Chapter 10

Database Interfaces

Ton Androutsopoulos and Graeme Ritchie'

10.1 Introduction

Natural language database interfaces (NLDBIs) are systems that allow users to access inform-
ation stored in a database by formulating requests in natural language. For example, a NLDBI
connected to the personnel database of a company would typically be able to answer questions
like the following. (We show user entries in italics, and system replies in bold.)

> Who is the youngest employee in the sales department?

John Smith.

> What is his salary?

$25,000.

> Does any employee in the sales department earn less than John Smith?
Yes, George Adams.

NLDBIs have received particular attention within the natural language processing community
(see [8], [28], and [63] for previous reviews of the field?), and they constitute one of the first
areas of natural language technology that have given rise to commercial applications.

This chapter is an introduction to key concepts, problems, and methodologies in the area
of NLDBIs. It focuses on issues that are specific to NLDBIs, as opposed to general natural
language processing methods, but it also provides examples from NLDBIs where the general
techniques of the previous chapters of this book are used. As with the rest of this book, this
chapter does not cover issues related to speech processing. This reflects the assumption in
most current NLDBIS that the user’s requests will be typed on a keyboard. As we comment
briefly in section 10.2, however, we believe that speech technology will play an important role
in future NLDBIs.

The rest of this chapter is organised as follows: section 10.2 provides a brief history of
NLDBIs; section 10.3 presents the typical architecture and the main components of modern
NLDBIs; section 10.4 discusses portability issues; section 10.5 highlights some advanced issues:
the “doctor-on-board” problem, database updates, and meta-knowledge, modal, and temporal

'To appear in R. Dale, H. Moisl, and H. Somers (Eds.), “4 Handbook of Natural Language Processing:
Techniques and Applications for the Processing of Language as Text”, Marcel Dekker Inc.
?Some of the material in this chapter originates from [8].
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questions; section 10.6 discusses NLDBIs with restricted input, namely NLDBIs with controlled
languages, and menu-based NLDBIs; section 10.7 concludes by reflecting on the state of the
art and the future of NLDBIs.

10.2 Historical background

The first NLDBIs appeared in the late sixties, with the most well-known system of that period
being LUNAR [83, 84, 85, 86], a NLDBI to a database that contained chemical analyses of moon
rocks. LUNAR demonstrated convincingly that usable NLDBIs could be built. It also introduced
some innovative techniques (e.g. in the treatment of quantifiers) that had a significant impact
on subsequent computational approaches to natural language.

Several other NLDBIs had appeared by the late seventies (e.g. RENDEZVOUS [26], TORUS
[61], PLANEs [79], PHILIQA1 [68], and LADDER [45]).> Some of these early systems (e.g.
PLANES, LADDER) used semantic grammars, an approach where roughly speaking non-
terminal symbols of the grammar reflect categories of world entities (e.g. employee_name,
question_about_manager) instead of purely syntactic categories (e.g. noun_phrase, sentence;
see [2] for more information). Semantic grammars allowed selectional restrictions (discussed in
section 10.3.5 below) to be encoded easily, and the resulting parse trees could be very close to
logical formulae, eliminating the need to map from syntactic to semantic constructs. Semantic
grammars, however, proved difficult to port to new knowledge domains (e.g. modifying a
NLDBI to be used with a database about train schedules rather than employees), and were
gradually abandoned.

In the early eighties, CHAT-80 was developed [80]. CHAT-80 incorporated some novel and
ingenious techniques, and its implementation responded to queries very promptly. Its code
was circulated widely, and it became a de facto standard demonstration of NLDBI capabilities.
It also formed the basis of the experimental NLDBI which we will use as a source of illustrative
examples here MASQUE/SQL [5, 7]. We use examples from MASQUE/SQL, mainly because we
can say with authority what it would do, and partly because we regard its architecture and
mechanisms as typifying a large class of NLDBIs.

By the mid-eighties, NLDBIs had become a very popular research area, and numerous re-
search prototypes were being implemented. Portability issues (see section 10.4) dominated
much of the NLDBI research of the time. TEAM [36, 37, 59|, for example, was designed to be
configured by database administrators with no background in linguistics, and ASK [75, 76]
allowed end-users to “teach” it new words at any point. ASK was actually an integrated
information system, with its own built-in database, and the ability to interact with external
applications (e.g. external databases and e-mail programs). The user could control any ap-
plication connected to ASK via natural language requests. JANUS [22, 46, 81] had similar
abilities to interface to multiple systems. DATALOG? [38, 39], EUFID [71, 72], LDC [13, 14],
TQA [29], TELI [12], were also among the numerous research prototypes of the same period.

We note at this point that some natural language researchers use the term “database” to
mean just “a lot of data”. In this chapter, we mean much more than that. Most importantly,
we assume that the data constitute a principled attempt to represent part of the world,
and that they are structured according to a formally defined model. Database systems have
evolved substantially over recent decades. The term “database systems” now denotes (at

3More information on the historical evolution of NLDBIs can be found in [11].
“This NLDBI has nothing to do with the subset of Prolog that is used as a database language [77].
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least in computer science) much more complex and principled systems than it used to denote
in the past. Many of the “database systems” of early NLDBIs would not deserve to be called
database systems by today’s standards.

Until the early eighties, the standard way to interact with database systems was to use
special database programming languages (e.g. SQL [60]), which are difficult for end-users to
master. NLDBIS were seen as a promising way to make databases accessible to users with
no programming expertise, and there was a wide-spread optimism about their commercial
prospects. In 1985, for example, Ovum Ltd. predicted that “By 1987 a natural language
interface should be a standard option for users of database management system and ‘Inform-
ation Centre’ type software, and there will be a reasonable choice of alternatives.” [49].

Since then, several commercial NLDBIs have appeared (e.g. Linguistic Technology’s ENG-
LISH WIZARD, a descendant of INTELLECT® [43], which was in turn based on experience from
ROBOT [40, 41, 42]; BBN’s PARLANCE, derived from the RUS [21] and IRUS [16] systems; IBM’s
LANGUAGEACCESS [62]; Q&A from Symantec; NATURAL LANGUAGE; BIM’s LOQUI [20]; and
ACCESS ELF).% Some of these systems are claimed to have been commercially successful. The
use of NLDBIs, however, is much less wide-spread than it was once predicted, mainly because
of the development of alternative graphical and form-based database interfaces (see, for ex-
ample, the discussion of Zloof’s “query by example” technique in [77]). These alternative
interfaces are arguably less natural to interact with, compared to NLDBIs. It has also been
argued (e.g. [27], [44]) that queries that involve quantification (e.g. “Which company sup-
plies every department?”), negation (e.g. “Which department has no secretaries?”), or that
require multiple database tables to be consulted are very difficult to formulate with graphical
or form-based interfaces, while they can be expressed easily in natural language. Neverthe-
less, graphical and form-based interfaces have largely out-marketed NLDBIs, probably because
their capabilities are often clearer to the users (see section 10.3.3 below), and they are typic-
ally easier to configure (see section 10.4 below). Experiments on the usability of NLDBIs, and
comparisons with alternative database interfaces, are discussed in [18], [23], [32], [48], [69],
and [82].

Perhaps as a result of their difficulties in the market, NLDBIs are no longer as fashionable a
topic within academic research as they were in the eighties. There is, however, a growing body
of research on integrating speech recognition, robust interpretation, and dialogue-handling
techniques, with the goal being to implement systems that engage users in spoken dialogues
to help them perform certain tasks (see chapter 15). We expect that this line of research
will have a significant impact on future NLDBIs, giving rise to systems that will allow users to
access databases via spoken dialogues, in situations where graphical and form-based interfaces
are difficult to use. This could lead, for example, to NLDBIs able to answer spoken queries
over the phone (see, for example, [1]; also see [87] for information on the ATIS domain, where
users make flight arrangements by interacting with a computer via spoken dialogues).

