maintain the connectivity of the sensor network’s
communication graph. Now, note that the satisfaction of
C2 condition of s is based upon existence of alternate paths
involving nodes with lower priority than that of s. Deleted
marking of a node u in any of the alternate paths of s will
result in another alternate path consisting of even lower pri-
ority nodes. This is because the node u will also satisfy the
C2 condition due to nodes having lower priority than that of
u and hence, that of s. Thus, if s satisfies the C2 condition,
then there will always exist an alternate path connecting
every pair of its neighbors. Thus, removal of s maintains
the connectivity of the original communication graph of the
sensor network.

Now, we show that the set of nodes that are not marked
deleted form a correlation dominating set. It is sufficient
to show that if a node s is marked deleted, then there will
always exist a correlation hyperedge (S, s) such that no node
in S has been marked deleted. Since, the node s satisfied
condition C3, there is a hyperedge (.S, s) such that each node
xz € S is either marked selected (and hence, would never
be marked deleted in future due to condition C1) or has a
priority lower than that of s. In the latter case, the node x
could mark itself deleted only when it receives a message
about s’s deleted marking (see condition C4). However, as
mentioned before, in the same message the node z is also
instructed by s to mark itself selected. Hence, the node
x will never mark itself deleted. Thus, no node in § is
ever marked deleted and the node s can always be inferred
using the nodes in S. Since the above is true for any node
s that has been marked deleted, the set of non-deleted

true only by deleted marking of one of its neighbors. In
addition, it can be shown ( [28]) that once the C2 condition
is satisfied for a node s, the deletion of s will always pre-
serve connectivity in the communication subgraph induced
by the non-deleted nodes, even if other nodes get marked
as deleted.

nodes form a correlation dominating set. "

We now present the 2-Rounds and Handshake distributed
algorithms, which optimize the basic distributed algorithm
further.

2-Rounds Distributed Algorithm. The above described
basic algorithm could be improved (in terms of increasing
the number of deleted nodes) by comparing priorities only
between nodes that are contending with each other for mark-
ing themselves deleted. The 2-Rounds algorithm consists
of an initial round before executing the basic algorithm. In
the initial round, the priority comparisons in conditions C3
and C4 are made only for nodes that satisfy the C2 condi-
tion. More precisely, for the initial round, the conditions C3
and C4 are replaced by the following modified C33 and C34
conditions.

C33: There is a correlation edge (S,s) in the correlation
graph, such that no node in the set S is marked deleted.
In addition, each node in S is either marked selected
or doesn’t satisfy the C2 condition or has a priority
less than p(s).

C44: If there is a correlation edge (R,r) where s € R, then
either r is marked deleted or marked selected or
doesn’t satisfy the C2 condition or has a priority less
than p(s).

To test the above C33 and C44 conditions, each node
should be able to evaluate the C2 condition of its correla-
tion neighbors. Thus, the 2-Rounds algorithms begins with
gathering (d + k)-hop neighborhood information, where d is
the maximum communication distance between correlation
neighbors. After the initial round, the 2-Rounds algorithms
behaves exactly as the basic distributed algorithm. In our
experiment results, we observed that 2-Rounds algorithm
yielded significant improvement in the solution size over the
basic distributed algorithm.

Handshake Algorithm. Handshake algorithm is essen-
tially the basic distributed algorithm with the conditions
C3 and C4 replaced by the modified conditions C33 and
C44, where we compare priorities between only those nodes
that satisfy the C2 condition. Thus, we require each node
to transmit a “C2-satisfied” message when its C2 condition
is satisfied. However, loss of “C2-satisfied” messages may
result in neighboring nodes s and § both marking them-
selves deleted with s depending on § for inference. Thus,
to ensure correctness in event of message losses, we need to
incorporate additional “handshake” messages. The addition
communication steps required in the Handshake Algorithm
are:

1. Whenever a node’s C2 condition is satisfied, it trans-
mits a ‘C2-satisfied’ message to all its correlation neigh-
bors, so that they have complete information to test
their C33 and C44 conditions.

2. Before node s marks itself deleted (due to satisfac-
tion of conditions C1, C2, C33, and C44), it makes
a “handshake” with the nodes in S of condition C33.
The handshake involves the node s sending a hand-
shake message to the nodes in S and the nodes in S
responding positively or negatively. The node s marks
itself deleted only if it receives a positive response



from all the nodes in S. A node in S sends a positive
response only if it is not marked deleted and if it ei-
ther doesn’t satisfy C1 or doesn’t satisty C2 condition
or its priority is less than that of s.

