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Résumé

Cette thèse propose une nouvelle architecture Peer-to-Peer pour l’établissement de sessions
SIP (Session Initiation Protocol) sur les réseaux ad hoc. SIP est un protocole conçu à
l’origine sur un modèle centralisé est n’est pas nativement adapté aux réseaux mobiles
ad hoc (MANET) en raison de leurs caractéristiques inhérentes de mobilité. Nous avons
ciblé nos études sur un mécanisme de lookup distribué Peer-to-Peer (P2P) tolérant aux
fautes, même en cas de mobilité des nœuds du réseau.

Cette thèse s’articule autour de quatre principales contributions:

Nous introduisons le concept de Structured Mesh Overlay Network (SMON) : un over-
lay P2P sur MANET permettant d’effectuer des lookups de ressources rapides dans un
environnement ad hoc. SMON utilise une architecture cross layer design basée sur une
Distributed Hash Table (DHT) utilisant directement les informations de routage OLSR.
Cette architecture cross layer permet d’optimiser les performances du réseau overlay lors
d’un changement de topologie du réseau.

La seconde contribution, SIPMON, est un overlay SIP sur réseau SMON. Sa particularité
est d’utiliser un DHT pour distribuer les identifiants d’objet SIP dans le réseau overlay
SMON. Les expérimentations menées prouvent que cette approche garantit une durée de
découverte SIP constante et permet un établissement de session plus rapide entre deux
usagers sur réseau ad hoc. SIPMON ne s’applique cependant qu’à un réseau MANET
isolé.

Notre troisième contribution SIPMON+ permet un interfonctionnement de plusieurs over-
lays SIPMON connectés à Internet. SIPMON+ unifie donc les overlays de réseau et per-
met de joindre un client SIP qu’il soit localisé sur un réseau ad hoc ou sur l’internet.
De plus, SIPMON+ permet une continuité de service sans couture lors du passage entre
un réseau MANET et un réseau d’infrastructure. Notre prototype a démontré que les
performances de temps d’établissement d’appel SIPMON+ étaient meilleures que pour
l’approche concurrente MANEMO (MANET for Network Mobility).

Le scénario d’usage principal est la fourniture de services de communication multimédia
d’urgence rapidement déployables en cas de catastrophe majeure. Nous avons développé
un prototype SIPMON+ totalement fonctionnel de service de communication P2P mul-
timédia. Ce prototype a été expérimenté en situation réelle de catastrophe. Notre proto-
type sans infrastructure a donné de biens meilleurs résultats que MANEMO en termes de
temps de déploiement, de taux de perte de paquets et de temps d’établissement d’appel.

Mots-Clés: MANET, Peer-to-Peer, SIP, Distributed Hash Table, Voix sur IP, la mobilité
du terminal, OLSR, Réseau d’urgence.
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Abstract

This work presents a novel Peer to Peer (P2P) framework for Session Initiation Protocol
(SIP) on Mobile Ad Hoc Network (MANET). SIP is a client-server model of computing
which can introduce a single point of failure problem. P2P SIP addresses this problem
by using a distributed implementation based on a P2P paradigm. However, both the
traditional SIP and P2P SIP architectures are not suitable for MANETs because they are
initially designed for infrastructured networks whose most nodes are static. We focus on
distributed P2P resource lookup mechanisms for SIP which can tolerate failures resulting
from the node mobility. Our target application is SIP-based multimedia communication
in a rapidly deployable disaster emergency network. To achieve our goal, we provide four
contributions as follows.

The first contribution is a novel P2P lookup architecture based on a concept of P2P overlay
network called a Structured Mesh Overlay Network (SMON). This overlay network enables
P2P applications to perform fast resource lookups in the MANET environment. SMON
utilizes a cross layer design based on the Distributed Hashing Table (DHT) and has direct
access to OLSR routing information. Its cross layer design allows optimizing the overlay
network performance during the change of network topology.

The second contribution is a distributed SIP architecture on MANET providing SIP user
location discovery in a P2P manner which tolerates single-point and multiple-point of
failures. Our approach extends the traditional SIP user location discovery by utilizing
DHT in SMON to distribute SIP object identifiers over SMON. It offers a constant time
on SIP user discovery which results in a fast call setup time between two MANET users.
From simulation and experiment results, we find that SIPMON provides the lowest call
setup delay when compared to the existing broadcast-based approaches.

The third contribution is an extended SIPMON supporting several participating MANETs
connected to Internet. This extension (SIPMON+) provides seamless mobility support
allowing a SIP user to roam from an ad hoc network to an infrastructured network such
as Internet without interrupting an ongoing session. We propose a novel OLSR Overlay
Network (OON), a single overlay network containing MANET nodes and some nodes
on the Internet. These nodes can communicate using the same OLSR routing protocol.
Therefore, SIPMON can be automatically extended without modifying SIPMON internal
operations. Through our test-bed experiments, we prove that SIPMON+ has better
performance in terms of call setup delay and handoff delay than MANET for Network
Mobility (MANEMO).

The fourth contribution is a proof-of-concept and a prototype of P2P multimedia com-
munication based on SIPMON+ for post disaster recovery missions. We evaluate our
prototype and MANEMO-based approaches through experimentation in real disaster sit-
uations (Vehicle to Infrastructure scenarios). We found that our prototype outperforms
MANEMO-based approaches in terms of call setup delay, packet loss, and deployment
time.

Keyword: MANET, Peer-to-Peer, SIP, Distributed Hash Table, Voice over IP, Terminal
Mobility, OLSR, Emergency Network.
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Chapter 1

Introduction

IP telephony has become one of the most popular applications on the Internet today
as it does not require heavy additional investment on end user equipment nor costly
traditional telephone infrastructure. Such application involves signaling protocols that
initiate, maintain, modify, and terminate communication sessions between users, which
have been specified by the IETF RFC 3261 Session Initiation Protocol (SIP). This IP
telephony application is particularly attractive as an alternative means of communication
when traditional telecommunication infrastructure is not available such as those in rural
areas or in post-disaster scenarios. Temporary or local area networks, deploying wireless
technologies, can be set up rapidly at low cost for isolated communities to provide IP
telephony as well as some other multimedia applications. These networks can eventually
become an edge network for the global Internet infrastructure once a point of connection
to the Internet becomes available. This dissertation provides a framework to set up IP
telephony services based on SIP for these isolated temporary or ad hoc networks which
could subsequently be integrated with the global Internet infrastructure. The proposed
service relies on a Peer-to-Peer (P2P) SIP over structured overlay mesh network on mobile
ad hoc network which will be represented as SIPMON in the entire dissertation.

This chapter provides an overview of the SIP protocol and the networks upon which our
framework can be applied. It then provides a broad description of the proposed framework
followed by the contributions of this dissertation in the context of related work. Finally,
the organization of the dissertation is presented.

1.1 Session Initiation Protocol (SIP)

SIP (Rosenberg et al., 2002) is a signaling protocol which allows users to locate other
users and exchange multimedia session parameters, or Session Description Protocol (SDP)
(Handley & Jacobson, 1998). SIP handles user mobility by providing a location service,
which is a database service. It contains a list of user binding information of address of
record or SIP Uniform Resource Identifier (URI) to IP addresses. SIP URI has a similar
format the email addresses; thus, a user can use existing email addresses as SIP URI’s
without having to acquire a new address, e.g. “sip:user@domain.com”. The location
database is updated upon movement and queried whenever there is a lookup for a SIP
object. SIP supports four types of mobility, namely, terminal, session, personal, and
service mobility. Nevertheless, the most important one for an IP phone conversation
is terminal mobility as a user terminal can move from one location to another while a
session’s continuity is maintained.

Session setup, one of the SIP operations, is a process of establishing agreed session param-
eters between a caller and a callee, the so-called “dialing” and “ringing”. Before the caller
can make a call over the Internet, it must know IP address of the callee. A call invitation,
INVITE request, is directly sent from the caller to the callee as a P2P communication.
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Using the IP address to identify the location of the callee is inconvenient since an IP
address is not permanently assigned. Two scenarios can cause IP addresses to change.
1) User mobility, either the caller or the callee moves to a new machine. User mobility
can affect session mobility when the user wishes to transfer an ongoing session to another
terminal. However in this dissertation, we do not consider session mobility for the case
of IP telephony as supported by our framework. 2) Terminal mobility, either machine of
caller or callee acquires a new IP address due to a move to another network.

SIP provides users with a location discovery allowing the caller to make a call without
knowing the callee’s location. Both caller and callee are required to register their identities
and addresses or bindings to a centralized SIP server whose address is known to them.
They must update this binding to the SIP server whenever they change IP addresses in
order to maintain valid binding information at the server. The binding update ensures
that SIP users are reachable regardless of their locations. Instead of sending the call
invitation to the callee, the caller requests the SIP server to perform user location discovery
and forward the INVITE request on its behalf. Fig. 1.1 shows simplified examples of
registration and session setup between two end users.

SIP supports terminal mobility, where a terminal changes locations, i.e. moves to other
networks, while ongoing sessions are maintained. Once a conversation starts between SIP
users A and B, they maintain a SIP dialog and the parameters of their ongoing session.
When either one of them changes his/her IP address due to this mobility, it must perform
two operations in sequence by sending a new binding update and by sending re-INVITE
by using the maintained SIP dialog and parameter information to resume the ongoing
session. For example, if Bob’s machine moves to a new network during a call, since the
address is changed, his binding information is invalid, and the ongoing session will be
terminated. First, Bob sends a new binding update containing his new address to the SIP
server. Second, he uses the re-INVITE request, without making a new call, to inform Alice
about his new IP address to resume the ongoing session as shown in Fig. 1.2. Thus, the
user location discovery and registration are very important for SIP operations to address
problems with mobility.

1.2 The Internet and Mobile Ad Hoc Networks

The Internet is a network connecting many networks together and now covers the entire
globe. It is based on a protocol suite called TCP/IP (Cerf et al., 1974; Postel, 1981).
It can be said that the Internet is an infrastructured network as it relies on nodes and
gateways which are at fixed locations connecting eventually to the Internet backbones;
mobile nodes wirelessly connect themselves to fixed access points or gateways. Another
type of network which does not rely on infrastructure or fixed network connectivity is
referred to as Mobile Ad Hoc Networks (MANET), or infrastructureless networks. This
type of network is a self-configuring network. It is formed by wireless mobile nodes without
the use of any network infrastructure. Each mobile node can randomly move and at the
same time acts as a router discovering and maintaining route information that is used for
multi-hop communication. They can be characterized by unpredictable topology changes,
high degree of mobility, low bandwidth and intermittent connections. Routing protocols

2
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(a) Registration (b) Session setup (adapted by author from
Rosenberg et al. (2002))

Figure 1.1: The simplified SIP examples

Figure 1.2: re-INVITE request for resuming the ongoing session

for these networks take care of the fragile characteristics of MANET’s connectivity. Some
of these well-known protocols are the Optimize Link State Routing (OLSR) (Clausen &
Jacquet, 2003) and the Ad-hoc On-Demand Distance Vector routing (AODV) (Perkins
et al., 2003). Mobile Ad Hoc Networks have been designed to be interoperable with the
Internet; thus, they can form edge networks for the Internet and help expand network
connectivity far beyond those provided by the infrastructure.

These types of networks are particularly useful in rural areas or for rapid post-disaster
environments where communication networks must be set up rapidly to provide commu-
nication services among members of the local community. Sometimes only MANETs are
deployed while other times an integration of a single or several MANETs with the Internet
may be found. We will refer to these types of networks, which require rapid set up and
deployment time, as emergency networks.

3
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Figure 1.3: SMON+ covering MANET and the Internet

1.3 An Overview of P2P SIP on MANET and the Internet

This dissertation proposes a framework based on the following concepts: P2P overlay
network on MANET and a distributed SIP over this P2P overlay structure to prevent
problems associated with single point of failure. The P2P SIP overlay network is com-
posed of the proposed P2P overlay network called Structured Mesh Overlay Network
(SMON) and a distributed system of SIP servers. SMON is a cross-layer design that can
optimize overlay network performance when the network topology is changed by extract-
ing the topological updates from the network layer. Besides, SMON dynamically selects
one node which is delegated to broadcast periodically topological update messages. This
mechanism significantly reduces control overhead when compared with other SLP based
methods. Moreover, OLSR is used for an underlying routing protocol that allows SMON
to flood its messages via Multi Point Relays (MPRs), which further reduces duplicated
retransmissions during the flooding procedure when compared to regular broadcast tech-
niques (Laouiti, Qayyum, et al., 2002). Each SMON node has its own SIP server that
provides P2P user location discovery and registration and handles terminal mobility. The
P2P SIP overlay network deploys the concept of Distributed Hash Table (DHT) (Karger
et al., 1999) to distribute efficiently SIP object identifications over the P2P SIP overlay
network.

To handle the integration of MANET and the Internet in our framework, we propose the
stretching of SMON from MANET to cover those peers residing on the Internet hence
creating an extended SMON or SMON+. The P2P SIP overlay network can then be
expanded to the Internet in order to deliver seamless SIP mobility support for users on
both MANET and the Internet, as shown in Fig. 1.3.

A prototype of P2P SIP overlay network with P2P multimedia communication, called
Easy Disaster Communication (EasyDC), has been implemented and tested in simulated

4
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post-disaster recovery operations as proof of the viability of our proposed concept and
framework.

We evaluate our framework based on its efficiency in providing terminal mobility which is
an important criterion for IP telephony, particularly in emergency networks. SIP terminal
mobility was something which was not addressed in existing SIP on MANET research (Fu
et al., 2005; Leggio et al., 2005; Khlifi et al., 2003; Banerjee & Acharya, 2004; L. Li &
Lamont, 2004; Yu & Agarwal, 2005; Castro & Kassler, 2006; Zhang et al., 2006; Stuedi
et al., 2007; Fudickar et al., 2009), while handoff delay was used as a performance metric
for one-hop mobile network (Nakajima et al., 2003; Jung et al., 2003; Dutta et al., 2004;
Yeh et al., 2006; Mohanty & Akyildiz, 2007; Zeadally & Siddiqui, 2007) in infrastructured
networks.

Performance evaluation of EasyDC is conducted through simulations and experimenta-
tions under an emergency network environment, where a low call setup delay, terminal
mobility, and fast network deployment are critically required. Thus we consider post di-
aling delay, re-INVITE handoff delay, and network deployment as the main performance
metrics in our evaluation. The post dialing delay is the difference between the amount of
time that a caller uses in sending a call invitation and the time needed to receive a ring
in return. The re-INVITE handoff delay is the time used to resume the ongoing session
between two end users after the terminal mobility occurs. The results of simulations and
experimentations show that the post dialing delay is less than 100 ms and re-INVITE
handoff delay is around 32 ms, both of which are considered to be very low delays and are
suitable for emergency networks. For network deployment, EasyDC can be practically
operated on any computer with a standard wireless interface, and does not require cen-
tralized servers. Thus, regular laptops that have EasyDC installed can be setup in order
to establish an emergency network within a short period of time.

1.4 Problem Statement

To provide multimedia communications in MANETs for a disaster emergency network,
SIP remains an attractive protocol because it is a pre-defined standard signaling protocol
which the majority of telephony applications use. However, SIP is designed for infrastruc-
tured networks using centralized architecture and is thus not suitable for MANETs due to
their high degree of mobility and other constraints such as noise, fading, and interference.
If a centralized SIP server on a MANET node fails, the entire community on the network
cannot use its services and this is referred to as a single point of failure. A number of
research work (Fu et al., 2005; Leggio et al., 2005; Khlifi et al., 2003; Banerjee & Acharya,
2004; L. Li & Lamont, 2004; Zhang et al., 2006; Stuedi et al., 2007) have addressed the
issue of deploying SIP as user location discovery on MANETs allowing a SIP user agent to
locate another user agent IP address without depending on centralized servers, but these
researchers make use of regular broadcast techniques such as Service Location Protocol
(SLP) to announce the user location that add high traffic to the network. Moreover, the
terminal mobility problem is still not addressed in these approaches.
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1.5 Contributions

In this dissertation, we study the problems related to SIP functionalities over MANET.
We focus on the distributed resource lookup mechanisms which can tolerate single-point
and multiple-point failures and which can effectively handle terminal (or node) mobility.
Our target application is IP telephony and multimedia communication in a rapidly deploy-
able disaster emergency network. Emergency workers can carry and communicate using
self-configuring and self-healing portable communication terminals. In most emergency
networks, terminals may move and are subject to physical failures and radio outages.
Starting, maintaining, and recovering communication throughout an emergency mission
would prove very challenging. We provide answers to address these challenges vis-à-vis
disaster emergency communication with the following four contributions.

The first contribution is the design and validation of a novel fast P2P lookup architec-
ture called Structured Mesh Overlay Network (SMON). It enables P2P applications to
perform fast lookups in the MANET environment. SMON is a fully connected mesh over-
lay topology which allows for a constant lookup time when a terminal needs to locate
the destination of a specific resource (e.g. a file). SMON utilizes a cross layer design
based on the Distributed Hashing Table (DHT) and has direct access to OLSR routing
information. SMON allows the resulting overlay network topology to dynamically adjust
to the MANET network topology. We validate SMON through the simulations of het-
erogeneous MANET terminals in two mobility scenarios. One scenario is a combination
of heterogeneous mobile nodes with different transmission ranges and bandwidths. The
other scenario is a Wireless Mesh Networking (WMN) consisting of a MANET connected
to a fixed network via a gateway. We discover that SMON provides the best lookup times
as compared to existing work, i.e. passive (push model) and active (pull model) resource
discovery protocols not based on the concept of an overlay network.

The second contribution is a distributed SIP architecture running on SMON which we
call SIPMON. SIPMON allows for the creation of an overlay network among cooperating
SIP peers. SIPMON replaces a centralized SIP server architecture; hence, it is able to
better handle single and multiple terminal failures. Our approach extends the traditional
SIP user location discovery by utilizing DHT in SMON to distribute SIP object identifiers
over the Mesh Overlay Network. It guarantees a constant time on P2P SIP user discovery
in the MANET environment. Other approaches use broadcasting techniques to discover
the locations of the target users before initiating a SIP request. Broadcasting approaches
result in high control overhead and lookup delay since each node must process SIP requests
upon receiving them. In our approach, SIP messages are exchanged among SIPMON
peers via regular unicast packets. This results in significantly smaller control overhead
as opposed to the broadcasting approaches. We evaluate SIPMON through simulations
and empirical experiments. We found that SIPMON provides the lowest call setup delay
when compared to the existing broadcast-based approaches.

The third contribution is that we study a scenario where an emergency overlay network
consists of several participating MANETs and each of these participating MANETs has
a public Internet connectivity. SIP users (e.g. emergency workers) positioned inside the
emergency overlay network should be able to communicate as long as they are connected to
one of the participating MANETs. We assume the uniqueness of SIP user identities, and
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moderate user mobility where each SIP user (i.e. on a terminal) may occasionally join or
leave one of the participating MANETs. We propose a novel framework called SIPMON+
to support SIP user mobility. SIPMON+ consists of SIPMON co-functioning with an
enhanced version of OLSR gateway called Overlay OLSR Network (OON). SIPMON+
relies on the OON layer to exchange OLSR messages among the participating MANETs
via the public Internet. Therefore, the reach-ability status of SIP users can be made
known across the participating MANETs. Through our testbed experiments, we evaluate
SIPMON+ versus MANET for Network Mobility (MANEMO). We find that SIPMON+
has better performance in terms of call setup delay and handoff delay. Apart from this
finding, we also show that SIPMON+ is more scalable in terms of control overhead size
and the number of SIP users supported by SIPMON+.

The fourth contribution is a proof-of-concept and fully-functional prototype of P2P mul-
timedia communication based on SIPMON+ for post-disaster recovery missions. We
use the Vehicle to Infrastructure (V2I) scenario to evaluate three different approaches:
MANEMO based OLSR, MANEMO based TDP/NINA (Thubert et al., 2007, 2008), and
SIPMON+. We find that SIPMON+ outperforms the two MANEMO approaches in terms
of call setup delay, packet loss, and deployment time, all of which are important factors
when deploying an emergency network. The reason is because SIPMON+ uses the SIP
re-INVITE mechanism to resume an ongoing session when a terminal moves without us-
ing centralized servers and IP tunneling mechanism commonly found in the MANEMO
approaches.

1.6 Scope of the Study

Although our framework shows its scalability through a simulation study, we are unable
to confirm this through experimentations due to the size limitation of our testbed. The
network and information security issues are not within the scope of this study.

1.7 Organization of this Dissertation

The chapters of the dissertation are organized as follows.

Chapter 2 reviews the underlying concepts related to the study. It provides an overview
of MANET, well-known routing protocols, the P2P overlay network concept, and P2P
applications on MANET in particular P2P resource discovery mechanisms. We then
present a survey of these discovery mechanisms, some of which are also used to provide
discovery techniques in SIP on MANET. We explain mobility and SIP, provide a literature
review of P2P SIP over MANET, and concentrate on related research.

Chapter 3 presents SMON, the overlay network framework for P2P applications on MANET.
SMON is an improvement of CrossROAD (Delmastro, 2005), which provides resource dis-
covery for P2P application. We propose a new algorithm for overlay creation and mainte-
nance which significantly reduces control overhead, while giving the same lookup success
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ratio and delay as CrossROAD.

In chapter 4, we propose the deployment of SIP on top of SMON or SIPMON in order
to create a SIP overlay network, which we refer to as P2P SIP, an access point where an
existing SIP based application can seamlessly operate with SMON. We show how SIPMON
can handle SIP registration and call invitation. The chapter also shows simulation and
testbed results.

Chapter 5 explains how extended SMON (SMON+) is built to cover both MANET and the
Internet. We show that SIPMON+ provides SIP terminal mobility support for seamless
interoperability for MANET and Internet SIP users without implementing any kind of
home or foreign agent that exists in mobile IP and IPv6 mobility. We then present
comparative results between our scheme and the NEMO oriented MANEMO (Wakikawa
et al., 2007). We show how SIPMON+ can scale in scalability analysis subsection at the
end of this chapter.

Chapter 6 presents a multimedia communication prototype, called Easy Disaster Com-
munication (EasyDC) based on SIPMON and SIPMON+. We also discuss issues con-
cerning the deployment of an emergency network based on different network protocols
for a post-disaster scenario including a comparison of their performance. Moreover, we
propose SIPMON+ as a two-tier network in order to provide better management of group
mobility.

Chapter 7 summarizes the main highlights of the dissertation and provides recommenda-
tions for future work.
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Chapter 2

Literature review

This chapter includes an overview of concepts and technologies essential for this disser-
tation as well as an extensive survey of related work. Section 2.1 introduces a class of
networks called Mobile Ad Hoc Network (MANET) together with a review of some of its
well-known routing protocols. We then provide a survey of Peer-to-Peer (P2P) overlay
networks and review P2P applications on both the Internet and MANET in section 2.2.
In section 2.3, the Session Initiation Protocol (SIP) together with how it can be used to
handle mobility is discussed. Finally, we explore the concept of P2P SIP over MANET
including more details of related work.

2.1 Mobile Ad Hoc Network (MANET)

In wireless networks, there are two types of wireless network connections. The first one is
an infrastructured network where mobile nodes communicate via a wireless access point
which resides on an infrastructure. The access point allows the wireless nodes to exchange
data within its radio transmission range, leading to limited distances between nodes and
the access point. Another type of connection is through the use of an ad hoc mode with
no access points, which means this type of network functions without an infrastructure. It
can provide network access in cases when the network infrastructure is not present, such
as at disaster sites where the entire network infrastructure has been completely destroyed.
By using the ad hoc network, a disaster recovery network can be setup within one or two
hours instead of days.

MANET is an infrastructureless multi-hop and self-organizing wireless network made up
of mobile hosts as shown in Fig. 2.1. Node A can send a packet to node B by using
intermediate nodes to relay the packet without going through any wireless access points.
The path, used to forward the packet to the destination, is provided by MANET rout-
ing protocols. Every host or node functions as a router where mobile hosts in an ad
hoc network are free to move; in other words, the network topology is likely to change
frequently. Traditional routing protocols, used in the wired networks, are designed for
networks in which most of the mobile nodes do not move frequently. Therefore, a new
routing algorithm is needed for a MANET dynamic network environment.

With the increasing availability of wireless devices, MANET has gained more importance
with a wide range of interesting applications. In addition, MANET can be easily deployed
anywhere with or without a network infrastructure making it attractive for deployment
in military battlefields, emergency rescue operations, and for ad hoc vehicle-to-vehicle
(V2V) communication. In military battlefields, it is very difficult to create such a fixed
network for military communication because military units always move. Moreover, the
communication networks should be fast and easily deployable in an ad hoc fashion. Con-
sequently, the MANET is suited for these kinds of operations. MANET allows military
units such as soldiers, tanks, vehicles, and headquarters to communicate to one another.
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(a) Infrastructured network

(b) MANET

Figure 2.1: Infrastructured Wi-Fi network vs. Mobile Ad Hoc Network

Similarly, emergency rescue operations require rapidly deployable networks for rescue op-
eration communications. In disaster areas, the network infrastructures are likely to be
damaged. Instead of setting up a new network infrastructure for rescue operations which
could takes weeks or months, MANET can be set up within a few hours or less.

Since an autonomous mobile ad hoc network can be easily and temporarily built by using
laptops, PDAs, or wearable computers sharing information between participants in a
conference, classroom, or other scenarios, e.g. V2V communication. The example of the
MANET application in this category is CarNet proposed by Morris et al. (2000). The
main goal of CarNet is to provide a communication system between cars by using wireless
networks and a Global Positioning System (GPS) device. The authors introduced a novel
scalable routing system, called Gird, using geographic forwarding to route packets from
one car to another without flooding the network. A car in the Gird can use other cars as
gateways to access the Internet. Moreover, CarNet can be used as an emergency warning
system for cars, e.g. intersection collision avoidance or highway-rail intersection warning.

MANET is specified in RFC 2501 (Corson & Macker, 1999). A MANET can operate
in isolation or interact with fixed gateways that offer Internet connectivity. A MANET
node is generally equipped with wireless capability, which is composed of a transmitter
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and a receiver. When the node transmits data, other nodes within its transmission range
also receive the data. Each MANET node should perform routing functions in order to
forward a packet to a final destination. RFC 2501 also discusses the characteristics of
MANET as listed below.

Dynamic topologies Due to mobility of the MANET nodes, the network topology
changes randomly, frequently, and rapidly at any time. Moreover, links between
nodes may become bidirectional and unidirectional links, which make the network
topology unstable.

Limited bandwidth High error bit rate, noise, fading, and other interferences in
wireless links lead to limitations in the bandwidth’s transmission. A path from a
source to a destination in the MANET may consist of multiple physical paths, so it
is prone to accumulate more noise. Moreover, many data packets may be lost when
the network topology changes.

Energy constrained operation Nodes in the MANET are likely mobile; thus,
they must depend on batteries to provide them with power. Moreover, many nodes in
the MANET that perform routing functions also require higher power consumption.

Limited physical security Due to the nature of the wireless broadcasting medium.
As a result, data can be easily captured by attackers.

2.1.1 Interoperability between MANETs and fixed IP networks

Sometimes, MANET can be attached to the Internet in order to provide a flexible edge
network for the Internet. Such interoperability is provided at the network or IP layer. The
reason that IP layer should be used in MANET is to provide Internetworking capability
over heterogeneous networks (Corson & Macker, 1999). To enable MANET connection
to the Internet, all MANET routing protocols adopt IP packets with IP headers for
their data packets where their messages get embedded inside IP packets. Fig. 2.2(a)
shows how Ad-hoc On-Demand Distance Vector routing (AODV) (Perkins et al., 2003),
Topology Dissemination Based on Reverse-Path Forwarding routing (TBRPF) (Ogier et
al., 2004), and Optimize Link State Routing (OLSR) (Clausen & Jacquet, 2003) messages
are encapsulated in a UDP packet which embedded itself within an IP packet. AODV
nodes use UDP protocol to communicate using port number 654. TBRPF and OLSR
also use UDP to carry their messages on port number 712 and 698 respectively. On the
other hand, Dynamic Source Routing(DSR) (Johnson et al., 2007), does not use UDP as
an underlying transport protocol, but DSR defines its new header that must immediately
follow the IP header as shown in Fig. 2.2(b). Thus, the mentioned routing protocols are
applications that use the TCP/IP stack to exchange its routing messages among MANET
nodes.

MANET may have a gateway with two interfaces: an interface to interact with nodes
in MANET and the other to connect with an infrastructured network. The interface
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Figure 2.2: Examples of routing message formats

connected to the MANET side operates and interprets MANET routing packets while the
other with the infrastructured network does not need to implement this MANET routing
protocol. The MANET routing protocol does not perform packet forwarding operations,
as it only maintains the routing table. The IP layer uses the routing table to forward
an IP packet as described in RFC 1812. For example, upon receiving an IP packet from
the MANET side, the gateway uses a destination address indicated in the packet to find
the next hop in the routing table in order to forward the packet. If the next hop address
belongs to the fixed IP interface or a node in the infrastructured network, the packet is
then forwarded to the IP interface. Similarly, the same procedure occurs when an IP
packet from the infrastructured network is forwarded to the MANET interface.

2.1.2 MANET routing protocols

Even though this dissertation concentrates on the OLSR used as an underlying routing
protocol for our proposed scheme, we will provide an overview of the well-known MANET
routing protocols: ABR, FSR, AODV, DSR, ZRP, and TBRPF. Nevertheless, OLSR will
be covered in more details.

Originally, MANET routing protocols can be classified into two groups: reactive and
proactive routing protocols. Later, hybrid routing protocols combining both proactive
and reactive basic properties have been proposed.

Reactive routing protocols This class of protocols maintain the partial routing in-
formation upon demand. When a source node wants to send a message to a particular
destination, the source node initiates a route discovery process to find the best path to
that destination. This approach is based on an on-demand path discovery that floods
the query messages as needed. The main benefit of these protocols is the low routing
overhead because they do not periodically exchange routing information. However, the
main drawback of the protocols is the long delay it takes to establish a connection because
reactive protocols need to find and calculate the route before transmission.

1) Associativity-Based Routing (ABR) (Toh, 1997)

A source discovers a destination by flooding a route request message to the entire net-
work. The destination sends a route reply message to the source via a selected path that
is the most stable. To select a stable route, every node maintains an associativity table
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containing associativity ticks with respect to its neighbor over time. If two nodes are
neighbors and they stay connected for a long time, their associativity ticks are high. The
associativity ticks can be obtained from periodic beacons or hello messages between a pair
of neighbors. At the destination, if there are many paths from the source, a reverse path
is chosen based on the highest associativity ticks. The strength of this routing protocol is
that a selected path tend to last longer. However, this path is not always the shortest path.

2) Ad-hoc On-Demand Distance Vector routing (AODV) (Perkins et al., 2003)

Nodes in the AODV do not need to maintain routes to destinations that are not part of
active communications. The two main operations of AODV are path discovery and path
maintenance.