10.3 Architecture and main components

This section discusses the typical architecture and the main modules of modern NLDBIs.

PINTELLECT is currently owned by Platinum Technology.

5Few of these systems appear to be currently in the market. Consult http://users.aol.com/elfsoft/
elfsoft.htm and http://www.englishwizard.com for more information on two NLDBIs available at the time
of writing.
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10.3.1 Architectural overview

Ignoring some details, the architecture of most current NLDBIs is similar to that of figure 10.1.
Roughly speaking, the part of the system that is labelled linguistic front-end translates the
natural language input to an expression of some intermediate meaning representation language
(MRL). The MRL expression is subsequently passed to the database back-end. This translates
the MRL expression into a database language that is supported by the underlying database
management system (DBMS; this is the part of the database system that is responsible for
manipulating the information in the database). The resulting database language expression
is then executed by the DBMS, to satisfy the user’s request. In the case of questions, the
execution of the database language expression retrieves information from the database, which
is reported back to the user.

This architecture has several portability advantages (discussed in section 10.4). It also
allows inferencing components to be added between the linguistic front-end and the database
back-end to allow, for example, the NLDBI to deduce new facts from the contents of the
database (we discuss this briefly in section 10.5.1). In systems where the natural language
input is mapped directly to database language expressions, this inferencing would have to be
carried out in the database language, which is particularly difficult because database languages
are not designed to facilitate machine reasoning.

We discuss below the components of the architecture of figure 10.1 in more detail.

10.3.2 Pre-processing

The natural language input first undergoes a pre-processing phase. This tokenises the input,
morphologically analyses the words, and looks them up in a lexicon to retrieve their syntactic
and semantic properties. The techniques of chapters 1 — 3 apply here. (We note, however,
that most NLDBIs allow the user to type only single-sentence requests. Hence, sentence seg-
mentation is usually not an issue. Punctuation is also typically ignored.)

Proper names (e.g. person names like “Adams”, or flight numbers like “BA742”) constitute
a particular problem for NLDBIs. For example, the personnel database of a large company may
contain information about thousands of employees. To be able to parse questions that contain
employee names (e.g. “What is the salary of George Adams?”) the NLDBI must have entries
in its lexicon for all these names (possibly separate entries for first names and surnames).
Inserting manually an entry in the lexicon for each employee name is tedious, and it would
also mean that the lexicon would have to be manually updated whenever new employees join
the company.

One possible solution is to provide some mechanism that would automatically compute
lexicon entries from proper names that appear in the database. (In this case, the architecture
of figure 10.1 has to be modified, to allow the pre-processor to access the database. The
preprocessing rules of figure 10.1 would also have to be removed. They are used in an al-
ternative pre-processing method, which is discussed below.) In the personnel database case,
whenever a word of the natural language input is not found in the lexicon, that word would
be checked against a list of employee names held in the database. If the word is found in
that list, an appropriate lexicon entry would be generated automatically using the database’s
information. For example, all the words that appear in the list of employee names could be
assigned lexicon entries that classify the words as singular proper-name noun-phrases. If the
database includes gender information, the lexicon entries could also show the gender of the
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denoted employee (this is useful for anaphora resolution; see section 10.3.4).

This approach has the disadvantage that it introduces an additional database look-up
during the pre-processing. In databases with a large number of proper names (e.g. databases
for telephone directory enquiries) this additional look-up may be computationally expensive.
This approach also runs into problems with questions that contain proper names not men-
tioned in the database. If, for example, the database does not contain the name “Johnson”,
the NLDBI would fail to parse “Is Johnson in the database?” instead of responding negatively.

An alternative approach is to employ pattern-matching pre-processing rules and typo-
graphic conventions. In questions directed to a database about flights, for example, it may
be safe to treat any word that consists of two or three letters followed by three or four digits
(e.g. “BA742”) as a flight number. Any word that matches this pattern would be assigned
a lexicon entry that classifies the word as singular proper-name noun-phrase. In the case of
the personnel database, person names could be identified by asking the user to type all words
in lower-case letters, apart from person names whose first letter is to be capitalised, and by
using a suitable pattern-matching rule.

This second approach does not run into problems with proper names not mentioned in
the database. Without a database look-up, however, it may be difficult to obtain some
information that we wish to be included in the generated lexicon entries for proper names.
As mentioned above, for example, including gender information in the entries for employee
names is useful in anaphora resolution (section 10.3.4). It is generally difficult, however, to
determine the genders of employees by applying pattern-matching rules on their names. It
is also useful (e.g. for the mechanisms that will be discussed in section 10.3.5) to include in
the proper name entries information indicating the semantic types of the named entities (e.g.
whether the proper name corresponds to a flight or a spare-part). In some domains, proper
names corresponding to different types of entities may be typographically very similar (e.g.
there may be flight numbers like “BA742” and spare-part numbers like “DX486”). In those
cases, it may be difficult to determine the types of the named entities using pattern-matching
rules, and one may be forced to introduce unnatural typographical notations.

10.3.3 Parsing and semantic analysis

The pre-processed input is subsequently parsed and analysed semantically using the tech-
niques of chapters 4 and 6. This generates an expression in a meaning representation language
(MRL; typically some form of logic) which is intended to capture formally what the NLDBI
“understands” to be the semantics of the natural language input. MASQUE/SQL [5, 7], for
example, maps (10.1) (which is directed to a database containing geographical information)
to (10.2). (MASQUE/SQL’s MRL is a subset of Prolog. Terms starting with capital letters are
variables.)

(10.1)  What is the capital of each country bordering Greece?

(10.2) answer ([Capital, Country]):-
is_country(Country),
borders(Country, greece),
capital_of (Country, Capital).

(10.2) shows that the user’s question is a request to find all pairs [Capital, Country], such
that Country is a country, Country borders Greece, and Capital is the capital of Country.
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In most NLDBIs (especially early ones), the parsing and semantic analysis are based on
rather ad hoc grammars. There are, however, systems built on principled computational
grammar theories (see, for example, [6], [24] and [65] for information on NLDBIs that are based
on HPSG [64]). The grammars of these systems tend to be easier to comprehend and to extend.
Of course, no matter how principled the grammar and how extensive the lexicon of the NLDBI
are, there will always be user requests that the system fails to parse and analyse semantically
in their entirety (e.g. sentences with unknown words, syntactic constructs not covered by the
grammar, ungrammatical sentences). Natural language researchers are becoming increasingly
interested in robust processing techniques, that allow systems to recover from such failures
(see chapter 5). These techniques may, for example, combine the fragments of the natural
language input that the system managed to process, to make reasonable guesses about the
user’s goals [70]. (Consult also [53] for an alternative method that can be used in NLDBIs.)