3. A node in S of condition C33 marks itself selected
only after the corresponding node s has conclusively
(after positive acknowledgement from all nodes in S)
marked itself deleted.

Handshake algorithm is expected to select a smaller con-
nected correlation-dominating set compared to the 2-Rounds
algorithm. However, the better performance comes at the
cost of additional messages for ‘C2-satisfied’ and handshake
messages.

Number of Communication Messages. Let d be the
maximum communication distance between correlation neig-
hbors. As mentioned before, the 2-Rounds algorithm needs
to gather (d + k)-hop neighborhood information, while the
Handshake algorithm collects k-hop neighborhood informa-
tion. If n is the total number of sensor nodes in the net-
work, [-hop neighborhood information can be gathered using
In messages. However, since the neighborhood information
can be gathered during the normal data-gathering process
(as described in Section 3), we ignore the communication
cost incurred.

Let § be the average® size of a connected dominating set
of the communication subgraph induced by a sensor node
and its correlation neighbors. Also, let |D| be the number
of nodes that get marked deleted and |S| be the number of
nodes that get marked selected during the entire course of
the algorithm. Note that (|D| + |S|) is bounded by n, the
size of the sensor network. The total communication cost
incurred in each of the distributed algorithms is as follows.

e 2-Rounds Algorithm: 6(|D| + |S]) < nd.

e Handshake Algorithm: §(|D| + |S]) + ‘C2-satisfied’
messages + handshake messages < n(d+3d+20) < 4nd.

Assignment of Priorities. Note that we can use differ-
ent priorities for condition C2 and condition C3-C4. For
the C2 condition, we use the inverse of the node’s degree
as the priority [28]. For the C3-C4 conditions, we assign
priority p(s) for a node s as follows. Let S be a source set
containing s. If node s satisfies C2 condition initially, we
use p(s) = 1/(3°41/|S]) (since our algorithms favors dele-
tion of higher priority nodes), else we use p(s) = 1/(30 *
NodeDegree(s) > s 1/|S|) so that comparison of priorities
(in C3, C4) is relevant only for nodes that satisfy the C2
condition.

Handling Dynamic Changes to Correlation Graph.
Change in data correlations may result in changes to the
correlation graph. Thus, each deleted node s periodically
checks for validity of the hyperedge (S,s) used in its C3
condition by gathering data from the nodes in S (using the
piggyback strategy over normal data-gathering process as
described in Section 2.3), recomputing the « parameters
(Equation (2)), and checking if the least square error (Equa-
tion (1)) is within the given bound. If the least square error
is more than the acceptable bound, the hyperedge (S, s) is

6 Average is across all instances when a node has to send a
message.

invalidated, and the node s searches for a still valid hyper-
edge (S',s) that satisfies its C'3 condition and consists of
only non-deleted nodes in S’. If such a hyperedge exists,
the nodes in S’ are instructed to mark themselves selected.
If a node r in S’ had to be un-deleted, it informs its com-
munication neighbors. If no such hyperedge exists, then the
node s marks itself un-deleted’ itself, and informs its com-
munication neighbors. If a deleted neighbor v of either s or
r fails to satisfy the C2 condition now due to un-deletion
of s or r respectively, the node v un-deletes itself and in-
forms all its neighbors. The above process continues, and
ensures that the connectivity of the non-deleted nodes is
maintained. To conserve energy, we do not un-select a
node as it does not affect correctness.

Generalizations. Throughout this article, we have mod-
eled correlation as complete inference of a node from a set
of other nodes. However, our distributed and centralized
algorithm (next section) can be easily generalized to model
the case when a hyperedge (S, s) with a weight b signifies
that the node s can save on transmission of b bits, if the
data from nodes in S is available. Such a model has been
used in [6]. In the above model, heigher weighted hyper-
edges are preferred for use in C3 condition for distributed
algorithms. Similarly, weights assigned to sensor nodes to
model non-uniform battery energies can be handled by as-
signing the hyperedge weight as an appropriate function of
the sink and source nodes’ weights. Centralized algorithms
developed in the next section use a notion of benefit of a
set of selected nodes — which can also be easily adapted to
handle the above generalizations.

