
Chapter 10Database InterfacesIon Androutsopoulos and Graeme Ritchie110.1 IntroductionNatural language database interfaces (nldbis) are systems that allow users to access inform-ation stored in a database by formulating requests in natural language. For example, a nldbiconnected to the personnel database of a company would typically be able to answer questionslike the following. (We show user entries in italics, and system replies in bold.)> Who is the youngest employee in the sales department?John Smith.> What is his salary?$25,000.> Does any employee in the sales department earn less than John Smith?Yes, George Adams.nldbis have received particular attention within the natural language processing community(see [8], [28], and [63] for previous reviews of the �eld2), and they constitute one of the �rstareas of natural language technology that have given rise to commercial applications.This chapter is an introduction to key concepts, problems, and methodologies in the areaof nldbis. It focuses on issues that are speci�c to nldbis, as opposed to general naturallanguage processing methods, but it also provides examples from nldbis where the generaltechniques of the previous chapters of this book are used. As with the rest of this book, thischapter does not cover issues related to speech processing. This re
ects the assumption inmost current nldbis that the user's requests will be typed on a keyboard. As we commentbrie
y in section 10.2, however, we believe that speech technology will play an important rolein future nldbis.The rest of this chapter is organised as follows: section 10.2 provides a brief history ofnldbis; section 10.3 presents the typical architecture and the main components of modernnldbis; section 10.4 discusses portability issues; section 10.5 highlights some advanced issues:the \doctor-on-board" problem, database updates, and meta-knowledge, modal, and temporal1To appear in R. Dale, H. Moisl, and H. Somers (Eds.), \A Handbook of Natural Language Processing:Techniques and Applications for the Processing of Language as Text", Marcel Dekker Inc.2Some of the material in this chapter originates from [8].1

2 CHAPTER 10. DATABASE INTERFACESquestions; section 10.6 discusses nldbis with restricted input, namely nldbis with controlledlanguages, and menu-based nldbis; section 10.7 concludes by re
ecting on the state of theart and the future of nldbis.10.2 Historical backgroundThe �rst nldbis appeared in the late sixties, with the most well-known system of that periodbeing lunar [83, 84, 85, 86], a nldbi to a database that contained chemical analyses of moonrocks. lunar demonstrated convincingly that usable nldbis could be built. It also introducedsome innovative techniques (e.g. in the treatment of quanti�ers) that had a signi�cant impacton subsequent computational approaches to natural language.Several other nldbis had appeared by the late seventies (e.g. rendezvous [26], torus[61], planes [79], philiqa1 [68], and ladder [45]).3 Some of these early systems (e.g.planes, ladder) used semantic grammars, an approach where { roughly speaking { non-terminal symbols of the grammar re
ect categories of world entities (e.g. employee name,question about manager) instead of purely syntactic categories (e.g. noun phrase, sentence;see [2] for more information). Semantic grammars allowed selectional restrictions (discussed insection 10.3.5 below) to be encoded easily, and the resulting parse trees could be very close tological formulae, eliminating the need to map from syntactic to semantic constructs. Semanticgrammars, however, proved di�cult to port to new knowledge domains (e.g. modifying anldbi to be used with a database about train schedules rather than employees), and weregradually abandoned.In the early eighties, chat-80 was developed [80]. chat-80 incorporated some novel andingenious techniques, and its implementation responded to queries very promptly. Its codewas circulated widely, and it became a de facto standard demonstration of nldbi capabilities.It also formed the basis of the experimental nldbi which we will use as a source of illustrativeexamples here { masque/sql [5, 7]. We use examples from masque/sql, mainly because wecan say with authority what it would do, and partly because we regard its architecture andmechanisms as typifying a large class of nldbis.By the mid-eighties, nldbis had become a very popular research area, and numerous re-search prototypes were being implemented. Portability issues (see section 10.4) dominatedmuch of the nldbi research of the time. team [36, 37, 59], for example, was designed to becon�gured by database administrators with no background in linguistics, and ask [75, 76]allowed end-users to \teach" it new words at any point. ask was actually an integratedinformation system, with its own built-in database, and the ability to interact with externalapplications (e.g. external databases and e-mail programs). The user could control any ap-plication connected to ask via natural language requests. janus [22, 46, 81] had similarabilities to interface to multiple systems. datalog4 [38, 39], eufid [71, 72], ldc [13, 14],tqa [29], teli [12], were also among the numerous research prototypes of the same period.We note at this point that some natural language researchers use the term \database" tomean just \a lot of data". In this chapter, we mean much more than that. Most importantly,we assume that the data constitute a principled attempt to represent part of the world,and that they are structured according to a formally de�ned model. Database systems haveevolved substantially over recent decades. The term \database systems" now denotes (at3More information on the historical evolution of nldbis can be found in [11].4This nldbi has nothing to do with the subset of Prolog that is used as a database language [77].