Most current NLDBIs, however, do not employ such mechanisms, generating simply an
error message whenever they fail to process fully the user’s input. If the failure was caused by
an unknown word, the error message may report that word. In many other cases, however, the
message may carry no information to help the users figure out which parts of their requests
caused the failure. The situation is made worse by the fact that the linguistic coverage of most
NLDBISs is not designed to be easily understandable by end-users. For example, MASQUE/SQL
is able to answer “What are the capitals of the countries bordering the Baltic and bordering
Sweden?”, which leads the user to assume that the system can handle all types of conjunctions.
However, the system fails to process “What are the capitals of the countries bordering the
Baltic and Sweden?”. (MASQUE/SQL can handle conjunctions only if they involve progressive
verb phrases.) The result is that the users are often forced to rephrase their requests, until
a phrasing that falls within the linguistic coverage of the NLDBI is found. Since the users do
not have a clear view of the NLDBI’s linguistic coverage, several rephrasings may be needed.
This is obviously very annoying for the users, and it may be one of the main reasons for
the small market-share of NLDBIs. In contrast, the capabilities of graphical and form-based
interfaces are usually clear from the options that are offered on the screen, and typically any
request that can be input can also be processed. We believe that it is crucial for NLDBIs
to incorporate robust parsing techniques, in order to overcome this problem (we return to
this issue in section 10.7). An alternative approach is to restrict severely, deliberately, and
explicitly the natural language inputs that the users are allowed to enter, so that the the
linguistic capabilities of the system will be clearer to the them. We discuss this approach in
section 10.6.

We should note, at this point, that there are also NLDBIs that appear to be using pattern-
matching techniques instead of parsing and semantic analysis. (The authors of some of those
NLDBIs seem unwilling to confirm this.) To illustrate a pattern-matching question-answering
approach, let us assume that the database contains the following table that holds information
about countries and their capitals. (In the examples of this chapter, we assume that the
database is structured according to the relational model [25], in which information is stored
in relations, intuitively tables consisting of rows and columns. Most of the techniques of this
chapter apply to other database models as well.)

| countries |

country capital
Australia | Canberra
Greece Athens
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A simplistic pattern-matching system could use a rule like the following, which would map
“What is the capital of Greece?” to an appropriate MASQUE/SQL-like MRL expression:

If the input string matches the following pattern:
... “capital” ...<country_name> ...
then generate the MRL expression:

answer ([Capital]l):-
capital_of (<country_name>, Capital).

The main advantage of the pattern-matching approach is its simplicity. The linguistic
shallowness of this method, however, very often leads to irrelevant answers. In (10.1), for
example, the pattern-matching rule above would cause the NLDBI to report the capital of
Greece.

10.3.4 Semantic post-processing

The MRL expressions that are generated by the semantic analysis may be initially underspe-
cified, i.e. they may leave the semantic contribution of some linguistic mechanisms unclear.
For example, they may not specify the exact entities to which anaphoric expressions refer, or
they may not specify the exact scopes of logical quantifiers (see the discussion in chapter 6).
There is usually one or more additional post-processing phases (figure 10.1), that resolve such
underspecified elements of the logical expressions (e.g. they modify the logical expressions so
that the referents of anaphoric expressions and the scopes of logical quantifiers are explicit;
see [3] for a detailed discussion of how this is achieved in the CLE system).

Anaphoric expressions (e.g. “him”, “these”, “the project”) are supported by several
NLDBIs. They are particularly useful because they allow follow-up questions to be short.
For example, in the following interaction between the user and LoqQul (from [19]), the user
refers to the people who report to E. Feron as “they”, instead of re-typing the five names.

> Who leads TP1?

E.Feron

> Who reports to him?

C.Leonard, C.Willems, E.Bidonnet, P.Cayphas, J.P.Van Loo
> What do they work on?

project  worker

DOCDIS C.Willems
J.P.Van Loo
P.Cayphas
EURS C.Leonard
C.Willems
E.Bidonnet
> Which of these are leaders?
J.P.Van Loo

Anaphoric expressions are resolved by consulting a discourse model (chapter 7). The
discourse models of most NLDBIs are rather simplistic, as they are typically used only to
resolve anaphoric expressions. They can be simply lists of entities that have been mentioned,
along with information on the properties of these entities, and the locations in the discourse
where the entities have been mentioned. For each anaphoric expression, the NLDBI searches
this list until it finds an appropriate referent (e.g. for the pronoun “him”, a male singular entity
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root_type
person company feature
client employee salary license

T

technician salesperson manager  driving_license  export_license

Figure 10.2: A type hierarchy of world entities

has to be found). Various heuristics can be employed in cases where an anaphoric expression
has multiple possible referents in the list (e.g. the most recently mentioned possible referent
may be preferred.). (See [15] for information on the anaphora resolution module of a linguistic
front-end. [47] also discusses relatively simple methods for resolving pronoun anaphora that
can be used in NLDBIS.)

More elaborate discourse models and reference resolution rules are needed to handle el-
liptical sentences, like “How about MIT?” and “The smallest department?” in the following
interaction (from [17]) between the user and PARLANCE:

> Does the highest paid female manager have any degrees from Harvard?

Yes, 1.

> How about MIT?

No, none.

> Who is the manager of the largest department?
Name Dept. Count

Patterson 045 40
> The smallest department?
Name Dept. Count
Saavedra 011 2

Consult [2] and [3] for a discussion of practical ellipsis resolution techniques.

10.3.5 Type hierarchy and selectional restrictions

During the semantic analysis and the post-processing, a type hierarchy of world entities, and
a set of selectional restrictions are often employed. We discuss these below.

The type hierarchy shows the various types and subtypes of world entities that are mod-
elled in the database. (The term “entity” should be interpreted with a broad meaning. It
may include, for example, salaries or ages.) Figure 10.2 shows a fragment of a possible type
hierarchy that could be used when interfacing to a company’s database. (Similar hierarchies
are used in TEAM [36, 37], MASQUE/SQL [5, 7], and the CLE [3].) The hierarchy of figure
10.2 shows that, in the context of that particular database, a person can be either a client or
an employee, that employees are divided into technicians, sales-persons, and managers, etc.
(The hierarchy does not need to be a tree. There could be, for example, a common subtype
of employee and client for employees that are also clients of the company.)

The selectional restrictions typically specify the types of entities that the various predicate-
arguments of the MRL may denote. To illustrate the use of the type hierarchy and the
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selectional restrictions, let us consider the hierarchy of figure 10.2, and let us assume that the
database stores the salaries of all employees, but not the salaries of clients. (For simplicity, let
us assume that an employee cannot also be a client.) Then, (10.3) will retrieve no information,
because the database does not store salaries of clients. We would like the NLDBI to be able
to detect that the question is conceptually problematic from the database’s point of view.

(10.3)  What is the salary of each client?
In MASQUE/SQL, (10.3) would receive an MRL expression like (10.4):

(10.4) answer ([Salary, Person]):-
is_client (Person),
salary_of (Salary, Person).

The selectional restrictions could specify that: (i) the argument of is_client must always
denote an entity of type client, (ii) that the first argument of salary of must always denote
a salary, and (iii) that the second argument of salary of must always denote an employee.
Then, restriction (i) and the second line of (10.4) require the variable Person to denote a cli-
ent. This, however, leads to a violation of restriction (iii) in the third line of (10.4): restriction
(iii) requires Person to denote an employee; this is incompatible with the requirement that
Person must denote a client, because neither client nor employee are subtypes of each other.
The system would, thus, be able to detect that the question is conceptually anomalous. It is
relatively easy to generate a message like “A client does not have a salary.” to report
this anomaly to the user. This could be achieved, for example, by associating a message
template of the form “A X does not have a salary.” with constraint (iii), and by repla-
cing X with the type-name of the second argument of salary of whenever the constraint is
violated.

In contrast, (10.5) would receive (10.6). Assuming that the argument of is_technician
must denote an entity of type technician, (10.6) does not violate any restriction, because
technician is a subtype of employee.

(10.5)  What is the salary of each technician?

(10.6) answer ([Salary, Person]):-
is_technician(Person),
salary_of (Salary, Person).

