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Besides public data repositories, scientific collaborations maintain
community-wide data resources. For example, in gravitational-wave
physics, the Laser Interferometer Gravitational-Wave Observatory [3]
maintains geographically distributed repositories holding time-series
data collected by the instruments and their associated metadata.
Along with the large increase in online data, the need to process these
data is growing.

In addition to traditional high performance computing (HPC) cen-
ters, a nation-wide cyberinfrastructure—a computational environ-
ment, usually distributed, that hosts a number of heterogeneous
resources; cyberinfrastructure could refer to both grids and clouds or
a mix of the two—is being provided to the scientific community,
including the Open Science Grid (OSG) [36] and the TeraGrid [47].
These infrastructures, also known as grids [13], allow access to high-
performance resources over wide area networks. For example, the
TeraGrid is composed of computational and data resources at Indiana
University, Louisiana University, University of Illinois, and others.
These resources are accessible to users for storing data and perform-
ing parallel and sequential computations. They provide remote login
access as well as remote data transfer and job scheduling capabilities.

Scientific workflows are used to bring together these various data
and compute resources and answer complex research questions.
Work flows describe the relationship of the individual computational
components and their input and output data in a declarative way. In
astronomy, scientists are using workflows to generate science-grade
mosaics of the sky [26], to examine the structure of galaxies [46], and,
in general, to understand the structure of the universe. In bioinformat-
ics, researchers are using workflows to understand the underpinnings
of complex diseases [34, 44]. In earthquake science, workflows are used
to predict the magnitude of earthquakes within a geographic area over
a period of time [10]. In physics, workflows are used to search for grav-
itational waves [5] and model the structure of atoms [40]. In ecology,
scientists use workflows to explore the issues of biodiversity [21].

Today, workflow applications are running on national and interna-
tional cyberinfrastructures such as OSG, TeraGrid, and EGEE [11].
The broad spectrum of distributed computing provides unique oppor-
tunities for large-scale, complex scientific applications in terms of
resource selection, performance optimization, and reliability. In addi-
tion to the large-scale cyberinfrastructure, applications can target
campus clusters, or utility computing platforms such as commercial
[1, 17] and academic clouds [31].

However, these opportunities also bring with them many chal-
lenges. It’s hard to decide which resources to use and how long they will

be needed. It’s hard to determine what the cost-benefit tradeoffs are
when running in a particular environment. And it’s difficult to achieve
good performance and reliability for an application on a given system.

Clouds have recently appeared as an option for on-demand com-
puting. Originating in the business sector, clouds can provide compu-
tational and storage capacity when needed, which can result in
infrastructure savings for a business. One idea driving cloud computing
is that businesses can plan only for a sustained level of capacity while
reaching out to the cloud for resources in times of peak demand. When
using the cloud, consumers pay only for what they use in terms of com-
putational resources, storage, and data transfer in and out of the cloud.

Although clouds were built primarily with business computing
needs in mind, they are also being considered in science. In this arti-
cle we focus primarily on workflow-based scientific applications and
describe how they can benefit from the new computing paradigm.

Workflow Applications
Scientific workflows are being used today in a number of disciplines.
They stitch together computational tasks so that they can be executed
automatically and reliably on behalf of the researcher. These workflows
are composed of a number of image-processing applications that dis-
cover the geometry of the input images on the sky, calculate the geom-
etry of the output mosaic on the sky, re-project the flux in the input im-
ages to conform to the geometry of the output mosaic, model the
background radiation in the input images to achieve common flux scales
and background levels across the mosaic, and rectify the background that
makes all constituent images conform to a common background level.
These normalized images are added together to form the final mosaic.

Figure 1 shows a mosaic of the Rho Oph dark cloud created using
this workflow.

Montage mosaics can be constructed in different sizes, which dic-
tate the number of images and computational tasks in the workflow.
For example, a 4-degree square mosaic (the moon is 0.5 degrees
square) corresponds to a workflow with approximately 5,000 tasks and
750 input images. Workflow management systems enable the efficient
and reliable execution of these tasks and manage the data products
they produce (both intermediate and final).

Figure 2 shows a graphical representation of a small Montage
workflow containing 1,200 computational tasks. Workflow manage-
ment systems such as Pegasus [4, 9, 39] orchestrate the execution of
these tasks on desktops, grids, and clouds.