10.3. ARCHITECTURE AND MAIN COMPONENTS 3least in computer science) much more complex and principled systems than it used to denotein the past. Many of the \database systems" of early nldbis would not deserve to be calleddatabase systems by today's standards.Until the early eighties, the standard way to interact with database systems was to usespecial database programming languages (e.g. sql [60]), which are di�cult for end-users tomaster. nldbis were seen as a promising way to make databases accessible to users withno programming expertise, and there was a wide-spread optimism about their commercialprospects. In 1985, for example, Ovum Ltd. predicted that \By 1987 a natural languageinterface should be a standard option for users of database management system and `Inform-ation Centre' type software, and there will be a reasonable choice of alternatives." [49].Since then, several commercial nldbis have appeared (e.g. Linguistic Technology's eng-lish wizard, a descendant of intellect5 [43], which was in turn based on experience fromrobot [40, 41, 42]; bbn's parlance, derived from the rus [21] and irus [16] systems; ibm'slanguageaccess [62]; q&a from Symantec; natural language; bim's loqui [20]; andaccess elf).6 Some of these systems are claimed to have been commercially successful. Theuse of nldbis, however, is much less wide-spread than it was once predicted, mainly becauseof the development of alternative graphical and form-based database interfaces (see, for ex-ample, the discussion of Zloof's \query by example" technique in [77]). These alternativeinterfaces are arguably less natural to interact with, compared to nldbis. It has also beenargued (e.g. [27], [44]) that queries that involve quanti�cation (e.g. \Which company sup-plies every department?"), negation (e.g. \Which department has no secretaries?"), or thatrequire multiple database tables to be consulted are very di�cult to formulate with graphicalor form-based interfaces, while they can be expressed easily in natural language. Neverthe-less, graphical and form-based interfaces have largely out-marketed nldbis, probably becausetheir capabilities are often clearer to the users (see section 10.3.3 below), and they are typic-ally easier to con�gure (see section 10.4 below). Experiments on the usability of nldbis, andcomparisons with alternative database interfaces, are discussed in [18], [23], [32], [48], [69],and [82].Perhaps as a result of their di�culties in the market, nldbis are no longer as fashionable atopic within academic research as they were in the eighties. There is, however, a growing bodyof research on integrating speech recognition, robust interpretation, and dialogue-handlingtechniques, with the goal being to implement systems that engage users in spoken dialoguesto help them perform certain tasks (see chapter 15). We expect that this line of researchwill have a signi�cant impact on future nldbis, giving rise to systems that will allow users toaccess databases via spoken dialogues, in situations where graphical and form-based interfacesare di�cult to use. This could lead, for example, to nldbis able to answer spoken queriesover the phone (see, for example, [1]; also see [87] for information on the atis domain, whereusers make
ight arrangements by interacting with a computer via spoken dialogues).10.3 Architecture and main componentsThis section discusses the typical architecture and the main modules of modern nldbis.5intellect is currently owned by Platinum Technology.6Few of these systems appear to be currently in the market. Consult http://users.aol.com/elfsoft/elfsoft.htm and http://www.englishwizard.com for more information on two nldbis available at the timeof writing.