Path discovery starts whenever a source node begins to communicate with a destination,
and it has no path to that destination in its routing table. The source node will then
initiate a broadcast by sending a route request (RREQ) to all neighbor nodes which are
within the source node’s transmission. The range RREQ is propagated from neighbors
to other neighbors, like rumors, until it reaches the destination. While the RREQ travels
from the source node to the destination, all intermediate nodes set up reverse paths from
themselves back to the source node by recording addresses of the neighbors from which
they receive the RREQ.

To prevent routing loop and duplicated update, each node maintains the pairs of destina-
tion sequence number and IP address. When a node receives a RREQ packet, it processes
the packet if the sequence number the received packet is larger than its own sequence
number in the cache.

The other operation is path maintenance. If a route is broken due to the movement of the
source node, the source node needs to reactivate path recovery in order to find a new route
to the destination. If an intermediate node along the route moves, the upstream node
of the broken node needs to transmit a route error packet (RERR) to the source node.
When the source node receives the RERR packet, it can initiate a new path discovery
process to the same destination.

3) Dynamic Source Routing(DSR) (Johnson et al., 2007)

DSR is another on-demand routing protocol based on the concept of source routing. In
this concept, every packet carries the complete list of nodes, which the packet should
traverse in a packet header. The key ideas of the DSR are to reduce overhead by avoiding
unnecessary updates, and to allow a packet to be sent over unidirectional links. For
example, a forward path goes between nodes A and F in the following manner: A → B
→ C → F, while the reverse goes from nodes F to A in the following manner: A ← B
← D ← F. In this example, node C and D have the unidirectional links with node F.
The forward path and the reverse path can be different. However, keeping full routing
information in the packet header causes extra overhead.

Like AODV, DSR consists of two mechanisms: 1) route discovery where route discovery
is based on flooding the network with RREQ packet and 2) route maintenance. The
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Figure 2.3: An example of a DAG

difference is that the discovered path is stored in the packet header instead of every
node along the path. Nodes in the DSR are arranged in a promiscuous mode operation,
causing adjacent nodes to overhear the RREQ packet. Therefore, the nodes may cache
this overheard route information for possible future use. Moreover, the DSR allows nodes
to keep multiple routes to a destination in their caches. When the link to the destination
is broken, they can use other routes in the caches without creating a new route discovery.
However, a stale cache because of host mobility has a severe impact on the performance
of the DSR. The sender may try several stale routes in its cache before finding a good
one. Route maintenance is as follows. When an intermediate node detects a broken link
to its next hop node toward the destination, it marks this route in its cache as invalid
and returns a route error packet (RERR) back to the source node. As the RERR packet
arrives, the source node initiates a new route discovery process to the destination.

Apart from the mentioned reactive routing protocols, we briefly give a list of other reactive
routing protocols to complete the literature. There are reactive routing protocols based
on link reversal routing (LRR) (Gafni et al., 1981). The concept of LRR is that all nodes
are represented as a graph, which is converted into a directed acyclic graph (DAG). This
DAG contains only one destination or a sink that does not have any outgoing links to its
neighbors as shown in Fig. 2.3. When the link from node 2 to the sink fails, node 2 must
perform a link reversal algorithm because it becomes the other sink (no outgoing links).
Then, node 2 reverses its links. The link reversal process is repeated until there is only
one sink left as shown in Fig. 2.4. Reactive routing protocols that use the concept of LRR
are Lightweight Mobile Routing (LMR) (Corson & Ephremides, 1995) and Temporally
Ordered Routing Algorithm (TORA) (Park & Corson, 1997). Single Stability Adaptive
(SSA) (Dube et al., 1997) is similar to ABR, but it uses link stability as a metric for
path selection instead. Cluster Based Routing Protocol (CBRP) (Jiang et al., 1999) is
a hierarchical routing protocol that divides a network into many clusters. Each cluster
contains a cluster head. In CBRP, routing information is exchanged only among clus-
terheads, leading to the introduction of a lower routing overhead compared with other
reactive routing protocols. However, the clusterhead selection is performed every time
when the clusterheads become inactive due to mobility. This frequent selection may re-
sult in high overhead and route discovery delay.

Proactive routing protocols These protocols are known as table-driven routing pro-
tocols; they use concepts of distance vector and link state routing protocols (Sesay et al.,
2004). Every node maintains its tables to keep routes to all reachable destinations. In
order to keep the routing table up-to-date, routing information is constantly exchanged
among nodes. A low delay in setting up a connection between the source and destination
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Figure 2.4: Node 2 reverses its links

is the main advantage of these protocols because the routes are computed proactively. On
the other hand, the shortcoming is that there is a high overhead of routing information
exchanged since the nodes usually broadcast routing information periodically

1) Fisheye State Routing (FSR) (Pei et al., 2000)

FSR is based on a link state routing protocol that maintains a full network topology
database at every node. FSR uses different routing update frequencies for different types
of nodes depending on a fisheye scope distance away from itself. For example, a FSR
node uses f1 update interval for one-hop neighbors and f2 update interval for two-hop
neighbors and so on, where f1 < f2 < · · · < fn. Using different intervals for the routing
updates reduces the number of routing overhead compared to the original link state rout-
ing protocol, but a route to a far remote destination becomes less accurate.

2) Topology Dissemination Based on Reverse-Path Forwarding routing
(TBRPF) (Ogier et al., 2004)

TBRPF is a proactive link state routing protocol. Each node computes a source tree to
all reachable destinations based on partial topology information. The source tree is calcu-
lated by using a modification of Dijkstra’s algorithm. In order to minimize the broadcast
overhead, each node sends its own partial source tree to neighbors and uses differential
HELLO messages to report only changes in the network topology. The TBRPF is com-
posed of two modules: neighbor discovery and routing module. The TBRPF neighbor
discovery module is responsible for detecting new neighbors and loss of neighbors. The
main feature of this module is to use differential HELLO messages, which report only
changes in the status of neighbors, causing smaller sizes of HELLO messages when com-
pared with an old link state routing protocol such as OSPF. Consequently, in order to
provide a fast detection of topology changes, the nodes can send HELLO messages more
often. The other module is routing. This module allows a node to build a source tree and
to report only part of its source tree, called reported subtree, to neighbors. Each node
periodically sends reported subtree every 5 s and every 1 s for differential updates. The
reported nodes are analogous to multipoint relay selectors in the OLSR, which will be
explained next.

3) Optimize Link State Routing (OLSR) (Clausen & Jacquet, 2003)

OLSR is a proactive link state routing protocol. OLSR is well suited to large and dense
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mobile networks. The purpose of OLSR is to use a selected number of nodes called Mul-
tiPoint Relays (MPRs) to relay the broadcast messages in the network. This technique
restricts the number of re-transmitters as much as possible by efficiently selecting a small
subset of neighbors as MPRs which covers (in terms of one-hop radio range) the same
network region which the complete set of neighbors does (Laouiti, Qayyum, et al., 2002).
When the node wants to broadcast the packet, it sends this packet to its MPR nodes.
Other nodes, which are not MPRs, will never forward the packet. Hence, the number
of broadcast packets is reduced significantly. Fig. 2.5 depicts an example of a broad-
cast packet with and without MPRs. For the network without MPRs, the number of
retransmission is nine, whereas three is the number of retransmission with MPRs.

The core functions of OLSR are neighbor detection, topology discovery, and routing ta-
ble computation. Each node uses HELLO messages to discover its one-hop neighbors.
HELLO messages are periodically broadcast by specifying TTL to be 1 so that the HELLO
messages will never go beyond one hop. The HELLO messages contain a list of neighbors
and their link status. Only bi-directional links are considered as valid links. Moreover,
each node can construct a table of two-hop neighbors by using HELLO messages ex-
changed. Next, each node will perform MPRs selection.

Laouiti, Qayyum, et al. (2002) propose an algorithm to select multipoint relays as follows.
Let a set of one-hop neighbors of x be represented by N(x), and a set of two-hop neighbors
be represented as N2(x) and MPR(x) represents a set of multipoint relay nodes of x.
Multipoint relays selection algorithm by Laouiti, Qayyum, et al. (2002) is given below:

1. Start with an empty multipoint relay set MPR(x).

2. First select those one-hop neighbor nodes in N(x) as the multipoint relays which
are the only neighbor of some node in N2(x), and add these one-hop neighbor nodes
to the multipoint relay set MPR(x).

3. While there are still some nodes in N2(x) which are not covered by the multipoint
relay set MPR(x) :

• For each node in N(x) which is not in MPR(x), compute the number of nodes
that is covered among the uncovered nodes in the set N2(x).

• Add that node of N(x) to MPR(x) for which this number is maximized.

After MPRs selection is made, each node broadcasts Topology Control (TC) messages
in order to create a complete topology table used for routing calculations. This method
is similar to the classical link state routing protocol, but it improves the broadcasting
technique as previously mentioned.

Finally, each node uses received TC messages that it received to compute its routing
table. The routing table is made up of very important information because it helps
locate the next hop to a destination. Moreover, the routing table is recalculated when the
network topology is changed. Even though the protocol has many functions, only neighbor
detection, topology discovery, and routing table computation are the main functions.

The OLSR packet is defined by using unified packet format for all data so that it provides
extensibility of the protocol to support backward compatibility. One packet may contain
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Figure 2.5: The number of retransmissions in OLSR

several messages. The OLSR protocol uses UDP port 698 for communication. The OLSR
packet format is depicted in Fig. 2.6. The packet header contains two fields: packet length
and packet sequence number. The packet length is the length of the packet. The packet
sequence number is used to check duplicate packets. The packet sequence number must
be increased by one each time a new OLSR packet is transmitted. The message header is
composed of eight fields: message type, vtime, message size, originator address, time to
live, hop count, message sequence number, and message. The message type indicates the
type of message such as HELLO or TC message. The value of the message type ranges
from 0 to 127. Next, vtime identifies how long a node accepts that this received message
is valid. The concept of vtime is similar to hold time in routing algorithm. Message
size gives the size of the message. The message header, originator address contains the
IP address of the original sender, and not the intermediate node. Time to live contains
the maximum number of hops that allow the message to be forwarded. Time to live is
decreased by one when an intermediate node retransmits it. When it reaches zero, this
packet will be dropped. Hop count indicates how many hops the message traverses. Next,
the message sequence number is used to make sure that this message is not retransmitted
more than once by any node. The last message header field is a message that contains
real data. Messages used for constructing a routing table and already defined in OLSR
are HELLO and TC messages. The following sections explain these messages and their
operations in detail.

Each OLSR node exchanges HELLO message periodically in order to detect neighbor
nodes. The format of the HELLO message is shown in Fig. 2.7. The node broadcasts the
HELLO message which contains a list of its neighbors and a link status that enables the
discovery of one-hop neighbors. The HELLO messages are never forwarded more than
two hops, so TTL in HELLO messages should always be zero. Link status can be either
an asymmetric or a symmetric link. The asymmetric link is referred as unidirectional
link. For example, nodes A and B are physical neighbors of each other. However, node
A can send a HELLO message to node B, but it cannot hear the HELLO message from
node B as shown in Fig. 2.8.
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Figure 2.6: The OLSR packet format (source: Clausen & Jacquet (2003))

Figure 2.7: The HELLO message format (source: Clausen & Jacquet (2003))

Figure 2.8: An asymmetric link from node A to B in OLSR
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Figure 2.9: Finding two-hop neighbor at node A in OLSR

Figure 2.10: TC message format(source: Clausen & Jacquet (2003))

On the other hand, node A can receive the HELLO message from node B, and node B can
receive the HELLO message from node A. This link is called a symmetric or bidirectional
link. Two nodes in OLSR claim to be neighbors if there exists a symmetric link between
them. Moreover, by exchanging HELLO messages, an OLSR node can further know two-
hop neighbors based on information in the HELLO messages. Fig. 2.9 shows how node
A processes a received HELLO message from node B. After receiving the message, node
A knows that node B is a neighbor because it sees itself contained in node B’s HELLO
message. Therefore, node A changes this link status to an asymmetric link status. Next,
node A finds out that node C is a neighbor of node B with symmetric link status. Node
A adds node C to its two-hop neighbor sets, while node D is not a neighbor of node B
because the link between nodes B and D is asymmetric; as a result, node A does not add
node D as its two-hop neighbor. After exchanging HELLO messages, each node uses the
MPR selection algorithm as described previously to find its MPR. Only MPR nodes are
allowed to forward TC and other OLSR messages.

An OLSR node uses a TC or topology control message for topology discovery purposes.
According to one-hop and two-hop neighbor information tables, each multipoint relay
node creates and broadcasts a TC message, containing a list of its one-hop neighbors that
select this node as their MPR. The TC message floods to the entire network with the help
of other MPR nodes. Finally, each node completely knows the network topology. The
TC message format is shown in Fig. 2.10.

ANSN is an advertised neighbor sequence number that indicates the freshness of TC
message. Every time a node detects any changes in its neighbor set, it increases this
sequence number by one. Each node maintains TC’s previous information, sequence
numbers and senders. Whenever a node receives a new TC message, it checks whether
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Figure 2.11: An example of OLSR route calculation

the sequence number received and the TC message is higher than the sequence number
found in the database. If it is higher, each node will process the TC message; otherwise,
it will drop the message. Advertised Neighbor Main Address is the field that contains the
address of a neighbor node which selects the sender as its MPR node. After receiving TC
messages, each node begins calculating routes to all possible destinations.

The routing table is important information for any kind of routing protocols. Each node
maintains a routing table, which is calculated based on received TC messages. The node
creates connected pairs of TC senders and advertised neighbor listed in the TC message.
For example, node R wants to find possible paths to node Z. Node R extracts pairs of
connected nodes in the accumulated TC messages in order to reach node Z. Next, node R
selects the path that contains minimal hops toward node Z. The routing table is based on
the information in the neighbor and topology table. Hence, the routing table is calculated
every time when these tables change.

In Fig. 2.11, after node A receives TC messages from all MPRs, it begins computing route
to all destinations. The example shows how node A finds a route to node H based on
received TC messages. First, node A looks for node H in TC messages, which is found
in G’s TC message. Therefore, node A constructs a graph of node G and H as shown in
Fig. 2.12 step 1. Next, node A finds G’s MPR, which is node E, so it now has the route
from node E to H shown in step 2. In the last step, node A knows that node E is its
neighbor so that it finally has a complete route from itself to node H, as depicted in step
3. Node A will repeat the same procedure in order to find routes to all nodes.

Besides, the mentioned proactive routing protocols, there are several approaches that
use the proactive routing concept. Destination Sequenced Distance Vector (DSDV) rout-
ing (Perkins & Bhagwat, 1994) is a distance vector algorithm based on the Bellman Ford
algorithm. Each entry in a routing table is labeled with a sequence number specified by a
destination. A route with the newest sequence number is used in order to prevent a staled
route. DSDV nodes periodically advertise routing updates, resulting in the introduction
of high routing overhead. Similar to DSDV, Wireless Routing Protocol (WRP) (Murthy
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Figure 2.12: An example of OLSR route calculation of Fig. 2.11

& Garcia-Luna-Aceves, 1995) is a proactive routing protocol that solve the count to infin-
ity problem of a distance vector algorithm. Global State Routing (GSR) (T.-W. Chen &
Gerla, 1998) is based on a link state routing. In the traditional link state routing protocol,
routing messages are flooded to the entire network. However, GSR routing messages are
exchanged by only hop-by-hop neighbors, resulting in a reduction in the routing overhead.
The size of routing messages is relatively large as the number of nodes grows.

Hybrid routing protocols Hybrid routing protocols are proposed to combine the merits
of both reactive and proactive routing protocols. This group of protocols is designed to
support a large size of the network by creating some sort of a zone in which a proactive
routing is used. Each zone can communicate to one another via a proactive routing. The
strength of hybrid routing protocols is a limitation of the proactive overhead because it
is confined within the zone. However, determining the proper size of the zone remains
an important issue. An example of this class of routing protocol is Zone Routing Proto-
col(ZRP) (Haas et al., 2002). ZRP organizes its network into zones. Each node defines its
zone covering n-hop neighbors, where n is a radius of the zone. Within the zone, a proac-
tive routing protocol is deployed to maintain routing information, thus routing broadcast
message limited and routes immediately became available within the zone. When it is
needed for a route to outsize the zone, a source uses a reactive routing protocol to dis-
cover a destination by forwarding a RREQ packet towards all its border neighbors. Upon
receiving the RREQ packet, the border neighbors use a reactive routing protocol to flood
the network in order to discover the destination. The advantage of ZRP is the limitation
of control overhead to the size of the zone. However, zones can be overlapped to each
other, if the radius of the zone is not carefully configured and can result in inefficient
route discovery process.

In conclusion, for reactive routing protocols, a node is unlikely to maintain correct routing
information on all nodes at all times. Instead, the node finds a path, if it does not
already exist in its routing table, to a destination where it wishes to communicate with
the destination. Finding paths to the destination triggers route discovery is a process
that floods a query message in the network. For example, a node in AODV broadcasts
RREQ message to all neighbors. The neighbors again forward the RREQ message to their
neighbors. Eventually, the RREQ message will reach the destination. The advantage of
reactive routing protocols is a lower routing overhead compared with proactive protocols.
One shortcoming of reactive routing protocols is the high delay of route-setup. On the
other hand, proactive routing protocols try to maintain correct routing information on
all nodes at any time. This can be achieved by using regular routing advertisement.
The advantage of proactive routing protocols is that paths to all destinations are always
available, so the delay of route-setup is typically low. The drawback of the protocols is
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a higher routing overhead, compared with on-demand routing protocols, due to periodic
routing updates.

We propose the use of OLSR as an underlying routing protocol for our SIP on the MANET
framework. By doing so, we expect to minimize the delay that occurs when nodes join an
overlay network. When the node makes a request to join the overlay network, it can use
the OLSR routing table to maintain associations with other nodes on the overlay network
without having to performing the route discovery process to all destinations, something
which a reactive routing protocol has to do. The OLSR uses Multi Point Relays (MPRs) to
relay a message to all nodes. The usage of the MPR forwarding functionality significantly
reduces duplicated retransmissions during the flooding procedure when compared with
the reactive routing protocol.

2.2 P2P overlay network

In this section, the concept of the general overlay network is explained. We first consider
overlay networks on the Internet or infrastructured networks.

An overlay network is a virtual network of nodes and logical links that is built on top of an
existing network with the purpose of implementing a network service that is not available
in the existing network (Stoica et al., 2001). The goal of creating the overlay network is to
add new services without having to make modifications to existing infrastructure as this
would be impractical. Examples of overlay network applications include P2P file sharing,
content delivery, routing, security, massive computing, email system, and multicast net-
work. The first benefit of using an overlay network is the ability to support particular
services without having to change existing software and hardware. New applications can
be deployed on the application layer on top of the network infrastructure. Sometimes
overlay networks are used to provide incremental system deployment, for example the
6bone, and legacy IPv6 testbed.

2.2.1 P2P overlay on infrastructured networks

A P2P overlay network is a distributed system, without a centralized administration point,
with peers connected together via logical links which are usually TCP connections. Peers
on the overlay are nodes that have equal capabilities of being a client as well as a server.
The major function of the overlay network is to provide application routing, which is a
process that routes messages among peers in the overlay network, providing a substrate
for large-scale data sharing, content distribution, and resource searching, etc. In contrast
to the IP network, the proximity metric is not taken into account when the application
routing is performed on an overlay network; this means that one overlay hop may span
across the entire world. The P2P overlay network also supports any applications that
require robustness, self-organization, fault-tolerance, and scalability. The first usage of
the P2P overlay network was intended to serve as a P2P file sharing application on the
Internet, where users downloaded MP3 songs from other users in a P2P fashion. In other
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words, P2P file sharing is an application that allows a user to download directly a file
from other users’ personal computers. For example, the user types a keyword of the file,
such as the filename, so that a list of peers who have that file is displayed on the screen.
The user selects one of the peers in the list to download the file. The file is copied from
the selected peer to the user’s machine. While this file is being downloaded, other users
can immediately download the file from the user. In order to increase the downloading
speed, the user can simultaneously download the file from many peers as well.

P2P overlay networks can be classified into two categories: unstructured and structured
overlay networks. In unstructured overlay networks, peers usually use a broadcast mech-
anism to locate data items. Nevertheless, by using the broadcast method, problems with
the bandwidth and scalability emerge. On the other hand, peers in the structured overlay
network deploy the same hash functions to find given data items without invoking any
broadcast queries. Consequently, the structured overlay network is suitable for applica-
tions that require distributed architecture.

1) Unstructured P2P overlay network
An unstructured P2P overlay network is a random graph of nodes with no pre-defined
topology or structure. The assumption is that the unstructured P2P overlay network is
already created as shown in Fig. 2.13(a). When a new peer joins the overlay, first, it
must find a peer that has already joined the overlay. Second, it simply copies their peer’s
existing link information and uses it to connect to more peers. The joining peer can freely
make connections with any other peers. In Fig. 2.13(b), the joining peer detects that peer
A is logically the nearest neighbor, so it connects with peer A. The bootstrap procedure
for finding nodes that are in the overlay can be achieved in the following ways. The joining
peer uses the previous list of overlay peers from the last seen. The joining peer retrieves
overlay information about the overlay from a centralized place, such as DNS servers or
stable web sites. The next bootstrap strategy is the use of limited broadcast query. The
joining peer may broadcast a query message to find existing peers in the overlay network
by specifying ”time-to-live” in order to limit the distance it takes to forward the query
message. After the joining peer has joined the overlay, it copies the existing information
about the link overlay from node A so that it knows more nodes in the overlay, namely,
nodes B and C. The new node, moreover, tries to connect to as many overlay nodes as
possible in order to prevent the problem involving a single point of failure.

Searching for a desired piece of data in the overlay, a peer has to flood a query through
the overlay network in order to find potential peers who share the same data as shown in
Fig. 2.14. If the number of quires increases, the entire overlay network is eventually over-
whelmed by these flooded messages, resulting in high bandwidth consumption. Moreover,
an increase in the number of participants in the network also leads to scalability problems.
Examples of P2P file sharing applications, Napster (drscholl, 2000), Gnutella (Klingberg
& Manfredi, 2002), and KaZaA (Liang et al., 2004) are based on the unstructured over-
lay. Napster uses a centralized server to maintain a file directory; hence, it is subject to
a single point of failure. On the other hand, Gnutella and KaZaA are true distributed
P2P systems, where centralized servers are removed, resulting in an increase in the sys-
tem’s robustness. The difference between Gnutella and KaZaA is that Gnutella is a flat
network, while KaZaA is a two-tier hierarchical network. In conclusion, scalability is the
main problem for unstructured P2P overlay networks.
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(a) Joining the existing overlay network (b) Establishing links with peers

Figure 2.13: Operations of joining the unstructured P2P overlay network

Figure 2.14: Flooding in the unstructured P2P overlay network

2) Structured P2P overlay network
P2P overlay networks commonly use Distributed Hash Tables (DHT) to provide a
structure for the overlay nodes’ network. As the name implies, a DHT is based on the hash
table concept, which is distributed among a set of computers, referred to as nodes (Ghodsi,
2006; Balakrishnan et al., 2003). Similar to the hash table, each node stores key and value
pairs, which is referred as objects.

The main operation of DHT is to provide a lookup service, which finds nodes that are
responsible for storing objects with given keys. An important property of DHTs is that
they can efficiently handle large numbers of data items. Furthermore, the number of
cooperating nodes might be very large, ranging from a few nodes to many thousands
or millions in theory. Because of the limited storage/memory capacity and the cost of
inserting and updating items, it is infeasible for each node to locally store every item.
Therefore, each node is responsible for part of the items, which it stores locally. The term
structured overlay network is therefore used to distinguish an overlay network created by
DHTs from other overlay networks (Ghodsi, 2006). Fig. 2.15(a) shows an example of a
DHT mapping filenames to the URLs, which represent the files’ current location. The
DHT items are distributed to nodes a, b, c, d, and e, and the nodes keep routing pointers
to each other. If an application makes a lookup request to node d to find out the current
location of the file abc.txt, node d will route the request to node a, which will route the
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(a) Example of a DHT mapping filenames to the
URLs representing the current location of the files

(b) An overlay network and the underlay network on top of
which the overlay network is built

Figure 2.15: DHT and overlay network (source: Ghodsi (2006))

request to node e, which can answer the request since it knows the URL associated with
key abc.txt. Note that not every node needs to store items, e.g. node b. Fig. 2.15(b)
displays an overlay network and its corresponding underlay network.

We describe examples of well-known structured DHT overlay networks, Chord (Stoica
et al., 2001), Pastry (Rowstron & Druschel, 2001), Tapestry (Zhao et al., 2001), and
CAN (Ratnasamy et al., 2001) in the following paragraphs.

Chord (Stoica et al., 2001) assigns each node and a key with m-bit identifier based on
hash function SHA-1. Each node has an ID by hashing its IP address, and the key is pro-
duced by hashing data information, such as file name. The overlay network is arranged
in a circle modulo 2m. Key k is assigned to a node that has its ID equal or greater than
k. The node identifiers are represented as a circle of numbers from 0 to 2m − 1 clockwise
ascending order. Chord routing is based on the concept of DHT as previously discussed.
Each node maintains a routing table, called a finger table, with m or log

2
N entries, where

N is the number of nodes. Fig. 2.16 illustrates Chord routing when m is 6. It shows the
finger table of node N1, composed of six rows of successors. In Fig. 2.17, N1 wants to

25

te
l-0

07
12

17
1,

 v
er

si
on

 1
 - 

26
 J

un
 2

01
2



Figure 2.16: Finger tables of N1

find key–57, now stored at node N60. N1 finds out that key–57 belongs to its successor
N35. N1, then, sends a query, containing the requested key, to N35. After receiving
the request from N1, N35 opens its finger table, and finds out that N60 is responsible
for key–57. Thus, node N35 forwards the query on behalf of N1 to N60. The authors
of Chord mention that the number of nodes that must be contacted in order to find a
desired successor in an N–node network is O(log N) and 1

2
log N on average. To prove

that, finding a successor is required at most m steps because 2m is equal to N . Therefore,
the time to find the successor is log N . When a node joins the Chord overlay network,
the successor pointers of some peers must be updated so that the correctness of lookups
is guaranteed. Moreover, Chord uses a stabilization protocol running in the background
in order to update successful pointers in the finger tables. To improve its robustness,
instead of maintaining only the first successor, each peer maintains a list of peers’ first
r successors. When the first successor peer fails to respond, the peer simply selects the
next peer on the list.

Pastry (Rowstron & Druschel, 2001) is a self-organizing decentralized overlay network,
where proximities of peers are taken into account. Each peer in Pastry is assigned a 128–
bit identifier or node ID, uniformly distributed hash value of its IP address. Pastry uses a
ring to arrange nodes in a circular 128–bit identifier space as shown Fig. 2.18. In routing
time complexity, Pastry can route any message to a destination in less than log

2b ×N
steps, where b is a configuration parameter, which is normally equal to 4. For example,
when b = 4 and N = 106 peers, the number of routing hops is 5.

Each Pastry node must maintain three tables: a routing table, a neighborhood set, and a
leaf set. The routing table is composed of log

2b ×N rows with 2b− 1 entries for each row.
Every entry in row nth shares the same prefix of (n− 1)th. Fig. 2.19 shows an example of
the routing table of node 3DA40 (128 bits), when b = 4 and N = 106. The total entries
are 75, (log

2b ×N) × (2b − 1). Each entry contains the IP address of the potential node
whose node ID shares the same prefix with proximity consideration. Each peer maintains
a neighborhood set, containing the nodes’ IDs and IP addresses that are closest to its
ID. Usually, the neighborhood set is not used in routing, but it is useful in maintaining
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Figure 2.17: Finding key-57 in Chord DHT

locality properties. Next, each peer maintains a leaf set table, consisting of L/2 nodes
with numerically closest larger node IDs, and L/2 nodes with numerically closest smaller
node IDs, relative to its ID. L is a configuration parameter with a typical value of 16.
The Fig. 2.20 shows an example of a route message in Pastry. Node 2F0DE wants to find
key–5F04D, so it looks up at the first row of its routing table to find the node that has
the first digit prefix of 5. Therefore, the message is sent to node 5AFE7. After receiving
the message, node 5AFE7 again looks for the node that has a prefix beginning with 5F,
which is node 5FD89, and sends the message to node 5FD89. This process is repeated at
node 5F02F. Finally, the message arrives at the correct node.

Tapestry (Zhao et al., 2001) shares similar properties with Pastry such as proximity

Figure 2.18: A 128-bit circular ID space
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Figure 2.19: Routing table, common prefix of node 3DA40. . .

Figure 2.20: An example of route message in Pastry
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Figure 2.21: Tapestry routing mesh (source: Tapestry (Zhao et al., 2001))

consideration and prefix routing. A Tapestry node is uniformly and randomly assigned
a node ID, denoted Nid, based on hashing algorithm like SHA-1. Furthermore, the data
object has OG. Every Tapestry message contains application-specific identifier Aid, which
is used to select a process, or application for message delivered at a destination. In other
words, Aid is similar to a port number in TCP/IP. The authors define four APIs as fol-
lows. PublishObject (OG, Aid) is to publish the object on the local node. In contrast,
UnpublishObject (OG, Aid) is to remove the published object. Next, RouteToObject (OG,
Aid) is for routing a message to an object’s location. The last API is RouteToNode (N,
Aid, Exact), which routes a message to application Aid on node N. “Exact” identifies, such
as the destination ID, needs to be exactly matched to deliver the payload. In Tapestry
routing, each node maintains neighbor maps, containing links to neighbor nodes that have
a prefix that matches with its ID. Tapestry uses neighbor maps to route messages to the
destination based on digit matches. For example, to route a message to node 52AF, the
node needs to find the longest prefix match and forwards a message to the node that has
the closet digit matches. This process is just like the general DHT routing. The message
is routed by digit, for example 5*** −→ 52** −→ 52A* −→ 52AF, where * presents
wildcards. This method is similar to the longest prefix routing in CIDR IP address allo-
cation. Fig. 2.21 shows the outgoing links of a node 4227. L1 is a link to a node that does
not share any digit matches with node 4227, whereas L2 is a link to a node that has a
one digit prefix match and so on. Fig. 2.22 shows a path that a message traverses in the
example from the Tapestry infrastructure. When a Tapestry node sends a message to a
destination, it opens neighbor maps, looks for the longest digit match node, and forwards
the message to that node. The process guarantees that any existing nodes in the system
will be reached at most logβ N logical hops, where β is the base number, and N is the
number of nodes in Tapestry. If the node cannot find any prefix matches, it looks for a
node that is numerically closest to the message ID. In Fig. 2.22, node 5230 wants to send
a message to node 42AD. It forwards the message to node 400F because it has only has
one neighbor node. Node 400F finds out that node 4227 has the longest digit match, so
it forwards the message to node 4227. This process is repeated at node 42A2. Finally,
the message arrives at the current node 42AD.