4. CENTRALIZED APPROXIMATION AL-
GORITHM

In this section, we present a centralized approximation
algorithm that returns a connected correlation-dominating
set that is within an O(logn) factor of the optimal size.
Based on the approximation algorithm, we design a class of
efficient polynomial-time heuristics. In Section 5, we will
show that even the lower order polynomial-time heuristics
deliver near-optimal solutions for spatial sensor networks.
The centralized heuristics developed in this section also al-
low us to ascertain the quality of the solution sizes of the
energy-efficient distributed algorithms of previous section by
comparing them with the near-optimal centralized heuris-
tics. The centralized heuristics can be implemented in a
sensor network by executing the heuristic on one of the
special-purpose computationally powerful sensor nodes in
the network, after gathering required information from all
the nodes in the sensor network. We start with some defi-
nitions for a sensor network with a correlation graph.

DEFINITION 4. (Intersection Graph of Source Sets) Let I
be the set of nodes in the network, and Z = {{s}|s € I}. Let
S be the set of source sets in the correlation graph of the
network. The intersection graph of source sets is the simple
graph G(V = SUZ,E = {(v1,0)|(vs Nva) # }).°
See Figure 3. |

"By “un-delete,” we mean that it removes its deleted
marking.

8We include the elements of Z in the vertices of graph G,
since a node trivially infers itself. Hence, the correlation
graph can be thought of to have trivial hyperedges ({s}, s)
for each node s in the network, but we have precluded pres-
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Figure 3: Correlation graph and its intersection
graph of source sets.

DEFINITION 5. (Connected Subgraph of Sources; Connect-
ed Source Set) A connected subgraph in the intersection
graph of source sets is called a connected subgraph of sources.’
A connected source set is a set of nodes corresponding to
some connected subgraph of sources, i.e., the union of the
sets corresponding to the vertices of a connected subgraph
of sources. For example, in Figure 3, S1,52, and S3 form a
connected subgraph of sources and the corresponding con-
nected source set is {b1, 2,3, b4}. O

DEFINITION 6. (Inferred Nodes) Given a set of nodes S,
the set of inferred nodes for S is denoted by I(S) and is
defined as

I(S)=S U {z|(Y,z) is a correlation edge and Y C S}.
|

DEFINITION 7. (Benefit of a Set of Nodes) Benefit of a set
S with respect to a set M of nodes M is denoted by B(S, M)
and is defined as B(S, M) = [(I(S) —I(M)|/|S — M|, where
I(S) and I(M) are the set of inferred nodes for S and M
respectively. |

Approximation Algorithm. Our proposed approxima-
tion algorithm consists of two phases. The first phase is
a greedy phase that constructs a near-optimal correlation
dominating set. The second phase runs a Steiner tree ap-
proximation algorithm [2] to connect the correlation-domin-
ating set constructed in the first phase. The first greedy
phase of the algorithm works as follows. Let M denote
the set of already selected nodes at any stage. Initially M
contains the data-gathering node. At each stage, the algo-
rithm adds to M the connected source set that has the max-
imum benefit with respect to M at that stage. The phase
of the algorithm terminates when M becomes a correlation-
dominating set. The second phase of the algorithm builds
a communication Steiner tree over the set of nodes in M
by adding additional nodes. We build the communication
Steiner tree by iteratively connecting the closest pair of con-
nected components, i.e., the pair of components that can be
connected by addition of minimum number of nodes.

THEOREM 2. The size of the connected correlation-domin-
ating set returned by the above described centralized algo-
rithm is at most 2d(1 + logn)|OPT|, where OPT is the
optimal correlation-dominating set, d is the maximum com-
munication distance between two correlation neighbors, and
n is the number of nodes in the sensor network.

ence of these hyperedges in a correlation graph for sake of
clarity.

®The notion of “connected” here is in context of the inter-
section graph of source sets and has nothing to do with the
communication graph.

Proof: Whenever a connected source set S is added to M by
the greedy first phase of the algorithm, we charge the newly
inferred nodes I(S) — I(M) with the number of unselected
(not in M) nodes in S, i.e. |S — M|. The charge |S — M|
is evenly distributed on each of the newly inferred I(S) —
I(M) nodes giving each newly inferred node a charge of
1S — M/|L(S) — I(M)|.