4 CHAPTER 10. DATABASE INTERFACES10.3.1 Architectural overviewIgnoring some details, the architecture of most current nldbis is similar to that of �gure 10.1.Roughly speaking, the part of the system that is labelled linguistic front-end translates thenatural language input to an expression of some intermediate meaning representation language(mrl). The mrl expression is subsequently passed to the database back-end. This translatesthe mrl expression into a database language that is supported by the underlying databasemanagement system (dbms; this is the part of the database system that is responsible formanipulating the information in the database). The resulting database language expressionis then executed by the dbms, to satisfy the user's request. In the case of questions, theexecution of the database language expression retrieves information from the database, whichis reported back to the user.This architecture has several portability advantages (discussed in section 10.4). It alsoallows inferencing components to be added between the linguistic front-end and the databaseback-end to allow, for example, the nldbi to deduce new facts from the contents of thedatabase (we discuss this brie
y in section 10.5.1). In systems where the natural languageinput is mapped directly to database language expressions, this inferencing would have to becarried out in the database language, which is particularly di�cult because database languagesare not designed to facilitate machine reasoning.We discuss below the components of the architecture of �gure 10.1 in more detail.10.3.2 Pre-processingThe natural language input �rst undergoes a pre-processing phase. This tokenises the input,morphologically analyses the words, and looks them up in a lexicon to retrieve their syntacticand semantic properties. The techniques of chapters 1 { 3 apply here. (We note, however,that most nldbis allow the user to type only single-sentence requests. Hence, sentence seg-mentation is usually not an issue. Punctuation is also typically ignored.)Proper names (e.g. person names like \Adams", or
ight numbers like \BA742") constitutea particular problem for nldbis. For example, the personnel database of a large company maycontain information about thousands of employees. To be able to parse questions that containemployee names (e.g. \What is the salary of George Adams?") the nldbi must have entriesin its lexicon for all these names (possibly separate entries for �rst names and surnames).Inserting manually an entry in the lexicon for each employee name is tedious, and it wouldalso mean that the lexicon would have to be manually updated whenever new employees jointhe company.One possible solution is to provide some mechanism that would automatically computelexicon entries from proper names that appear in the database. (In this case, the architectureof �gure 10.1 has to be modi�ed, to allow the pre-processor to access the database. Thepreprocessing rules of �gure 10.1 would also have to be removed. They are used in an al-ternative pre-processing method, which is discussed below.) In the personnel database case,whenever a word of the natural language input is not found in the lexicon, that word wouldbe checked against a list of employee names held in the database. If the word is found inthat list, an appropriate lexicon entry would be generated automatically using the database'sinformation. For example, all the words that appear in the list of employee names could beassigned lexicon entries that classify the words as singular proper-name noun-phrases. If thedatabase includes gender information, the lexicon entries could also show the gender of the