Another example is from the earthquake science domain, where
researchers use workflows to generate earthquake hazard maps of 

In recent years, empirical science has been evolving from physical experimentation to computation-
based research. In astronomy, researchers seldom spend time at a telescope, but instead access the
large number of image databases that are created and curated by the community [42]. In bio -

informatics, data repositories hosted by entities such as the National Institutes of Health [29] provide
the data gathered by Genome-Wide Association Studies and enable researchers to link particular
genotypes to a variety of diseases.
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Figure 1: In this 75x90 arcmin view of the Rho Oph dark cloud
as seen by 2MASS, the three-color composite is constructed  using
Montage. J band is shown as blue, H as green, and K as red.
(Image  courtesy of Bruce Berriman and J. Davy Kirkpatrick.)

Southern California [38]. These maps show the maximum seismic
shaking that can be expected to happen in a given region over a period
of time (typically 50 years).

Figure 3 shows a map constructed from individual computational
points. Each point is obtained from a hazard curve (shown around the
map) and each curve is generated by a workflow containing approxi-
mately 800,000 to 1,000,000 computational tasks [6]. This application
requires large-scale computing capabilities such as those provided by
the NSF TeraGrid [47].

In order to support such workflows, software systems need to

1) adapt the workflows to the execution environment (which, by ne-
cessity, is often heterogeneous and distributed),

2) optimize workflows for performance to provide a reasonable time
to solution,

Figure 2: A graphical representation of the Montage workflow
with 1,200 computational tasks represented as ovals. The lines
connecting the tasks represent data dependencies.

Figure 3: In this shake map of Southern California, points on
the map indicate geographic sites where the CyberShake
 calculations were performed. The curves show the results of
the calculations. (Image courtesy of CyberShake Working Group,
Southern California Earthquake Center including Scott
Callaghan, Kevin Milner, Patrick Small, and Tom Jordan.)

3) provide reliability so that scientists do not have to manage the po-
tentially large numbers of failures, and

4) manage data so that it can be easily found and accessed at the end
of the execution.

Science Clouds
Today, clouds are also emerging in academia, providing a limited
number of computational platforms on demand: Cumulus [49],
Eucalyptus [33], Nimbus [31], OpenNebula [43]. These science clouds
provide a great opportunity for researchers to test out their ideas and
harden codes before investing more significant resources and money
into the potentially larger-scale commercial infrastructure.

To support the needs of a large number of different users with dif-
ferent demands in the software environment, clouds are primarily
built using resource virtualization technologies [2, 7, 50] that enable
the hosting of a number of different operating systems and associated
software and configurations on a single hardware host.

Clouds that provide computational capacities (Amazon EC2 [1],
Nimbus, Cumulus) are often referred to as an infrastructure as a serv-
ice (IaaS) because they provide the basic computing resources needed
to deploy applications and services. Platform as a service (PaaS) clouds
such as Google App Engine [17] provide an entire application devel-
opment environment including frameworks, libraries, and a deploy-
ment container. Finally, software as a service (SaaS) clouds provide
complete end-user applications for tasks such as photo sharing,
instant messaging [25], and many others.

Commercial clouds were built with business users in mind, but sci-
entific applications can benefit from them as well. Scientists, however,
often have different requirements than enterprise customers. In par-
ticular, scientific codes often have parallel components and use MPI
[18] or shared memory to manage message-based communication
between processors. More coarse-grained parallel applications such as
workflows rely on a shared file system to pass data between processes.
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Additionally, scientific applications are often composed of many inter-
dependent tasks and consume and produce large amounts of data
(often in the Terabyte range [5, 10]).

Clouds are similar to grids, in that they can be configured (with
additional work and tools) to look like a remote cluster, presenting
interfaces for remote job submission and data transfer. As such, scien-
tists can use existing grid software and tools to get their work done.

Another interesting aspect of the cloud is that, by default, it
includes resource provisioning as part of the usage mode. Unlike the
grid, where jobs are often executed on a best-effort basis, when run-
ning on the cloud, a user requests a certain amount of resources and
has them dedicated for a given duration of time. How many resources
and how fast one can request them is an open question.

Resource provisioning is particularly useful for workflow-based
applications, where overheads of scheduling individual, inter-depend-
ent tasks in isolation (as it is done by grid clusters) can be very costly.
For example, if there are two dependent jobs in the workflow, the sec-
ond job will not be released to a local resource manager on the cluster
until the first job successfully completes. Thus the second job will
incur additional queuing delays. In the provisioned case, as soon as the
first job finishes, the second job is released to the local resource man-
ager and since the resource is dedicated, it can be scheduled right away.
Thus the overall workflow can be executed much more efficiently.