Let OPT be an optimal correlation-dominating set (not
necessarily connected). Consider the subgraph ¢ of the in-
tersection graph of source sets induced by the source sets
and nodes contained in OPT. Let (1,(2,...,(; be the con-
nected components in the induced subgraph (. Let S¢; be
the connected source set corresponding to the component
Gi- Also, let T; be the charge accumulated by I(S¢;), the
set of inferred nodes for S¢,, during the entire course of the
algorithm. Since, S¢; is also considered for selection by the
greedy algorithm at each stage, it can be shown ( [7]) that
T; is at most |S¢;|(1 + log|I(S¢;)]). Thus, the total charge
T accumulated by I(OPT), the set of all nodes infered by
optimal solution OPT, during the course of the algorithm
can be bounded as follows.

l

T < ) (L+1log|I(S)DISc|
i=1
!
T < (1+logn)> (ISc])
i=1
T < (1+logn)|OPT]|.

The last equation follows from the fact that the sets of nodes
S¢i, 8¢y, S¢, are connected components of the graph ¢,
and hence, form a mutually-disjoint partition of the optimal
set of nodes OPT.'® Now, since I(OPT) is the set of all
nodes in the network, the total charge T' accumulated by
I(OPT) is the size of the correlation dominating set M re-
turned by the first phase of the algorithm. Thus, we get
|M| < (1+logn)|OPT|.

We now show that the second phase of the algorithm adds
at most (2d — 1)|M| additional nodes. Consider the con-
nected components M, M, ..., M, in the communication
subgraph induced by M. It can be shown by contradiction
that there exist two nodes in different connected components
M; and Mj; such that the nodes are connected by a commu-
nication path of length at most 2d — 1. Since the above is
true for any correlation dominating set, and as p < |M|, all
the connected components of M can be connected together
using at most (2d — 1)|M| additional nodes. Thus, the size
of the connected correlation-dominating set returned by our
approximation algorithm is at most 2d(1 + logn)|OPT|. g

Gupta [17,18] has used similar techniques to construct
approximation algorithms for a related dual problem of se-
lection of views to materialize in a general data warehouse.
The time complexity of the above proposed approximation
algorithm is exponential in n, the total number of nodes in
the network, since the number of connected source sets con-
sidered at each stage of the first phase can be exponential.
However, the approximation algorithm is non-exhaustive and
may perform better for sensor networks whose intersection
graph of source sets has few edges. More importantly, the
approximation algorithm gives us an insight and a basis to

107t is for this reason that the approximation algorithm con-
siders all possible connected source sets at each stage.



design polynomial-time greedy heuristics that restrict the
search space by considering only a polynomial number of
connected sources sets at each stage. Note that locality
of data correlations (within a certain d-hop neighborhood)
does not help improve the appoximation ratio or the com-
plexity of the above described approximation algorithm.

Polynomial-time Heuristics. Based on the above ap-
proximation algorithm, we design the following class of -
hop polynomial-time heuristics. For a given [, the I-hop
heuristic works as follows. At each stage, the [-hop heuristic
constructs, for each source set S, the connected source set
f1(S) (defined in the next paragraph). Then, the algorithm
picks the f;(S) that has the maximum benefit and adds it
to the already selected set of nodes M. After M has become
a correlation-dominating set, additional nodes are added to
construct a communication Steiner tree spanning over M.

The connected source set f;(S) for a given S is constructed
in a greedy manner by merging with S the best source set
that is within a distance of at most [ from S in the intersec-
tion graph of source sets. The greedy construction of f;(S)
stops when its benefit cannot be improved further.

Example. For the correlation graph in Figure 3, in the
first stage (when M = ¢) of the 1-hop heuristic, fi(S1) =
S1 US> and fi(S2) = S1 US> U Ss. Since, the benefit of
f1(S2), B(f1(S2), M), is the maximum for all fi(S;), the
1-hop heuristic sets M = Sy U S1 U S3 in the first stage.

The time complexity of the above described [-hop heuristic
is O(m?g"), where m is the total number of correlation edges
and g is the maximum degree of a node in the intersection
graph of source sets. We expect 1-hop or 2-hop heuristics to
perform very well for ad-hoc wireless networks with spatial
data correlations where the size of source sets is expected
to be small. In fact, using extensive simulations on random
sensor networks, we demonstrate that 1-hop heuristic yields
a near-optimal connected correlation-dominating set.