The type hierarchy and the selectional restrictions are also useful in disambiguation. For
example, from a NLDBI’s point of view (10.7) is potentially ambiguous: “with a driving licence”
may refer either to “employees” or to “company”. The two readings correspond to (10.8) and
(10.9) respectively.

4

(10.7)  List all employees in a company with a driving licence.

(10.8) answer ([Employee]): -
is_employee(Employee),
is_company (Company) ,
is_licence for(driving, Licence),
in(Employee, Company),
has(Employee, Licence).



10.3. ARCHITECTURE AND MAIN COMPONENTS 11

(10.9) answer ([Employee] ) : -
is_employee (Employee),
is_company (Company) ,
is_licence for(driving, Licence),
in(Employee, Company),
has(Company, Licence).

Of course, humans can figure out immediately that the intended reading is (10.8), be-
cause typically persons and not companies have driving licences. (In “List all employees in
a company with an export licence.”, however, the situation would be reversed.) This know-
ledge can be encoded using selectional restrictions. One could specify that the arguments of
is_employee and is_company must denote entities of types employee and company respectively,
that when the first argument of is_licence_for is driving, the second argument must denote
a driving_licence, and that if the second argument of has denotes a driving_licence, the first
argument must denote a person. This would rule out (10.9), where the second argument of
has denotes a driving_licence, and the first one a company.

Anaphora resolution methods can also exploit the type hierarchy and the selectional re-
strictions. Knowing, for example, that only employees have salaries, limits the possible refer-
ents of “his” in “What is his salary?” to male employees, excluding any previously mentioned
male clients.

Type hierarchies and selectional restrictions have been employed in many natural language
processing areas. In systems that target broad knowledge domains (e.g. newspaper articles),
type hierarchies and selectional restrictions are often difficult (if at all possible) to construct,
because of the very large number of involved entity types, and the enormous variety of possible
relations between those types (see [2] for related discussion). Databases, however, typically
store information about very few types of entities, and hence type hierarchies and selectional
restrictions become manageable. In fact, very often the entity types that are relevant to the
database and many of their relations will have already been identified during the design of the
database (e.g. in the form of “entity-relationship” diagrams [77]), and this information can
be exploited when specifying the type hierarchy and the selectional restrictions of the NLDBI.

10.3.6 Paraphrasing the input

Whenever the NLDBI “understands” a natural language request to be ambiguous, several MRL
expressions are generated at the end of the post-processing, each corresponding to what the
NLDBI considers to be a possible reading of the input. (The input may be truly ambiguous,
as in (10.10). It may also be — as it is often — the case that the NLDBI has generated more
readings than the input can actually have.)

(10.10)  Which disabled and female applicants speak German?

Some NLDBIs employ heuristics in the form of preference measures to determine the most
likely reading (see [3] for related discussion). Another common technique is to generate an
unambiguous paraphrase of each reading, asking the user to select the intended one. In
(10.10), for example, an NLDBI could ask the user to select one of the following:

(10.11)  Which applicants that are both disabled and female speak German?

(10.12)  Which disabled and which female applicants speak German?
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In the case of questions, if there are relatively few possible readings and the answers
are short, the NLDBI may generate the answers to all the readings, showing which answer
corresponds to which paraphrased reading, without asking the user. Paraphrasing the input
is useful even when the NLDBI generates only one reading. In the following interaction (from
[75]) between the user and ASK, for example, ASK repeats the user’s input with the pronoun
replaced by what the system assumes to be its referent. This prevents the user from being
misled, in case the system has not chosen the referent the user had in mind.

> Is there a ship whose destination is unknown?

yes

> What is it?

What is [the ship whose destination is unknown]?
Saratoga

Repeating the user’s input with anaphoric expressions replaced by their referents is relat-
ively easy. (We can augment the list of previously mentioned entities of the discourse model
to record the natural language expressions that introduce the entities; see section 10.3.4.) In
the general case, however, one has to use natural language generation techniques (see chapter
8; [31] and [55] also discuss paraphrasing techniques in NLDBIS).

10.3.7 From meaning representation to database language

The MRL expressions that are generated at the end of the semantic post-processing are sub-
sequently translated into expressions of a database language (typically sQL [60]) that is sup-
ported by the underlying database management system (DBMS). (The DBMS is the part of
the database system that is responsible for manipulating the information in the database).
Various methods to translate from forms of logic to and from database languages have been
proposed (see, for example, [2], [5], [33] [56], [58], [67], [77], [78]). The full details of some of
these proposals are highly technical, and hence beyond the scope of this chapter. Here, we
only attempt to highlight some of the central ideas on which several of these proposals are
based.
Let us return, for example, to the MRL expression of (10.2), repeated here as (10.13):

(10.13) answer ([Capital, Country]):-
is_country(Country),
borders(Country, greece),
capital_of (Country, Capital).

Before MRL expressions like (10.13) can be translated into database language, one has to link
primitive MRL expressions, like constants (e.g. greece) and predicate functors (e.g. is_country,
borders), to database constructs. For MRL constants, one has to specify a systematic way to
map them to database values (e.g. the country denoted by the MRL constant greece may be
represented in the database as Greece or GR). In the case of predicate functors, one must
link each functor which may appear in the MRL expressions to a database construct that
shows for which arguments the predicates of the functor hold. (There are some cases where
this linking is impossible. We discuss this in section 10.5.1.)

Assuming, for example, that the database contains the following tables, one can simply
link the functor borders to the table borders_in fo, meaning that borders(X, Y) is true if and
only if borders_info contains a row for X and Y. (We make a closed-world assumption, i.e. we
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assume that if a pair of two geographical areas is not included in borders_info, the two areas
do not border each other.)

| countries_info

| | borders_info

country capital currency borders1 borders2
Ttaly Rome Lira Australia | Pacific
Australia | Canberra | Dollar Greece Bulgaria
Greece Athens Drachma Albania Greece
Bulgaria | Greece

The database constructs to which functors are linked need not be stored directly in the

database. They may be computed indirectly from the contents of the database. The functors
is_country and capital_of, for example, could be linked to the tables countries and capitals.
These are obtained by retaining only the first column or by dropping the third column of
countries_info respectively. (In sQL, these derived tables can be defined as “views” [60].)

| countries | | capitals |
country country capital
Ttaly Ttaly Rome
Australia Australia | Canberra
Greece Greece Athens

Once primitive MRL expressions have been linked to the information of the database,
MRL formulae can be translated into database language using a set of translation rules.
These are of two sorts: base (non-recursive) rules that translate atomic MRL formulae (e.g.
borders (Country, greece)), and recursive rules that translate non-atomic MRL formulae (e.g.
(10.13)) by recursively calling other rules to translate their subformulae.

In (10.13), a base rule could map borders(Country, greece) to (10.14), which generates
the table of (10.15). (10.15) means that the resulting table should have the same contents
as borders_info, except that only rows whose borders2 value is Greece should be retained.
Intuitively, (10.14) shows all the argument values for which borders(Country, greece) holds.
(In this case, the second argument is a constant, and hence the second column of (10.15)
contains the same value in all rows.)

(10.14)  SELECT *

FROM borders_info

WHERE borders2 = ’Greece’
(10.15)

| (result of (10.14)) |

bordersl | borders2

Albania Greece

Bulgaria | Greece

Turkey Greece

The base rule that maps borders(Country, greece) to (10.14) could be formulated as
follows: each atomic formula 7 (71, 79, 73,...,7,) (where 7 is a predicate functor and 7y, ..., 7,
predicate-arguments) is to be mapped to the SQL expression of (10.16), where table is the name
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of the database table to which the predicate functor is linked, k1, ..., K, are all the MRL
constants among 71, ..., Ty, h(k1) ..., h(k,) are the database values that correspond to these
constants, and (y, (, are the names of the columns that correspond to the predicate-argument
, Tn, the WHERE

positions where k1, ..., k, appear. (If there are no constants among 7y, ...

clause is omitted.)