Virtualization also opens up a greater number of resources to
legacy applications. These applications are often very brittle and
require a very specific software environment to execute successfully.
Today, scientists struggle to make the codes that they rely on for
weather prediction, ocean modeling, and many other computations
work on different execution sites. No one wants to touch the codes
that have been designed and validated many years ago in fear of break-
ing their scientific quality. Clouds and their use of virtualization tech-
nologies may make these legacy codes much easier to run. With
virtualization, the environment can be customized with a given OS,
libraries, software packages, and the like. The needed directory struc-
ture can be created to anchor the application in its preferred location
without interfering with other users of the system. The downside is
that the environment needs to be created and this may require more
knowledge and effort on the part of the scientist than they are willing
or able to spend.

Scientific Workflows
The canonical example of a cloud is Amazon’s Elastic Compute Cloud
(EC2), which is part of Amazon Web Services (AWS). AWS services
provide computational, storage, and communication infrastructure
on-demand via web-based APIs. AWS offers five major services.

1. Elastic Compute Cloud (EC2): a service for provisioning virtual
machine instances from Amazon’s compute cluster, which allows
users to deploy virtual machine (VM) images with customized op-
erating systems, libraries, and application code on a variety of pre-
defined hardware configurations (CPU, memory, disk).

2. Simple Storage Service (S3): an object-based storage system for the
reliable storage of binary objects (typically files), which provides op-
erations to “put” and “get” objects from a global object store that is
accessible both inside and outside Amazon’s cloud.

3. Elastic Block Store: a block-based storage system that provides net-
work attached storage volumes to EC2. Volumes can be attached to
an EC2 instance as block device and formatted for use as reliable, un-
shared file system.

4. Simple Queue Service: a distributed queue service for sending mes-
sages between nodes in a distributed application, which allows mes-
sages queued by one node to be retrieved and processed by another.

5. SimpleDB: a structured key-value storage service, which enables
database records to be stored, indexed and queried by key.

In addition, Amazon’s cloud provides services for monitoring
(CloudWatch), parallel computing (Elastic MapReduce), relational stor-
age (RDS), and others.

There are many ways to deploy a scientific workflow on a cloud,
depending on the services offered by the cloud and the requirements
of the workflow management system. Many of the existing workflows
were developed for HPC systems such as clusters, grids and super-
computers. Porting these workflows to the cloud involves either adapt-
ing the workflow to the cloud or adapting the cloud to the workflow.

Adapting the workflow to the cloud involves changing the work-
flow to take advantage of cloud-specific services. For example, rather
than using a batch scheduler to distribute workflow tasks to cluster
nodes, a workflow running on Amazon’s cloud could make use of the
Simple Queue Service. Adapting the cloud to the workflow involves
configuring the cloud to resemble the environment for which the
application was created. For example, an HPC cluster can be emulated
in Amazon EC2 by provisioning one VM instance to act as a head node
running a batch scheduler, and several others to act as worker nodes.

One of the great benefits of the cloud for workflow applications is
that both adaptation approaches are possible.

Scientific workflows require large quantities of compute cycles to
process tasks. In the cloud, these cycles are provided by virtual
machines such as those provided by Amazon EC2. Many virtual
machine instances must be used simultaneously to achieve the per-
formance required for large scale workflows. These collections of
VMs, called “virtual clusters” [12], can be managed using existing off-
the-shelf batch schedulers such as PBS [34, 48] or Condor [8, 24].
Setting up a virtual cluster in the cloud involves complex configuration
steps that can be tedious and error-prone. To automate this process,
software such as Nimbus Context Broker [22] can be used. This soft-
ware gathers information about the virtual cluster and uses it to gen-
erate configuration files and start services on cluster VMs.

In addition to compute cycles, scientific workflows rely on shared
storage systems for communicating data between workflow tasks dis-
tributed across a group of nodes, and for storing input and output
data. To achieve good performance, these storage systems must scale
well to handle data from multiple workflow tasks running in parallel
on separate nodes.