CAN (Ratnasamy et al., 2001) is a distributed decentralized P2P infrastructure, designed
to be scalable, fault tolerant, and self-organizing. CAN uses a d-dimensional Cartesian
coordinate space on a multi-torus (warp around every corner). This coordinate space is
a logical space with no relation to any real physical coordinate system. Therefore, CAN
does not consider the proximity of the node in the operations. This coordinate space is
partitioned into many zones so that each CAN node owns an individual zone. Fig. 2.23
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Figure 2.22: Routing path from node 5230 to 42AD (source: Tapestry (Zhao et al., 2001))

shows an example of the two-dimensional [0, 1] × [0, 1] coordinate space with six CAN
nodes. Each node is randomly assigned a unique ID, which is called a key. It gets its
key from the uniform distributed hash function. Each node locates itself to the virtual
coordinate space by using its key to map the coordinate point in the space. It has its zone
which does not overlap with others. Each node must be responsible for storing the object
ID that falls in its zone. For example, node A covers the object ID that has a value of
x = 0 − 0.5 and y = 0 − 0.5. The virtual coordinate space is used to keep (key, value)
pairs. For example, in order to retrieve the value of key, K1, any node applies the same
hash function to map K1 onto point P in the space, and gets the value from the node
that is responsible for that covered point P . A CAN node maintains a coordinate routing
table, containing an IP address with virtual coordinate zone for its neighbors that have
overlapping coordinates along the x or y axes in case of a two-dimension coordinate space.
For example, in Fig. 2.24, nodes B and F are immediate neighbors of node A because node
B overlaps on the Y-axis value with node A, and node F overlaps on the X-axis value
with node A. On the other hand, node D is not a neighbor of node A since node A does
not share an overlapping axis with node D. For a d-dimensional space partitioned into
n equal zones or n nodes, the average routing path length is d

4
× n

1

d hops, resulting in

O(n
1

d ). Each node also maintains 2 x d neighbors. When node A wants to locate the key
(0.8, 0.9), it tries to match the key to its ID, which does not match. Then, node A uses
the CAN routing table to find a neighbor that has the closest virtual coordinate to the
key. Node A finds that node F (0.5− 1, 0− 0.5) has an ID that is the closest to the key.
Therefore, node A forwards the query for (key, value) to node F. Again, node F knows
that node E (0.75−1, 0.5−1) is the one who is responsible for holding that key (0.8, 0.9),
so the query is forwarded to node E directly.

In summary, the P2P overlay networks can be classified into two types: the unstructured
and the structured overlay networks. Lookup mechanisms in the unstructured overlay
networks are based on the broadcast mechanism, in which a query message is flooded.
On the other hand, lookup mechanisms in the structured overlay networks are based on
DHT. The unstructured overlay networks are not suited for large-scale networks because
of the bandwidth consumed by the broadcasting traffic. Moreover, unstructured over-
lay networks generally have very poor search efficiency when the number of participants
increases. In contrast, the structured overlay networks overcome the limitations of un-
structured overlay network by allowing each peer to query for resources based on DHT,
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Figure 2.23: A two-dimensional CAN with six nodes (adapted by author from Ratnasamy
et al. (2001))

Figure 2.24: An example of CAN routing (adapted by author from Ratnasamy et al.
(2001))
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which is designed for a large-scale network such as the Internet.

The overlay networks discussed so far have been proposed for wired networks where nodes
are not mobile. To deploy overlay networks on MANET, node mobility and a dynamic
topology should be included as one of the design requirements. As a result, several overlay
networks use a cross-layer approach, which allows them to interact with network layers
to improve their overlay network efficiency in such a dynamic topology environment.

2.2.2 P2P overlay over MANETs

The P2P overlay network enables resource discovery on MANET thus MANET nodes can
locate desired services and publish their available services on a large scale network. The
challenges in providing resource discovery within the MANET are listed below (Sailhan
& Issarny, 2005).

• To enable MANET nodes to discovery resources dynamically, while both minimizing
discovery traffic overhead and tolerating the discontinuous connectivity of wireless
devices.

• To enable service or resource discovery by a general range of devices regardless of
their hardware and software platforms.

• To enable resource discovery in a large MANET.

• To enable the bridging of the MANET with infrastructure-based networks such as
the Internet.

There are resource discovery mechanisms without the overlay support on MANET where
each node knows the addresses of its physical neighbors. Without the overlay support, a
source finds resources by broadcasting a query to all other nodes in the network. Only
nodes that have these resources reply to the source. These mechanisms do not scale be-
cause of the broadcast techniques. Resource discovery mechanisms without overlay sup-
port are DEAPspace (Nidd, 2001), L. Li & Lamont (2005) approach, GSD (Chakraborty
et al., 2006), Jodra et al. (2006) approach, Konark (Helal et al., 2003), and Splendor (Zhu
et al., 2003).

We focus on resource discovery mechanisms on MANET with overlay support which can be
divided into two categories. The first category concerns those with overlay support based
on layered approaches, for example, Service Rings (Klein et al., 2003b), Lanes (Klein
et al., 2003a), and Resource-Aware Overlay Network (RAON) (Lau et al., 2005). The
second category are those deploying a cross-layer design. Examples of these include Ekta-
RD (Pucha et al., 2004), MAPNaS (Zahn & Schiller, 2005b), Peer Computing based Dy-
namic Source Routing (PDSR) (Z. Li et al., 2006), and CrossROAD (Delmastro, 2005).
Ekta-RD, MAPNaS, and PDSR are overlay networks integrated with reactive routing
protocols while CrossROAD is an overlay network organized as a mesh topology and as
a cross-layer on OLSR. We provide a brief review of these structured overlay networks in
the following paragraphs.
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Ekta-RD (Pucha et al., 2004) is a resource discovery application created on top of Dy-
namic P2P Source Routing (DPSR), an integration of Pastry and DSR. Ekta-RD provides
three DHT APIs, route (message, key), route (message, IP address), and broadcast (mes-
sage, broadcast address). These APIs quickly aid a user in the deployment of resource
discovery in the MANET. The routing structure of Pastry and DSR are combined into
one routing structure, which leads to an optimal system performance. In DPSR, the
structures of the routing table and the leaf set table in each node are similar to those in
Pastry. Nodes in Pastry maintain pairs of node ID and IP address in the routing table
whereas nodes in DPSR keep pairs of node ID and DSR source route. In the original
DSR, when a node receives a packet, it finds the next hop in its routing table in order to
forward the packet. If there is a path to the destination, it will forward the packet to the
next hop. If there is no route to the destination, the node will start the route discovery
process in order to find a source route to the destination. The route discovery is based on
the sending of a broadcast to a route request packet. DPSR tries to minimize the number
of performing route discovery process by replacing it with the unicast prefix routing based
on the Pastry concept. Instead of doing the route discovery process, the node performs
the prefix routing, which reduces the number of broadcast traffic. However, this prefix
routing never gives the optimal shortest path as DSR does. The strength of DPSR is the
resource discovery support for P2P applications running on top of MANET. However, the
drawback of DPSR is a lookup delay because it is considered as an indirect routing.

MAPNaS (Zahn & Schiller, 2005b) is another P2P based resource discovery approach
built on top of MADPastry (Zahn & Schiller, 2005a), which is an integration of Pastry
and AODV. The goal of MADPastry is to provide a DHT substrate for practicably sized
MANET. Physical locality is one of the main feature in MADPastry. The overlay networks
are formed in regards to the physical hop of peers. In MADPastry, random landmarking
is used to create multiple Pastry overlay networks as shown in Fig. 2.25. Each node in
MADPastry is assigned a node ID by landmark nodes, which temporarily and currently
are responsible for landmark keys. The landmark keys are selected in a way that they can
separate multiple overlay networks with equal sizes. For example, for networks with an
ID base of 16, the landmark keys would be 00 . . . 00, 01 . . . 00, 20 . . . 00, 30 . . . 00 ,. . . , F0
. . . 00, which give 16 overlay networks. Nodes that are responsible for broadcasting land-
mark keys are chosen from the closet hashing value of their IP addresses. For example,
node ID with 0055 will yield to node 0050 because node 0050 is the closet node to the
fixed landmark key 00..00. After landmark nodes are defined, these nodes periodically
advertised their existences. A new node joins the overlay by measuring the distances to
those temporary landmarks, and assigns its overlay prefix the same value as the land-
marks’ that the node is closest to. After assigning an overlay prefix, the rest of the ID
is randomly assigned by using the hash function. Exploit physical locality is the main
advantage of MADPastry. Next, the overlay broadcast traffic is limited within a single
overlay, similar to the concept of clustering. However, the disadvantage of MADPastry is
a delay due to indirect routing and address resolution scheme.

Peer Computing based Dynamic Source Routing (PDSR) (Z. Li et al., 2006) is
a P2P cross-layer design that gives an infrastructure for P2P application running over
MANET. Each node in PDSR has a unique node ID, which is the hash value of its IP
address. PDSR’s routing table is similar to that of the routing table in DSR. The dif-
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Figure 2.25: Spatial distribution of id prefixes (source: MADPastry (Zahn & Schiller,
2005a))

ference is that the destination and the next hop IP address in DSR routing table are
replaced with node IDs. Each node maintains the same parameters similar to Chord.
The route discovery algorithm is similar to that in DSR route discovery algorithm. How-
ever, a P2P search uses Chord-like algorithms. The authors compare the performance
of systems running DSR and PDSR in terms of packet deliver ratio, average end-to-end
delay, and routing overhead. PDSR has a higher packet deliver ratio than that of the
normal DSR. On average end-to-end delays, PDSR results in a higher delay than DSR
because of the indirect routing. One overlay hop may cover many physical hops. The
last performance result concerns the routing overhead. DSR generates a higher routing
overhead than PDSR. This is because PDSR uses a structured overlay network which
minimizes the amount of broadcast traffic when it performs the overlay routing.

CrossROAD (Delmastro, 2005) is a structured overlay network on MANET, which pro-
vides service lookups based on DHT without relying on a centralized index server. It is
a cross-layer design that can directly collaborate with OLSR. Knowing who is currently
taking part in the network, a CrossROAD node can use this information to maintain its
overlay network locally and efficiently. In addition, the mesh topology allows a Cross-
ROAD node to communicate with another node via the shortest path given by OLSR
routing information. However, every node periodically broadcasts CrossROAD messages
to discover other peers on the mesh network, resulting in a high control overhead, which
is CrossROAD’s main drawback.

In Delmastro (2005), the authors set up experiments on a structured overlay Pastry (Row-
stron & Druschel, 2001) on OLSR and AODV networks with TCP connections between
overlay nodes. They demonstrated that Pastry on OLSR outperformed AODV due to
the required route discovery done in AODV. CrossROAD was subsequently introduced to
improve the performance by adopting a cross-layer architecture which allows information
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to spread throughout the protocol stack in order for each node to adapt their behavior
according to the rapidly changing topology.

CrossROAD, by design, depends on OLSR routing protocol to provide necessary informa-
tion to maintain its overlay network. Their performance depends on the performance of
OLSR’s routing layer. OLSR is designed for a dense network but relatively small in size
analogous to OSPF. CrossROAD is chosen as our underlying resource discovery for SIP
because of the following reasons:

(1) Cross-layer design. Because OLSR provides a complete knowledge of the network
topology, CrossROAD can use the routing information to maintain and update its overlay
network topology. Therefore, CrossROAD can effectively maintain its overlay network
under node mobility.

(2) Fast lookup time. CrossROAD provides constant lookup time O(1) because it uses
the mesh overlay network topology, while other approaches are of O(N log N) because
they use the ring overlay network topology based on Chord or Pastry.

2.3 Session Initiation Protocol (SIP)

SIP (Rosenberg et al., 2002) allows the users to locate other users and exchange multi-
media session parameters. The session parameters are described in a Session Description
Protocol (SDP) (Handley & Jacobson, 1998). SIP supports five operations’ establishment
and termination of multimedia communications.

First, user location provides user discovery ability for end users. Second, user availability
reflects the users’ determination or willingness to join the communication. Third, SIP
supports user capabilities to identify media and media parameters that are going to be
used in the communications. Fourth, session setup provides the establishment of called
and calling users. The last SIP support is the session management that is responsible for
transferring and terminating existing sessions, modifying session parameters, and bringing
up other services. SIP does not provide any real-time data transferring method or any
data flow control. Hence, in order to offer an absolute multimedia solution, SIP should
be used with other multimedia protocols such as Real-time Transport Protocol (RTP)
to transfer real-time multimedia data and control the flow of data. SDP should be used
to describe multimedia sessions. SIP components, as shown in Fig. 2.26, consist of User
Agent Client (UAC), User Agent Server (UAS), location service, registrar, proxy server,
and redirect server. In actual implementation, all components may be grouped into a
single unit, called a SIP server, due to the ease of maintenance and configuration.

Both UAC and UAS play important roles for the end users. UAC is an entity that creates
a request such as REGISTER and INVITE messages; however, UAS is a server that
waits for requests and then replies. Normally, a user agent contains both UAC and UAS.
Location service is a database service that is used by a redirect or proxy server. It contains
a list of user binding information, addresses, records, or SIP Uniform Resource Identifier
(UR). SIP URI has a similar format to email addresses, for example “sip:user@host.” A
user can use an existing email address as SIP URI without the need for a new address.
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Figure 2.26: SIP components

Figure 2.27: SIP layer structure

Registrar is a server that accepts registration requests from UAC. Each user must register
his/her IP address and SIP URI to the registrar server. This information will be queried
from UAC in order to initiate the session. The proxy server is an intermediate server that
serves both UAC and UAS and helps make request on others’ behalf. Redirect server is a
UAS that responses with redirect messages. It is designed to reduce the processing load
on the system. In contrast to a proxy server, the redirect server does not route the packet
to other servers, but it directly responses to the client with redirect messages only.

SIP structure is composed of four layers, which are syntax and encoding, transport, trans-
action, and transaction user (TU) layers as shown in Fig. 2.27. These layers are loose
couplings from each other. One layer is used to describe a set of functions in that layer,
but these layers are not involved in implementation.

In the syntax and encoding layer, all SIP messages are encoded by using an Augmented
Backus-Naur Form (ABNF) grammar as defined in RFC 2234, which is also used in other
communication protocols such as HTTP.

The transport layer is responsible for the transmission of any requests and responses. In
SIP, it is recommended that SIP must be implemented over UDP and TCP, and other
transport protocols may be implemented as needed. The transport layer keeps information
when connections are opened in records formed by source IP, port, and transport type.

The next layer is the transaction layer that processes requests and responses. A transac-
tion is a request from a client and responses to this request transmitted from a server back
to the client. This layer is also responsible for application data retransmissions and for
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verifying that there is a match between responses and requests. One client can have many
transactions to several servers, where different transactions can be identified by different
sequence numbers. There are two modes regarding the transaction layer. A stateful proxy
is a logical unit that keeps the client and server transactions; however, transactions are
not maintained in a stateless proxy. Therefore, the client that uses stateless does not have
this transaction layer.

The last layer is the transaction user or TU, which is only used by a stateful client. When
a TU of the client wants to send a request, it creates an object called client transaction
instance that will be sent to the transport layer. This instance is used to control the
behavior of the created transaction such as transaction cancellation.

A SIP message is either a request or response, and consists of a start-line followed by
header fields and the body of the message. The message and header field format is similar
to HTTP/1.1 format.

generic-message = start-line

*message-header

CRLF

[ message-body]

start-line = Request-Line / Status-Line

The start-line, message-header, and CRLF must be followed by a carriage-return line-
feed. The start-line can be either a Request-Line that represents a request or Status-Line
which corresponds to a response.

A SIP request has a Request-Line for as a start-line. The Request-Line consists of method
name, Request-URI, and the protocol version. They are separated by a space (SP) char-
acter. The Request-Line as shown below must end with CRLF.

Request-Line = Method SP Request-URI SP SIP-Version CRLF

There are six request methods defined in SIP.

REGISTER This method is used by a client to register its location to the SIP registrar.

INVITE This method indicates that a user or service is being invited to participate in
a session. The body of this message also includes the session’s SDP message.

ACK This method is an acknowledgement sent by a server to a client to confirm the
receipt of an INVITE message.

CANCEL This method is used to cancel a pending request

BYE This method is an terminate an ongoing call.

OPTIONS This method is used to query server capabilities such as encoding, language
support, and supported header fields.

Examples of Request-Line are shown below.
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INVITE sip:thirapon@interlab.ait.ac.th SIP/2.0

REGISTER sip:thirapon@interlab.ait.ac.th SIP/2.0

The SIP response is issued by the server, and it has a start-list with Status-Line instead
of a Request-Line. The response contains the status code and the reason string that
indicates the condition of the request.

Status-Line = SIP-Version SP Status-Code SP Reason-Phase CRLF

An example:

SIP/2.0 200 OK

The Status-Code is a 3-digit integer that describes the result of the response, along with
Reason-Phase that explains the response’s in short detail. SIP version 2.0, Status-Code
is divided into six types.

Provisional(1xx) This type is to inform a correspondent that the request has been
received, and the server is processing the request.

Success(2xx) It indicates that the request is accepted.

Redirection(3xx) It is used to inform a client about another server that should be
contacted in order to complete the transaction.

Client Error(4xx) It indicates syntactical errors in the request.

Server Error(5xx) It indicates an error since the server fails to operate the request.

Global Failure(6xx) It indicates errors such as 604 Request-URI does not exist.

Fig. 2.28 illustrates register operation. Alice sends REGISTER message, containing its
SIP-URI and IP address, to proxy server abc.com. The proxy replies back to Alice with
a 401 unauthorized message, containing an authentication challenge.

WWW-Authenticate: Digest

realm="abc.com",

qop="auth,auth-int",

nonce="fa0adf45938cdcde3940498a93fe9b9c9e9f2343",

opaque="5ccc0983fac049deabdfe39340fffacdde393d"

After Alice receives the 401 message, he sends REGISTER message containing his au-
thentication credential to the abc.com again. If Alice’s credential is correct, the server
accepts her registration by issuing SIP 200 OK to Alice.
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Figure 2.28: SIP Registration

2.3.1 SIP user registration and discovery

SIP user location is one of the main support which allows a user to discover another user’s
location in order to initiate a session with that user. The user’s location includes SIP
user registration and discovery. The user creates its binding and sends it to a registrar
that performs a front end location service. The user must know the registrar’s address
in advance, e.g. using pre-configured address or DNS service. The registration process is
based on client/server architecture. The user sends a REGISTER request containing SIP
URI and IP address to the registrar. The registrar confirms the successful registration
by responding with a 200 OK message to the user. The user’s binding is kept to the
location service. In general, the registrar/proxy is responsible for a particular domain,
which is matched with the domain part indicated in a user’s SIP URI. For example,
“sip:bob@abc.com” implies that Bob is the SIP user on domain abc.com. Bob must send
his binding to abc.com’s registrar. In a call invitation, the discovery process is performed.
Alice wishes to give Bob a call without knowing Bob’s location. Alice has to send an
INVITE request to Bob’s proxy at abc.com. The abc.com proxy retrieves Bob’s location
from its location service in order to forward this INVITE request to where Bob is.

Fig. 2.29 shows a simplified example of a SIP message flow between Alice and Bob. First,
Alice issues an INVITE request containing Bob’s SIP URI, “sip:bob@abc.com”. After the
proxy server receives Alice’s INVITE request, it consults with location service to obtain
Bob’s IP address. Then, the proxy forwards the INVITE on behalf of Alice to Bob; at
the same time, it responses with SIP 100 trying to inform Alice that it is trying to reach
Bob. When Bob gets the INVITE, Bob fires SIP 180 Ringing and SIP 200 OK responses
in sequence to the proxy. After Alice accepts SIP 200 OK from the proxy, Alice knows
Bob’s IP address. Now, the proxy is no longer in use. Alice can directly rely ACK to Bob.
After this point, Alice can establish a session with Bob. At the end, SIP BYE message is
used to terminate the existing session.

2.3.2 Mobility and SIP

SIP supports four types of mobility: terminal, session, personal, and service. In this
thesis, we focus on providing only terminal mobility supported by our P2P SIP overlay
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Figure 2.29: A simplified SIP INVITE example (adapted by author from Rosenberg et
al. (2002))

network.

a) Terminal mobility

SIP allows a terminal to change its IP address while maintained an ongoing session
(Schulzrinne & Wedlund, 2000). Terminal mobility causes SIP pre-call and mid-call mobil-
ity. The pre-call mobility is the binding update process, which ensures that Correspondent
Node (CN) can reach Mobile Node (MN) after MN moves to a new subnet. The mid-call
mobility handles handoff between CN and MN that allows them to resume an ongoing
session.

Fig. 2.30 shows SIP binding update when MN acquires a new IP address at a foreign
network before making or receiving a call. After binding update is completed, CN can
normally give a call to MN at its home network. SIP server, which keeps MP’s new
binding updates, replies to CN via SIP 302 which moved temporarily and contains MN’s
new address. CN obtains this new address and sends a SIP INVITE to MN at foreign
network as shown in Fig. 2.31.

Once two users start a session, they use a SIP dialog to maintain this ongoing session’s
parameters. The parameters of the session can be modified within the existing dialog.
For example, a caller wishes to change audio encoding or add a new media stream, it can
send re-INVITE, containing the new session parameters, to a callee without tearing down
the ongoing session. In addition, when the caller changes his/her IP address, re-INVITE
can be used to inform the callee about its new IP address as well. Either the caller or
callee can modify the ongoing session.
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Figure 2.30: SIP binding update when MH moves to the foreign network

Figure 2.31: SIP INVITE to MN at foreign network after the pre-call mobility is completed
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Figure 2.32: SIP re-INVITE for continuing ongoing session in SIP mid-call mobility

The re-INVITE can be used to resume the ongoing session when terminal mobility occurs.
The mid-call mobility allows a moving MN to send a re-INVITE request to CN directly to
continue the ongoing session without going through SIP servers. The re-INVITE request
to CN has the same call ID as previous call sessions setup with a new IP address contained
in Contact header of the request. After CN receives the request, it responses with SIP
200 OK to resume the ongoing session with MN as shown in Fig. 2.32.

SIP-based mobility is not suitable for TCP-based applications e.g. FTP that uses IP
addresses to maintain a connection between two end points. Changing IP address causes
a connection to be cut. However, SIP supports applications based on Real-time Trans-
port Protocol (RTP) that does not use IP addresses to maintain relationship between end
points. It uses a random value of 32-bit SSRC identifier. For example, a receiving node
can redirect an incoming stream to a new host by informing a sender about its new IP
address with a known SSRC value. Changing IP address does not terminate the ongoing
stream.

b) Session mobility

A user can transfer an ongoing session to another terminal in session mobility. For ex-
ample, the user wishes to transfer the ongoing session from a computer to a PDA. The
session mobility is supported by using the SIP REFER method (Sparks, 2003). The user
sends REFER to inform a recipient about the address of the new terminal where the
recipient should transfer the ongoing session to.

c) Personal mobility
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In personal mobility, a user can have one SIP URI mapped with different addresses or
terminals (one SIP URI → n terminals) or many SIP URIs with one address (many SIP
URIs → one terminal). For example in the former case, the user has many devices, e.g.
a computer, PDA, PSTN phone, and a wireless device and wishes to be reachable via
these devices all at the same time. These devices should ring all together when there is
an incoming call. The SIP registrar must be able to know different addresses of terminals
owned by the same person. In the latter case, the user has several SIP URIs, for exam-
ple, user@sipphone.com, user@abc.com, or user@pstn.com, each of which is registered to
different SIP registrars, but with the same IP address.

d) Service mobility

Service mobility allows a user to keep information regarding services at SIP servers. Ex-
amples of services are phone book, buddy list, and call logs. The user can retrieve the
service information at SIP servers while changing to a new terminal.

2.3.3 P2P SIP over MANET

The major problem in implementing SIP in MANET is that SIP is based on a centralized
architecture, which is not suitable for an ad hoc environment. SIP provides two main
important operations: registration and user discovery. To enable SIP within MANET,
these two operations must be presented in MANET as well. In this section, we present a
short summary of each existing SIP over the MANET approach.

Early works on SIP over MANET is proposed by Khlifi et al. (2003). It presents a
framework for a conference signaling using SIP. This framework allows a MANET user
to discover, initiate conferences, and join existing conferences with other users. When
the user joins MANET, it broadcasts a REGISTER request containing its SIP URI and
IP address to all other users, as shown in Fig. 2.33. Node A broadcasts its REGISTER
messages to all users. Other users, then, record this REGISTER information in their
cache for future use. Each user has to listen on port 5060 to become aware of broadcast
SIP URIs other users’ locations. To create a conference session, a leader or user agent
that initiates the conference, periodically broadcasts REGISTER request in MANET. The
authors propose adding a new field to the header of the REGISTER message. This field is
conf-ID containing all users of the ongoing conference that belongs to this leader. When
a user agent wants to join the existing conference, the UA sends an INVITE message,
containing Conf-ID, to the leader. After receiving the INVITE message, the leader must
send all participants other messages in order to inform them about new participants.
Distributed registrar is the key advantage of the proposed framework. There is no a
centralized registrar server so that the system prevents a single point of failure. However,
there are many drawbacks. The main limitation of the proposed framework is that there
will be a large number of REGISTER requests exchanged, leading to high overhead. The
authors use AODV to be the underlying ad hoc routing protocol, and the RREQ and
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Figure 2.33: Broadcast retransmissions of REGISTER message

RREP message of AODV are replaced by SIP REGISTER request. As a result, every
node must run modified AODV, which does not offer backward compatibility with the
AODV standard. The next disadvantage is the scalability problem since it is based on pure
broadcast. The number of broadcast messages increases largely because of the number
of participants. Moreover, this framework does not offer full SIP functions, but it only
provides SIP over MANET in conference scenarios.

Next existing work of SIP over MANET is proposed by L. Li & Lamont (2004). SIP is
deployed over OLSR based on the use of a cross layer, integrated application and routing
layer, to support proxy-based and proxy-less systems. In a proxy-based system, there is
at least one SIP proxy server. The SIP proxy server periodically broadcasts its presence
so that clients can know the location of the SIP proxy server. All nodes that participate
in SIP must register themselves at this SIP proxy server. In contrast, there is no proxy
server in proxy-less SIP MANET. Every node broadcasts its SIP URI and location via
MPR forwarding at regular intervals. The authors create a new OLSR header, called
Service Location Extension (SLE) in order to advertise information about the location
of SIP proxy servers. The SLE is divided into two types: Automatic Service Advertising
(ASA) for push style discovery and Client Query Service Advertising (CQSA) for pull
style discovery. ASA, containing SIP URI and IP address, is advertised by SIP proxy in
order to inform nodes in MANET of its presence. CQSA message is a query message,
broadcast by a query node. The authors conclude that ASA scheme is suited for proxy-
based scenarios, and CQSA is appropriated for proxy-less scenarios where node mobility
is high. The benefit of this work is the use of new OLSR header extension that offers
the compatibility between non-SIP and SIP nodes in the network. When a non-SIP
node received SLE messages, it processes forwarding mechanism as described in OLSR
forwarding algorithm. The next advantage is that SIP application layer is integrated
into an ad hoc network layer to gain maximum performance for the SIP service discovery
process. The drawback of this proposal is that the nodes still use broadcast CQSA message
to discovery SIP users.

Banerjee & Acharya (2004) propose a cross-layer designed SIP-based service over Cluster-
Based Routing Protocol (CBRP). The authors claim that a proactive routing protocol’s
pre-computed routes are costly, and a reactive routing protocol has a very high delay when
it performs the route discovery process. As a result, the cluster based routing protocol is
selected as the underlying routing protocol for SIP because CBRP lies in between proactive
and reactive protocols. Instead of flooding SIP messages to the entire MANET, flooding
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Figure 2.34: SIP endpoint/route discovery

takes place through the clusterhead only. A clusterhead acts as a registrar SIP server,
where each node within the cluster registers itself to its own clusterhead. For example,
in Fig. 2.34, node S must register to its clusterhead, which is node A. This REGISTER
message is propagated throughout clusterheads in MANET. Similarly, node D registers
itself by sending its SIP REGISTER message to node B. In addition, the clusterhead
node also functions as a SIP proxy in order to route SIP messages. The authors use
an integrated approach where SIP is merged into CBRP so that the SIP endpoint can
know its clusterhead by retrieving the information from CBRP packets. The simulation
results show the latency SIP user discovery, which is between 18–33 s. The strength of
this approach is the reduction of the number of broadcast SIP messages because only
clusterheads are allowed to forward SIP messages.

Fu et al. (2005) propose a novel signaling system for multiparty sessions in P2P ad hoc
networks. The authors try to improve the framework to use SIP in ad-hoc networks (Khlifi
et al., 2003) by introducing hierarchical clustering architecture. Like any clustering sys-
tem, there is a super member, acting as a clusterhead. Every super member must have
direct links to all super members of the neighboring clusters. However, normal members
should connect to only one super member, like a star topology. Only super members
have the right to pass conference information. The topology is shown in Fig. 2.35. The
authors prove their concept by conducting a testbed running on eight computers. They
conclude that their system generates a lower number of overhead messages as compared
to Khlifi et al. (2003). The authors extend the work to support conference in integrated
3G/MANET (Fu et al., 2006) based on the clustering concept.

Banerjee & Acharya (2004) and Fu et al. (2005) approaches are cluster-based SIP reg-
istrar/proxy. The main advantage of their approaches is lower signaling overhead as
compared to broadcast-based approaches. This is due to the fact that only clusterheads
exchange SIP messages. However, there are many drawbacks when using this cluster-
based architecture. First, maintaining clusters requires complex tasks such as creating,
deleting, splitting, and merging clusters, which results in high power and memory con-
sumption. Moreover, any changes in clusterheads due to the mobility of nodes cause a
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Figure 2.35: Cluster-based architecture

large number of messages to be exchanged in order to repair the broken clusterheads.

The next attempt on SIP over the MANET (dSIP) is proposed by Leggio et al. (2005).
The authors mention that Khlifi et al. (2003) and Banerjee & Acharya (2004) focus on how
to integrate SIP and ad hoc routing protocol, but they do not pay attention to building
complete SIP-related functionalities, such as efficient registration. Therefore, the authors
aim to define a framework for generic and flexible deployment of SIP in MANET. In other
words, this SIP framework can be applied to any ad hoc routing algorithms. The authors
assume that SIP on MANET nodes uses an external registrar located in the Internet.
A MANET gateway does not perform any SIP functionalities. In this framework, SIP
operations in MANET can be divided into two steps: discovering a SIP user and initiation
sessions between users. The first step is very important because when a new node joins
MANET, it does not know other SIP users. dSIP uses the pure broadcast technique to
distribute a SIP REGISTER request to the whole network. A node in dSIP periodically
advertises SIP REGISTER containing its SIP URI along with its IP address or a binding.
The rest receiving the REGISTER request keeps this binding in its cache for possible
future use. However, the time-limited binding is finally removed from the cache. When
the binding is invalid in the cache, the caller has to wait for the next binding advertisement
to extract the callee’s IP address, which can be used to initiate a call. However, the method
relies heavily on broadcast mechanisms, which do not offer scalability.