5. PERFORMANCE RESULTS

In this section, we present our simulation results that
demonstrate the performance and effectiveness of our pro-
posed approach and algorithms. In particular, we compare
the size of the connected correlation-dominating set returned
by our proposed distributed and centralized algorithms viz.
2-Rounds, Handshake, 0-hop, 1-hop, and 2-hop centralized
heuristics. Note that 0-hop is essentially a naive greedy
centralized approach. In addition, we compare the commu-
nication costs incurred by the two distributed algorithms.
We present results from three sets of experiments that elicit
various interesting properties of our approaches. In all three
cases, the sensor network is randomly generated; however,
they differ in how the sensor data is generated and repre-
sented. In the first case, the correlation graph itself is gen-
erated randomly. In the second set, records of temperature
data from 600 US cities is used as the sensor data set. In
the third set, the sensor data is generated by simulating the
behavior of hypothetical signal sources.

Computation Cost Model. In all our experiments, we esti-
mate energy consumed in computing hyperedge parameters
as follows. Using the calculations in Section 2.3, the compu-
tation of Equation 2 (for K=3 and L=5) consumes roughly
about 1/25 fraction of energy required to transmit one mes-
sage on Berkelely motes. Here, we assume message size of
1K bits. Initial computation of the correlation graph re-

quires each node computing the Equation 2 about 1000 times
(number of possible hyperedges in a 2-hop neighborhood size
of around 20) for the first (synthetic data) and third (time-
varying signals) sets of experiments, and around 100 times
(2-hop neighborhood size of around 10) for the temperature
data. We have assumed computation of hyperedge param-
eters at individual nodes, but depending on the resources
available the computation could also be done at a powerful
central node.

Random Sensor Networks with Synthetic Correla-
tions We generated data for random sensor networks as
follows. First, we randomly place 1000 sensors in an area of
40 x 40 units. Each sensor has a uniform transmission ra-
dius of 3 units, and two sensors can communicate with each
other if they are located within each other’s transmission
radius. =~ We generate the correlation graph over the sen-
sor network as follows. For each node s and a set of nodes
S consisting of 1 to 3 sensor nodes that are within a com-
munication distance of at most d = 2 from s, we add the
hyperedge (S, s) with a probability of P/100, where P is a
constant less than 100 and is referred to as the correlation
percentage. We analyze the performance of our algorithms
for a sufficiently wide range of P values.

Centralized Heuristics’ Solution Sizes. In Figure 4, we com-
pare the quality of some of the centralized heuristics with
the optimal (exhaustive search) algorithm for small size sen-
sor networks (100 sensors placed randomly in a 7 x 7 area)
for transmission radius 2 and 4. We notice that the 0-
hop, 1-hop, as well as 2-hop centralized heuristic perform
quite close to the optimal solution. We observe that the
1-hop heuristic performs quite better than the 0-hop heuris-
tic, while there is no noticeable difference in the solution
sizes of 1-hop and 2-hop centralized heuristics. Since, the
I-hop heuristics are based on the approximation algorithm
that provably returns a near-optimal solution, and increase
in [ results in increasingly better performance, we conjec-
ture that 1-hop heuristic returns a near-optimal solution for
dense sensor networks with rich spatial data correlations in-
volving small source sets. For larger sensor networks (see
Figures 5 (a)), we report the solution sizes returned by 0-hop
and 1-hop heuristics, and compare them with the solution
sizes of the distributed algorithms.

Distributed Algorithms’ Solution Sizes. We observe that the
Handshake algorithm returns a smaller solution size than
the 2-Rounds algorithm (see Figure 5 (a)). However, the
solution size returned by the Handshake algorithm is only
marginally better than the 2-Rounds algorithm, which dem-
onstrates the effectiveness of the initial round and the strat-
egy of subsequent assignment of lower priorities to nodes
that don’t satisfy the C2 condition in the 2-Rounds algo-
rithm. We also evaluated the delayed-connection versions of
the algorithms wherein the algorithms first select a correlt-
ion-dominating set and then, connect the selected nodes us-
ing a communication Steiner tree. We observed that the
delayed-connection versions always performed worse than
their counterparts, in terms of both the solution size re-
turned as well as the communication costs incurred. For
brevity, we have not discussed the details of the delayed-
connection versions here.