When running on HPC systems, workflows can usually make use
of a high-performance, parallel file system such as Lustre [45], GPFS
[41], or Panasas [37]. In the cloud, workflows can either make use of a
cloud storage service, or they can deploy their own shared file system.
To use a cloud storage service, the workflow management system
would likely need to change the way it manages data. For example, to
use Amazon S3, a workflow task needs to fetch input data from S3 to
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a local disk, perform its computation, then transfer output data from
the local disk back to S3. Making multiple copies in this way can
reduce workflow performance.

Another alternative would be to deploy a file system in the cloud
that could be used by the workflow. For example, in Amazon EC2, an
extra VM can be started to host an NFS file system and worker VMs
can mount that file system as a local partition. If better performance is
needed then several VMs can be started to host a parallel file system
such as PVFS [23, 52] or GlusterFS [16].

Although clouds like Amazon’s already provide several good alter-
natives to HPC systems for workflow computation, communication
and storage, there are still challenges to overcome.

Virtualization overhead. Although virtualization provides greater
flexibility, it comes with a performance cost. This cost comes from
intercepting and simulating certain low-level operating system calls
while the VM is running. In addition, there is the overhead of deploy-
ing and unpacking VM images before the VM can start. These over-
heads are critical for scientific workflows because in many cases the
entire point of using a workflow is to run a computation in parallel to
improve performance. Current estimates put the overhead of existing
virtualization software at around 10 percent [2, 15, 51] and VM
startup time takes between 15 and 80 seconds depending on the size
of the VM image [19, 32]. Fortunately, advances in virtualization tech-
nology, such as improved hardware-assisted virtualization, may
reduce or eliminate runtime overheads in the future.

Lack of shared or parallel file systems. Although clouds provide
many different types of shared storage systems, they are not typically
designed for use as file systems. For example, Amazon EBS does not
allow volumes to be mounted on multiple instances, and Amazon S3
does not provide a standard file system interface. To run on a cloud
like Amazon’s, a workflow application must either be modified to use
these different storage systems, which takes time, or they must create
their own file system using services available in the cloud, which is at
least difficult and potentially impossible depending on the file system
desired (for example, Lustre cannot be deployed on Amazon EC2
because it requires kernel modifications that EC2 does not allow).

Relatively slow networks. In addition to fast storage systems, scien-
tific workflows rely on high-performance networks to transfer data
quickly between tasks running on different hosts. The HPC systems typ-
ically used for scientific workflows are built using high-bandwidth, low-
latency networks such as InfiniBand [20] and Myrinet [27]. In compar-
ison, most existing commercial clouds are equipped with commodity
gigabit Ethernet, which results in poor performance for demanding
workflow applications. Fortunately, the use of commodity networking
hardware is not a fundamental characteristic of clouds and it should be
possible to build clouds with high-performance networks in the future.

Future Outlook
While many scientists can make use of existing clouds that were
designed with business users in mind, in the future we are likely to see
a great proliferation of clouds that have been designed specifically for
science applications. We already see science clouds being deployed at
traditional academic computing centers [14, 28, 30]. One can imagine
that these science clouds will be similar to existing clouds, but will
come equipped with features and services that are even more useful to
computational scientists. Like existing clouds, they will potentially

come in a variety of flavors depending on the level of abstraction
desired by the user.

IaaS science clouds could provide access to the kinds of high-per-
formance infrastructure found in HPC systems such as high-speed
networks, and parallel storage systems. In addition they could come
with science-oriented infrastructure services such as workflow serv-
ices and batch scheduling services. PaaS science clouds could be sim-
ilar to the science portals and gateways used today. They could
provide tools for scientists to develop and deploy applications using
domain-specific APIs and frameworks. Such systems could include
access to collections of datasets used by the scientists, such as genome
repositories and astronomical image archives. Finally, some com-
monly used science applications could be deployed using a SaaS
model. These applications would allow scientists from around the
world to upload their data for processing and analysis.

Additionally, HPC centers are looking at expanding their own
infrastructure by relying on cloud technologies to virtualize local clus-
ters, which would allow them to provide customized environments to
a wide variety of users in order to meet their specific requirements. At
the same time, HPC centers can also make use of commercial clouds
to supplement their local resources when user demand is high.

Clearly, clouds can be directly beneficial to HPC centers where the
staff is technically savvy. However, the adoption of clouds for domain sci-
entists depends strongly on the availability of tools that would make it easy
to leverage the cloud for scientific computations and data management.
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