Manner et al. (2006) uses dSIP(Leggio et al., 2005) for a user discovery mechanism on
MANET. However, the authors introduce a SIP gateway, actually a physical MANET
gateway that provides connectivity to the Internet. First, the SIP gateway functions as a
proxy for MANET nodes. Every SIP on MANET nodes must send REGISTER messages
to the SIP gateway. Second, the SIP gateway acts as SIP UAs on behalf of its MANET
nodes in order to forward REGISTER requests to an external registrar. However, the
SIP gateway does not have the registrar function implemented. All SIP users on MANET
must register to external SIP registrars. The SIP gateway also provides NAT capability
to its MANET nodes so that none-routable addresses can be assigned within MANET. In
other words, the SIP gateway provides NAT traversal for SIP. The authors use their own
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modified SLP, allowing nodes to discover its gateway address. The shortcoming of this
approach is that the SIP gateway based on centralized architecture, leading to a single
point of failure and bottleneck problems.

Castro & Kassler (2006) propose SIP on Internet-connected MANET environment, where
centralized registrars/proxies are located in the fixed IP networks similar to Manner et
al. (2006). The difference between these two approaches is that Castro & Kassler (2006)
provide SIP registrar functionality at the MANET gateway, while Manner et al. (2006)
do not.

Zhang et al. (2006) propose an integrated SIP-based session establishment mechanism
with DSR extensions. It is a cross-layer design, where SIP request is included in a routing
packet. DSR control packets are modified to SIP-RREQ and SIP-RREP, which append
four fields: source SIP URI, destination SIP URI, Call-ID, and Cseq. These appended
fields are used as a call invitation. Nodes in DSR can learn a new SIP URI and IP address
mapping information for other SIP-RREQ and SIP-RREP as well. Due to a long delay in
the route discovery process, the average call setup delay in a network of 50 nodes within
an area of 1000m× 1000 m is around 5 s. This approach does not provide DSR backward
compatibility, which is the main drawback.

Similar to L. Li & Lamont (2004)’s approach, the other SIP on OLSR is proposed by Wang
et al. (2006). The authors use OLSR packet’s extension to carry a SIP message. The
SIP message is disseminated in the whole network through MPR’s forwarding technique.
However, the authors do not explain how their approach provides SIP register operation,
which is one of the SIP on MANET requirements. In addition, their simulation results do
not include call setup delay, an important metric for the evaluation. Finally, this approach
does not provide a SIP solution in Internet-connected MANET.

SIPHoc (Stuedi et al., 2007) is a middleware infrastructure for SIP on MANET. To dis-
cover a SIP user on MANET, SLP is used. SLP piggybacks by appending service infor-
mation onto routing messages. A node has a routing handler, a software, which intercepts
raw routing packets sent from its network layer. Then the routing handler appends piggy-
backed service information into the raw routing packets. At the receiver’s end, its routing
handler captures the routing packets to extract the piggybacked service information be-
fore passing the routing packets to its network layer. In an Internet-connected MANET
environment, a gateway and connection provider software, installed at a MANET gate-
way, provide a layer two layer tunnel between the Internet access point and nodes within
MANET. The layer two tunnel is a bridge, which allows a MANET node to virtually
connect to the Internet. The MANET node also can use MANET SLP to discovery its
gateway. Once its gateway address is found, the MANET node creates a bridge inter-
face between itself and the gateway. This MANET bridge inter- face is assigned an IP
address via DHCP server located in the infrastructure network. Finally, a SIP user on
this MANET node uses the bride interface to send a SIP REGISTER request to an ex-
ternal SIP server. One of testbed results shows a call setup delay between an OLSR node
and a fixed IP node of around 250 ms. The physical distance between the OLSR node
to its gateway is four hops. SIP interoperability between MANET and the Internet is
the key advantage of this approach. However, the first limitation is routing backward
incompatibility since SLP piggyback method needs to modify routing packets. A bottle-
neck problem is the other drawback when the number of layer two tunnels increases. N
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MANET nodes require N bridge interfaces in their gateway. The tunneling is considered
a costly overhead. Later, the authors introduce social networking to MANET by using
Mobile Ad hoc Network Directory (MAND) (Stuedi et al., 2008) based on SIPHoc. In
their demonstration, they use ten Nokia N810 tablets to form an ad hoc network with
AdSocial application allowing a user to distribute and discover other users’ profiles.

A SIP-based multicast framework(Yu & Agarwal, 2005) propose to use a multicast overlay
network based on mesh clustering architecture. Nodes on this multicast forms clustering
network, which is composed of clusterheads or gateway and none gateway nodes. A none
gateway node must register itself to its gateway node, which is locally one-hop away.
To enable SIP on this multicast network, the authors use SUBSCRIBE and NOTIFY to
register via the flooding technique within the multicast network. Likewise, an INVITE
request is forwarded to every node in the multicast network. Even though the multicast
network is used, exchanging SIP requests is based on the flooding mechanism. Forming the
mesh clustering network introduced high control overhead because nodes in the multicast
network periodically flood the whole network. Moreover, the clustering architecture is not
suitable in MANET, where node mobility causes frequent topology changes. The authors
only show a number of messages creating meshes and a clustering network. The result of
a call setup delay is not included in their evaluation.

MANETSip (Fudickar et al., 2009) uses On-Demand Multicast Routing Protocol (ODMRP)
(Lee et al., 2001) on MANET to build mesh-based multicast routes. After forming the
multicast overlay network on OLSR, each node broadcasts SIP REGISTER message via
multicast communication. However, creating and maintaining such a mesh multicast net-
work involved in periodic flooding control messages introduces more overhead to MANET.
In their evaluation, their testbed includes only three nodes, forming two-hop network, and
the average registration delay is 164 ms. Moreover, the authors do not provide the results
of the delay in call setup.

In SIP terminal mobility support on MANET, Y. S. Chen et al. (2006) propose MIP6-
MANET, IPv6 and SIP-based mobile ad hoc networks. This approach is based on the
mobile IPv6 mechanism that ensures a session’s continuity, while SIP is used to support
binding update between a Mobile Node (MN) and its Home Router (HR). The authors
do not focus on distributed SIP on MANET solutions. The MN uses its HR as SIP reg-
istrar/proxy based on centralized architecture. Home, foreign, and corresponding routers
are implemented with SIP redirect and proxy functionalities. When the MN moves from
a home to foreign network, it must send a binding update containing a new Care of Ad-
dress (CoA) along with a new SIP address to its HR. Keeping SIP up-to-date with its
MNs binding information, the HR can forward an INVITE request destined for its MN
regardless of the MN’s location. Moreover, there is no need to resolve the SIP URI address
with a DNS server. The authors modify and redefine the ICMP6 packet to support Des-
tination Sequenced Distance Vector (DSDV) messages and Router Advertisement (RA)
along with binding updated messages in MIP6 to provide their modified SIP binding with
updated information. Consequently, these modified packets cause backward incompat-
ibility with both standard MIP6 and SIP. Although the re-INVITE mechanism can be
used to ensure the session’s continuity, MIP6-MANET does not take advantage of this.
The session continuity is still handled by MIP6. The handoff delay when the MN moves
to the other network is 5000 ms, excluding the triangle routing latency of 500 ms when a
tunnel is setup. MIP6-MANET is not P2P SIP on the MANET approach. It is based on
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Figure 2.36: The classification of SIP on an isolated MANET

the centralized SIP architecture. It does not provide either P2P SIP registration or user
discovery on MANET. However, we include MIP6-MANET to compare with our scheme’s
terminal mobility handoff.

According to reviewed approaches, some or all MANET nodes have SIP functionalities,
which are a registrar and a proxy. A SIP user location can be resolved dynamically
within MANET. Moreover, this architecture prevents a single point of failure as opposed
to the centralized SIP architecture. Most P2P SIP on MANET approaches use resource
discovery mechanisms in section 2.2.2 to provide SIP user location discovery. Thus, P2P
SIP on MANET approaches can also be categorized into P2P SIP on the overlay network
and without overlay network as shown in Fig. 2.36.

SIP on MANET approaches without overlay network can be grouped into two types:
broadcast-based and cluster-based SIP registrar/proxy. Both types can either take the
layered or cross-layered approach. For example, in the layered approach, standard or
modified SIP messages are exchanged among MANET nodes through resource discovery
protocols such as SLP or JXTA on top of the routing protocol. On the other hand, in the
cross-layered approach, a routing packet is modified or extended to carry SIP messages.

In broadcast-based SIP registrar/proxy without overlay support (Khlifi et al., 2003; L.
Li & Lamont, 2004; Leggio et al., 2005; Manner et al., 2006; Zhang et al., 2006; Castro
& Kassler, 2006; Wang et al., 2006; Stuedi et al., 2007), each MANET node is a SIP
registrar/proxy. A SIP user on MANET floods its SIP REGISTER to the whole network
to register itself. Other users may cache this register information for later use. In user
discovery for a call setup, a caller does not know an IP address of the callee. The caller
broadcasts a SIP INVITE containing the callee’s SIP URI to the network. Every SIP
user on the MANET node compares SIP URI in the INVITE request with its own SIP
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URI. If they match, it means that this SIP user is the callee. Then, it replies SIP 180
RINGING response back to the caller. In the cluster-based SIP registrar/proxy (Banerjee
& Acharya, 2004; Fu et al., 2005), only clusterheads act as registrars/proxies. Nodes
within a cluster except the clusterhead are called members of this cluster. After receiving
a REGISTER request from its cluster members, the clusterhead forwards this request to
other clusterheads. Only clusterheads are allowed to forward the SIP requests. These
mechanisms use flooding SIP requests among nodes, resulting in introduction of high
overhead to the network leading to problem with scalability.

SIP on MANET with overlay network is classified into multicast-based and DHT-based
approaches. Normally, MANET routing protocols do not support application multicast
and broadcast sockets. Therefore, multicast routing protocols are proposed to provide
multicast socket communication for the applications. MANET nodes form a multicast
network based on multicast routing protocols, tree or mesh topology. SIP is deployed on
these multicast networks, which allow SIP requests to be distributed via multicast chan-
nels. SIP on MANET multicast-based approaches are SIP-based multicast framework(Yu
& Agarwal, 2005) and MANETSip (Fudickar et al., 2009). Even though the multicast
network allows nodes to exchange SIP requests more efficiently than those approaches
without overlay support, creating the multicast network on MANET involves periodic
flooding of control messages, which still add high overhead to the network. In addition,
SIP lookup time of these approaches depends on the number of nodes participating in the
multicast network.

In addition, we discuss the key challenges of P2P SIP on MANET design, which are the
SIP user lookup time, the interoperability between SIP users on MANET and Internet,
and terminal mobility support.

The lookup time is defined as a number of times that a query message is processed at nodes
before it reaches the destination. These P2P SIP on MANET approaches use O(N) or
O(#clusterhead) to locate a SIP user. The approaches with lookup time of O(N) (Khlifi
et al., 2003; L. Li & Lamont, 2004; Leggio et al., 2005; Manner et al., 2006; Zhang et
al., 2006; Castro & Kassler, 2006; Wang et al., 2006; Stuedi et al., 2007; Fudickar et al.,
2009) use flooding SIP requests for registration and user discovery. For example, a node
broadcasts an INVITE request to the network. Each intermediate node must process
this request by matching its SIP URI and with one in the INVITE request. Banerjee
& Acharya (2004), Fu et al. (2005), and Yu & Agarwal (2005) have the search time of
O(#clusterhead), where a member cluster sends a SIP INVITE request to its clusterhead.
If its clusterhead cannot find a match the SIP URL in its location database, it forwards this
INVITE request to its clusterhead neighbors, while the SIP-based multicast framework
and MANETSip have lookup time of O(M), where M is the number of multicast nodes.

Most SIP on MANET approaches provide SIP register and user discovery operations
within MANET. However, they do not address how their protocols work in heterogeneous
networks to offer interoperability between MANET and Internet SIP users. Leggio et al.
(2005), Castro & Kassler (2006), Manner et al. (2006), and Stuedi et al. (2007) provide
their solutions for Internet-connected MANET environment. However, they still rely on
the centralized SIP registrar/proxy either located at the Internet or a MANET gateway.
This centralized registrar/proxy not only causes a traffic bottleneck, where SIP requests
are sent to the gateway, but also a problem associated with a single point of failure. In
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the centralized architecture, one or a few MANET gateways, called SIP gateways, keep
users’ SIP binding information on MANET. The SIP gateways also forward received SIP
REGISTER requests from MANET users to an external SIP registrar on the Internet.
Castro & Kassler (2006)’s approach uses this technique to a register a MANET SIP user
to SIP registrars on the Internet. Whereas in Leggio et al. (2005) and Manner et al. (2006)
approach, the MANET gateway does not keep SIP binding information, but it forwards
the information to an external SIP servers on the infrastructure. SIPHoc (Stuedi et al.,
2007) provides a MANET gateway with layer two tunneling capability. Whenever a SIP
user on MANET needs to contact a SIP on the infrastructure, this MANET node creates
a layer two tunnel or bridge with its gateway to send/receive packets with the fixed IP
node. The MANET gateway does have SIP functionality, but it only provides bridge
interface with nodes inside and outside MANET.

Finally, none of the approaches, except Y. S. Chen et al. (2006)’s explicitly focus on the
SIP terminal mobility solution and measurement even though SIP provides this mobility
support.

In this dissertation, we propose P2P SIP on overlay DHT-based mesh network as catego-
rized in Fig. 2.36. Our approach uses DHT to support SIP registration and user discovery
operations. Moreover, P2P SIP overlay network is based on fully distributed architec-
ture, which prevents a single point of failure problem. All SIP requests exchanged among
the overlay nodes are carried in unicast packets. Our scheme uses the mesh overlay net-
work, which guarantees a constant lookup time. SIP for the heterogeneous networks is
supported by our P2P SIP overlay network, sharing the same P2P structured overlay net-
work on both MANET and Internet users as shown in Fig. 2.37. In addition, it provides
SIP terminal mobility support for both MANET and Internet users in fully decentralized
architecture. A MN on P2P SIP overlay network can roam to any MANETs or fixed
networks while it still maintains an ongoing session.
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Figure 2.37: A single P2P SIP overlay network covering MANET and Internet
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Chapter 3

Structured Mesh Overlay Network (SMON)

This chapter presents Structured Mesh Overlay Network (SMON), overlay network frame-
work for P2P applications on MANET proposed by this dissertation. SMON employs Dis-
tributed Hash Table (DHT) on top of Optimized Link State Routing (OLSR), a proactive
routing protocol. SMON is an improvement on CrossROAD (Delmastro, 2005), which
uses pure flooding techniques to form and maintain an overlay network. In SMON, we
introduce a new algorithm for overlay formation and maintenance in order to reduce the
number of control overhead. We show through simulations that SMON reduces the num-
ber of control overhead by around 95% compared with CrossROAD, while it maintains
the same query success ratio and query delay as CrossROAD.

The chapter is organized as follows. We first review the conceptual design of CrossROAD
in section 3.1. The next section 3.2 explains how SMON overcomes the limitations of
CrossROAD including our proposed algorithm of creating and maintaining SMON on top
of OLSR. We include the evaluation of SMON in section 3.3.

3.1 A review of CrossROAD

CrossROAD (Delmastro, 2005) is a P2P structured overlay network on top of OLSR based
on DHT, which provides service lookups for P2P applications. CrossROAD organizes its
overlay network as a mesh network, which can be created and maintained based on a
cross-layer design as described below.

First, the authors propose to use the OLSR messages such as HELLO and TC carrying
information that identifies the IP address of a node in the mesh network for node discovery.
The following example explains node discovery in CrossROAD. A CrossROAD network
contains nodes A, B, and C. Node A broadcasts its PublishService containing its IP
address within OLSR. Node B and C receive A’s PublishService and know that node A is
on the CrossROAD network. Similarly, nodes B and C also advertise their PublishService.
All nodes periodically exchange their PublishService messages so that they know all IP
addresses of nodes taking part in the same mesh network.

Moreover, CrossROAD uses routing information of OLSR to maintain its mesh overlay
network. Since the underlying routing protocol is the OLSR which provides a complete
knowledge of the network topology, CrossROAD can directly use the routing information
to maintain and update the overlay network topology. For example, node A can remove
node B from its overlay network when a route to node B is not presented in its routing
table.

When a new node wishes to join the CrossROAD network, it must inform other partic-
ipants by sending its PublishService message. This PublishService allows other partici-
pants to know the IP address of the joining node. At the same time, the joining node
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collects PublishService messages from other nodes as well. Each CrossROAD node must
advertise its PublishService at the same interval as the routing control messages to en-
sure synchronization and to make the overlay network consistent. This process is called
push method, where each node must periodically advertise its own PublishService. Having
received PublishService messages from CrossROAD nodes, the joining node extracts IP
addresses from the messages and put them in its CrossROAD routing table, which con-
tains hash values of all participants’ IP addresses. A CrossROAD node can then use this
table to find a destination, which is responsible for maintaining an object with a given
key based on DHT. When a node wants to leave the CrossROAD network, it sends a
disconnect message, which informs all the other participants.

Due to the mesh topology, a CrossROAD node can use the shortest paths from the routing
table to communicate with other nodes searching for an object; hence, it has a low lookup
delay. Furthermore, the cross-layer design allows CrossROAD to adjust and update its
overlay network topology based on routing information at the network layer to optimize
the overlay network performance. However, CrossROAD uses the pure broadcast mecha-
nism to discover participants of the overlay network, resulting in the generation of many
redundant message retransmissions which in turn cause high bandwidth consumption and
network congestion. Moreover, the joining node must wait for an interval time of adver-
tised PublishService in order to receive all messages from other peers. This may cause a
long delay when the joining peer enters the overlay and before they gain a complete list of
participants. Besides, the OLSR routing message has to be modified in order to carry the
CrossROAD messages. Consequently, this routing message modification does not offer
backward compatibility with OLSR standard. No implementation of CrossROAD has yet
been discussed.

3.2 Structured Mesh Overlay Network (SMON)

To address the limitations of CrossROAD, we introduce a new algorithm for overlay for-
mation and maintenance in order to reduce the number of overlay broadcast messages
and reduce the waiting time of the joint operation. We take into account that our de-
sign should provide a backward compatibility with OLSR standards by using the OLSR
message extension rather than modifying routing messages such as HELLO or TC to
carry SMON messages, which in turn alter the OLSR specification. We define new over-
lay control messages using message types, which are outside the range of OLSR reserved
message types. Finally, we evaluate the SMON concept through simulations and with
actual implementation to fulfill all technical details that are not provided in CrossROAD.

SMON, like CrossROAD, uses the information from the OLSR routing table to create
its DHT table. This DHT table is adjusted in real-time according to event notifications
received when changes take place in the OLSR routing layer such as topology alterations.
The mesh overlay network can be simply constructed and maintained if the underlying
routing protocol is a proactive routing protocol because every node maintains routes to all
reachable destinations. A SMON node can extract the information from its routing table
to use in creating and updating the mesh overlay network. Any changes in routing table,
such as node disconnection, immediately reflect changes in the DHT table, resulting in
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Figure 3.1: An example of SMON with OLSR routing and SMON DHT tables

fast convergence.

The DHT table is very important because peers rely on the DHT table in order to perform
overlay functions such as joining, and leaving SMON including P2P registration and
search. Each peer or node is assigned a unique ID, which is a hash value of its IP address.
Let us call this hash function SMON. Thus, the ID is then SMON(node’s IP address).

Once SMON is established, a peer can store and search for an item in a distributed
manner using a node ID and an object ID. An object ID, a key, can be obtained from a
hash value of item properties such as filename or content. The object value is stored at a
SMON node whose node ID is the numeric closest to this object ID. Each peer in SMON
maintains a DHT table that stores information about all other overlay peers. A row of
the DHT table is composed of node ID and IP address of a peer. The DHT table is the
subset of the routing table. Not all OLSR nodes have to join SMON as shown in Fig. 3.1.
The DHT table of SMON(A) contains a list of all members, SMON(D), SMON(F), and
SMON(I). This mesh architecture allows a peer to use a direct path to send a packet to
a target peer without having it first relayed to intermediate peers. Since OLSR provides
the shortest path routes to all destinations (Clausen & Jacquet, 2003; Nguyen & Minet,
2007), a SMON node can also contact all peers via the shortest paths as presented in
its routing table. For example, SMON(A) sends SMON(F) a packet. SMON(A) can
find the IP address of SMON(F) in its DHT table. According to the routing table of A,
the packet is forwarded to B, the next hop. Receiving the packet, B forwards it to E.
After that, E sends the packet to F, and finally the packet is arrived at SMON(F). The
hop-by-hop packet forwarding based on OLSR routing table provides the shortest path
from SMON(A) to SMON(F). Similar to those existing overlay networks, SMON is just
the application overlay network whose DHT table depends on the OLSR routing table. If
the routing table is unstable during routing convergence, the DHT table will be unstable
as well.

In the following subsections, we will describe operations on SMON, which are join, leave,
merge, and split.
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3.2.1 Join operation

Nodes wishing to participate must advertise some messages to inform peers in the overlay
to recognize their presence and obtain their peers’ presence. We term “peer” as one that
already is in the overlay network. There are two ways to obtain the presence of peers,
either the push or the pull method. In the push method, a peer periodically broadcasts its
presence to others. The nodes wait for at most an interval time of the advertised presence
to receive this presence. This may cause a delay when a new node joins the network in
order to get to know all available peers in the overlay network. On the contrary, the pull
method offers an on-demand peer discovery, where the new node floods a query whenever
it needs. Other peers reply to the joining node with their addresses. It is noted that the
joining node may or may not continue broadcasting the query even though it has already
received other peers’ information. However, if there are many nodes that request the peer
discovery at the same time, it will initiate the same flooding query messages, resulting
in unnecessary increase of control overhead. In order to optimize the way of obtaining
the presences of other peers, a combination of push and pull methods can be deployed
together in SMON.

We define SMON messages using message types which are outside the range of the mes-
sage types reserved by the OLSR protocol. This design provides backward compatibility
with OLSR standard by not modifying the routing message such as TC to carry SMON
messages as in CrossROAD. The messages consist of JOIN, LIST OF ALL MEMBERS,
and LEAVE. These SMON messages are embedded within the normal OLSR messages
and are treated just like other OLSR messages. If unknown messages are received at
nodes, they are forwarded via MPRs according to the OLSR forwarding algorithm. In
Fig. 3.2, the first field indicates the type of the message, JOIN, LIST OF ALL MEM-
BERS, or LEAVE. The second field indicates the number of overlay members whose IP
addresses are listed in the third field. The JOIN message is sent by a peer that begins
just joined SMON, while the LIST OF ALL MEMBERS message is only advertised by a
peer that had been selected as a primary peer. Finally, the LEAVE message is sent by a
peer that wants to leave SMON.

When a peer wishes to join SMON, it uses the pull method by broadcasting a JOIN
message containing its IP address specified in the list of IP addresses field. Next, the
primary peer replies to the joining peer with the LIST OF ALL MEMBERS message.
After the joining, peer receives this message. It locally constructs the DHT table, storing
overlay peers according to information obtained from the message.

A SMON peer can be either a normal or a primary peer. Both types have the same
functions, but a primary peer is the only one allowed to advertise the LIST OF ALL
MEMBERS message. The primary peer is dynamically selected by using node ID in the
DHT table. We use a simple approach that chooses the primary peer whose node ID is
the smallest in the DHT table. Each peer can search for a peer with the smallest node
ID by using its DHT table.

Considering that when node mobility does not cause a network partition and assuming
that the routing tables of all nodes coverage to the same table. Therefore, all SMON
peers have the same values in their DHT table as well. This is because the peers adjust
their DHT table based on their routing tables. It means that only one peer is elected as
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Figure 3.2: SMON overlay control message format

the primary peer for this overlay network. However, when movements take place causing
MANET to split or when two or more MANETs are merged, our primary peer selection
algorithm can adapt to this situation by re-selecting the new primary node of the resulting
MANET as described in section 3.2.3.

The primary peer periodically broadcasts the LIST OF ALL MEMBERS message, in-
forming normal peers about the current list of overlay peers. This periodic advertisement
or push method helps each peer to synchronize its own DHT table with others in case of
merging and splitting SMON. Each peer checks whether the list of IP addresses in the
LIST OF ALL MEMBERS message contains its own IP address. If not, it must send a
JOIN message to rejoin the overlay network. If the primary peer gets disconnected from
the overlay network, another primary peer must be activated to prevent a single point
of failure. Each LIST OF ALL MEMBERS message is stamped with a validation time
using vtime filed in OLSR message. All normal peers expect to receive the LIST OF
ALL MEMBERS message before vtime expires. If the primary peer cannot perform the
broadcasting of the message within the vtime interval, the next primary peer, which is the
next smallest node ID, will become active. To do so, each peer has its timer associated
with vtime. When the timer expires, every node checks whether to receive the LIST OF
ALL MEMBERS message from the primary peer or not. If not, every node compares its
node ID with the next smallest one in the DHT table. Only the next primary peer (the
next smallest ID) starts advertising the LIST OF ALL MEMBERS message. Thus, there
is not a single point of failure for a primary peer.

The procedure of joining SMON is shown in Algorithm 1 line 1. When a peer wishes to
join SMON, it broadcasts a JOIN message containing its IP address specified in the list of
IP addresses field; only a primary peer with the smallest ID answers to the joining peer.
After the joining peer receives the message, it constructs a DHT table locally according
to the received messages. Moreover, the primary peer periodically broadcasts the LIST
OF ALL MEMBERS, informing all other peers about a refreshed list of overlay peers.
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Figure 3.3: A joining peer enters the overlay network

Whenever the primary peer broadcasts the LIST OF ALL MEMBERS message, other
peers on the overlay network can also overhear this message. For consistency, each peer
checks whether the list of IP addresses in the message contains its own IP address. If not,
it must resend a JOIN message to rejoin the overlay network. In Fig. 3.3, assuming that
SMON(A) is the primary peer, it broadcasts a list message, containing list of IP addresses
of overlay nodes. After the joining peer node C receives the list message, it constructs
the DHT table locally according to the received message. Moreover, peers SMON(A),
SMON(D), SMON(F), and SMON(I) must update their overlay information and accept
the joining peer into the overlay network by adding SMON(C) to their DHT table as
shown in Algorithm 1 line 12.

3.2.2 Leave operation

When a peer, denoted as SMON(X), wishes to leave SMON, it has to send a LEAVE
message as shown in Algorithm 1 line 24. After receiving the LEAVE message, other
peers remove SMON(X) from their DHT tables. However, SMON(X) can accidentally
get disconnected from SMON due to a network partition, interference, or other reasons.
SMON(X)’s entry should be removed from the DHT table as well even though the primary
peer may not receive the LEAVE message. The OLSR of primary peer informs its SMON
of the disconnection as displayed in procedure EventNotification in Algorithm 1. The
primary peer then can remove the SMON(X)’s entry from its DHT table.

3.2.3 Merge and split operations

Next, we explain merge and split operations of two overlay networks. Each overlay network
has a peer with the smallest ID whose DHT table contains members in its own overlay
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Algorithm 1 Joining and maintaining the overlay network

Define:
O is a set of nodes in the DHT table sorted in ascending order according to nodes’
hash values
R is a set of nodes in the OLSR routing table
L is a set of nodes in the LIST OF ALL MEMBERS message
nj is a node in JOIN message
nl is a node in LEAVE message
n is this joining node

1: procedure JoiningOvelayNetwork
2: O ← ∅
3: O ← O ∪ n ⊲ Add itself to the DHT table
4: Broadcast(a JOIN message)
5: loop
6: Sleep(an interval value)
7: if n is the first element of O then ⊲ If this node is the smallest ID
8: Broadcast(a LIST OF ALL MEMBERS message)
9: end if
10: end loop
11: end procedure

12: procedure ProcessJOIN LIST LEAVEmessage
13: if receive a JOIN message then
14: O ← O ∪ nj ⊲ Add nj to the DHT table
15: else if receive a LIST OF ALL MEMBERS message then
16: O ← O ∪ L ⊲ Insert nodes in the message to the DHT table
17: if n /∈ L then ⊲ If the LIST does not contain n
18: Broadcast(a JOIN message)
19: end if
20: else
21: O ← O − {nl} ⊲ Remove the leaving node from the DHT table
22: end if
23: end procedure

24: procedure LeaveOverlayNetwork
25: Broadcast(a LEAVE message)
26: end procedure

27: procedure EventNotification(R) ⊲ Called when the routing table changes
28: O ← O ∩R ⊲ Update the DHT table to contain only reachable nodes
29: end procedure
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network. The set of all peers in the first overlay is denoted by P = p1, p2, . . . , pn, where
n is the total number of peers of the first overlay and the set of all peers in the second
overlay is denoted by Q = q1, q2, . . . , qm, where m is the total number of peers in the
second overlay. We assume that p1 and q1 are the peers with the smallest ID of the first
and second overlay networks respectively. When these two overlay networks are merging,
p1 receives Q from q1; similarly, q1 receives P from p1. Therefore, a new set of overlay
members of p1 and q1 is a union set P ∪Q = p1, p2, . . . , pn, q1, q2, . . . , qm. After merging,
either p1 or q1 which has the smallest ID continues broadcasting the new list of overlay
members P ∪Q. The example of merge operation is shown in Fig. 3.4.

(a) Before SMON 1 merges with SMON 2, each
SMON has its own primary peer

(b) During merging, the
combined overlay network
has two primary peers

(c) After merging, the merged overlay network has
one primary peer

Figure 3.4: A SMON overlay network merges with another overlay network

We are interested in cases when two or more overlays are merging. Many peers can
claim to be the smallest ID, resulting in broadcast storm problem. We show that the
Algorithm 1 does not break the overlay network consistency. Let Sn denote an overlay
network of nth and min (Sn) is a peer that has the smallest ID of overlay network nth.
When n overlay networks merge S1 ∪ S2 ∪ · · · ∪ Sn, each min(Si) sends its list overlay
member Si, where 1 ≤ i ≤ n. At the overlay Si, the peer with the smallest ID of Si

receives several messages from min(S1), min(S2), . . . ,min(Sn), which may not be in a
sequence. It performs a union operation on the received list of overlay member messages
S1 ∪S2 ∪ · · · ∪Sn, which is commutative and associative. The new peer with the smallest
ID of merged overlay networks is min(S1 ∪ S2 ∪ · · · ∪ Sn).
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In a split operation, an overlay network is divided into two. Consider an overlay network
with a set R containing all the peers in the network, we define set R = r1, r2, . . . , ri where
i is the number of peers in the overlay. After a split operation on the overlay network, set
R is partitioned into two smaller sets S and T , where R = S ∪ T and S ∩ T = ∅. Next,
s1 and t1, which are peers with the smallest ID, begin advertising the full list of overlay
members R within their partitions. Even though the set R is advertised, each peer locally
checks the availabilities of the advertised peers by using the information from its OLSR
routing table before performing resource registrations and lookups. The example of split
operation is shown in Fig. 3.5.

(a) Before SMON breaks

(b) After splitting, each overlay network performs pri-
mary peer selection

Figure 3.5: A SMON overlay network splits into two overlay networks

3.3 Evaluation of SMON

We evaluate the performance of SMON by using Network Simulator, NS2.
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Figure 3.6: Backbone node’ positions in the heterogeneous network

3.3.1 Scenario description

We are interested in evaluating the performance of SMON in post-disaster scenarios. In
the first scenario, we assume that an existing telecommunication system in an isolated
disaster area is not available. Therefore, we deploy a temporary network (MANET)
covering the affected area in order to provide communication for recovery operation. In
the second scenario, we assume that MANET is used as a last mile network which is
connected to an infrastructured network via a MANET gateway. Rescue workers use
MANET nodes to communicate with a remote command headquarter (HQ) located in
the infrastructure.