Distributed vs. Centralized Solution Sizes. As expected, the
solution sizes returned by the centralized heuristics is always
better than the solution sizes returned by the distributed
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Figure 5: Comparison of different centralized and distributed algorithms for large and sparse sensor networks
(1000 nodes with transmission radius of 3 units in 40 x 40 area with synthetically generated correlations).

algorithms (see Figure 5 (a)). This is hardly surprising,
since, the centralized heuristics have global information of
the sensor network and have time complexities in high or-
der polynomials. In contrast, the distributed algorithms are
localized and incur only a linear number of messages. How-
ever, we should note that the distributed algorithms still
perform impressively close to the near-optimal centralized
heuristics.

Number of Messages. The communication cost incurred by
the 2-Rounds algorithm is much less than that incurred by
the Handshake algorithm (see Figure 5 (b)).'' Since, the
solution size returned by the Handshake algorithm is only
marginally better than the 2-Rounds algorithm, we can con-
clusively say that the 2-Rounds algorithm is the best per-
forming distributed algorithm.

Let D be the the total energy cost incurred by a given
distributed algorithm and n be the total number of sensors in
the network. As discussed in Section 2.1, as long as the data-
gathering query requires more than gy = (n_—?Ml) snapshots
the overall energy cost for the data-gathering query using the

"Note that for very low correlation percentages, the 2-
Rounds algorithm incurs zero number of messages, because
the nodes marked deleted/selected in the initial round
do not need to transmit as their correlation neighbors can
deduce their markings using the (d + k)-hop neighborhood
information.

given distributed algorithm is lower than that incurred using
the naive approach, wherein all sensor nodes are involved
in transmitting data to the data-gathering node. We plot
the g¢ value in Figure 5 (c). As estimated before, we have
added 40 message transmissions per node for about 1000
computations of Equation 2. We can see that the value of
qo for the best performing 2-Rounds distributed algorithm is
around 50, which is encouraging since data-gathering queries
typically gather a much larger number of snapshots.

Simulations on Temperature Data. We gathered mon-
thly average temperature data of over 600 US cities [23] for
the last decade. We consider a sensor network formed by
placing a sensor node at each of the 600 city locations. We
chose a transmission radius of 70 miles for each sensor node,
so that each sensor has a good number of communication
neighbors. We created a hyperedge (S, s) for a sensor node
s and a set of nodes S if the monthly temperature of s can
be inferred from S within an error threshold of 5%. Here,
S comnsists of 1 to 3 sensor nodes that are within a commu-
nication distance of at most d = 2 from s. The experiment
results for the city temperature data are shown in Table 1.
As estimated before, we have added 4 message transmissions
per node for about 100 computations of Equation 2.

Simulations of Dynamic Sensor Networks with Time
Varying Data. We have set up a simulation that demon-
strates how our distributed algorithms perform in dynamic
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Figure 6: Simulation experiments with dynamic sensor networks (100 nodes with transmission radius of 3
units in a 10 x 15 area) with time-varying signal data for various error thresholds.

[ Algorithm [ [M]| | Messages | ¢ |

0-hop 353 - -
1-hop 320 - -
2-Rounds 390 3608 | 20
Handshake 364 7264 | 35

Table 1: Simulation Results on Temperature Data.

conditions, i.e., when when the sensor data and hence, corre-
lation graph changes, and sensor nodes may die after battery
depletion. For this experiment, we randomly place 100 sen-
sor nodes, each having a transmission radius of 3, in an area
of 10 x 15 units. We also place a number of signal sources*?
at random locations in this region. The signal intensity at
a distance d from the source is assumed to be inversely pro-
portional to d?, and the intensity at any point is the sum
of the intensities from individual light sources. The sources
generate a signal with an intensity chosen randomly between
100 and 200 units. At random intervals (with a mean pe-
riod of 2000 time units), the signal sources either increase
or decrease their intensity by 5% or remain unchanged with
equal probability.

Correlation Graph. A correlation hyperedge (S, s) is created
for a node s and a set of nodes S, where S consists of
1 to 3 nodes in the 2-hop neighborhood of s, if the least
square error (Equation 1) calculated for optimal « param-
eters (Equation 2) is within a certain error threshold. We
run experiments for error threshold values of 0.1, 1, and 3
percentages. Initially, the correlation graph is constructed,
and the distributed algorithm executed to compute the con-
nected correlation-dominating set. Over time, invalidation
of used hyperedges is detected, and the solution incremen-
tally maintained as described in Section 3. Also, just before
a sensor node dies, it informs its correlation neighbors who
rerun the distributed algorithm.