(10.16)  SELECT *
FROM table
WHERE (; = h(k1) AND (> = h(ko) AND (3 = h(k3z) AND ... AND ¢, = h(k,)

(10.16) would also map the is_country(Country) and capital_of (Country, Capital) of (10.13)
to (10.17) and (10.18) respectively.

(10.17)  SELECT *
FROM countries
(10.18)  SELECT *

FROM capitals

As an example of a recursive translation rule, an MRL conjunction of the form:

71'1(7']],...,7'7]“), 7'('2(7']2, ... ,ng), el 7rk(712, o ,Tsk)
could be mapped to (10.19), where trans(m(r{,..., 7)), ..., trans(mp(rF, . .. ,T,’fk)) are the
sQL translations of my(7],... ,7711), oy (TR ,Tﬁk), and variable_constraints stands for

an expression that requires columns corresponding to the same variable to have the same
values. For example, (10.20) would be mapped to (10.21), where “((10.17))”, “((10.14))”,
“((10.18))” stand for the expressions of (10.17), (10.14), and (10.18) respectively. (10.21)
generates (10.22), that intuitively shows all the combinations of predicate-argument values
in (10.20) that make (10.20) true. (ri.country refers to the country column of the table
generated by (10.17), r2.borders1 refers to the bordersl column of the table generated by
(10.14), etc.) (Several improvements can be made to our translation rules, for example to
remove identical columns from (10.22).)

(10.19)  SELECT *
FROM trans(mi(7i,...,7})), trans(ma(rd,...,72,)), «.., trans(mp(rf, ..., 7} )
WHERE wariable_constraints
(10.20) is_country(Country),
borders(Country, greece),
capital_of (Country, Capital)
(10.21)  SELECT *
FROM ((10.17)) AS r1, ((10.14)) AS r2, ((10.18)) AS r3
WHERE ril.country = r2.bordersl AND r2.bordersl = r3.country
(10.22)

[ (result of (10.21)) |

rl.country | r2.bordersl | r2.borders2 | r3.country | r3.capital
Albania Albania Greece Albania Tirana
Bulgaria | Bulgaria Greece Bulgaria | Sofia
Turkey Turkey Greece Turkey Ankara
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Another recursive rule would generate the SQL expression for the overall (10.13), using
(10.21) (the translation of (10.20)). In MASQUE/SQL, the resulting SQL expression would
generate a table containing only the last column of (10.22).

In some systems (e.g. [56]) the MRL expressions are translated first into more theoretical
database languages (e.g. relational calculus [77]). Although these languages are not supported
directly by the DBMSs, they are closer to logic-based MRLs, which simplifies the formulation
of the translation rules and the proof of their correctness. In these cases, there is a separate
mapping from the theoretical database language to the language that is actually supported
by the DBMSs (e.g. SQL). This extra mapping is often trivial (e.g. part of SQL is essentially a
notational variant of the tuple relational calculus).

At the end of the translation from MRL to database language, the generated database
language expression is executed by the DBMS. This retrieves the appropriate information
from the database (in the case of questions), or modifies the contents of the database (in the
case of requests to update the database; we discuss these in section 10.5.2).

10.3.8 Response generation

So far, we have focussed mainly on the interpretation of the natural language input. Gener-
ating an appropriate response to the user is also very important

In the case of questions, simply printing the database constructs that were retrieved by the
execution of the database language expression (table rows in the case of relational databases) is
not always satisfactory. For example, the retrieved database constructs may contain encoded
information (e.g. department codes instead of department names). An output formatter
(figure 10.1) is needed in this case, to convert the information to a more readable format.
The retrieved information may also be easier to grasp if presented in graphical form (e.g.
pie-charts). Commercial NLDBIs often provide such graphical output facilities.

In other cases, the NLDBI may fail to “understand” the user’s request. The cause of
the failure (e.g. unknown word, syntax too complex, conceptually ill-formed input) should
be explained to the user. (Some methods to detect conceptually ill-formed requests were
discussed in section 10.3.5.)

A more challenging task is to generate what is known as cooperative responses. These are
needed when the user’s requests contain false presuppositions, or do not express literally what
the users want to know. These cases are illustrated in the following interaction with LoQurl
(based on examples from [19] and [20]):

> Does every person that works on 20 projects work on HOSCOM?
There is no such person.

> Does David Sedlock work on something?

Yes. BIM_LOQUI, MMI2, NLPAD.

In the first question, the system has detected the false presupposition that there are people
working on 20 projects, and it has generated a suitable message. In the second and third
questions, the system did not generate a simple “yes” or “no”; it also reported additional
information that the user probably wanted to know.

In some cases, such cooperative responses can be generated using relatively simple mech-
anisms. Let us consider, for example, yes/no questions that contain expressions introducing
existential quantifiers (e.g. “something”, “a flight”), like the second question of the dialogue
above. Whenever the answer is affirmative, one strategy is to print a “yes”, followed by the
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answer to the question that results when the expressions that introduce existential quantifiers
are replaced with suitable interrogatives (e.g. “what”, “which flight”; this is easier to achieve
by operating on the MRL representation of the question). In the second question of the dia-
logue above, this generates a “yes” followed by the answer to “On what does David Sedlock
work?”.

When the answer is negative, one can generate a “no”, followed by the answer to the
question that results when a constraint of the original question is modified. In the following
dialogue (based on an example from [49]), the NLDBI has replaced the constraint that the
flight must be an American flight with the similar constraint that the flight must be a United
flight.

> Do American Airlines have a night flight to Dallas?
No, but United have one.

One must be careful to limit the types of constraints that can be modified. In the previous
dialogue, for example, the NLDBI must not be allowed to modify the constraint that the flight
must be to Dallas, otherwise (as pointed out in [49]) the dialogue could have been:

> Do American Airlines have a night flight to Dallas?
No, but they have one to Miami.

Kaplan [50, 51, 52] discusses relatively simple mechanisms for generating cooperative re-
sponses, including methods to detect false presuppositions. It is not always possible, however,
to generate reasonable cooperative responses using simple mechanisms. In some cases, to gen-
erate an appropriate cooperative response, the NLDBI must be able to reason about the user’s
intentions, as discussed in chapter 7. This requires an inferencing component. We return to
this issue in section 10.5.1.

10.4 Portability

A significant part of NLDBI research has been devoted to portability issues. We discuss below
three kinds of NLDBI portability. Most of the discussion relates to the architecture of figure
10.1.