The first post-disaster scenario is also called a heterogeneous scenario (Kanchanasut et al.,
2007), a mixture of different types of mobile nodes, Personal Digital Assistants (PDAs)
(20 nodes with 2 Mpbs and 100 m) and laptops (30 nodes with 11 Mpbs and 250 m) in
a disaster area of 1000 m x 1000 m. We setup a temporary backbone network by evenly
placing 16 out of 30 laptops in order to have their transmission ranges cover the entire area.
These backbone nodes do not move. Fig. 3.6 only illustrates the positions of these nodes.
The rest of the nodes are randomly placed in the area. The rescuers carrying PDAs and
laptops freely move in any directions by walking. Therefore, a random waypoint mobility
with maximum speed of 2 m/s (a fast walking speed), and a pause time of 60 s is used.

In the second scenario, we deploy MANET with a gateway to the infrastructure. One
gateway interface is connected to the wired node (HQ), and the other interface is a
wireless interface that connects to mobile nodes. The HQ lookups resources in MANET
by sending resource queries to the MANET nodes via the gateway. Here, we extend the
heterogeneous scenario to include the gateway as shown in Fig. 3.7.

For both post-disaster scenarios, there are 25 CBR flows as background data traffic.
The packet size and rate are 512 byte and 3 packets per second. Every peer has one
unique service, and the query rate is 2 times per second (the total is 240 queries). In the
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Figure 3.7: Backbone node’ positions in the gateway scenario

heterogeneous scenario, each node randomly sends queries for required resources. On the
other hand, in the gateway scenario only HQ sends queries to MANET. All simulations
run for a duration of 900 s. Results are averages over a set of ten runs.

Furthermore, we evaluate the performance of SMON in the worst case scenarios where all
rescuers freely move at different speeds within the affected area without the presence of
backbone nodes. These scenarios show the performance of SMON based on a cross-layer
design when node mobility causes frequent topology changes. Therefore, the performance
of SMON is measured by varying the maximum speed of mobile nodes between 0 m/s
(static), 2 m/s (fast walking speed), 10 m/s (slow speed vehicles), 20 m/s (fast speed vehi-
cles), and 30 m/s (very fast speed vehicles) for an insolated MANET. We use the random
waypoint mobility model of 50 nodes with a pause time 0 s in the same area of 1000 m
x 1000 m square. All mobile nodes are equipped with IEEE 802.11b wireless interface
with a bandwidth of 11 Mbps and a transmission range of 250 m. There are 25 CBR
flows as background data traffic. The packet size and rate are 512 byte and 3 packets per
second. Every peer has one unique service, and the query rate is 2 times per second. All
simulations run for a duration of 900 s. Results are averaged over a set of ten runs.

3.3.2 Performance metrics

SMON performance is compared with passive resource discovery protocol (push model)
and active resource discovery protocol (pull model). In the passive method, each peer
periodically broadcasts its service information and its IP address to others. On the con-
trary, the active method offers an on-demand service discovery. When a requester wishes
to find a service, it floods a query containing the service information to find an address
of a peer that has this service. After receiving the query, every peer compares its service
information with the one in the query. Only the peers that have this service will reply
to the requester. It is noted that the requester continues broadcasting the query because
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the requester will need the most up-to-date information about the location of the service.
To support both passive and active discovery methods on OLSR, we define a new type of
OLSR messages. OLSR nodes use theses new messages to exchange resource information
based on passive and active discovery methods. Similar to SMON, these messages are
also disseminated to the entire network via MPRs.

The following metrics are used to evaluate these resource discovery protocols. The first
metric is the percentage of the increment of control overhead by passive discovery mes-
sages, active discovery messages, or SMON messages on OLSR routing messages. The
percentage of the increment of control overhead of passive discovery protocol is:

Cpassive = Npassive/Nolsr × 100,

where Npassive is the number of passive discovery messages transmitted by peers, and Nolsr

is the number of OLSR routing messages transmitted by all nodes.

The percentage of the increment of control overhead of active discovery protocol is:

Cactive = Nactive/Nolsr × 100,

where Npassive is the number of active discovery messages transmitted by peers.

The percentage of the increment of control overhead of SMON is:

Csmon = Nsmon/Nolsr × 100,

where Nsmon is the number of SMON messages transmitted by peers. In passive and active
resource discovery protocols, we term “peer” as one that generates resource discovery
messages. However, in SMON, we term “peer” as one that already is in the overlay
network.

The second metric is a query success ratio that is the percentage of success random
lookups.

The last metric is an average query delay that is the difference between the time a peer
uses in searching and finding a specified service.

3.3.3 Simulation results

CrossROAD nodes use the passive discovery method to advertise their overlay presences.
Therefore, the control overhead of CrossROAD is identical to the control overhead of the
passive discovery method. However, for query success ratio and query delay, CrossROAD
and SMON are the same because they use the same discovery mechanism.
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(a) The percentage of control overhead

(b) Query success ratio (c) Average query delay

Figure 3.8: Control overhead, query success ratio, and average query delay in heteroge-
neous network with 95% confidence level

In Fig. 3.8(a), the x-axis represents the number of peers, while the y-axis displays the
percentage of the increment of control overhead for all protocols. As the number of peers
increases, the percentage of control overhead increases in both active and passive discovery
methods, while SMON control overhead slightly increases and remains as constant value.
This is because the number of peers has no effect on the number of control overhead in
SMON. All lines in the chart are displayed with 95% confidence level. However, confidence
the interval of a line with low values (e.g. SMON) cannot be clearly seen when compared
to a line with very high values (e.g. Active discovery method). Query success ratios of
three protocols are similar as shown in Fig. 3.8(b). It confirms that using the overlay
network does not decrease the query success ratio. In Fig. 3.8(c), a peer in the passive
discovery model periodically advertises its service information every 10 s. Consequently,
the average query delay is about 5 s. In the active discovery model, most of the delay is
accumulated from jitter. As a basic OLSR implementation requirement, synchronization
of control messages should be avoided. As a consequence, OLSR control messages should
be emitted in such a way that they avoid synchronization. To avoid such synchronization,
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a node should add an amount of jitter to the interval at which messages are generated
and forwarded (Clausen & Jacquet, 2003). Whenever a node has to forward an OLSR
message as a query, it should keep the message at least for jitter time, a random value
between 0 to HELLO interval/4. Moreover, each node must process this query before
forwarding it to MPRs. On the contrary, the query delay of SMON is the lowest because
a service request is encapsulated in a unicast packet, which can be immediately forwarded
to a destination.

In the gateway scenario, the wired node is the only one that asks for services via the gate-
way. Upon receiving the service requests, the gateway sends service queries to MANET
on behalf of the wired node. The results from gateway scenario are shown in Fig. 3.9(a),
Fig. 3.9(b), and Fig. 3.9(c). The percentage of control overhead is similar to that of het-
erogeneous scenarios because the number of nodes is the same. The query success ratios
of the three models are similar, but SMON has the lowest query delay.

Next, the performance of SMON under different mobility environments is evaluated.
Fig. 3.10 illustrates the percentage of control overhead of the three protocols, where the x-
axis is the number of peers and y-axis is the percentage of control overhead. CrossROAD
and passive discovery method share the same percentage of control overhead.

In the passive discovery method and CrossROAD, changing the maximum speed does not
cause an increase in the number of control overhead, but rather an increase in the number
of peers which brings about a rise in the number of control overhead. This is because each
peer advertises its own service information. The percentage of control overhead of the
active discovery method maintains almost the same pattern, no matter what the maximum
speed is, except for static cases. The percentage of control overhead of all peers while
static, as compared with other speeds, is the highest because the network connectivity
stays the same throughout the simulation; as a result, more broadcast messages tend to
be successfully sent and received. In SMON, since only the primary peers that have the
smallest IDs periodically broadcast the list messages, the control overhead is significantly
lower when compared to other protocols. We discover that SMON reduces the number of
overlay control overhead 95% on average as compared with CrossROAD when a number
of peers are 50.

In Fig. 3.11, the query success ratios of the passive discovery method and the active
discovery method are nearly 100% due to the broadcast techniques. A flooding message is
reproduced when it traverses MPR nodes. A peer tends to receive one of these duplicated
messages even though some of them may be lost due to broken links in high mobility
environments.

In SMON, the query success ratio is gradually reduced when the maximum speed increases
from 20 m/s to 30 m/s as shown in Fig. 3.11(d) and Fig. 3.11(e). The reason for the
decrease is because an OLSR node takes some time to detect neighbor link failures and
to send TC messages with the new topology. Data packets that are forwarded along the
failed path will be dropped in this transient period. In the simulation, many register,
query, and reply messages are dropped due to the transient period, which causes a high
degree of message lost. However, the query success ratios reach beyond 90%, and when
the maximum speed is below 20 m/s.

Fig. 3.12 explains the query delay of three models by varying speeds of the mobile nodes.
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The average delay of the passive discovery method model is about half of the interval
time between advertisements. In the active discovery method, the average delay is ap-
proximately 1 s due to accumulated jitter at intermediate nodes as already mentioned.
Whereas, the average query delay of SMON is below 0.30 s for all maximum speeds.

3.4 Discussions

We have presented the P2P overlay network cross-layer design on OLSR. SMON is the
structured mesh overlay network that supports efficient service lookups in P2P environ-
ments. We propose a new algorithm of creating and maintaining the overlay network on
MANET to limit the number of exchanging overlay messages. From our simulation re-
sults, SMON can reduce the number of overlay control overhead significantly, while it still
maintains a high query success ratio with low query delay when compared to CrossROAD.

The differences between CrossROAD and SMON can be summarized as follows. First,
in terms of the number of overlay broadcast messages, a CrossROAD node periodically
broadcasts PublishService messages. With N services, it will advertise N times; thus, a
total number of PublishService messages increases according to the number of services.
On the other hand, the total number of overlay messages in SMON is lower because the
only primary (the smallest ID) is allowed to advertise the list of overlay member messages.

The next difference between SMON and CrossROAD is the compatibility with OLSR. We
use extended headers defined in OLSR standard to support the SMON overlay messages.
The extended headers allow nodes that do not recognize the new messages to operate
with SMON nodes seamlessly.

We evaluate the performance of SMON by NS2 in post-disaster scenarios: the heteroge-
neous MANET and MANET connected to the infrastructure (MANET to HQ communi-
cation). We find that SMON provides the best lookup times as compared with passive
and active discovery methods, while the SMON control overhead is the lowest.

In the worst case scenarios where all nodes freely move at different speeds in the disaster
area, SMON provides the lowest lookup time and control overhead when compared to
passive and active discovery methods.

In the next chapter, we will integrate SMON with SIP in order to support SIP function-
alities based on P2P architecture.
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(a) The percentage of control overhead

(b) Query success ratio

(c) Average query delay

Figure 3.9: Control overhead, query success ration, and average query delay in gateway
scenario with 95% confidence level
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(a) Static

(b) Maximum speed at 2 m/s

(c) Maximum speed at 10 m/s

Figure 3.10: The percentage of control overhead of all protocols by changing the maxi-
mum speed of mobile nodes with 95% confidence level
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(d) Maximum speed at 20 m/s

(e) Maximum speed at 30 m/s

Figure 3.10: The percentage of control overhead of all protocols by changing the maxi-
mum speed of mobile nodes with 95% confidence level (cont.)
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(a) Static

(b) Maximum speed at 2 m/s

(c) Maximum speed at 10 m/s

Figure 3.11: Query success ratio of all protocols by changing the maximum speed of
mobile nodes with 95% confidence level
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(d) Maximum speed at 20 m/s

(e) Maximum speed at 30 m/s

Figure 3.11: Query success ratio of all protocols by changing the maximum speed of
mobile nodes with 95% confidence level (cont.)
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(a) Static

(b) Maximum speed at 2 m/s

(c) Maximum speed at 10 m/s

Figure 3.12: Average query delay of all protocols by changing the maximum speed of
mobile nodes with 95% confidence level
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(d) Maximum speed at 20 m/s

(e) Maximum speed at 30 m/s

Figure 3.12: Average query delay of all protocols by changing the maximum speed of
mobile nodes with 95% confidence level (cont.)
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Chapter 4

SIPMON: P2P SIP on SMON

In this chapter, we focus on using the P2P overlay network to handle SIP user discovery on
MANET as opposed to a traditional client and server SIP model. We propose the deploy-
ment of SIP over SMON creating an overlay network of SIP servers as peers, called P2P
SIP. SMON is responsible for creating and maintaining the overlay network on MANET,
while P2P SIP provides two main important SIP operations, which are registration and
location discovery. Furthermore, the P2P SIP is an interaction point, where an existing
SIP based application can seamlessly operate on SMON. In addition, P2P SIP on SMON
handles terminal mobility, which will be presented in more details in the next chapter.

Section 4.1 presents P2P SIP architecture or SIPMON and SMON API, a service access
point for P2P SIP. We explain SIP user registration, call invitation, and binding update
issues in the P2P SIP overlay network in section 4.2, 4.3, and 4.4 respectively. In section
4.5, an evaluation of P2P SIP on SMON is presented.

4.1 P2P SIP architecture

P2P SIP on SMON is shown in Fig. 4.1. Each P2P SIP node is composed of OLSR,
SMON, and P2P SIP. SMON uses OLSR to provide real-time routing information used
for updating its overlay topology. When the physical topology is changed, OLSR informs
SMON using cross-layer interaction, e.g. OLSR plug-in (Tφnnesen et al., 2004). On top
of SMON, P2P SIP is implemented to handle all SIP requests and responses exchanged
among the P2P SIP overlay network. P2P SIP can access DHT table via SMON API. This
DHT information is used for P2P SIP registration and user discovery, which are discussed
later in the following sections. In a centralized SIP, an outbound proxy parameter of SIP
phone is configured to a centralized SIP registrar/proxy. In P2P SIP, it is required that

Figure 4.1: P2P SIP overlay network architecture on a P2P SIP node
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Figure 4.2: SMON API

the existing SIP phone has the outbound parameter pointed to it local address so that all
SIP requests are directly sent to its P2P SIP.

SMON provides an API for P2P SIP via Inter-Process Communication (IPC), e.g. TCP
connection at the localhost as shown in Fig. 4.2. After establishing communication with
SMON, P2P SIP must call SMON.start() to make SMON join the overlay network by
executing the procedure JoiningOvelayNetwork in Algorithm 1. After finishing joining
the overlay network, P2P SIP can use SMON.query(key) to find a peer’s IP address to
perform P2P registration or do a search for items, which will be explained in section 4.2
and 4.3. SMON is responsible for maintaining node IDs of peers on the overlay network,
while P2P SIP stores and maintains SIP objects, which comprises of SIP URIs and IP
addresses, based on their object IDs. When SMON.query(key) is called, SMON looks up
its DHT table to find a peer whose node ID is the closet to the key, then SMON returns
its corresponding IP address to the P2P SIP.

4.2 SIP user registration operation on SIPMON

On each SMON node, an outbound proxy parameter of a SIP phone is configured by
using its IP address, the local address, so that a local P2P SIP can directly intercept
SIP messages. When the P2P SIP receives a SIP REGISTER message from its SIP
phone application, it obtains an object ID from the hash value of user’s SIP URI. The
hash function applied to user’s SIP URI is denoted as P2P SIP(SIP URI). Then, it uses
SMON to find the address of a peer whose node ID is the closest to this P2P SIP(SIP
URI). The P2P SIP forwards the SIP REGISTER message to that peer as its registrar
as shown in Algorithm 2.

The following example explains how a SIP user registers itself to the P2P SIP on SMON.
John is a SIP user at SMON(A) with SIP URI “John@abc.com”. John’s SIP phone sends
SIP REGISTER to its P2P SIP on SMON(A). Next, P2P SIP of SMON(A) determines
the object ID from P2P SIP(“John@abc.com”), denoted as ObjJohn. Assume that Node
ID is SHA1, and, for simplicity, only the first four hex-digits are displayed as shown in
Fig. 4.3. The P2P SIP of SMON(A) calls SMON.query(ObjJohn) to find an address of the
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Algorithm 2 P2PSIP registration

1: procedure P2PSIPregister(SIP URI)

2: loop

3: objectID ← Hash(SIP URI)

4: nodenearestID ← Lookup(objectID)

5: Send(SIP REGISTER(SIP URI, nodenearestID))

6: if WaitSIP200OK then ⊲ If timeout occurs, loop

7: return ⊲ Return if registration is successful

8: end if

9: end loop

10: end procedure

peer whose ID is the closest to ObjJohn, which is the address of SMON(F). Therefore, the
P2P SIP of SMON(A) forwards the REGISTER request to P2P SIP of SMON(F). After
receiving the REGISTER request, P2P SIP at SMON(F) adds the binding of the John’s
SIP URI and IP address A to its location database and replies SIP 200OK to P2P SIP of
SMON(A). Once this registration is complete, the binding of John and node A is said to
be registered at P2P SIP of SMON(F).

4.3 Call setup operation on SIPMON

A SIP user gives a call by sending a SIP INVITE request. However, the SIP user must
know the physical address of a target user before making a call. In centralized SIP, the
SIP user forwards an INVITE request to pre-configured SIP registrar and proxy that
handle the call for the user. In P2P SIP, the INVITE request is processed according to
DHT searching. The following steps explain the call setup process using SIPMON as
shown in Algorithm 3. When the P2P SIP receives a SIP INVITE request from the SIP
phone application, it extracts a target user’s SIP URI from the request and uses the hash
function P2P SIP() to acquire the object ID. Next, it uses SMON.query(ObjJohn) to find
the address of the peer whose node ID is the closest to this object ID. Suppose that SMON
returns address of SMON(X), which has the closest ID to the object ID. Then P2P SIP
forwards the SIP INVITE message to SMON(X). After receiving the INVITE request,
P2P SIP of SMON(X) opens its binding database to locate address of the target user
indicated in the INVITE request, and uses this address to forward the INVITE request
to the target user as shown in Algorithm 4. In other words, SMON(X) acts as the SIP
registrar and proxy for both caller and callee.

A call setup example (Tom gives a call to John) is shown in Fig. 4.3. Notice that John
has already registered to SMON(F) according to the previous registration example. To
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Figure 4.3: SIP user registration example in SIPMON

Algorithm 3 P2P SIP invite sent from a caller

1: procedure P2PSIPinvite(SIP URI)

2: loop

3: objectID ← P2P SIP(SIP URI)

4: nodenearestID ← SMON.query(objectID)

5: Send(SIP INVITE(SIP URI, nodenearestID))

6: if WaitSIPresponse not ERROR then ⊲ Error received, loop until timeout

7: return ⊲ Return if invite is successful

8: end if

9: end loop

10: end procedure
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Algorithm 4 P2P SIP invite received at peer-X

1: procedure P2PSIPinviteReceivedAtPeer-X(INVITE request)

2: targetSIP URI ← Extract(INVITE request)

3: address← Lookup(targetSIP URI) ⊲ Lookup in binding database

4: if found target’s address then

5: ForwardInvite(SIP INVITE(INVITE request, targetSIP URI))

6: else

7: Reply(SIP 404 Not Found)

8: end if

9: end procedure

make a call, Tom’s P2P SIP of SMON(I) uses SMON to find an address of a peer in which
John may register. SMON returns the address of SMON(F) because its node ID is the
closest to value of P2P SIP(John’s SIP URI). Next Tom’s P2P SIP sends a SIP INVITE
to SMON(F). After receiving the SIP INVITE request, P2P SIP of SMON(F) looks for
John’s address in its database, and it forwards a SIP INVITE to John at node A. After
that, John’s SIP phone replies SIP 180 RINGING back to Tom via P2P SIP of SMON(F).
Finally, Tom’s SIP phone can establish the call with John’s SIP phone. The P2P SIP only
handles SIP requests and responses flowing between the caller and callee in the process
of SIP user location discovery. Once the caller finishes discovering the callee’s IP address,
the actual call session is initiated between the caller and callee without involving the P2P
SIP.

4.4 SIP registration update operation on SIPMON

A contact header in SIP REGISTER contains expiration parameter to indicate the valid
period of time of the SIP URI binding. The default value is set to 3600 s as described
in SIP specification [RFC 3261]. Once a SIP user receives a SIP 200 OK response from
a registrar, it starts a timer according to the expiration parameter. The SIP user must
send a new SIP REGISTER to the registrar before the timer is expired in order to keep
its binding valid. However, MANET nodes are prone to disconnection from the network.
Consequently, the SIP user has to send a new REGISTER not only when the timer is
expired, but also when the network changes. The changes result from network partitions
and mobility including node joining and leaving SMON, which bring about a change in
the DHT table as well. The modification in the DHT table makes every SMON node
perform SIP registration updates according to section 4.2.

Let SMON(X) be a peer in SMON that has SMON(Y)’s binding information. When
SMON(X) is unavailable, the P2P SIP of SMON(Y) is instantly informed by SMON. It
must retransmit SIP REGISTER to another SMON whose node ID is the next closest one.
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Figure 4.4: A call setup example in SIPMON

If the DHT table is changed due to a new node joining or a node leaving, and SMON(X)
is not the closest to P2P SIP(Y’s SIP URL), the P2P SIP of SMON(Y) must proceed SIP
registration again. The following example shows a retransmitting SIP REGISTER when
SMON(F) disconnects from the network as shown in Fig. 4.5. At SMON(A), SMON
detects the topology change. It removes SMON(F) from the DHT table and informs
this change to its P2P SIP. After receiving the notification from SMON, the P2P SIP of
SMON(A) performs the registration process again for John, resulting in forwarding a SIP
REGISTER request to the next closest node ID, SMON(D). After SMON(D) receives the
SIP REGISTER request from John at SMON(A), it replies to John with SIP 200 OK.

Next, binding inconsistency problems can occur due to node or user movement. Two cases
can cause binding inconsistency. In the first case, a SIP user logs on to a different machine.
Both SMON(F) and SMON(D) have John’s binding based on the above example, and
SMON(F) is partitioned from other peers. If John logs off from SMON(A) and logs on to
SMON(B), John will send a new SIP REGISTER to SMON(D) to update the binding.
However, SMON(F) still has John’s previous binding, which by now is invalid. In the
second case, the IP address of John’s machine is changed due to SIP terminal mobility.
If the IP address of SMON(A), which John logs in to, is changed, John will have to send
the new binding update to SMON(D). Similar to the former case, SMON(F) has John’s
wrong binding. Binding inconsistency can be solved by making SMON(F) remove the
John’s previous binding information. When SMON(F) is partitioned from SMON(A),
the P2P SIP of SMON(F) is informed by SMON. It must remove all bindings belonging
to peers that cannot be reachable. Therefore, SMON(F) removes John’s binding from
its database because SMON(A) is unreachable. Now, only SMON(D) has John’s valid
binding.
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Figure 4.5: Re-registration when node F is partitioned

4.5 Evaluation of P2P SIP on SMON

In this section, we describe simulation and testbed results of SIPMON. We compare
SIPMON with two existing approaches. SIP over OLSR (L. Li & Lamont, 2004), as
reviewed in section 2.3.3, is based on the use of a cross-layer design to support proxy-less
system or Client Query Server Advertising (CQSA) scheme. CQSA is based on the pull
method for user discovery. When a SIP user agent wants to make a call, it broadcasts a
Service Location Extension (SLE), a new message type in OLSR defined by the CQSA
scheme, to query a target SIP user agent’s IP address. The target SIP endpoint responds
to the query with its IP address. Another scheme we will compare SIPMON with is
dSIP (Leggio et al., 2005), which provides SIP user registration and discovery on MANET.
Distributed registration is done by periodically broadcasting a SIP REGISTER request
to the whole network. We compare our SIPMON performance with the CQSA scheme
and dSIP in term of post dialing delay, session setup success ratio, and control overhead.

4.5.1 Simulation scenario description

We evaluate the performance of SIPMON in NS2 with UM-OLSR extension (Ros, 2007)
for a post-disaster scenario. We assume a disaster area of 1000m × 1000 m in size. In
this area, rescuers carry mobile devices that are capable of handling SIP-based VoIP
communication. We consider the scenario where all rescuers freely and randomly move
and have VoIP communication to communicate to each other. In this scenario, some of the
rescuers may not participate in the SIPMON overlay network, but their mobile devices
act as OLSR routers, which help extend the MANET size to cover the disaster area.
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Figure 4.6: Post dialing delay in SIPMON

Therefore, we are interested in measuring the SIP overlay performance by changing the
number of peers between 20 and 60. The total number of OLSR nodes is 60. All mobile
nodes are equipped with IEEE 802.11b wireless interface with bandwidth of 11 Mbps and
transmission range of 250 m. We assume that rescuers randomly move at walking speed.
Then, the random waypoint mobility is used at the maximum speed of 2 m/s and pause
time of 60 s.

Next, we evaluate the performance of SMON in the worst case scenarios where all rescuers
freely move at different speeds within the affected area. We create a second kind of scenario
by changing the maximum speed of mobile nodes into 2 m/s(fast walking speed), 10 m/s
(slow speed vehicles), 15 m/s (fast speed vehicles), and 20 m/s (very fast speed vehicles).

Each data point represents a result averaged over ten different movement scenarios. Each
peer has a unique SIP URI. There are 30 CBR flows, each of which randomly starts from
an interval of between 300-400 s as background data traffic. The packet size and rate are
512 bytes and 3 packets per second respectively. All simulations run for a duration of
900 s.

4.5.2 Performance metrics

We use the following metrics to evaluate the performance of SIPMON. The first metric
is the percentage of the increment of control overhead by dSIP, CQSA, or SIPMON
messages on OLSR routing messages. This metric shows how many percentage of the
control overhead generated by dSIP, CQSA, or SIPMON is introduced into the network
in addition to OLSR routing overhead. The call-setup success ratio is another metric that
describes the percentage of session setup success. The last metric is a post dialing delay,
which is the difference between the times that a caller uses in sending INVITE to callee
and that of receiving back SIP 180 RINGING. Fig. 4.6 illustrates the post dialing delay
in SIPMON.
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4.5.3 Simulation results

In Fig. 4.7(a), as the number of peers increases, the percentage of control overhead of
dSIP rapidly increases. Increasing the number of peers has an effect on the overhead
because each peer periodically advertises a SIP REGISTER request. The percentage
of dSIP control overhead is 32.15% on average, where a number of peers is 60. In the
CQSA scheme, the percentage of control overhead increases according to the number of
calls. The number of INVITE request is 240; hence, the percentage of control overhead is
approximately 4% regardless of the number of peers. In contrast to dSIP and the CQSA
scheme, the number of SIP users and INVITE requests do not increase in SIPMON. The
percentage of SIPMON control overhead is 1.64% on average, where the number of peers
is 60. We measure call-setup success by calculating the number of successful SIP 180
RINGING replies over the number of the INVITE requests issued. According to the
SIP specification, a caller sends duplicated INVITE requests for a call to a callee via
UDP packets to gain a chance of a successful packet received at the destination under
unreliable transportation. The destination can detect the duplicated INVITE requests
by using Call-ID, unique identification for each call. In our simulation, a caller sends
only one INVITE request for each call over UDP. Hence, the success or failure of call
setup is collected by using only one INVITE request for each call. The call-setup success
ratios of all protocols are quite similar, where SIPMON slightly outperforms those of other
mechanisms as shown in Fig. 4.7(b). Notice that the call-setup success ratios decrease
when the number of peers increases for all protocols.

A peer in dSIP periodically advertises its SIP URI every 10 s. Then, a caller must wait
around the average value of this interval in order to get a target’s IP address before
constructing and sending an INVITE request. Hence, the post dialing delay from the
simulations is about 5 s as shown in Fig. 4.7(c). In the CQSA scheme, a new type of
OLSR message is used for a query and a reply. Consequently, the delay depends on the
jitter value. As a basic OLSR implementation requirement, synchronization of control
messages should be avoided. As a consequence, OLSR control messages should be emitted
such that they avoid synchronization. To avoid such synchronization, a node should add
an amount of jitter to the interval at which messages are generated and forwarded (Clausen
& Jacquet, 2003). Whenever a node has to forward an OLSR message, it should keep
the message for at least the jitter time, which is a random value between 0 to HELLO
interval/4. On the contrary, the post dialing delay of SIPMON is the lowest because a
SIP INVITE request can be immediately sent without knowing target’s IP address.

We are also interested in how the efficient SIPMON performs at various speeds of move-
ment. Thus, we measure the performance of our scheme by varying the node velocities
between 2 m/s and 20 m/s. In Fig. 4.8, the x-axis represents the node velocities. The ex-
planation for control overhead and post dialing delay in Fig. 4.8(a) and 4.8(c) are similar
to the previous simulation results because the broadcast interval time does not change
regardless of the changes in speed. However, high node velocities can increase packet
losses. In Fig. 4.8(b), the call-setup success ratio gradually reduces when the maximum
speed is increased. The reason is that an OLSR node takes a certain amount of time
to detect neighbor link failures and to update the routing table. During this transient
period, data packets that are forwarded along the failed path will be dropped. In the sim-
ulations, many SIP requests are dropped during this time. The call-setup success ratios
for all protocols are approximately 60% at the speed of 20 m/s due to high packet losses;
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(a) The percentage of control overhead

(b) Call-setup success ratio

(c) Average SIP post dialing delay

Figure 4.7: Call setup results with node’s maximum speed of 2 m/s with 95% confidence
level
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however, call-setup success ratios are still acceptable.

In Fig. 4.7, the broadcast interval of all protocols is 10 s. The different intervals give
different outcomes. For example, small intervals can cause more control overheads. How-
ever, SIP post dialing delay will be smaller. Then, we perform more simulation again with
broadcast interval of 5 s or t = 5, for all systems. Fig. 4.9 shows that control overhead of
dSIP and SIPMON with a broadcast interval of 5 s increase about twice that of broadcast
interval of 10 s since these two protocols use periodic broadcast mechanism. In the CQSA
scheme, the control overhead percentages of t = 5 and t = 10 are similar because the
number of call setup has not changed.

Call-setup success ratio of dSIP with t = 5 is increased 7.32% from the success ratio of
dSIP with t = 10. Frequently broadcasting SIP REGISTER requests results in the high
chance of successful call setup. In the CQSA scheme and SIPMON, the broadcast interval
has an insignificant effect on the number of call-setup session ratio.

When t = 5 is used, post dialing delay of dSIP is reduced to 2.5 s as shown in Fig. 4.10.
According to the simulation results, the post dialing delay of dSIP is around t/2, whereas
the different broadcast interval values have no effect on the post dialing delay of the CQSA
scheme and SIPMON.