Battery Consumption. The sensor network is tasked to gather

snapshots of the signal intensity levels in the entire region at

12The exact nature of the signal is not important for our
purposes.

regular intervals of 100 time units. Each sensor is initialized
with a battery power chosen randomly between 750-1250
units, where 1 unit of battery power is consumed by every
message transmission. Messages are transmitted to compute
the hyperedge parameters, to execute the distributed algo-
rithm, and to gather snapshots from the connected correlation-
dominating set. As estimated before, each node consumes
about 40 units of battery energy for about 1000 computa-
tions of Equation 2.

Performance. We compare the performance of our distributed
algorithms with a Naive approach, wherein all sensors in the
network report data for each data gathering snapshot. We
use the root mean square (RMS) approach to quantify the
error in the gathered data. Note that the gathered data
may have inaccuracies because of the following two reasons.
In our approach of gathering data only from a connected
correlation-dominating set, bounded errors are introduced
when data for other sensors is inferred. Also, for both ap-
proaches (Naive and ours), data for dead sensors is “recov-
ered” at the data-gathering node by using an available hy-
peredge involving alive source nodes. If no such hyperedge
exists, then we take an average of the data from 2 of its
nearest alive neighbors.

Figure 6(a) and (b) plot the number of dead sensors and
the RMS error in the gathered data for the 2-rounds algo-
rithm and the Naive approach, for various choices of error
threshold values. We have only shown 2-rounds algorithm
in the figure, as 2-Rounds consistently outperformed Hand-
shake for the used parameter values. Note that there is no
error in the beginning for the naive approach. However,
there is a very sharp rise in the error when the nodes start
dying, and the nodes are all dead soon after 100,000 time
units. In contrast, the 2-rounds algorithm incurs some error
throughout and the error gradually increases when the nodes
start dying. We notice better performance for higher error
thresholds. In particular, we observer that the RMS error
remains at a reasonable level for upto 600,000 time units for
3% error threshold. These simulations demonstrate the ef-
fectiveness of our approach in increasing the useful lifetime
of a sensor network.

Summary. Based on the above described simulation re-



sults, we can conclude that the 2-Rounds algorithm is the
best performing algorithm among all the designed distributed
algorithms, in terms of the size of the connected correlation-
dominating set selected, the number of messages incurred,
and RMS error introduced in the gathering data. Also, 2-
Rounds algorithms returns a solution whose size is quite
close to that returned by the 1-hop heuristic, which seems to
return a near-optimal solution for spatially correlated dense
sensor networks. Based on the total number of messages
incurred and the savings achieved, we conclude that the ap-
proach of constructing a connected correlation-dominating
set using the 2-Rounds algorithm will result in substantial
energy savings.

6. RELATED WORK

The problem of efficient gathering of correlated data in a
sensor network has been recently addressed by Rickenbach
et al. [27], Chou et al. [6], and Cristescu et al. [8,9], where
the focus is on reducing the total number of bits transmitted
to the data-gathering node using coding techniques. In par-
ticular, authors in [27] focus on single-input coding strate-
gies (i.e., simple correlation edges). They consider two cod-
ing schemes viz. foreign-coding and self-coding, and present
algorithms to construct optimal (minimum weighted num-
ber of bit transmissions) and near-optimal data-gathering
trees for foreign-coding and self-coding respectively. In [6],
the savings are achieved by having the data-gathering node
track the correlation structure among nodes and then, use
this information to inform the sensor nodes the number of
bits they should use for encoding their measurements. How-
ever, they assume a fixed correlation structure and a “star”
topology, and do not address the optimization problem of
minimizing the number of bit transmissions. Lastly, [8] con-
siders a coding strategy based upon Slepian-Wolf model and
design efficient distributed approximation algorithms opti-
mizing the transmission structure and the rate allocation at
the nodes. In all of the above methods, all sensors are en-
gaged in data transmission albeit with reduced number of bit
transmissions. As noted before, the model and techniques
developed in this article can also be extended to optimize
total number of bit transmissions.