10.4.1 Knowledge-domain portability

Current NLDBIs can cope only with natural language requests that refer to a particular know-
ledge domain (e.g. requests only about the employees of a company, or only about train-
schedules). Before a NLDBI can be used in a new knowledge domain, it has to be configured.
This typically involves modifying the pre-processing rules (section 10.3.2), the lexicon, the
type hierarchy and selectional restrictions (section 10.3.5), and the information that links
primitive MRL expressions to database constructs (section 10.3.7). One of the advantages of
the architecture of figure 10.1 is that it separates clearly these domain-dependent modules
from the rest of the system. Different assumptions about the skills of the person who will
configure the NLDBI are possible:

Programmer: In some systems a (preferably small and well-defined) part of the NLDBI’s
code has to be rewritten during the configuration. This requires the configurer to be a
programmer.
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Knowledge engineer: Other systems provide tools that allow the configuration to be car-
ried out without any programming. They still assume, however, that the configurer is familiar
with knowledge representation techniques (e.g. logic), databases, and linguistic concepts. For
example, MASQUE (an enhanced version of CHAT-80 from which MASQUE/SQL was developed)
provides a “domain-editor” [10], that helps the configurer to “teach” the system new words
and concepts that are common in the new knowledge domain. The use of the domain-editor
is illustrated in the following dialogue, where the configurer teaches the system the verb “to
exceed” (as in “Does the population of Germany exceed the population of Portugal?”):

editor> add verb

what is your verb? exceed

what is its third singular present? exceeds
what is its past form? exceeded

what is its participle form? exceeding

to what set does the subject belon? numeric
is there a direct object? yes

to what set does it belong? numeric

is there an indirect object? no

is it linked to a complement? no

what is its predicate? greater_than

In the dialogue above, apart from teaching the system the morphology of the various forms
of the verb, the configurer has also declared that the verb introduces MRL predicates of the
form greater_than(X,Y), where X and Y denote entities that belong to the numeric type of
the type hierarchy (section 10.3.5).

Some NLDBIS (e.g. PARLANCE [17], the CLE [3]) provide morphology modules that allow
them to infer the various forms of the new words without asking the configurer. Other systems
have large built-in lexicons that cover the most common words of typical database domains,
minimising the need to elicit lexical information from the user. (According to the vendor of
one current commercial NLDBI, their system comes with a built-in lexicon of 16,000 words; see
also the discussion in chapter 2.) In some cases, it is also possible to construct automatically
lexicon entries from the contents of the database (see, for example, the discussion on proper-
names in section 10.3.2).

Database administrator: In practice, NLDBIS may often be configured by the adminis-
trators of existing databases. In that case, it is reasonable to assume that the configurers
will be familiar with database concepts and the targetted database, but not with MRLs or
linguistics. This is the approach adopted by the designers of TEAM [36, 37]. In the following
dialogue (based on an example from [36]), TEAM collects information about the database
table (“file”) chip. Notice that TEAM uses database terminology (e.g. “primary key”), but
not terms from linguistics or logic (e.g. “participle” and “predicate” in the MASQUE dialogue
above).

file name: chip
fields: id maker width

"MASQUE’s domain-editor does not actually shield completely the knowledge-engineer from the programming
language. The knowledge engineer is still required to write some Prolog to relate MRL expressions to the
database.
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subject: processor

synonyms for processor: chip

primary key: id

Can one say ‘‘Who are the processors?’: no

Pronouns for subject (he, she, it,they): it

field: MAKER

type of field (symbolic, arithmetic, feature): symbolic

End-user: Other NLDBI designers emphasise that the configuration can never be complete,
and that the end-users should be allowed to teach the system new words and concepts using
natural language. This approach is illustrated in the following interaction with PARLANCE

[17], where the user defines the terms “yuppie” and “rich employee”:

> define: a yuppie is a person under 30 with a graduate degree who earns over 5K per month
> define: a rich employee is an employee who earns over 100K per year

Although large built-in lexicons and configuration tools have made NLDBIs much easier to
port to new knowledge domains, configuring a NLDBI for a new knowledge domain is often
still a complicated task, and it may still require at least some familiarity with basic natural
language processing concepts. Alternative graphical and form-based database interfaces are
usually easier to configure. As we noted in section 10.2, this is probably one of the main
reasons for the small market-share of NLDBIs.

10.4.2 DBMS portability

NLDBIs that adopt widely-supported database languages (e.g. SQL [60]) can often be used with
different DBMSs that support the same database language with only minor modifications. If
the original database language is not supported by the new DBMS, the part of the NLDBI that
is responsible for translating from MRL to database language (the database back-end of figure
10.1) has to be rewritten. In that case, one of the advantages of the architecture of figure 10.1
is that no modifications are needed in the linguistic front-end, provided that the knowledge
domain remains the same.

The architecture of figure 10.1 also leads to the development of generic linguistic front-
ends, that apart from NLDBIs can be used as components of other natural language processing
systems. (An example of such a system is the CLE [3], that has been used as a component of
both a NLDBI and a machine translation system.)

10.4.3 Natural language portability

Almost all of the existing NLDBIs require the user’s requests to be formulated in English.
Modifying an existing NLDBI to be used with a different natural language can be a formidable
task, because the NLDBI may contain deeply embedded assumptions about the targetted
natural language. [54] provides some information about an attempt to build a Portuguese
version of CHAT-80 [80]. Information about Swedish, French, and Spanish versions of the CLE
can be found in [3] and [66].
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10.5 Advanced issues

Having introduced the basic components of the typical NLDBI architecture, we now move on
to some more advanced issues, namely the “doctor-on-board” problem, database updates,
meta-knowledge, modal, and temporal questions.

10.5.1 The “doctor-on-board” problem

The discussion of section 10.3.7 assumed that each predicate functor can be linked to a
database construct (a table in the relational model) that shows the arguments for which the
predicates of the functor hold. That database construct, it was assumed, is either stored
directly in the database, or can be computed from the contents of the database. There are
some cases, however, where this assumption does not hold. The “doctor-on-board” problem
[63] is a well-known example of such a case.

Let us imagine a database that contains only the following table, which holds information
about the ships of a fleet. The third column shows if a doctor is on board the ship (“y”) or
not (“n”).

| ships_info |

ship crew | doctor
Vincent 420 y
Invincible | 514 Y
Sparrow 14 n

Let us also consider (10.23), which would receive the MASQUE/SQL-like MRL expression of
(10.24). (10.24) shows that the answer should be affirmative iff there is a doctor D that is on
board Vincent.

(10.23) Is there a doctor on the Vincent?

(10.24) answer ([]):-
is_doctor (D),
on_board (D, vincent).

To apply the MRL to database language translation method of section 10.3.7, one needs to
link is_doctor to a database table that shows the entities that are doctors. This is impossible,
however, because the database (which contains only ships_info) does not list the doctors.
Similarly, on_board has to be linked to a table that shows which entities are on board which
ships. Again, this table cannot be computed from the information in the database.

What is interesting is that (10.24) is equivalent to (10.25), where doctor_on board(D,S) is
intended to be true iff is_doctor(D) and on_board(D,S) are both true. Unlike (10.24), (10.25)
poses no problem for the translation method of section 10.3.7, because doctor_on_board can
be linked to a version of ships_info without the c¢rew column.

(10.25) answer ([]) : -

doctor_on_board(D, vincent).

The problem is that (10.23) cannot be mapped directly to (10.25). The MRL expression
(10.24) is typical of what most natural language front-ends would generate, with predicates
which are introduced by linguistic constituents (e.g. is_doctor (X) is introduced by the noun
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phrase “a doctor”, and on_board(X, vincent) by the prepositional phrase “on Vincent”).
What is needed is a mechanism to convert the MRL expressions that are generated by the
linguistic front-end to equivalent MRL expressions that contain only predicate functors which
can be linked to appropriate database tables. [67] proposes a mechanism which can, among
other things, perform this conversion. Roughly speaking, the conversion is carried out by an
inferencing component that employs rules like (10.26).

(10.26)  (doctor(&;), on board(&;, &)) = doctor_on_board (&)

(10.26) allows any MRL expression of the form doctor(&;), on_board(&;, &) (where & and
¢ stand for MRL terms) to be replaced by doctor_on board(&). (10.26) would license the
conversion from (10.24) to (10.25). (10.25) would then be translated into database language
as discussed in section 10.3.7.