4.5.4 Testbed implementation and results for stationary scenario

We develop a testbed to verify the correctness of the simulation results of SMON op-
erations. SIPMON was developed and tested where a testbed was setup with twelve
computers running Ubuntu kernel version 2.6.24. We used different kinds of machines
for the testbed as shown in Fig. 4.11. Five of them were UltraClient equipped with
IEEE 802.11g. There was one PC with a wireless card installed. The others were six
Eee PC 901 laptops. All of the computers were connected in the Ad Hoc mode. We
created a SMON plug-in by using the OLSR implementation (Tφnnesen et al., 2004). We
used MjSip (mjsip.org, 2006) to develop the java-based P2P SIP server. Twinkle version
1.1 (Boer, 2008), SIP softphone for Linux, was used for the testbed.

The testbed was deployed at the Internet Education and Research Laboratory (intERLab),
Asian Institute of Technology, as shown in Fig. 4.12. We did not use any packet filtering
software to create a multi-hop network. Even though all nodes were static, the route from
node-11 to node-12 kept changing throughout the experiment because some activities
occurred inside and outside the building. For example, when a car or a person passed
by, it was possible that this movement blocked the wireless signal, causing route changes.
The lines in the diagram represent possible routes between node-11 and node-12. Except
for node-11 and node-12, all other nodes were fully connected in one hop. We collected
data by using tcpdump (MG, 2009) For each run, all 40 SIP calls were made from node-11
to node-12 by varying the number of peers between 3 and 12. Results were averaged over
a set of three runs, each of which was 12 minutes long.

In the testbed, a peer in dSIP periodically advertises its SIP URI and its IP address every
5 s. In SIPMON, the primary peer principally advertises a LIST OF ALL MEMBERS
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(a) The percentage of control overhead

(b) Call-setup success ratio

(c) Average SIP post dialing delay

Figure 4.8: Call setup results with node’s maximum speed varied between 2 m/s and
20 m/s at peer of 60 with 95% confidence level
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Figure 4.9: Control overhead comparison of all approaches by using different broadcast
interval of 5 s and 10 s

Figure 4.10: Average post dialing delay comparison of all approaches by using different
broadcast interval of 5 s and 10 s
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Figure 4.11: Testbed computers and screenshot

Figure 4.12: Testbed of twelve stationary nodes at intERLab
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message in 5 s too. In Fig. 4.13(b), the x-axis refers to the number of peers between
3 and 12, and the y-axis represents the percentage of control overhead in addition to
the OLSR control overhead. As the number of peers increases, the control overhead
of dSIP chiefly goes up to 82% because all peers broadcast their SIP URIs. In CQSA
scheme, a caller wishing to make a call must find the callee’a address by broadcasting
a SLE message containing an INVITE request addressed to the callee’s SIP URI. After
receiving the INVITE request, the callee responds to the caller with its IP address and
the caller can give a call to the callee using this IP address. Therefore, the CQSA scheme
control overhead depends on the number of calls or broadcast SLE messages which add
extra overhead to the normal OLSR routing messages. In the testbed results, the control
overhead is 6% in addition to the OLSR control overhead, where the number of call is
set at 40. We perform experiments to measure only the control overhead between the
CQSA scheme and SIPMON by using 80 calls. The CQSA control overhead of 80 calls is
12.45%. If the number of calls increases, we claim that the number of control overhead
will increase linearly for the CQSA scheme. On the other hand, the control overhead of
SIPMON is 8.57% (40 calls) and 8.73% (80 calls). We claim that the SIPMON control
overhead is steady regardless of the number of calls.

An observation from Fig. 4.14(b) is that the post dialing delay of SIPMON is the lowest
since SIP requests can be sent without a need to wait for the target’s IP address to be
discovered. With the CQSA scheme, major delays come from jitter time, while dSIP
spends most of the time waiting to discover the target’s IP address. We do not show the
call-setup ratios because no calls are dropped during the experiments for all the three
protocols.

We perform simulations of twelve nodes with the same testbed parameters to compare
simulation results with testbed results.

We observe the testbed results(Fig. 4.13(b) and Fig. 4.14(b)) and the simulation results
(Fig. 4.13(a) and Fig. 4.14(a)) and discover that the chart patterns of both the testbed
results and the simulation results are quite similar. This confirms the correctness of
SIPMON simulation results.

4.5.5 Testbed implementation and results for moving scenario

The next testbed was made at Karon beach, Phuket, Thailand, at the 8th International
Conference on ITS Telecommunications (ITST 2008). We used four Eee PC 901 laptops
that together form SMON, running in the moving scenario. Two nodes were stationary
along the beach, while the other two nodes were moving on the road as depicted in
Fig 4.15. The dash lines were links before the nodes moved. Two cars moved the same
direction and at a speed of 20 km/h,in the same direction but at different speeds, and
in opposite directions and at the same speed. There were seven calls made from EEE-3
to EEE-4 during the movement. Results were averages over a set of three runs. Due to
movement scenarios, we configured HELLO and TC intervals to 0.5 s and 3 s respectively
to make OLSR nodes detect neighbors faster in the highly mobile environment.

Fig. 4.16 shows the post dialing delay of SIPMON in the moving scenario in Phuket. The
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(a) The percentage of control overhead
(Simulation)

(b) The percentage of control overhead
(Testbed)

Figure 4.13: Comparison of the percentage of control overhead between simulation results
and testbed results

(a) Average SIP post dialing delay (Simu-
lation)

(b) Average SIP post dialing delay
(Testbed)

Figure 4.14: Comparison of average SIP post dialing delay between simulation results
and testbed results
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Figure 4.15: Testbed movement scenarios in Phuket, Thailand

Figure 4.16: Call setup results of the moving testbed scenarios. Scenario 1, two nodes
move in the same direction and speed. Scenario 2, two nodes move in the
same direction, but at different speeds. Scenario 3, two nodes move in
opposite directions. Phuket, Thailand
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x-axis is the sequence of calls during the movement, and y-axis is the post dialing delay.
In scenario 1, EEE-3 and EEE-4 were neighbors to each other throughout the movement
because the two nodes moved in the same direction and at the same speed. EEE-3, as a
1-hop neighbor, could directly send an INVITE request to EEE-4. Hence, the post dialing
delay was around 11 ms. In scenario 2, EEE-3 and EEE-4 moved the same direction at
different speeds. Even though EEE-4 moved faster than EEE-3 by about 5-10 km/h, we
observed that it was not fast enough to break the one-hop neighbor link between them.
Therefore, the post dialing delay of SIPMON was almost the same as scenario 1. In
the last scenario, EEE-3 moved in opposite direction to EEE-4. From our observation,
there were two times that the post dialing delay was high due to route changes. It was
confirmed by Fig. 4.16 that call numbers 3 and 6 were the points where the path between
EEE-3 and EEE-4 changed. When the route changed, the post dialing delay was between
530 and 600 ms. The delay mainly came from the time to detect the neighbor, which was
set at 500 ms (configured HELLO interval).

4.6 Discussions

We have presented SIPMON on OLSR. The overlay network is composed of P2P SIP and
SMON. P2P SIP functions as a small traditional SIP registrar and proxy server, which
typically accepts and processes SIP requests from an existing SIP phone application. To
send a SIP request, if no target’s address is found in its location service, P2P SIP will use
SMON to find the target’s IP address based on a DHT search. The design allows normal
OLSR nodes to operate seamlessly with the P2P SIP nodes without modifying the OLSR
standard.

Different MANET’s routing protocols have distinctive performances. For example, proac-
tive routing protocols have a lower delay in setting up a connection between two end
nodes as compared to reactive routing protocols. However, the proactive routing pro-
tocols produce high overhead when routing information is exchanged. We use OLSR as
the underlying routing protocol for SMON. For a fair comparison, we therefore compare
SIPMON with other SIP on MANET approaches using OLSR: CQSA scheme (L. Li &
Lamont, 2004) and dSIP (Leggio et al., 2005), and MANETSip (Fudickar et al., 2009).

CQSA scheme uses SLE messages to broadcast SIP requests within the OLSR network via
MPRs. Both the CQSA scheme and SIPMON introduce low control overhead added to
routing overhead. However, the average post dialing delay of SIPMON is five times lower
than those of the CQSA scheme according to our testbed results (twelve static nodes).
Next, we compare our approach with dSIP. Both simulation and testbed results show
that SIPMON network reduces the number of control overhead significantly by 90% when
compared to dSIP. The post dialing delay of dSIP is about half of advertised interval.
In Fig. 4.10, dSIP with t = 5s gives the post dialing delay of around 2.5 s and 5 s when
t = 10. However, if t is small, the number of control overhead will increase exponentially.
On the other hand, the post dialing delay of SIPMON is less than 100 ms on average
according to both simulation and testbed results. Although simulation results confirm
the SIPMON performance when the number of nodes is large, due to resource limitation,
the testbed results are only valid for a small size of MANET. Next, we compare our post
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Figure 4.17: MANETSip testbed topology (source: MANETSip (Fudickar et al., 2009))

dialing delay with that of MANETSip (Fudickar et al., 2009). MANETSip uses a On-
Demand Multicast Routing Protocol (ODMRP) (Lee et al., 2001) over OLSR to distribute
a SIP request. Every node on a multicast network is a SIP registrar, referred as a SIP
multicast network. A node periodically sends a SIP REGISTER request to all nodes on
the multicast network in order to register itself on the SIP multicast network. In Fig. 4.17,
the registration delay was given in their MANETSip testbed setup with a static linear
network topology of three computers. To register a node at another node with a two-hop
distance delay, it takes 164 ms on average on MANETSip. On of our testbeds as shown
in Fig 4.15 based on a linear network topology of four computers (three-hop end-to-end
nodes), we could obtain a delay of 14 ms which is significantly lower than the delay in
MANETSip.

In the next chapter, we will extend SMON to work on the Internet and address the
problem of terminal mobility, which is important for IP telephony.
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Chapter 5

SMON over MANET and the Internet (SMON+)

In the previous chapter, we presented the concept of P2P SIP on an isolated MANET
running OLSR protocol. In this chapter, we extend P2P SIP on SMON to cover a fixed
IP network or the Internet with terminal mobility. P2P SIP supports terminal mobility
for real-time multimedia communications for seamless communication between MANET
and the Internet users. When MANET is connected to the Internet, a novel Overlay
OLSR Network (OON) extends OLSR network to cover some of the Internet nodes thus
on OON. On top of this OON, we extend SMON to SMON+ by stretching SMON on
MANET to cover OON as well; P2P SIP is then applied on top of extended SMON+.
The advantage of using OON is that we do not need to modify any P2P SIP and SMON
internal operations.

Section 5.1 explains our use of case scenarios and design criteria for an emergency network.
Section 5.2 shows how OON can be built on the Internet, followed by SIPMON+ in
section 5.3. Section 5.4 describes how SIPMON+ can provide SIP terminal mobility
in more details, while section 5.5 shows the evaluation of SIPMON+. We shows the
scalability analysis of SIPMON+ in the last section of this chapter.

5.1 Scenario description and design criteria

In disaster-struck fields where traditional communication services such as fixed or mobile
telephone and local internet access are completely inoperable, a fast-deploying multime-
dia communication system that a number of emergency rescue teams can rely on and
collaborate with a distant command headquarter will prove very useful in saving the lives
of victims (Kanchanasut et al., 2007). Our target scenario is where we have several sepa-
rated disaster areas as shown in Fig. 5.1. There are remote command headquarters that
coordinate and advice on rescue operations. The majority of mobile nodes are rescuers
located in MANETs. The minority of mobile nodes are headquarters located on the In-
ternet. Each rescuer carries a WiFi capable mobile device that can provide multimedia
communication for search and rescue operations. Fig 5.1 illustrates three categories of
communications commonly required by most emergency rescue operations: (A) intra-site;
(B) site-to-site; and (C) site-to-HQ communications. A rescuer can also move to another
affected area. During the movement, an ongoing multimedia communication should be
maintained as long as there is some networking coverage nearby.

Therefore, the design of emergency networks for post-disaster rescue communication must
fulfill the following criteria.

Fast network deployment One of the most important requirements is to quickly estab-
lish communication systems used for rescue operations. Network setup procedures
should be as simplest as possible. The devices to be used in emergency network
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Figure 5.1: Our post-disaster scenario and three types of multimedia communications
commonly required during disaster emergency response operations: (A) in-
tra-site; (B) site-to-site; (C) site-to-HQ

may come from locally available sources and are likely commodity devices. Exam-
ples of such devices are: Laptop computers having WiFi and multimedia features,
WiFi-capable mobile phones, and personal digital assistants (PDAs). However, set-
ting up long-range network connectivity may require specialized equipments such as
satellite terminals or point-to-point WiFi.

Multi-hop technology Emergency network should cover the entire operation area. It
is very likely that multi-hop ad hoc network must be used to provide the coverage.

Terminal mobility support Mobile devices may have to move between the different
coverage areas of two or more emergency networks. Therefore providing terminal
mobility is a very important issue.

SIP-based communication support Session Initiation Protocol (SIP) is a very flexi-
ble and standardized communication protocol for multimedia communications (e.g.
voice, video, text). Multimedia applications running in emergency networks should
support SIP. Therefore, emergency networks should have features that facilitate SIP.

Tolerance to failures It is common that mobile nodes may break down during the
rescue operation. A mobile node may also move at anytime resulting in disrupted
communication, either to itself or to other mobile nodes relying on it. The design
of emergency networks must assume that node and route failures are common.
Applications running in the emergency networks must also tolerate failures and
automatically recover from one or more of such failures.

Communication across the public Internet When there are several affected disaster
areas and headquarters, the most practical way to interconnect them is through the
public Internet. In the design of the emergency networks, we should support and
allow communication across the Internet whenever possible. The routing protocol
instance in one emergency network should be made aware of potential connectivity
to the Internet. The instances of the emergency network routing protocol (run-
ning at different disaster-struck sites) should be able to automatically discover and
communication with each other when they are connected to the public Internet.
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Figure 5.2: SMON+ (SMON over OON)

5.2 SMON+ and OLSR Overlay Network (OON)

MANET can have gateways that provide access to the Internet. These gateways have at
least two logical network interfaces; one is a wireless interface to interact with nodes in
MANET and the other interface that has connectivity to the Internet. A fixed gateway
is preferred to a moving gateway because it increases the Internet access stability for
MANET nodes. Fig. 5.2 shows OLSR node C acting as an OLSR gateway whose wired
interface is connected to the LAN. Any traffic coming in and out of the MANET must go
through the gateway. The OLSR network is assigned a valid subnet prefix, which can be
routed on the Internet. In this kind of network, the MANET is viewed as a stub network,
which does not allow outside traffic to use the network as a transit network.

To expand SMON from MANET to cover the Internet, we need to turn normal IP nodes
of the Internet to communicate using OLSR protocol. These OLSR-compatible nodes on
the Internet and those SMON nodes on MANETs form the first layer of overlay called the
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Figure 5.3: OLSR message cannot get through a router

Figure 5.4: Unicast communications among fixed IP nodes

OLSR Overlay Network (OON) and those nodes from OON that are SMON nodes form
the second layer of overlay called SMON+.

Fig. 5.2 shows SMON+, where each peer has complete knowledge of all other peers on
SMON+. For example, let each node on OLSR network and the Internet be assigned
IP addresses A, B, C, D, E, F, G, H, and I as shown in Fig. 5.2. A node identified
by SMON(A) maintains links to all other overlay members, B on MANET and F, G,
H on the Internet where each node is represented by its unique ID which is a result of
an application of a hash function, called SMON, on its IP address. Thus, in SMON(A),
there is a hash table containing SMON(B), SMON(F), SMON(G), and SMON(H) as its
overlay neighbors. If the node whose IP address is B, which has now been assigned a
unique identifier SMON(B), gets disconnected from MANET, OLSR will detect that and
informSMON(A) to delete SMON(B) from its DHT table. The same node may reenter
to MANET and get a new IP address and have a new ID.

In order to put SMON on fixed IP nodes on the infrastructure, we must make normal
TCP/IP nodes on the Internet to understand OLSR and exchange OLSR messages. How-

Figure 5.5: Sending and receiving OLSR messages via unicast communications at node
C of Fig. 5.4
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ever, OLSR is designed to work on MANET, where an IP packet carrying OLSR messages
is broadcasted to all nodes within a sub-network. The main obstacle of making an OLSR
overlay on the Internet is that OLSR messages are dropped at physical routers as shown
in Fig. 5.3. The OLSR messages are encapsulated in a UDP/IP packet whose destination
MAC address is configured as a broadcast address (FF:FF:FF:FF:FF:FF). This type of
packet cannot be forwarded by the routers thus the fixed IP nodes cannot exchange OLSR
messages to other OLSR nodes. We propose to use a broadcast-like concept to enable
OLSR messages be exchange with fixed IP nodes. We do not assume broadcast capability
for the general Internet. Therefore, we propose to mimic broadcast communication by
using several unicast messages to carry OLSR routing messages. A fixed IP node uses
a unicast address destined for every other fixed IP nodes. For example in Fig. 5.4 and
Fig. 5.5, node C sends OLSR messages to node F, G, and H by using three unicast com-
munications. However, before each fixed node begins exchanging OLSR messages, each
fixed node must know the addresses of other nodes that are on the OON.

We propose to store the addresses of the peers that are on the OON in a centralized server
on the Internet. These OON peers are required to keep a centralized server informed of
their addresses. In order to join the OON, a joining peer needs to perform a bootstrap
process by retrieving all addresses of these peers from the centralized server. For example
according to in Fig. 5.4, after node C gets addresses of nodes F, G, and H by executing
the bootstrap process, it uses these addresses as the destinations to send OLSR unicast
packets. They exchange OLSR messages so that they can form one-hop OLSR overlay
neighbors shown in Fig. 5.2. Nodes, located on MANET, can receive the one-hop infor-
mation of OLSR nodes on the Internet via its OLSR GW (node C on 5.2). Other OLSR
nodes on the Internet can have information of MANET nodes from OLSR messages ex-
changed with node C. For example, the MANET node B routing table contains nodes
F, G, and H as two-hop neighbors. Exchanging OLSR messages on the Internet creates
control overhead. However, we will show later that the control overhead of this network
setup is at an acceptable level.

An OLSR node maintains information about its neighbors by using HELLO messages
to periodically discover its one-hop neighbors. This neighbor detection can be used for
maintaining the OLSR nodes on OON as well. Whenever an OLSR peer detects that a
neighbor is lost due to either graceful shutdown or accident disconnection, it can stop
exchanging OLSR messages with this neighbor. SMON+ is responsible for managing the
overlay network between the MANET and the Internet, while P2P SIP offers P2P SIP
user registration and location discovery service based on DHT table provided by SMON+.
Once OON is established, MANET nodes and OLSR nodes on the fixed network can be
treated as if they belong to a single OLSR network as shown in Fig. 5.6. Moreover, the
single OLSR network allows SMON+ nodes to move to other networks while SIPMON+
handles terminal mobility efficiently, which will be explained in section 5.4.

5.3 SIPMON+: P2P SIP on SMON+

Similar to SIPMON, P2P SIP is applied on top of SMON+, which we refer to as SIP-
MON+, to support SIP registration, call setup, and terminal mobility. Messages ex-
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Figure 5.6: SMON+ on a single OLSR network on both MANETs and fixed networks

changed among P2P SIP proxies are regular SIP messages. Furthermore, the P2P SIP is
a point, where an existing SIP based application can seamlessly operate with SMON+.
On SMON+, P2P SIP performs registration for its SIP user by distributing SIP object
identification over other nodes on SIPMON+.

Since we expand SMON to SMON+ by using OON, P2P SIP functionalities are the same
for both SMON and SMON+. The procedures of P2P SIP registration, call setup, and
binding update are previously explained in Chapter 4. In this section, we only show P2P
SIP registration for SIPMON+ by using the same example as in section 4.2. The call
setup and binding update procedures are similar to P2P SIP on SMON.

In Fig. 5.7 illustrates SMON+, where P2P SIP is deployed on top of it. The physi-
cal topology can be referred to Fig. 5.2. John is a SIP user at SMON(A) with SIP
URI “John@abc.com”. John’s SIP phone sends SIP REGISTER to its P2P SIP using
a local address. Next, P2P SIP of SMON(A) determines the object ID from P2P SIP
(“John@abc.com”), denoted as ObjJohn. The P2P SIP of SMON(A) calls SMON.query(
ObjJohn) to find an address of a peer whose ID is the closest toObjJohn, which is the
address of SMON(F). Therefore, the P2P SIP of SMON(A) forwards the REGISTER
request to P2P SIP of SMON(F). After receiving the REGISTER request, P2P SIP at
SMON(F) adds the binding of SIP URI and IP address of John to its location database
and replies SIP 200 OK to P2P SIP of SMON(A). Call setup and binding update processes
are similar to P2P SIP on SMON as described in Chapter 4.

The reasons that we do not propose to use SIPMON on MANET with existing SIP on
the Internet are as follows:

1. SIPMON and legacy SIP must communicate through a SIP gateway. There must be
a SIP gateway that translates SIPMON protocol into SIP protocol on the Internet,
and vice versa, in order to support SIP-based communication between SIP nodes
on both MANETs and the Internet. Considering that there are several MANETs,
a SIP gateway on each MANET needs to be configured to support each MANET
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Figure 5.7: SIP user registration example in SIPMON+

for their users to communicate with the Internet users only. Configurations must be
done on both the Internet SIP gateway and MANET SIP gateway statically. This
will add deployment complexity of setting up during emergency. Moreover, MANET
may attach or detach itself to/from the Internet causing its point of attachment to
the Internet to change. Again, its SIP gateway needs to be reconfigured to enable
SIP to work on the new network environment.

2. Using gateway leads to a single point of failure problem. If the SIP gateway fails
to work, which could be due to mobility, the entire SIP support would fail. On
SIPMON+, however, the overlay will recover automatically when one of its members
fails.

3. Multiple MANETs can move and change their points of attachment to the Internet.
They can sometimes swap their points of attachment. For example, MANET A and
MANET B swap their point of attachments. Both SIP gateways of these MANETs
need to be reconfigured statically. Considering the case that several MANETs swap
their points of attachment, this is time-consuming process which we need to recon-
figure all SIP gateways belonging to these swapping MANETs during which the
entire MANET A will lose communication with MANET B. It is clear that the
reconfiguration of this case will certainly add complexity to network deployment
during emergency situation.

Therefore, we propose to extend SIPMON to run across the Internet forming a single
overlay network. The single overlay network allows number of mobile nodes to move to
any network while providing seamless mobility support. In this SIPMON+ architecture,
there is no need for any special SIP gateway. Due to distributed SIP based on SIPMON+,
it avoids a single point of failure. As a result, this scheme reduces the complexity of setting
up of the emergency network and addresses a single point of failure problem.
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5.4 SIP terminal mobility support on SIPMON+

Seamless mobility support is one of the main requirements when connecting a mobile ad
hoc network (MANET) to a fixed infrastructure network allowing a mobile node to roam
from a mobile network to a fixed infrastructure network, such as the Internet, and vice
versa, without interrupting ongoing sessions. Such mobility with session continuity is what
we refer to as terminal mobility where a terminal can change its locations by moving to a
new network, while maintaining the running sessions. Terminal mobility can be handled
at the network layer by Mobile IP, RFC 2002 (Perkins, 1996), or at the application layer by
the Session Initiation Protocol (SIP), RFC 2543 (Handley et al., 1999). Mobile IP and its
variants support TCP/IP fully and is transparent to the transport or application layers,
however it is known to have long handoff delay due to triangular routing for the case of
mobile IP without route optimization, packet encapsulation overhead and the need for
home addresses. Terminal mobility provided by SIP, on the other hand, is not suitable for
TCP-based applications as it is difficult for an application to maintain TCP connections
when moving across subnets but SIP has been demonstrated to be appropriate for Voice
over IP (VoIP) communications with Real-time Transport Protocol (RTP/UDP) with low
handoff delay when compared to mobile IP (Yeh et al., 2006; Zeadally & Siddiqui, 2007).

On top of SMON+, we apply a distributed SIP, or a P2P SIP as opposed to a centralized
SIP, to offer SIP terminal mobility support for heterogeneous networks in order to deliver
seamless interoperability to both users on MANET and the Internet. Unlike Mobile IP,
SMON+ provides terminal mobility without any home agent (HA) or foreign agent (FA).
These agents are necessary for mobility management in Mobile IP where a mobile terminal
keeps the same IP address when it moves to a foreign networks and communications be-
tween HA and FA rely on establishing tunnels to/from mobile nodes, hence delays in call
set up. With SIP, a mobile terminal in SMON+ can freely change to a new IP address
according to the network to which it attaches itself. Changing of IP address certainly
terminates the ongoing sessions, but SIP on SMON+ will reconnect the previous commu-
nication. This reconnection is handled at the application layer and is thus transparent to
the terminal as well as being applicable to both IPv4 and IPv6.

In fixed IP networks, SIP proxies are setup based on centralized architecture that may not
be suitable for MANET, since node mobility can cause disconnection from the centralized
SIP proxies. Although terminal mobility supported by SIP is provided for infrastructured
networks, SIP can be applied to support terminal mobility for MANETs as well because
SIP is the network independent application layer. Several SIP on MANET solutions (Fu
et al., 2005; Leggio et al., 2005; Khlifi et al., 2003; Banerjee & Acharya, 2004; L. Li &
Lamont, 2004; Yu & Agarwal, 2005; Castro & Kassler, 2006; Zhang et al., 2006; Stuedi et
al., 2007; Fudickar et al., 2009) based on P2P have been proposed, but they still do not
explicitly focus on the terminal mobility problem.

5.4.1 Types of terminal mobility

The following mobile types cause terminal mobility between MANETs and fixed networks
as shown in Fig. 5.8. First, a mobile node moves between OLSR networks with different
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Figure 5.8: Mobile types

network prefixes. For example, an OLSR node with prefix N moves to another OLSR
network whose prefix is not N. Second, an OLSR node moves to connect to a fixed IP
network. Third, a mobile node on a fixed IP network moves to another fixed IP network.
Fourth, a mobile node on a fixed IP network moves to an OLSR network. The P2P SIP
on SMON+ supports all mobile types. After moving to a new subnet, the node gains
a new IP address. The process of getting a new IP address on the fixed network and
OLSR is different. On the fixed IP network, the node can simply lease an IP address
via a DHCP server. In OLSR, obtaining an IP address is more complicated than that in
the fixed network due to MANET characteristics, RFC 2501. We assume that the OLSR
node can acquire an IP address through address autoconfiguration (Boudjit et al., 2005;
Clausen & Baccelli, 2005; Weniger, 2006; Mase & Adjih, 2006). We assume that address
the autoconfiguration is available and focus our attention on the sequence of the handoff
once the MN receives a new IP address at a new network.

SIP supports terminal mobility, which can be either pre-call or mid-call (Schulzrinne &
Wedlund, 2000; Yeh et al., 2006). The pre-call mobility is the binding update process,
which ensures that Correspondent Node (CN) can reach Mobile Node (MN) after MN
moves to a new subnet. The mid-call mobility handles handoff between CN and MN that
allows them to resume an ongoing session.

5.4.2 Pre-call mobility

The pre-call mobility is transparent to a SIP user because P2P SIP deals with this mobility.
After a SMON+ node changes subnet and gets a new address, it has to update the new
SIP binding with this new address by sending a SIP REGISTER request according to the
P2P SIP binding update as previously mentioned. However, before sending the request,
the SMON+ node must join the OLSR overlay network and SMON respectively. Fig. 5.9
shows an example of pre-call mobility when SMON(E) moves from OLSR 1 to OLSR 2.
In this example, we assume that every node including CN joins SMON+, and SMON(B)
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Figure 5.9: An example of the call setup flows after pre-call mobility on the SIPMON+

Figure 5.10: The sequence of times for SIP binding update after the node acquires a new
address in pre-call mobility

is a new P2P registrar for SMON(E). After SMON(E) at t0 moves to attach OLSR 2,

it receives a new IP address, É, at time t1 as shown in Fig. 5.10. SMON(É) begins
joining SMON+ at t2. The interval t1 and t2 is small because P2P SIP recognizes the
change of address via SMON+. Since SMON+ messages are OLSR messages, SMON(É)
can starts sending SMON+ messages along with normal OLSR messages. Once OLSR
routing convergence is complete, the SMON+ is also fully constructed. At t3 and t4,
P2P SIP of SMON(É) sends a new SIP REGISTER request to P2P SIP of SMON(B)
and receives SIP 200 OK. From this point forward, the binding update is successful, and
SMON(CN) can give a call to SMON(É) by using P2P SIP.

We define the interval t2 and t4 as the handoff delay of pre-call mobility. The delay
of call setup or post-dialing delay is measured by using the interval t5 and t6, which
is a difference between the times of sending INVITE and receiving SIP 180 RINGING.
However, we consider the interval t2 and t3 as the main delay for the binding update
process.
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Figure 5.11: An example of the mid-call mobility

Figure 5.12: Handoff delay in the mid-call mobility

5.4.3 Mid-call mobility

Mid-call mobility allows the SIP node to maintain running RTP sessions after it changes
to a new IP address. Mobile users may change their points of attachment during their
ongoing session. For example, in a post-disaster emergency network scenario, a vehicle
representing a mobile user moves from one disaster site to another site. P2P SIP and
SMON+ do not become involved in the mid-call mobility. A SIP stack of the phone
application must be able to detect a change of address and directly handles the mid-call
mobility. In Fig. 5.11 and Fig. 5.12, when a SIP phone application at SMON(E) detects

a change in address, É, and there is a live session going on, it directly sends a re-INVITE
request to SMON(CN) with the same call-ID as the previous call setup with a new IP
address contained in the Contact header of the request. After SMON(CN) replies SIP 200

OK to SMON(É), they can resume the opened RTP sessions. For mobile type 2 and 3,

SMON(É) can immediately send re-INVITE once it finishes joining SMON+. However,

SMON(É) has to wait until routing convergence is finished before it sends a re-INVITE
request in case of mobile type 1 and 4, in which it joins a multi-hop OLSR network.
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Figure 5.13: Pre-call and mid-call handoff delay in MANEMO

5.5 Evaluation of SIPMON+

In this section, we describe how the testbed environment was setup to evaluate the per-
formance of SIPMON+ as compared with MANEMO (Wakikawa et al., 2007), MIP6-
MANET (Y. S. Chen et al., 2006), and SIPHoc (Stuedi et al., 2007). A comparison of
SMON+ with a network layer mobile-IP based MANEMO in term of handoff delay was
made for a specific linear network topology. MANEMO provides network mobility sup-
port with route optimization among Mobile Routers (MRs) in a nested multi-hop network
based on MANET routing protocol. An MR acts as a MANET node while providing ac-
cess point capability to a group of nodes that do not have mobility function. We compared
the hand-off performance on SMON+ with those on MANEMO with Tree Discovery pro-
tocol (TDP (Thubert et al., 2007) and Network In Node Advertisement (NINA) (Thubert
et al., 2008). The TDP is a distance vector protocol which provides a loop-free topology
and NINA supplies route optimization by preventing unnecessarily forwarding along a
path to multiple HA within the nested MRs. When the MR moves to a new location, it
makes the network mobility transparent to all the nodes under itself. Terminal mobility in
MANEMO requires the use of Home Agent (HA) with the purpose of exchanging handoff
signaling and binding updates. MANEMO uses mobile IPv6 to support terminal mobility.
Fig. 5.13 shows handoff delay of terminal mobility in MANEMO with TDP/NINA.