Similar to the idea proposed in our paper, Yoon and Sha-
habi [32] propose a mechanism (called CAG) that reduces
the number of transmissions and provides approximate re-
sults to aggregate queries by utilizing the spatial correlation
of sensor data. Like our approach, they also select only a se-
lect of nodes for transmission of data to the sink node. How-
ever, their formulation of the problem is a simpler version
of our problem wherein correlation graph consists of only
simple edges (connecting a node to its ancestor in the data
gathering tree). They select a set of clusterheads (which
actually form a correlation dominating set in our terminol-
ogy) using a simple localized scheme during the query prop-
agation phase. Due to connectivity requirement, each node
that has at least one descendant as clusterhead is involved in
transmission. The main shortcomings of the above approach
is that it uses a very simple notion of correlation, and uses
only the edges of the forwarding tree (typically the short-
est path tree) for selection of clusterheads and connecting
nodes.

The problem of constructing an efficient aggregation tree
to reduce the total bits of transmitted in the network have
also been addressed recently [14,15]. In particular, Goel et

al. [15] look at the problem of finding efficient trees to send
aggregated information to a sink, where information can be
aggregated at intermediate nodes. They present a random-
ized tree construction algorithm, which is a good approxima-
tion simultaneously for all concave non-decreasing aggregate
functions. In [14], authors analyze a simple randomized tree
construction algorithm that achieves a constant factor ap-
proximation of the optimal tree for grid network topologies.
Both of the above works assume data compression models
specific to aggregation, wherein any k data values can be
compressed into a data value of appropriately defined size.
In contrast, the correlation model considered in our article
is more general, wherein only the given set (which can be
arbitrary) of data values can be compressed depending on
the correlation structure present in the network.

Recently, Marco et al. [22] analyzed the data transport
capacity of a dense sensor network in data-gathering ap-
plications. In their model, all sensors in the network en-
code/compress their measured samples and transmit them
to a single data-gathering node. They show that as the den-
sity of a sensor network increases to infinity, then the total
number of bits required to attain a given quality of recon-
structed field also increases to infinity under any compress-
ing scheme. Thus, the only way to limit the total amount
of data transmitted below the network’s transport capac-
ity would be to suppress transmission from some sensors to
prevent “oversampling.” In [25], authors show that if data
can be encoded en route — for example, at the tree nodes —
then the capability of the dense sensor network and the cor-
relation structure of a typical random field are sufficient to
permit data gathering by any nodes within any given distor-
tion value. However, an appropriate routing technique must
still be devised, which remains an open question. Our work
proposes an alternate efficient approach to reduce data com-
munication in data-gathering applications by minimizing the
number of sensors that are involved transmitting their data
to the data-gathering node. In other related work, Pattem
et al. [24] analyze the performance of various routing with
lossless compression schemes, and show that near-optimal
performance can be achieved using a static clustering scheme
for the case of 1D and 2D array of sensor nodes for a wide
range of spatial correlations.

There has been a significant amount of work on the related
problem of computing a minimum connected dominating
set [13,16] in a distributed manner. A connected dominating
set (CDS) is used for efficient broadcasting of a message in
a mobile ad hoc network, since only the nodes in CDS need
to forward the message to its neighbors. The work in wire-
less network research community ( [1,5,11,12,21,28,29]) has
primarily focussed on developing energy-efficient distributed
algorithms to construct a good connected dominating set.
The connected dominating set problem is a special case of
the connected correlation-dominating set problem wherein
the correlation graph consists of undirected simple edges
and is the same as the communication graph.

In other related works, GAF [30], SPAN [4], PEAS [31],
and ASCENT [3] develop distributed algorithms to identify
nodes that are similar in routing perspectives so that other
nodes can be turned off to conserve energy. Nomne of these
works use any notion of a data correlation structure.

7. CONCLUSIONS

In this article, we have considered the connected correlation-



dominating set problem that helps in minimizing communi-
cation costs in data-gathering sensor network applications.
Taking advantage of the existing data correlations in the sen-
sor network, our proposed approach is to select a small set
of sensors called the connected correlation-dominating set
that form a connected communication graph and are suffi-
cient to infer data of the remaining unselected sensors. The
problem is defined in terms of a correlation structure (hyper-
graph) that captures general data correlations. To select a
connected correlation-dominating set of small size, we have
designed a set of energy-efficient distributed algorithms, and
a class of efficient centralized heuristics that are based on a
provably competitive approximation algorithm. Our simu-
lation results show that the designed distributed algorithms
and the centralized heuristics return small size solutions and
the communication cost incurred by the best performing dis-
tributed algorithm (2-Rounds) is small enough to consider-
ably increase the useful lifetime of a sensor network.
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