Inferencing components are also useful in cases where the NLDBI has to reason about
the user’s intentions to generate cooperative responses (section 10.3.8). They can also be
employed to allow the NLDBI to deduce new facts from the information in the database (e.g.
with appropriate reasoning rules, a NLDBI connected to a hospital’s database could answer
“Which patients need attention overnight?” even if the database does not flag explicitly
patients who need overnight attention). In some NLDBIsS (e.g. INTELLECT), the inferencing
component can be a full expert system, which acts as an intermediate layer between the
linguistic front-end and the database back-end.

[4] provides a detailed description of CLARE, a NLDBI with reasoning capabilities. CLARE
is based on the CLE [3], and includes the inferential mechanism of [67].

10.5.2 Database updates

Apart from answering questions, some NLDBIs also allow the user to update the information
in the database. This is illustrated in the following dialogue with Ask [75] [76]:

> What is the home port of the Tokyo Maru?

Yokohama

> Home port of the Tokyo Maru is Hong Kong.

Yokohama has been replaced by Hong Kong as home port of Tokyo Maru.

ASK knows that a ship may have only one home port, and hence in the second request it
replaced Yokohama by Tokyo Maru. In contrast, it knows that a ship may carry many types
of cargo. Hence, the input “The Tokyo Maru carries coal.” would lead ASK to add coal to the
previously known cargoes of the Tokyo Maru, instead of replacing the previous information.

Natural language database updates can be difficult to process, because they may lead to
unanticipated side-effects. These side-effects are due to database constraints that the user is
not aware of. This is illustrated in the following dialogue (the example is borrowed from [30]).

> List the employees and their managers.
employee manager

Adams Fisher
White Baker
Brown Jones
Smith Jones

> Change Brown’s manager from Jones to Baker.
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Done.

> List the employees and their managers.
employee manager

Adams Fisher
White Baker
Brown Baker
Smith Baker

Notice that Smith’s manager also changed from Jones to Baker, although this was not reques-
ted. This happens because in the database (which contains the two tables below) employees
are linked to managers indirectly, through their departments.

| employees_table | | departments_table |
employee | salary | department department | manager
Adams 3000 ventory sales Jones
W hate 3500 marketing marketing | Baker
Brown 2500 sales ventory Fisher
Smith 2500 sales

To satisfy the user’s request to change the manager of Brown, the system has changed the
sales manager from Jones to Baker. This caused all other employees in the sales department
(e.g. Smith) to receive Baker as their new manager. Users not aware of the database structure
would find this behaviour hard to explain. (NLDBI users are usually not informed about the
structure of the database. Not having to be aware of the database structure is supposed to
be an advantage of NLDBIs over graphical or form-based interfaces.)

The indirect link between employees and managers actually makes the update request in
the dialogue above ambiguous: instead of changing the sales manager from Jones to Baker,
the NLDBI could have moved Smith from the sales department (which is managed by Jones)
to the marketing department (which is managed by Baker). PIQUET [30] maintains a model
of the user’s conceptual view of the database. Whenever a user input reflects awareness or
presupposition of a database object, link, or restriction, the model is modified accordingly.
If the user enters an ambiguous request (in the above sense), the NLDBI consults the model
to select the reading that has the fewest side-effects with respect to the user’s current view

”

of the database. In the dialogue above, after “List the employees and their managers.” has

been answered, the user’s view of the database corresponds to the table:

employee | manager
Adams Fisher
W hite Baker
Brown Jones
Smith Jones

If “Change Brown’s manager from Jones to Baker.” is interpreted as a request to change
the sales manager from Jones to Baker, the answer causes the user’s view to become as shown
below on the left. A side-effect (shown in bold) occurs. If, in contrast, the sentence is inter-
preted as a request to move Brown from the sales department to the marketing department,
the user’s view becomes as shown below on the right.

employee | manager employee | manager
Adams Fisher Adams Fisher
W hite Baker W hite Baker
Brown Baker Brown Baker
Smith Baker Smith Jones




22 CHAPTER 10. DATABASE INTERFACES

The second interpretation introduces no side-effects to the user’s view, and would have been
preferred by PIQUET.

10.5.3 Meta-knowledge, modal, and temporal questions

This section discusses briefly some types of questions that present particular interest.

Meta-knowledge questions: Apart from questions about the entities that are represented
in the database, the user may want to submit queries about the conceptual organisation of
the database’s knowledge (e.g. “What information does the database contain?”, “What are
the properties of employees?”). These can be considered meta-knowledge questions, as they
refer to knowledge about the database’s knowledge. The following example (from [75]) shows
how ASK reacts to a question of this kind.

> What is known about ships?
Some are in the following classes: mnavy, freighter, tanker
A1l have the following attributes: destination, home port

Most NLDBIs do not support meta-knowledge questions.

Modal questions: Database systems usually enforce a set of integrity constraints to guard
against contradicting or incorrect information (e.g. an employee cannot have two dates of
birth, and in practice, the age of an employee is never greater than 80), and to enforce
corporate policies (e.g. that employees cannot earn more than their managers, or that all
employees must be over 20). [57] presents a method that exploits these integrity constraints
to answer modal questions, questions that ask if something may or must be true (e.g. “Can an
employee be 18 years old?”, “Is it the case that J.Adams must earn more than T.Smith?”).

Temporal questions: Most NLDBIs do not provide adequate support for temporal linguistic
mechanisms. For example, users are often allowed to use very few (if any) verb tenses,
temporal adverbials (e.g. “for two hours”, “before 5:00pm”), or temporal subordinate clauses
(e.g. “while J. Adams was personnel manager”). [6, 9] discuss how some of these mechanisms
can be supported when constructing NLDBIs for temporal databases (databases designed to
handle time-dependent data).

10.6 Restricted input systems

We noted in section 10.3.3 that one of the main problems of NLDBIs is that their linguistic
coverage is usually not obvious to the user. This often has the annoying consequence that
users are forced to rephrase their requests several times, until a phrasing that falls within the
linguistic coverage of the system is found. To overcome this problem, most NLDBI developers
attempt to expand the linguistic coverage of their systems, hoping that eventually it will be
possible to process successfully most of the users’ inputs. An alternative approach, which we
discuss in this section, is to restrict drastically the linguistic coverage of the NLDBI, and to
do this in a manner that allows the users to obtain a clearer view of the system’s linguistic
capabilities.
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10.6.1 Controlled languages

One way to make the linguistic capabilities of NLDBIs clearer is to support only a natural
language fragment whose syntax is made explicitly known to the user. (The term controlled
language is often used to refer to such fragments.) The fragment must be selected carefully,
to make its syntax easy to explain. A well-chosen fragment may also allow a direct mapping
from natural language to database language.