MIP6-MANET uses mobile IPv6 to provide a session continuity between CN and MN.
We compare a handoff delay between SIPMON+ and MIP6-MANET based on the results
given by Y. S. Chen et al. (2006).

SIPHoc does not provide the measurement on terminal mobility handoff. We cannot
compare the post dialing delay of SIPMON+ with SIPHoc. However, SIPHoc shows the
post dialing delay between SIP users on MANET and the Internet on static networks.
Then, we compare the post dialing delay of SIPMON+ and SIPHoc with the same network
topology in static environment.
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(a) SIPMON+ topology (b) MANEMO topology

Figure 5.14: SIPMON+ and MANEMO testbed topology

5.5.1 Testbed implementation

Our testbed is setup for post-disaster scenario that consists of two separated disaster areas.
Rescuers may move between these areas by using vehicles. We assume that the disaster
does not completely destroy an existing network infrastructure. These two areas can be
linked via the infrastructure. There is a remote command headquarter which resides in
the infrastructure. The testbed represents for this post-disaster scenario. We compare
our approach that does not using mobility agents, e.g. HA or FA, with MANEMO based
on mobility agents.

We deployed two kinds of testbed scenarios, which were stationary and moving scenarios
as shown in Fig. 5.14. P2P SIP on SMON+ was developed and tested by using six Eee
PC 901 laptops running Ubuntu kernel version 2.6.24-21 and one router. Fig. 5.14(a)
illustrated the physical network topology of SMON+. OLSR GW 1, SMON 1, SMON
2, and SMON 3 were in the first OLSR network, and OLSR GW 2 and SMON4 were
in the second OLSR network. All nodes on SMON 1, SMON 2, SMON 3, SMON 4,
GW1, and GW2 including CN on the Internet formed SMON+. The router was used to
simulate the Internet connectivity. An SMON+ plug-in was created by using the OLSR
implementation (Tφnnesen et al., 2004). We used MjSip (mjsip.org, 2006), SIP stack,
to develop the java-based P2P SIP. Linphone 2.0.1 (linphone.org, 2007), an open-source
SIP phone, was used to measure call setup delays or post dialing delays between SMON
3 and CN in the static scenario. In the moving scenario, where SMON 2 and SMON 3
moved to connect under SMON 4, we did not use Linphone to measure handoff delays
since Linphone did not support SIP terminal mobility. We developed our own small SIP
client built-in SIP SIP terminal mobility, which can detect a change of it IP address via
SMON+, for mid-call mobility measurement.

In MANEMO, two home agents were set up including SHISA with NEMO basic sup-
port (moblieip.jp, 2004). We used five portable computers running as MRs with NetBSD
4.99.54, each of which was installed our implementation TDP/NINA, an extension of Ze-
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bra routing software (zebra.org, 2003).. An Eee PC functioned as the Mobile Network
Node (MNN) attaching to MR3. In Fig. 5.14(b), MR3 along with MMN disconnected
from MR 2 and moved to connect to MR 5. MR 1, MR 2, and MR 3 registered to HA
1, while MR 4 and MR 5 registered to HA 2. We used the same SIP phone application,
Linphone, to make a communication and measure post-dialing delay between MMN and
CN. We used IEEE 802.11g for wireless communication and Ethernet 100 Mpbs for wired
communication for both SMON+ and MANEMO networks.

5.5.2 Testbed results

We evaluated the performance of SIPMON+ and MANEMO by measuring pre-call and
mid-call mobility handoff delay, post-dialing delay, and control overhead. Since these
delays involve the delay at the data link layer where different data-link technologies and
connection modes (e.g. access point mode or ad hoc mode) give different delays when a
mobile node changes its data-link attachment. Therefore, for our comparison, we start
taking handoff delay measurement as soon as a mobile node for the case of SMON+ or an
MR for MANEMO obtain a new IP address after reattaching itself with a new network
only. For testbed result analysis, we used tcpdump (MG, 2009), packet sniffer software,
to collect experimental testbed data. We repeated our experiments 15 times for pre-call
and mid-call mobility handoff delays while for post-dialing delay we took averages over
200 SIP calls as it does not involve physical movement.

Pre-call and mid-call mobility handoff delay

We compare the pre-call and mid-call mobility handoff delay between P2P SIP on SMON+
and MANEMO. The pre-call mobility handoff delay of P2P SIP on SMON+ is the interval
between t2 and t4, as shown in Fig. 5.10. When SMON 3 moves to OLSR 2 as shown in
Fig. 5.14(a), SMON 3 receives a new IP address. SMON 3 then rejoins SMON+ followed
by sending one of the P2P SIP on SMON+ nodes its new SIP binding based on the P2P
registration as mentioned in section 4.2. In Fig. 5.15, the pre-call mobility handoff delay
of SMON 3 was 1058± 13.34 ms on average, which 14 out of 15 runs had delays less than
1100 ms. The pre-call mobility handoff delay of MANEMO is the interval between t3 and
t4 as defined in Fig. 5.13. When MR3 moves to connect to MR5 as shown in Fig. 5.14(b),
MR3 receives a new IP address, and after that MR3 sends HA1 its new binding update. In
the testbeds, the pre-call mobility handoff delay of MR3 was 1247±235.79 ms on average.

We measured the mid-call mobility handoff delay of P2P SIP on SMON+ using the mid-
call handoff delay period as displayed in the diagram in Fig. 5.12. In Fig. 5.15, all runs
of P2P SIP on SMON+ had mid-call handoff delays less than 45 ms, while all runs of
MANEMO had mid-call handoff delays higher than 5200 ms. The mid-call handoff delay
of SMON 3 was 32± 5.88 ms on average. Due to SIP terminal mobility at the SIP client,
SMON 3 could immediately send a re-Invite request to CN after it moved to OLSR 2.
On the other hand, routing convergence of TDP/NINA in MANEMO (t4 − t5), as shown
in Fig. 5.13, was several seconds. After the convergence, an ongoing session was resumed.
Hence, the mid-call mobility handoff delay of P2P SIP on SMON+ was significantly lower
as opposed to TDP/NINA.
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(a) Distribution of runs in pre-call mobility handoff de-
lay

(b) Distribution of runs in mid-call mobility handoff de-
lay

Figure 5.15: Pre-call and mid-call mobility handoff delay comparison between P2P SIP
on SMON+ and MANEMO
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(c) Average pre-call mobility handoff delay

(d) Average mid-call mobility handoff delay

Figure 5.15: Pre-call and mid-call mobility handoff delay comparison between P2P SIP
on SMON+ and MANEMO (cont.)
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Post dialing delay

The post dialing delay is the difference between the times that a caller sends the INVITE
request to the callee and that of receiving back 180 RINGING as shown in Fig. 5.10.
In P2P SIP on SMON+, 200 calls were made from CN to SMON3 before SMON2 and
SMON3 moved. After they moved to OLSR2, CN gave the other 200 calls to SMON3.
In MANEMO, similarly, 200 calls were made from CN to MNN, and the other 200 calls
were set up after MR3 moved to connect to MR5.

In P2P SIP on SMON+, all 200 calls had post dialing delays below 200 ms as shown in
Fig. 5.16(a). The number of calls with post-dialing delays below 100 ms was 164 or 84%
of total calls. The average post-dialing delay was 73.95 ± 3.91 ms, which was considered
as very small delay. In MANEMO, a call setup signaling between CN and MNN went to
a tunnel established between HA1 and MR3, which added a delay to the call setup. The
post-dialing delay in MANEMO was 115.40 ± 13.13 ms on average.

In Fig. 5.16(b), when SMON 2 and SMON 3 moved to OLSR 2, the post dialing delay of
200 calls was 72.45± 3.67 ms, which was similar to the result of the previous case, before
moving, whereas the post dialing delay of MANEMO was 128.30 ± 12.79 ms, which was
higher than the previous case because the communication path between CN and MNN
was changed from CN → HA1 → MR1 → MR2 → MR3 → MNN to CN → HA1 → HA2
→ MR4 → MR5 → MR3 → MNN, 1 hop added.

Control overhead

The control overhead was measured by using bytes generated per second. In SIPMON+,
we measured the control overhead by counting all OLSR routing and SMON messages.
For MANEMO, the control overhead was calculated by using Router Advertisement (RA)
with TIO messages and NINA messages. The control overhead of SIPMON+ was higher
than the control overhead of TDP/NINA, as shown in Fig. 5.17. We used HELLO and TC
interval of 2 s and 5 s respectively, as suggested in the OLSR [RFC 3626]. In MANEMO,
the RA interval was every 2 s. The average of control overhead in bytes per second was
1038 in MANEMO and 1486 in SIPMON+. Even though the control overhead of SMON+
is higher, the next section will explain how it can be scalable.

Based on our testbeds, setting up MANENO is time-consuming process. Installing hard-
ware and software of HAs and MRs is a specialist job that requires expertise. On the
other hand, SIPMON+ mostly operated on any computers with a standard Wi-Fi without
implementing centralized servers. Hence, we can turn commercial laptops into SIPMON+
nodes in order to establish the post-disaster recovery network within an hour or two.

5.5.2.1 Comparison with MIP6-MANET

We compare MIP6-MANET (Y. S. Chen et al., 2006) with SIPMON+ handoff perfor-
mance. Similar to MANEMO, MIP6-MANET uses mobile IPv6 mechanism to handle
terminal mobility. Fig. 5.18 shows the network topology of MIP6-MANET testbed, which
is similar to the topology of our testbed. In MIP6-MANET, the authors define handoff
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(a) Before SMON 3 and MR 3 moved

(b) After SMON 3 and MR 3 moved

Figure 5.16: Post dialing delay (ms)

Figure 5.17: The average control overhead of SIPMON+ compared with TDP/NINA
MANEMO
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Figure 5.18: MIP6-MANET testbed topology (Source: MIP6-MANET (Y. S. Chen et
al., 2006)

jitter as a summation of the handoff delays which include both pre-calls and mid-calls.
The handoff jitter when the MN moves to the other network is 5000ms whereas SIPMON+
uses 1055ms and 32ms to complete the handoffs of the pre-call and the mid call mobility
respectively. Thus, SIPMON outperforms MIP6-MANET in terms of handoff jitter.

5.5.2.2 Comparison with SIPHoc

Besides MANEMO and MIP6-MANET, we compare the post dialing delay with SIPHoc (Stuedi
et al., 2007), which provides SIP interoperability between MANET and Internet users.
Because SIPHoc provides post dialing delay measurement on static networks, we cannot
compare the handoff delay with SIPHoc. One of testbed results in SIPHoc shows that the
post dialing delay between an OLSR node and a fixed IP node is 250 ms. The physical
distance between the OLSR node to its gateway is four hops. With the same network
topology in static environment, the post dialing delay of SIPMON+ is lower than that of
SIPHoc 3.5 times.

5.6 Scalability analysis

We use the number of bytes transmitted per second to describe the control overhead of
both SMON+ and OLSR. In MANET, mobile nodes exchange OLSR messages by using
a broadcast mechanism, but on the Internet, fixed nodes use unicast communication to
exchange OLSR messages. Hence, we divide the control overhead calculation into two
parts: within MANET and over the Internet according to OON architecture.

Control overhead within MANET.

We show control overhead in bytes/second between SMON (including OLSR) and MANEMO
in a linear topology according to our testbed scenario.
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SMON and OLSR control overhead. OLSR nodes periodically advertise HELLO
messages to discover its one-hop neighbors. The number of bytes transmitted per second
of HELLO messages is:

Bh = (Ph/τh) × N ,

where Ph is the HELLO message size in bytes, τh is the HELLO interval, and N is the total
number of OLSR nodes. MPRs periodically advertise TC messages in order to exchange
information of network topology. The number of bytes transmitted per second of TC
messages is:

Btc = (Ptc/τtc) × Nmpr × (Nmpr − 1),

where Ptc is the TC message size in bytes, τtc is the TC interval, and Nmpr is the number
of MPRs. Nmpr in a liner network topology is N − 2. Hence, the OLSR control overhead
is:

Bolsr = Bh + Btc.

The sizes of HELLO (Ph) and TC (Ptc) are calculated according to HELLO and TC
message format.

Ph = Phrd + 8 + (16 × Nnbrs)

Ptc = Phrd + 4 + (16 × Nnbrs),

where Phrd (Ethernet header + IPv6 header + UDP header + OLSR header) is 90 bytes.
Nnbrs the number of neighbor nodes in a linear topology. Nnbrs is equal to 2 in this case.
SMON uses two types of messages: JOIN and LIST OF ALL MEMBERS. Only a primary
node periodically advertises a LIST of ALL MEMBERS message. The number of bytes
transmitted per second of LIST of ALL MEMBERS messages is:

Blist = (Plist/τSMON) × Nmpr,

where Plist is the LIST of ALL MEMBERS message size and τSMON is the LIST of ALL
MEMBERS broadcast interval. The number of bytes transmitted per second of JOIN
messages is:

Bjoin = (N × Pjoin × Nmpr)/δT ,
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where Pjoin is the JOIN message size. We assume that the time interval between t0 and t1
or δT is observed period for which we are interested in calculating the control overhead.
Hence, the number of the SMON control overhead is:

Bsmon = Blist + Bjoin.

The sizes of LIST OF ALL MEMBERS (Plist) and JOIN (Pjoin) are calculated based on
SMON message format:

Plist = Phrd + 4 + (16 × N)

Pjoin = Phrd + 20

The control overhead of SMON and OLSR is:

Bsmon olsr = Bsmon + Bolsr. (5.1)

MANEMO control overhead. MANEMO uses RA and NINA messages (Tazaki et
al., 2009). Hence, the control overhead is:

Bmanemo = Pra/It × N +
n∑

i=1

(Pnina(i)/It), (5.2)

where Pra is the packet size of RA, Pnina(i) is the packet size of NINA at each MR(i),
and It is the periodic interval time of RA and NINA packets. Pra = Ethernet header +
IPv6 header +ICMP header + RA header + link-layer address option + prefix option +
tree information option = 142 bytes. Pnina(i) = Ethernet header + IPv6 header +ICMP
header + Neighbor advertisement header + link-layer address option + Network In Node
option ×(Nc(i) + 1), where Nc(i) is the number of nodes in child MRs of node i (i = 1 is
the root node of the tree).

From Eq. 5.1, we assume that all OLSR nodes join SMON, and the value of δT is very
high, so Bjoin approaches to 0. We show that the control overhead of SMON (including
OLSR) and MANEMO in Fig. 5.19 base on Eq. 5.1 and Eq. 5.2 where τh = 2, τtc = 5,
τSMON = 5, and It = 2. When the number of nodes increases, the control overhead of
both approaches increases. However, the control overhead of SMON (including OLSR) is
higher than

Control overhead of OLSR nodes on fixed network or OON.

In MANEMO, there is no control overhead added on the fixed network since MANEMO
does not form any overlay network across the Internet. We consider control overhead
induced by SMON (including OLSR) on the Internet only because fixed nodes on the
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Figure 5.19: Control overhead of SMON (including OLSR) compared with TDP/NINA
MANEMO: theoretical calculation.

Figure 5.20: A linear topology of OLSR nodes on the fixed networks
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OON exchange OLSR messages. The SMON control overhead can be neglected because
the predominant overhead is due to OLSR routing messages. The number of HELLO
messages generated at each OLSR node on the fixed networks in bytes per second is:

Bh gen = Pfh/τfh × Nnbrs,

where Pfh is the size of HELLO messages, τfh is the HELLO interval, and Nnbrs is the
number of neighbors. This is due to the fact that each OLSR node on OON performs
Nnbrs unicast connections instead of a single broadcast. Similarly, the number of HELLO
messages received at each OLSR node on the fixed networks in bytes per second is

Bh rev = Pfh/τfh × Nnbrs.

The size of a HELLO message is:

Pfh = 8 + (16 × Nnbrs).

The number of TC messages generated at each OLSR node on the fixed networks in bytes
per second is:

Btc gen = Pftc/τftc × Nnbrs,

where Pftc is a size of TC message and τftc is the TC interval. Each node receives TC
messages from all MPRs. Hence, the number of TC messages received at each OLSR
node on the fixed networks in bytes per second is:

Btc rev = Pftc/τftc × Nmpr.

The size of TC message is:

Pftc = 4 + (16 × Nnbrs).

The number of the OLSR routing messages generated and received at each OLSR node
is:

Bolsr gen rev = Bh gen + Btc gen + Bh rev + Btc rev. (5.3)

We consider two scenarios: one is a linear topology as shown in Fig. 5.20 and another is a
mesh topology, where all nodes are fully connected. In the liner topology, each node has
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2 neighbors except for the far left and far right nodes. Therefore, the number of MPRs
(Nmpr)is Nf − 2, where Nf is the number of OLSR nodes on the fixed networks. The
number of neighbor (Nnbrs) is 2. In the mesh topology, all nodes are connected as one-
hop neighbors, which do not generate TC messages. These nodes only exchange HELLO
messages. Hence, the number of MPRs (Nmpr) is 0. The number of neighbors (Nnbrs) in
the mesh topology is Nf .

From Eq. 5.3, we vary the number of nodes (Nf ), the HELLO interval (τfh), and the
TC interval (τftc) to plot the graph of the control overhead generated and received per
each node as depicted in Fig. 5.21. The y-axis represents the number of OLSR routing
messages generated on OON in kilobyte per second. The x-axis displays the number of
OLSR nodes on the Internet ranging from 10 to 500. The linear topology consumes very
low network bandwidth as compared with the mesh topology. In Fig. 5.21, the control
overhead can be reduced by increasing the HELLO and TC intervals. However, these
intervals have an effect on time spent for neighbor discovery. The larger interval results
in a higher delay of neighbor discovery. It is reasonable to use the higher HELLO and
TC intervals for OLSR nodes on the fixed networks because these nodes do not move
frequently.

If we consider attaching one OLSR network to the Internet with a typical size of upto
100 nodes (Laouiti, Mhlethaler, et al., 2002), while each node on OLSR can become an
SMON+ node, the overhead as shown in graph (Fig. 5.19) is only 82 KBps on OLSR and
is about 215 KBps (Fig. 5.21) for a typical 100 nodes on OON on the Internet. If there
are 500 OON nodes on the Internet, the control overhead is about 24 MBps. Given that a
single SMON+ node can support upto 100 unintelligent SIP phones, if we have 200 nodes
(or 600 nodes) on SMON+, it means 20,000 (or 60,000) SIP users can be supported.

5.7 Discussions

We have presented SIP mobility support for an emergency network based on SIPMON+,
which is the P2P overlay network on top of OLSR providing service lookups without rely-
ing on any centralized directory servers. We propose am overlay-over-overlay architecture
that extends SIPMON from MANET to cover fixed nodes on the Internet. This overlay-
over-overlay network is composed of OON turning fixed IP nodes into OLSR nodes at the
first overlay and SMON at the second overlay network or SMON+. The SMON+ allows
overlay nodes on both MANET and the Internet to operate seamlessly without the need
of HA and IP tunneling.

We compare the performance of SIPMON+ and MANEMO by measuring post-dialing
delay, pre-call and mid-call mobility handoff delay, and control overhead. The performance
comparison is based on our defined post-disaster scenario consisting of two MANETs and
one command headquarter node located on the infrastructure. The post-dialing delay
of SIPMON+ is 1.6 times lower than that of MANEMO because a call setup signaling
between a MMN and CN must go through a tunnel between a MR and HA, resulting
in a delay added to the call setup time. SIPMON+ outperforms MANEMO in terms of
mid-call mobility handoff delays. However, the control overhead of SIPMON+ is higher
than that of MANEMO. In section 5.6, we show that the control overhead of SIPMON+
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Figure 5.21: The number of OLSR routing messages generated and received on OON

is considered as an acceptable value for MANET and infrastructured network. Based on
our testbed scenario, we do not insist that our results can be applied to general cases.

SIPMON+ provides terminal mobility support for a node in a flat network, while MANEMO
as a two-tier architecture provides terminal mobility support for a larger group of nodes.
Hence, MANEMO can support a higher number of users than SIPMON+. However, SIP-
MON+ provides better handoff than MANEMO. The next chapter explains a combination
of SIPMON+ and MANEMO used to serve a large group of users and provide efficient
terminal mobility.

In the next chapter, we will apply P2P SIP on SMON and SMON+ to a real demonstra-
tion. We develop an emergency communication application, called Easy Disaster Com-
munication (EasyDC), which provides rich multimedia communications on MANETs.
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Chapter 6

Multimedia communication application for an emergency
network

This chapter describes a prototype of a multimedia communication for a disaster emer-
gency network based on SIPMON and SIPMON+. The prototype was the demonstrated
Digital Ubiquitous Mobile Broadband OLSR (DUMBO)1 a project of the Internet Ed-
ucation and Research Laboratory (intERLab), Asian Institute of Technology (AIT) to
prove the concept. Apart from the demonstration, we conducted performance compar-
isons between the SIPMON+ and the MANENO approaches for post dialing delay, control
overhead, RTP packet loss, scalability, and network deployment issues. We used different
scenarios such as static, one moving, and multiple moving nodes for this comparison.

Section 6.1 provides details of Easy Disaster Communication (EasyDC). In section 6.2,
we compare different Vehicle to Infrastructure (V2I) testbeds designed for an emergency
network.

6.1 Easy Disaster Communication (EasyDC)

In the first version of EasyDC, a broadcast mechanism based on the concept of dSIP was
adopted to support a user location discovery. A node periodically advertised its username
and IP address to other nodes in the network so that the username could be reached by
others users using this IP address. However, the OLSR implementation (Tφnnesen et al.,
2004) did not allow broadcast traffic coming from applications to be forwarded except
for OLSR routing messages. Therefore, the first version of EasyDC was implemented by
representing a broadcast message through several unicast messages. As a result, to flood
one message to N participants in OLSR, a node would use N unicast communications
to send the same message to all participants defined in network list.txt. EasyDC uses
Java Media Framework API (JMF) (mjsip.org, 2006) to send audio and video across the
network.

Fig. 6.1 shows the user interface components of EasyDC. Before starting any communica-
tions, a user has to register oneself to the system by typing a username in the registration
window. Each OLSR node running EasyDC exchanges register messages to each other in
order to update the list of online users with IP addresses as shown in P2P tools window.
The emergency button allows users to send a help message to all users on the list in order
to request emergency attention. The incoming message window is used to display any
messages received by the application. Many users can join the same chat channel to have
a shared conversion. To make a video or voice call, the user selects a target user in the
user list panel and then clicks on the video or a call button.

1http://www.interlab.ait.ac.th/dumbo/
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Figure 6.1: EasyDC screenshot

A pre-configured file containing the list of nodes is the drawback of this first version of
EasyDC. The content of file needed to be manually synchronized when a new MANET
joined the network. Maintaining the same network list.txt on every node added extra
time in setting up the network. Moreover, the different content of network list.txt on
each node could cause inconsistency for EasyDC. In the broad- cast mechanism, EasyDC
created higher control overhead due to the exchanges of registered messages. Moreover, it
used the proprietary signaling protocol to handle the setting up of a multimedia session.

The next version of EasyDC was fully implemented with automatic configuration and
resource discovery by using the cross-layer design. The overlay messages are encapsulated
in OLSR packets, which can be efficiently retransmitted by MPRs. The use of MPR for-
warding functionality significantly reduces duplicate retransmissions during the flooding
procedure. The goal of implementing the second version of EasyDC was to evaluate the
performance of SMON+ and to provide mobility support for V2I and Vehicle to Vehicle
(V2V) network in the DUMBO project, where some or all parts of network infrastructure
are assumed to have been destroyed by a disaster. MANET nodes were placed in vehicles
and long tail boats, while making communications to wired nodes on the infrastructure as
a V2I network. Call setup signaling defined in the first version was replaced by SIP due
to SIPMON+. Many laptops, running SIPMON+ on OLSR, formed MANET covering
the disaster area. This MANET was connected to HQ machine on the infrastructure via
an OLSR gateway.

Apart from the demonstration, intensive experimental data collection showed the perfor-
mance of SIPMON+ compared to MANEMO by using the same physical topology.
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6.2 V2I testbeds for emergency network

In an emergency network, the terminal mobility with session continuity within a large
network coverage without relying on any existing network infrastructure is mandatory as
the rescue worker may need to move randomly in a disaster area or the rescued victim
may need emergency medical assistance while being transported in an ambulance. As a
consequence, intercommunication among rescue workers (V2V) as well as with the central
command center (V2I) is necessary. A stand alone network like MANET can solve the
problem of network coverage as it works in a multi-hop fashion. But to support the
mobility and uninterrupted communication with the central command center, situated
anywhere in the Internet, this stand alone MANET is not enough. MANET needs some
mechanisms to enable it to be attached to the internet and mobility support for individual
nodes, a group of nodes or group mobility.

In (Arefin et al., 2009), we consider three approaches to connecting mobile ad hoc net-
works to an infrastructure for a post disaster rescue team communication system, namely,
simply connecting the flat OLSR network to the Internet, and two MANEMO set ups:
MANEMO-A where NEMO is enhanced by Tree Discovery and Network In Node Adver-
tisement (TDP/NINA) (Thubert et al., 2007, 2008) and MANEMO-B with OLSR (Clausen
& Jacquet, 2003) on mobile routers. We developed these three functional prototypes to
prove our concept and to compare their performances from the point of view of terminal
mobility for individual nodes and for groups of nodes. As the outcome of our experiments,
we propose the adoption of MANEMO with OLSR without the use of home agents due to
the ease of deployment with terminal mobility to provide session continuity and minimal
handover period when group mobility is handled by SIPMON+. We evaluate our proposed
scheme based on its performances in our simulation for multimedia communication appli-
cation with post dialing delay, end-to-end packet loss and the number of control overheads.

Terminal Mobility with SIPMON+

SMON (Wongsaardsakul & Kanchanasut, 2007) works on a standalone MANET, but it
can be expanded to work on Internet-Connected MANET by building the OLSR Overlay
over the Internet (OON) and applying SMON on both MANET and OON. Thus, terminal
mobility with session continuity can be handled by distributing SIP proxies over SMON+
or SIPMON+. Once SIPMON+ node moves to a new network, it acquires a new IP
address. It informs a correspondent node (CN) about the new address by using the SIP
re-INVITE request to resume an ongoing session. Any MANET node running SIPMON+
software can interact with any other node on the Internet which joins the SIPMON+
overlay network without the need to install any centralized server or home agents. These
ubiquitous mobile nodes can be installed in vehicles for V2V and V2I communication
setting up an emergency network for a post disaster scenario.

Terminal Mobility with Home Agents

Mobile IP (Perkins, 1996) and Mobile IPv6 (Johnson et al., 2004) enable the end host
to move in different access networks without disrupting the ongoing session. But this
technique becomes inefficient when a group of users move together; every end host must
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be aware of this mobility and the Home Agent must take care of this movement although
the mobile users are relatively static in relation to one another (McCarthy et al., 2006).
Moreover Mobile IPv6 supports mobility when the mobile nodes are one hop away from
the Access Router (AR). To communicate with the infrastructure, NEMO Basic Support
protocol (NEMO BS)(Ellison et al., 1999) was designed to support the most basic scenario
of network mobility where the mobile nodes’ mobility are aggregated and handled as one
mobile network with the use of a Mobile Router (MR). The movement is transparent
to the mobile nodes which means the mobile nodes do not need to be aware of their
mobility and can run any mobility support protocol. Whenever any MR changes its
point of attachment, it sends a Binding Update to the Home Agent and receives Binding
Acknowledgement from the Home Agent; a bidirectional tunnel is established between
the Home Agent and the respective MR. For our prototypes, we implemented our MR’s
using the Zebra protocol (zebra.org, 2003) while our Home Agents are running the SHISA
protocol (moblieip.jp, 2004).

To handle nested NEMO scenarios where one mobile network is connected to another
mobile network creating a multi-hop scenario, NEMO BS counteracts some inefficiency;
during the end-to-end communication all the packets are intercepted by the Home Agent
although they communicate within the same network. This causes multiple IP-in-IP
encapsulation and redundant paths between nested networks. MANEMO (Wakikawa et
al., 2007) (MANET for NEMO) where Mobile Router (MR) acts as a MANET node,
solves these kinds of problems in the nested NEMO scenario. In MANEMO, MANET
routing protocol is used to exchange information optimally between local mobile networks.
We have developed two MANEMO scenarios (Kanchanasut et al., 2008) as follows:

MANEMO-A We use the Tree Discovery Protocol (TDP) (Thubert et al., 2007)
and the Network In Node Advertisement (NINA) (Thubert et al., 2008) protocol
for local communications among MANET nodes. TDP is a distance vector pro-
tocol which runs inside the Mobile Router (MR) to construct the directed acyclic
graph. TDP selects the next hop from the multiple candidate next hops to reach
the external network. The route optimization protocol NINA runs on top of the tree
established by the TDP. Both TDP and NINA perform the routing functionality in
the nested NEMO scenario. In the nested NEMO, the upper level MR provides the
internet gateway service to the underlying MR. TDP with NINA, a 2-pass routing
protocol where TDP builds a loop-less structure; a tree and NINA exposes the Mo-
bile Network Prefixes (MNPs) up the tree in order to make sure that local traffic
remains in the same subnet.

MANEMO-B We deploy the OLSR protocol on each MR’s egress interface. In
order to provide the capability of injecting external routing information into an
OLSR MANET, a node with a non-MANET interface (MR) periodically issues a
Host and Network Association (HNA) message, containing sufficient information
(MNP of its underlying network) for the recipients to construct an appropriate
routing table.

We conducted a couple of testbeds and movements to evaluate the three V2I schemes.
From our earlier emergency network experiments (Kanchanasut et al., 2008), it was found

122

te
l-0

07
12

17
1,

 v
er

si
on

 1
 - 

26
 J

un
 2

01
2



Figure 6.2: Testbed topology of SIPMON+

that with emergency scenarios, extending the network with multi-hops linear topology
can stretch the network and enable it to reach far ends of coverage areas with ease of
deployment and management as compared to other topologies. We thus adopt a linear
topology of mobile routers in our testbed where we create four hops linear connection from
the end mobile node to the gateway router as for the case of flat OLSR as shown in Fig. 6.2
for MANEMO-B, or to the access point for MANEMO-A as shown in Fig. 6.3. From this
set up, we start moving nodes according to two different scenarios: single node/group
movement and multiple nodes/group movement. Our multimedia application is running
at the HQ machine and the last multimedia application terminal. We used the same SIP
soft-phone (linphone.org, 2007) for multimedia communication for all our measurements.

In this SIPMON+ scenario, each SIPMON+ node is running SIPMON+ software on
top of OLSR to create an overlay network and performs both OLSR node and router
functionalities. The OLSR gateway is an OLSR node with two interfaces: the Wi-Fi
interface runs on an Ad hoc mode to join in the overlay network, and the other interface
is the LAN interface connected to the internet.

Fig. 6.3 shows a scenario using MANEMO. In our testbed, we used two different rout-
ing protocols (OLSR and TDP/NINA) to perform the MANET function on NEMO.
While we used the OLSR protocol, the egress interface of the MR is in ad hoc mode and
the interconnection between MRs are egress-to-egress. But for TDP/NINA, the egress
interface is configured in the managed mode to enable it to be attached to the upper layer
MR’s ingress interface working as an Access Point. Our experimental movement scenario
is described below:

• For static cases we do not move to any direction. We communicate from the last
multimedia application terminal (MNN1) to HQ and measure data on different
parameters.

123

te
l-0

07
12

17
1,

 v
er

si
on

 1
 - 

26
 J

un
 2

01
2



Figure 6.3: Testbed topology of TDP/NINA and OLSR MANEMO

• For single node/group movements we start from a static scenario. We communicate
from the last node (MNN1) to HQ and start moving toward the HQ. In this case
we have two levels of movements. In the first level, we stop for a while when our
mobile nodes (SIPMON+ Node/ MR) change its point of attachment to the upper
level node (SIPMON+ Node 2/ MR2). We move further one level up to attach to
SIPMON+ Node 1/ MR1.

• For multiple node/group movements, again we start with the static scenario and
communicate from the last node (MNN1) to HQ. We start moving with the mobile
node with its parent node/router together, maintaining the connection within the
group (MR3 and MR4 with MNN1 and MNN2). The parent node changes its
association to MR1 instead of MR2, and MNN1 still connects to the parent node.
The number of hops from the last node to HQ is one less than the starting number
of hops from HQ.

• We repeat the above mentioned experiment (static, single movement and multiple
movements) but this time we initiate the session from HQ’s machine to MNN1.

a) Post dialing delay

Post dialing delay is an important indicator for a communication system. In the testbed,
we initiated the session from different terminals (MNN and HQ) and observed the impact
of terminal mobility on each session’s setup time. We measured the post dialing delay
as the time difference between the sending of the SIP INVITE request and the reception
of 180 RINGING requests. During movement, we experienced variant post dialing delay;
Fig. 6.4, Fig. 6.5, and Fig. 6.6 show the distribution of these different post dialing delays.
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(a) Distribution of post dialing delay for static
case (MNN calls HQ)

(b) Distribution of post dialing delay for static case
(HQ calls MNN)

Figure 6.4: Post dialing delay for static case

Fig. 6.4(a) and Fig. 6.4(b) show the post dialing distribution for static cases among the
three systems. It can be clearly observed that SIPMON+ on OLSR takes the least time
to establish the session. The most number of successful session establishment times for
SIPMON+ are within 50-100 ms where MANEMO-A and MANEMO-B took 50-150 ms.
There is no call failure in static cases for all three systems.

For single node/group mobility, the end terminal changes its point of attachment twice.
While MNN1 sends an INVITE request to HQ and moves towards HQ, MNN1 can not
send the INVITE request to HQ due to the absence of a route to the host at MR4.
Consequently, the call drop is higher in this case for MANEMO systems. SIPMON+ has
no call drop in this single movement as shown in Fig. 6.5(a) and Fig. 6.5(b).

For multiple movements, the communicating terminal changes its point of attachment
only one time. MANEMO-A drops the call that MNN1 initiates the session to HQ, but
for the opposite direction there is no call drop as shown in Fig. 6.6(a) and Fig. 6.6(b).
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(a) Distribution of post dialing delay for single move-
ment case (MNN calls HQ)

(b) Distribution of post dialing delay for single
movement case (HQ calls MNN)

Figure 6.5: Post dialing delay for single movement case

There is no call drop in SIPMON+ for all moving patterns. On the other hand, in
MANEMO-A and MANEMO-B, we can see from Fig. 6.7(a) and Fig. 6.7(b) that most of
the calls are dropped during the movement as the node changes its point of attachment.
The number of call drops is higher while the call is made from MNN to HQ in the case
of MANEMO-A as shown in Fig. 6.7(a). This is because during the handover, there is no
route to HQ. Hence, all calls made during this time are immediately dropped without a
SIP INVITE retries due to the reason that there is no route to the host while the number
of call failures (HQ to MNN) is fewer than MNN to HQ because HQ still does not receive
binding updates from the MR during the movement. Therefore, it uses the previous care-
of-address to communicate with the MR. All SIP INVITE requests are dropped during
this handover. However, once the handover is finished, SIP INVITE requests can reach
the MNN without dropping the call.

Fig. 6.8(a) and Fig. 6.8(b) show the comparison of average post dialing delay among
the three systems. We have made 200 calls for each system for each type of movement
patterns. The drop calls are considered for the duration of 32 s as specified in RFC
3261 (Rosenberg et al., 2002). It is observed from Fig. 6.8(a) and Fig. 6.8(b) that the
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(a) Distribution of post dialing delay for multiple
movement case (MNN calls HQ)

(b) Distribution of post dialing delay for multiple
movement case (HQ calls MNN)

Figure 6.6: Post dialing delay for multiple movement case

post dialing delay for SIPMON+ is steady during the whole period of experiment. The
average time for post dialing is much higher in MANEMO-A due to call drop and longer
handover time.

b) Control overhead

Control overhead is a major comparison issue between different protocols. In our systems
both OLSR and TDP/NINA are proactive routing protocols but OLSR is a link-state
routing protocol while TDP/NINA is a distance vector routing protocol and their band-
width consumption is not equal. In SIPMON+, OLSR control messages are TC, HELLO
and the overlay messages, MANEMO-B uses TC, HELLO and HNA messages as the con-
trol messages and MANEMO-A uses RA (Router Advertisement) with Tree Information
Option (TIO) and NA (Neighbor Advertisement) with NINA as the control messages.

SIPMON+ on OLSR uses IPv4 while the other two systems use IPv6. But we have com-
pensated these by adding additional bytes to the control packets of SIPMON+ accordingly
to make it comparable to IPv6.
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(a) Session failure when MNN call HQ

(b) Session failure when HQ call MNN

Figure 6.7: Session failure (%) for static and movement patterns

From the experimental results as shown in Fig. 6.9, it is observed that there is not much
variation in control overhead with respect to different movement patterns as all these rout-
ing protocols are proactive routing protocols. The difference in sending control packets
between the three systems is negligible (less than 200 bytes/sec). In terms of bandwidth
consumption (bytes/sec), SIPMON+ consumes more bandwidth than the other two sys-
tems.

c) Packet loss

RTP packet loss is the number of data packets that are lost during an ongoing session.
We capture the data using the packet sniffer (MG, 2009) at both ends (MNN and HQ)
during an ongoing session and measure the packet loss in percentages.

From the observed data as shown in Fig. 6.10, it is found that there is no packet loss in
SIPMON+ regardless of moving patterns. But for both MANEMO-A and MANEMO-B,
in static cases, they perform their best as there is no movement. The highest packets
are dropped for MANEMO-A as during movement it first de-associates from the previous
current AP and associates with the new AP. During this time, large numbers of RTP
packets are dropped.
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(a) Average post dialing delay when MNN call HQ

(b) Average post dialing delay when HQ call MNN

Figure 6.8: Average post dialing delay for static and movement patterns

d) Mobility pattern

According to our current prototype of SIPMON+, each node has to be running SIPMON+
software and move individually. For group mobility, a number of nodes can move indi-
vidually and may make multi-hops among them, which is an inefficient group movement.
But MANEMO group mobility is supported by MR and the underlying nodes do not need
to be aware of this movement.

Each MR has to registrar its Care of Address (CoA) with its Home Agent. Whenever
any MR changes its point of attachment, it sends a Binding Update to and receives Bind-
ing Acknowledgement from the Home Agent. Thus a bidirectional tunnel is established
between the Home Agent and the respective MR. During such movements, this binding
process takes more than 2 sec with respect to SIPMON+ (less than 2 sec).

e) Scalability

Both SIPMON+ and MANEMO are able to scale to a large network. In SIPMON+, each
node acts as an additional hop to the destination, so adding more nodes increases the
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Figure 6.9: Control overhead comparison

Figure 6.10: RTP packet loss comparison
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Table 6.1: Simulation outputs for SIPMON+ on OLSR

Moving pattern PDD
MNN2HQ/HQ2MNN
(ms)

Control overhead
(byte/sec)

RTP packet loss
(%)

Static 36 / 49 1013 0
Single 25 / 46 867 0
Five 33 / 42 912 0

probability to add more hops to reach the destination. But in MANEMO, adding MR
increases the number of hops, and one MR can support a large number of nodes without
increasing the hop number. In that respect, MANEMO is more scalable than SIPMON+.

f) Deployment issue

In an emergency situation, the communication network deployment time is a vital issue.
The more time it takes, the more delay it causes for the rescue worker to start the rescue
operation and the more causalities occur. In MANEMO, the MR must be installed in the
vehicle first and the Home Agent (HA) must setup on the Internet. As a result, it takes
a long period of time with respect to SIPMON+ as it does not need to setup any other
equipment other than the SIPMON+ nodes. Any node that runs SIPMON+ software
can join the network without informing any other nodes. But in MANEMO, the Home
Agent must be configured with the MR’s network prefix prior to using it in the network.

g) Simulation output

To confirm our testbed output, we perform a simulation of SIPMON+ on OLSR with the
same testbed topology with 6 SIPMON+ nodes. The average call setup delay is around
1.5 to 2 times lower than that of our testbed because Linphone adds extra delays due to
its internal process. The number of control overheads of the simulation results is a little
bit lower than the testbed control overhead. For packet loss, the simulation results show
no packet loss similar to the testbed results. Due to a lack of simulation source code
availability, we could not simulate MANEMO-A and MANEMO-B.

6.2.1 An integration of SIPMON+ and MANEMO

In the testbed, SIPMON+ performs best in terms of session setup time and deployment,
but it does not support efficient group mobility. For this reason, we propose the imple-
mentation of SIPMON+ on MRs of MANEMO OLSR to overcome the shortcomings of
group mobility of SMON on flat OLSR.

We show the performance of SIPMON+ on each MR of OLSR MANENO in a large net-
work of 30 nodes through simulation as shown in Fig. 6.11. We used CBR traffic of packet
size 512 bytes and 20 Kbyte rate from the last MNN1 to HQ and HQ to MNN1. For the
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Figure 6.11: SIPMON+ on OLSR in a linear of 30 nodes

post dialing delay, we considered about 15 ms in additional delay for communications
between MNN to SIPMON+ Node 30 and the Internet part. We ran the simulation for
1300 s with 220 session establishment and calculated the average of five sets of simulation
output. The control messages are HELLO, TC, HNA and the overlay messages.

Movement Pattern

a) Static: For the static cases, we strictly maintained 30 linear hop distance from
the source to the destination during the test.

b) Single Group: For single movement cases, we start communication from MNN1
to HQ and move SIPMON+ node 30 toward HQ while maintaining the connection
between MNN1 and SIPMON+ node 30. We stop further movement when SIP-
MON+ node 30 connects to SIPMON+ node 1, and then we analyzed the trace file
for measurements.

c) Group of Five: In this case, we start from the static case and communicate from
MNN1 to HQ. We start moving lower 5 SIPMON+ nodes toward HQ while they are
connected linearly. When SIPMON+ node 26 connects with SIPMON+ node 1, we
stop moving and measure the data.

d) We did the same experiment as described above with Group of 10, 15, 20, 22, 25
and 28 SIPMON+ nodes.

132

te
l-0

07
12

17
1,

 v
er

si
on

 1
 - 

26
 J

un
 2

01
2



Table 6.2: Simulation outputs (Call setup between MNN to HQ)

Moving pattern PDD
MNN2HQ/HQ2MNN
(ms)

Control overhead
(byte/sec)

RTP packet loss
(%)

Static 854 / 901 14863 5.76
Single 168 / 416 14187 1.55
Five 722 / 302 14204 1.64
Ten 372 / 429 14201 1.77
Fifteen 555 / 429 14163 2.06
Twenty 392 / 556 14206 2.65
Twenty-two 685 / 473 14159 2.71
Twenty-five 609 / 569 14180 3.80
Twenty-eight 849 / 781 14160 4.23

e) All the above mentioned movement patterns are repeated while we start commu-
nications from HQ to MNN1.

From the simulation output in Table 6.2, it is observed there is no fixed pattern in per-
formance. There are two impacts during movement. As for movement, the node change
its point of attachment, and at the same time the hop count to the destination decreases.
Due to the change of the point of attachment, some packets are dropped and post dialing
is delayed, but after handover the post dialing delay decreases as the hop count to the
destination decreases. Most call drops originate from a routing instability, causing no
path to the destination. The instability results from a frame collision at the data link
layer. This routing instability occurs even in static environments. When an OLSR node
does not receive control messages, such as HELLO or TC, from its neighbors within a
time specified in the holding timer, it removes these neighbors from the routing table
which causes routing changes. All calls are dropped during this period.

6.3 Discussions

Based on the demonstration, EasyDC can be easily set up and quickly deployed for
emergency networks in a simulated post-disaster recovery scenario (Kanchanasut et al.,
2007, 2008). In addition, we perform performance comparisons between SIPMON+ and
two MANEMOs based on OLSR and TDP/NINA in terms of post dial delay, control
overhead, and RTP packet loss.

The linear network of six-hop topology was used in the testbed scenarios as shown in
Fig. 6.2 and Fig. 6.3. The measurements were taken from calling results between MMN1
on MANET and HQ located in the infrastructured network. SIPMON+ had the lowest
post dialing delay on average for the static and moving scenarios as shown in Table 6.3.
The average post dialing delay of MANEMO-A and MANEMO-B was higher, especially
in moving scenarios due to the higher handoff delay.

SIPMON+ control overhead was the highest among the protocols because of its overlay
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Table 6.3: The average post dialing delay comparison of three systems for all testbed
scenarios according to Fig. 6.8

Moving pattern SIPMON+ MANEMO-A MANEMO-B
Static 61 ms 78 ms 95 ms
Single movement 55 ms 4067 ms 413 ms
Multiple movement 55 ms 3267 ms 440 ms

messages added to the network. MANEMO-A had the lowest control overhead because its
routing messages were exchanged between hop-by-hop neighbors whereas OLSR routing
messages were forwarded to the entire network. Tazaki et al. (2009) compared the control
overhead of OLSR and TDP/NINA MANEMO in field experiments (disaster situation).
Their results confirmed that TDP/NINA outperformed OLSR MANEMO in the case of
spare networks in terms of control overhead, but OLSR MANEMO’s performance was
better in the case of dense networks.

The average RTP packet loss was the percentage of data packets that was lost during calls
between MMN1 and HQ. The highest packet loss was found in MANEMO-A in the case of
the moving scenarios. A large number of packet drops occurred during deassociation and
association from a current access point to a new access point while MR was moving. The
average RTP packet losses of MANEMO-A, MANEMO-B, and SIPMON+ were 3.41%,
0.38% and 0% respectively. The results of RTP packet losses could imply the number
of call failures as calls was made during this time. As a result, a number of call-setup
failure ratios of MANEMO-A, MANEMO-B, and SIPMON+ are 3.83%, 0.5%, and 0%
respectively.

The testbed results have confirmed that SIPMON+ is suitable for emergency networks,
where an IP telephony is used for communication purposes. If IP telephony is the
main application in such a network, SIPMON+ on OLSR MANEMO outperforms pure
MANEMO; however, with applications where quality of data transmission is of impor-
tance, then pure MANEMO provides less packet loss (Tazaki et al., 2009).
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Chapter 7

Conclusions and Discussions

We have proposed the SIP framework for MANET, which can tolerate single-point and
multiple-point node failures and can support terminal mobility. Our framework demon-
strates an efficient VoIP infrastructure for emergency networks. This chapter provides a
summary of the four main topics of this dissertation, namely SMON: a structured overlay
network, P2P SIP on SMON, an extension of SMON for heterogeneous network with the
Internet and MANET, and a prototype multimedia application on P2P SIP on SMON+.
Results of each topic are included followed by a discussion on future work.

7.1 Conclusions

This dissertation focuses on how to deploy SIP on MANET is such a way that applications
such as IP telephony can be effectively provided. SIP-based applications on MANET are
potentially useful as an alternative means of communication where a traditional commu-
nication infrastructure is not present such as in rural areas and especially in post-disaster
scenarios. This is because mobile ad hoc networks can be set up rapidly and its topology
can be adapted to function even in difficult terrains. In order to provide effective means of
communication among mobile communities, it is necessary to ensure that terminal mobil-
ity is supported because nodes on the network can be vehicles such as ambulances, cars,
motor cycles or just rescuers on the move. Terminal mobility ensures that an ongoing
communication is not disrupted while these nodes are moving, particularly in post-disaster
recovery operations. Once the Internet connectivity becomes available to these temporary
networks, these mobile nodes should be able to seamlessly communicate with nodes in the
infrastructured networks thus our proposed framework will have to accommodate stand
alone MANET as well as an integration of MANETs and the Internet.

In order to address IP telephony application on MANET, the effectiveness of terminal
mobility handling is our main focus; hence, we adopted post dialing delay, call success
and failure ratios, handoff delay, RTP packet loss ratio, and control overhead as the basis
for comparing our work against other schemes.

Our work can be summarized as follows:

1) Structured Overlay SMON on MANET

Traditionally, SIP is a client and server application protocol which would not be able to
sustain the dynamic linkages on MANET. We propose a new framework called SIPMON
or P2P SIP on MANET whose main focus is on providing terminal mobility for IP tele-
phony applications in emergency networks. A novel structured overlay network, SMON, a
mesh network, based on DHT provides an underlying structure for user discovery for the
upper layer SIPMON. SMON is an improvement on an earlier work called CrossROAD
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by Delmastro (2005). Objects can be stored and searched on CrossROAD using DHT.
To optimize its overlay network, CrossROAD uses a cross-layer approach by embedding
its overlay messages inside OLSR routing messages and directly accessing OLSR routing
table for topological information in order to keep the overlay network up-to-date. Like
CrossROAD, SMON is a cross-layer overlay network, which updates its overlay struc-
ture whenever there are any topological changes detectable from the underlying OLSR
routing protocol. In order to avoid backward incompatibility with normal OLSR, SMON
creates its own messages but it uses OLSR optimized information dissemination through
MPRs. Having used the DHT, CrossROAD can look up a desired item using a constant
time. However, CrossROAD uses the pure flooding technique for node discovery where
each node sends a PublishService to discover others, which creates a very high control
overhead as the number of CrossROAD nodes increases. In SMON, pure flooding for
node discovery has been replaced by allowing only primary peers to advertise a LIST OF
ALL MEMBERS message which helps reduce the control overhead significantly as shown
in Chapter 3. Node discovery is used for the formation and maintenance of an overlay
network with mobility. This represents a reduction of 95% in control overhead with the
same query success ratio and query delay as CrossROAD. This is achievable as shown
through simulations with 60 nodes. We also provide merge and split operations of two or
more SMONs which could occur when the network gets partitioned. In addition, SMON
seamlessly operates with normal OLSR nodes because we use OLSR message extension,
which offers backward compatibility with the OLSR standard.

2)SIPMON: P2P SIP on SMON

On top of SMON, a P2P SIP, referred to as SIPMON, is implemented in order to provide
SIP registration and user discovery in a non-centralized manner. On each member of
SMON, SIPMON provides a small traditional SIP registrar and proxy server, which can
accept and process SIP requests from other SMON nodes for a SIP based application. Like
in CrossROAD, each node is assigned a unique identification and each node is responsible
for maintaining the application objects whose object ID is the numerically closest to
it node ID; SIPMON stores SIP binding record as objects in SMON nodes. SMON is
responsible for maintaining node IDs of peers on the overlay network, while P2P SIP stores
and maintains SIP objects, (SIP URIs, IP addresses), on SMON node. Each P2P SIP
keeps the SIP objects whose IDs or hashed value of this SIP URIs, are the numeric closest
to its nodes ID. We define SIP registration, call setup, and binding update procedures for
SIPMON.

In Chapter 4, we compare SIPMON with previous works with SIP on OLSR which include
the CQSA scheme (L. Li & Lamont, 2004), dSIP (Leggio et al., 2005), and MANET-
Sip (Fudickar et al., 2009).

Comparison with CQSA. The CQSA (L. Li & Lamont, 2004) scheme uses the
Service Location Extension (SLE) message, an OLSR message extension, to broad-
cast SIP requests via MPRs. When a SIP user, a caller, wishes to make a call, it
must perform user location discovery by broadcasting SLE containing an INVITE
request addressed to a target SIP URI. Upon receiving the request, every node com-
pares its SIP URI and the one in the INVITE request. Only the target SIP endpoint
responds to the caller with its IP address. When the number of calls increases, the

136

te
l-0

07
12

17
1,

 v
er

si
on

 1
 - 

26
 J

un
 2

01
2



number of control overhead in CQSA scheme also increases. On the other hand, the
number of control overhead messages in SIPMON is relatively steady regardless of
the number of calls. In our testbed, the CQSA control overhead is 6.10% (40 calls)
and 12.45% (80 calls) compared with OLSR control overhead. The control overhead
of SIPMON is between 8.57% (40 calls) and 8.73% (80 calls). In our experimental
testbed, we compared the post dialing delay between our approach and the CQSA
scheme, and it was found that the post dialing delay of SIPMON is five times lower
than that of the CQSA scheme.

Comparison with dSIP. dSIP (Leggio et al., 2005) uses the pure broadcast tech-
nique to distribute SIP REGISTER requests to the whole network. A node in dSIP
periodically advertises SIP REGISTER requests containing its SIP URI along with
its IP address or a binding. Upon receiving the REGISTER request, the rest of the
network keeps this binding with its time-to-live in its cache for possible use in the
future until the valid period expires. When the binding is invalid in the cache, the
caller has to wait for the next binding advertisement in order to extract the callee’s
up-to-date IP address, which can be used to initiate a call. We show by testbed
that our SIPMON reduces the number of control overhead significantly to 90% as
compared with dSIP’s results. The post dialing delay of SIPMON is less than 30 ms,
while the post dialing delay of dSIP is 2.5 s on average when the advertised interval
of REGISTER request is set to 5 s.

Comparison with MANETSip. MANETSip (Fudickar et al., 2009) uses a mul-
ticast routing protocol over OLSR to distribute a SIP request. Every node on a
multicast network is a SIP registrar, referred as a SIP multicast network. A node
periodically sends a SIP REGISTER request to all nodes on the multicast network
in order to register itself on the SIP multicast network. The authors claim that using
the multicast network can reduce the number of exchanged SIP requests, but they
do not provide any control overhead measurement. However, the registration delay
was given in their MANETSip testbed setup with a static linear network topology
of three computers. To register a node at another node with a two-hop distance
delay, it takes 164 ms on average on MANETSip. Our testbeds based on a linear
network topology of four computers (three-hop end-to-end nodes) showed that the
delay was 14 ms, significant lower as compared with that of MANETSip.

3) P2P SIP on SMON+

MANET can be attached to an infrastructure; thus, SIPMON has to be able to op-
erate within heterogeneous environment. We extend SMON to SMON+ to cover both
MANETs and infrastructured networks to provide seamless SIP service through a sin-
gle SIPMON. The single overlay architecture allows a number of mobile nodes to move
between MANETs and the Internet while maintaining ongoing call sessions, or session
continuity. We do not propose the integration of SIPMON with existing SIP on the Inter-
net because it will require a SIP gateway to translate SIPMON protocol into the Internet
SIP, and vice versa. Configuring a SIP gateway for each MANET adds complexity to the
setting up of an emergency network and introduces a single point of failure problem. In
SIPMON+, there is no need for a special SIP gateway. This single overlay architecture
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reduces the complexity of setting up an emergency network and prevents a single point
of failure problem.

To extend SMON to cover the Internet, eligible members on the Internet must understand
OLSR. We introduce a novel Overlay OLSR Network (OON) turning normal IP nodes of
the Internet to OLSR nodes that can communicate with other OLSR nodes on MANETs.
Once done, SMON can be applied on top of OON, called SMON+. We do not assume
broadcast capability for the Internet. Therefore, we use several unicast communications to
carry OLSR messages exchanged among nodes on the Internet, e.g. desired headquarter
nodes and MANET gateways. However, as our scenario described in Chapter 5, we expect
only a few headquarter nodes and a few MANET gateways to present on the Internet,
resulting in an acceptable volume of unicast traffic.

To the best of our knowledge, SIPMON on SMON+, or SIPMON+, is the first SIP
overlay network designed to provide terminal mobility support for both MANET and the
Internet users. We consider two SIP terminal mobilities: pre-call and mid-call mobility.
The pre-call mobility is the binding update process, which allows MN to be reachable
while moving to another subnet. The mid-call mobility handles handoff between CN and
MN to resume an ongoing session after MN moves to a new subnet.

SIP terminal mobility has been demonstrated to be appropriate for VoIP communications
with Real-time Transport Protocol (RTP/UDP) with low handoff delay when compared
to mobile IP (Zeadally & Siddiqui, 2007). However, terminal mobility provided by SIP is
not suitable for TCP-based applications as it is difficult for a SIP application to maintain
TCP connections when moving across subnets. This is also the limitation of SIPMON+
since SIPMON+ is a SIP-based protocol.

We target the emergency network application where the linear network topology is fo-
cused. The linear network topology represents an extreme case where rescuers line up to
sweep the affected-disaster area while maintaining communication from the farthest end
to the command headquarters. SIPMON+ performs better in terms of mid-call handoff
delay. However, we do not claim that the results can be applied to general cases.

SIPHoc (Stuedi et al., 2007) provides SIP interoperability between MANET and Internet
but only for users in a static network environment. Therefore, to evaluate SIPMON+,
we have to compare its performance with those network with network mobility where
mobile ad hoc networks get connected to the Internet such as MANEMO which is an
integration of MANET and Network Mobility (Wakikawa et al., 2007) using IPv6, with
MIP6-MANET (Y. S. Chen et al., 2006) using mobile IPv6 and finally with SIPHoc for
static case.

Comparisons with other MANET and infrastructure approaches are summarized below.

Comparison with MANEMO. SIPMON+ outperforms MANEMO in terms of
mid-call mobility. The control overhead of SMON+ is, however, higher than that
of MANEMO’s. However, we later show by analysis in Chapter 5 that the control
overhead of SIPMON+ is acceptable for fixed IP networks.

Comparison with Mobile Ipv6-MANET. Besides MANEMO, we compare
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handoff performance between our approach with MIP6-MANET. Similar to MANEMO,
MIP6-MANET uses mobile IPv6 mechanism to handle terminal mobility. In MIP6-
MANET, the authors define handoff jitter as a summation of the handoff delay
which includes both pre-calls and mid-calls. The handoff jitter when the MN moves
from one network to another is 5000ms whereas SIPMON+ uses 1055 ms and 32 ms
to complete the handoffs of the pre-call and the mid call mobility respectively. Thus
SIPMON outperforms MIP6-MANET in terms of handoff jitter.

Comparison with SIPHoc. Although SIPHoc does not explicitly address the
terminal mobility problem, it provides SIP interoperability between MANET and
Internet. Since SIPHoc provides SIP functions for users on static networks, we
cannot compare the handoff delay between our approach and SIPHoc’s. However,
with the same physical network topology in static environments, the post dialing
delay of SIPMON+ is 3.5 times lower than those of SIPHoc.

4) SIPMON+ Prototypes and Testbeds As a proof of concept, we developed a
prototype multimedia application called Easy Disaster Communication (EasyDC) which
runs on SIPMON+. We successfully demonstrated that our framework could be easily
set up and deployed using a simulated post-disaster recovery scenario (Kanchanasut et
al., 2007, 2008).

In (Arefin et al., 2009), we conducted performance comparison between our approach
and MANENO’s for post dial delay, control overhead, and RTP packet loss. Two types
of MANEMO networks for our comparison were MANEMO with OLSR only where each
mobile router of MR is running OLSR and MANEMO with TD/NINA Tazaki et al. (2009).
We concentrated on group mobility performance between SIPMON+ and MANEMO by
using different testbed scenarios such as static, single node movement, and multiple nodes
movement. We considered post dialing delay, RTP packet loss, and percentage of call-
setup failures were the most important aspects for our systems using six-hop network
topology. Measurements were taken from calling results between a mobile node (MN) on
MANET and another fixed node located (HQ) on the infrastructured network.

As discussed in Chapter 6, it was found that SIPMON had the lowest post dialing delay on
average for all the scenarios though SIPMON control overhead was the highest among the
protocols because of its overlay messages added to the network. TDP/NINA MANEMO
had the lowest control overhead because its routing messages were exchanged between hop-
by-hop neighbors, whereas OLSR routing messages were forwarded to the entire network.
Tazaki et al. (2009) compared the control overhead of OLSR and TDP/NINA MANEMO
in field experiments with simulated disaster situation. The experiments confirmed that
TDP/NINA could outperform OLSR MANEMO in the cases of spare networks in terms
of control overhead, but MANEMO with OLSR performance was better in the case of
dense networks.

The average RTP packet loss was the percentage of data packets that were lost during
calls between MN and HQ. The highest packet loss was found in TDP/NINA MANEMO
in the case of moving scenarios. Large numbers of packet drops occurred during de-
association and association from a current access point to a new access point while a
mobile router (MR) was moving. The average RTP packet loss of TDP/NINA MANEMO,
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OLSR MANEMO, and SIPMON were 3.41%, 0.38% and 0% respectively. The results of
RTP packet loss could imply that the number of call failures as calls were made during
this time. As a result, the percentage of call failures of TDP/NINA MANEMO, OLSR
MANEMO, and SIPMON+ are 3.83%, 0.5%, and 0% respectively.

SIPMON+ outperforms TDP/NINA and OLSR MANEMO in terms of the post dialing
delay, the RTP packet loss, and the percentage of call failures, but OLSR and TDP/NINA
MANEMO can serve a higher number of mobile network nodes. This is because one MR
in MANENO can act as a router for a group of nodes. Therefore, we propose the imple-
mentation of SIPMON+ on each MR of OLSR MANENO in order to provide support for
a group of nodes without using a home agent. In Chapter 6, we evaluate the performance
of 31 SIPMON+ nodes in different moving scenarios using simulation. The post dialing
delay is 559 ms, regarded as an agreeable value for a call setup delay. The percentage of
RTP packet loss is only 2.9%. The control overhead is 14258 bytes/second, which is not
too high for 31 SIPMON+ nodes. From this simulation result, we confirm that SIPMON+
on OLSR MANEMO with a group mobility support is suitable for emergency networks.

7.2 Discussions

Though SIPMON effectively provides users with location lookup services, it does not
provide a presence service. Presence is used to indicate the status of SIP users, such as
online or offline in real-time similar to a buddy list of Instant Messaging (IM) applications.
Since the presence service uses SIP requests to maintain users’ status, we propose that
SIPMON be extended to handle SIP presence for MANET users as well by adding the
presence server functionalities on SIPMON.

Though our primary interest was to provide session continuity for mobile users of an IP
telephony service in emergency networks, our proposed framework can be readily applied
to day-to-day expansion of the Internet connectivity. OLSR can be used as edge networks
for such purpose and SIPMON+ can be a platform for telephony for mobile users. In
order to provide TCP-oriented applications, future work can address how TCP-based
applications are provided on SIPMON+ as well as other mobility issues, such as session
mobility.
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