In PRE [34], for example, the user was allowed to input only questions of the following
pattern:

what is/are
conjoined noun phrases
nested relative clauses
conjoined relative clauses

The user could, for example, enter the following question (simplified example from [34]). Line
(1) contains the conjoined noun phrases. Lines (2) — (4) contain the nested relative clauses
(they are nested, because (3) refers to “schedules” in (2), and (4) refers to “appointments”
in (3)). Lines (5) (7) contain the conjoined relative clauses (these are not nested; they all
refer to the “orders” of (4)).

what is/are

the names, ids, and categories of the employees
who are assigned schedules
that include appointments

(1
(
(
that are executions of orders (
(
(
(

2
3

(G2

whose addresses contain ‘maple’ and
whose dates are later than 12/15/83 and
whose statuses are other than ‘comp’

)
)
)
)
)
6)
7)

In contrast, the following question was not accepted by PRE. In this case, line (2) contains
the only clause of the nested relative clauses part. Both (3) and (4) are conjoined relative
clauses referring to the “schedules” of (2). However, (5) is nested with respect to (4), because
it refers to the “orders” of (4), not the “schedules” of (2). PRE’s question pattern does not
allow conjoined relative clauses to be followed by other nested relative clauses.

what are
the addresses of the appointments (1)
that are included in schedules (2)
whose call times are before 11:30 and (3)
that are executions of orders (4)
whose statuses are other than ‘comp’ (5)

Epstein claims that PRE’s question pattern is easy to remember, though this is probably
arguable.® PRE’s question pattern is also chosen to simplify the retrieval of information from
the database. PRE adopts an entity-relationship-like database model [77]. Figure 10.3, for

8APPEAL by Winformation Software adopts a similar controlled language approach, but with a more re-
stricted and easier to remember syntax; see http://wwwiz.com/home/mather.



24 CHAPTER 10. DATABASE INTERFACES

~

. execution_of
appointment order

includes

assigned_a
schedule employee

Cones | [ ote ] o |
|
|
|

-
- -
- -
L -
-
- -

|
|
|
cal_time ‘ name ‘ ‘ i‘d ‘ ‘ category ‘

Figure 10.3: The structure of a PRE-like database.

example, shows the structure of the database to which the previous two examples refer.” Oval
boxes correspond to entity types, rectangular boxes correspond to attributes of entities, and
continuous lines correspond to relations between entities.

The conjoined noun phrases of PRE’s question pattern correspond to a projection operator
[77]. Projection operators specify which attributes (e.g. name, address) of an entity are to
be reported. The nested relative clauses correspond to traversals of continuous line links
(relationships between entities). Finally, the conjoined relative clauses correspond to select
operators. These pick individual entities of particular types according to certain criteria.

For example, to answer the first question of this section, PRE first transforms the conjoined
relative clauses to a select operator. This selects all the order entities that contain ‘maple’
in their addresses, and that have dates later than 12/15/83, and statuses other than ‘comp’.
Next, PRE transforms the nested relative clauses to a sequence of relationship (continuous
line) traversals. In our example, this connects the orders that were selected in the previous
step to appointment via the execution_of relationship, appointments to schedule via the
includes relationship, and schedules to employees via the assigned_a relationship. Finally,
PRE transforms the conjoined noun phrases to a projection operator. For each employee
entity reached during the previous step, the system reports its name, id, and category.

The main disadvantage of NLDBIs with controlled languages is that the user has to be
taught the syntax of the supported fragment. In applications where the users need to be able
to submit complex queries, it may not be easy to define a natural language fragment which
is both rich enough to allow these queries and easy to understand.

10.6.2 Menu-based systems

Another approach is to require the users to form their requests by choosing words or phrases
from menus displayed on the screen. Figure 10.5, for example, shows the initial screen of
NLMENU [73, 74] (the example is from [74]). The highlighted border of the commands menu
indicates that the first word of the user’s request has to be chosen from that menu. (Sy-
mantec’s Q& A offered a similar menu-based mode of interaction.)

9[34] does not provide much information about PRE’s database. Figure 10.3 may not reflect the exact form
of PRE’s database model.
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commands nouns modifiers
Find Delete suppliers whose part city is
Insert parts whose color is
attributes shipments whose part nameis
weight <specific suppliers> whose part# is
quantity <specific parts> whose supplier city is
city <specific shipments> whose supplier nameis
color comparisons whose supplier supplier# is
name between whose shipment part# is
part# greater than whose shipment supplier#is
supplier# less than whose supplier statusis
status greater than or equal to whose part weight is
less than or equal to whose shipment quantity is
equal to which are shipments of
connectors which were shipped by
the number of of who ship
the average and who supply
the total or which are supplied by

Figure 10.4: The initial NLMENU screen.

NLMENU used a context-free semantic grammar (section 10.2). Whenever a new word or
phrase was selected, NLMENU used the grammar to determine which words or phrases could
be attached to the string that the user had assembled up to that point, to form a request that
the system could process. These words and phrases were then shown in the menus. Figure
10.5, for example, shows the NLMENU screen after entering “Find color and name of parts”.
Notice how the modifiers menu has changed to contain only completions that the system can
handle.

The main advantage of menu-based NLDBIs is that only requests that the systems can
handle can be input, and the users can obtain an understanding of the systems’ capabilities
by browsing the menus. This approach works well in domains where small dictionaries and
short questions are adequate. With large dictionaries and longer questions, however, the
menus proliferate, and become lengthy and difficult to use.

10.7 Conclusions

This chapter has attempted to serve two purposes: to introduce the reader to the field of
NLDBIs by describing some of the central issues, and to highlight the state of the art in
NLDBIs by outlining the facilities, methods, and problems of typical implemented systems. In
the light of the discussion in the previous sections, the following observations seem valid to
us.

The area of NLDBIs is mature enough, to the extend that usable systems can be constructed
for real-world applications, and indeed several commercial NLDBIs have appeared.

Although usable NLDBIs can and have been constructed, NLDBIs currently hold a rather
small market-share, mainly because of competition from graphical and form-based interfaces.
Despite their limitations, these alternative interfaces are often more appealing, because their
capabilities are usually clearer to the users, and they are easier to configure. To improve the
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commands nouns modifiers
Find Delete suppliers whose part city is
Insert parts whose color is
attributes shipments whose part nameis
weight <specific suppliers> whose part# is
quantity <specific parts> whose part weight is
city <specific shipments> which are supplied by
color comparisons
name between
part# greater than
supplier# less than
status greater than or equal to
less than or equal to
equal to
connectors

> Find color and name of parts

Figure 10.5: NLMENU’s screen at a later stage.

position of their systems in the market, NLDBI developers need to address these two issues,
and to explore applications where the alternatives to NLDBIs are difficult to use.

One example of such an application might involve remote access to databases by tele-
phone. There is a growing body of research (e.g. [1]) integrating speech recognition, robust
interpretation, and dialogue-handling techniques, with the goal of implementing systems that
engage users in spoken dialogues to assist with certain tasks (see chapter 15). This line of
research is likely to have a significant impact on future NLDBIs, giving rise to systems that
will allow users to access databases via speech, in situations where graphical and form-based
interfaces are difficult to use (cf. the AT1S domain [87]).

Regarding the obscurity of the capabilities of NLDBIs, we believe that this problem can
be overcome by incorporating robust language interpretation methods and dialogue-handling
techniques (chapters 5 and 15). These will allow NLDBIs to make reasonable guesses about the
content of any user inputs which cannot be “understood” in their entirety. Also, such systems
can engage in reasonably cooperative dialogues that will both help the users to realise the
capabilities of the NLDBI and also assist the system in determining the task to be performed.

The configuration difficulties of NLDBIs are more of an obstacle. Portability has been
a primary research focus of NLDBI research for almost two decades. Although significant
improvements have been made, NLDBIs still cannot compete with graphical or form-based
interfaces in terms of ease of configuration. The situation may become worse if NLDBIs adopt
robust interpretation and dialogue-handling techniques as suggested above, since many of
these techniques rely heavily on domain-dependent information. There could be a possible
niche for NLDBIs, nevertheless, in accessing a small number of very large, centrally held,
widely accessed databases (e.g. telephone directories). The configuration of the NLDBIs for
these databases could be assigned to NLDBI experts, with the understanding that it will be a
lengthy and resource-consuming effort, the cost of which will be balanced by the subsequent
wide use of the NLDBISs.
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