10.3. ARCHITECTURE AND MAIN COMPONENTS 5

discourse model

pre-processing
rules

lexicon

DBMS

translation rules

parser & semantic
analyser

semantic
post-processor

database language
translator to

input
natural language

input

expression

pre-processed

fully-resolved

pre-processor

grammar and
semantic rules

linguistic front-end

domain-dependent modules

database back-end

restrictions &
selectional

MRL

MRL expression

mapping to DB
primitive

information

expressionDB language

retrieved results

output formatter

response

type hierarchy

Figure 10.1: Typical nldbi architecture

6 CHAPTER 10. DATABASE INTERFACESdenoted employee (this is useful for anaphora resolution; see section 10.3.4).This approach has the disadvantage that it introduces an additional database look-upduring the pre-processing. In databases with a large number of proper names (e.g. databasesfor telephone directory enquiries) this additional look-up may be computationally expensive.This approach also runs into problems with questions that contain proper names not men-tioned in the database. If, for example, the database does not contain the name \Johnson",the nldbi would fail to parse \Is Johnson in the database?" instead of responding negatively.An alternative approach is to employ pattern-matching pre-processing rules and typo-graphic conventions. In questions directed to a database about
ights, for example, it maybe safe to treat any word that consists of two or three letters followed by three or four digits(e.g. \BA742") as a
ight number. Any word that matches this pattern would be assigneda lexicon entry that classi�es the word as singular proper-name noun-phrase. In the case ofthe personnel database, person names could be identi�ed by asking the user to type all wordsin lower-case letters, apart from person names whose �rst letter is to be capitalised, and byusing a suitable pattern-matching rule.This second approach does not run into problems with proper names not mentioned inthe database. Without a database look-up, however, it may be di�cult to obtain someinformation that we wish to be included in the generated lexicon entries for proper names.As mentioned above, for example, including gender information in the entries for employeenames is useful in anaphora resolution (section 10.3.4). It is generally di�cult, however, todetermine the genders of employees by applying pattern-matching rules on their names. Itis also useful (e.g. for the mechanisms that will be discussed in section 10.3.5) to include inthe proper name entries information indicating the semantic types of the named entities (e.g.whether the proper name corresponds to a
ight or a spare-part). In some domains, propernames corresponding to di�erent types of entities may be typographically very similar (e.g.there may be
ight numbers like \BA742" and spare-part numbers like \DX486"). In thosecases, it may be di�cult to determine the types of the named entities using pattern-matchingrules, and one may be forced to introduce unnatural typographical notations.10.3.3 Parsing and semantic analysisThe pre-processed input is subsequently parsed and analysed semantically using the tech-niques of chapters 4 and 6. This generates an expression in a meaning representation language(mrl; typically some form of logic) which is intended to capture formally what the nldbi\understands" to be the semantics of the natural language input. masque/sql [5, 7], forexample, maps (10.1) (which is directed to a database containing geographical information)to (10.2). (masque/sql's mrl is a subset of Prolog. Terms starting with capital letters arevariables.)(10.1) What is the capital of each country bordering Greece?(10.2) answer([Capital, Country]):-is country(Country),borders(Country, greece),capital of(Country, Capital).(10.2) shows that the user's question is a request to �nd all pairs [Capital, Country], suchthat Country is a country, Country borders Greece, and Capital is the capital of Country.

10.3. ARCHITECTURE AND MAIN COMPONENTS 7In most nldbis (especially early ones), the parsing and semantic analysis are based onrather ad hoc grammars. There are, however, systems built on principled computationalgrammar theories (see, for example, [6], [24] and [65] for information on nldbis that are basedon hpsg [64]). The grammars of these systems tend to be easier to comprehend and to extend.Of course, no matter how principled the grammar and how extensive the lexicon of the nldbiare, there will always be user requests that the system fails to parse and analyse semanticallyin their entirety (e.g. sentences with unknown words, syntactic constructs not covered by thegrammar, ungrammatical sentences). Natural language researchers are becoming increasinglyinterested in robust processing techniques, that allow systems to recover from such failures(see chapter 5). These techniques may, for example, combine the fragments of the naturallanguage input that the system managed to process, to make reasonable guesses about theuser's goals [70]. (Consult also [53] for an alternative method that can be used in nldbis.)Most current nldbis, however, do not employ such mechanisms, generating simply anerror message whenever they fail to process fully the user's input. If the failure was caused byan unknown word, the error message may report that word. In many other cases, however, themessage may carry no information to help the users �gure out which parts of their requestscaused the failure. The situation is made worse by the fact that the linguistic coverage of mostnldbis is not designed to be easily understandable by end-users. For example, masque/sqlis able to answer \What are the capitals of the countries bordering the Baltic and borderingSweden?", which leads the user to assume that the system can handle all types of conjunctions.However, the system fails to process \What are the capitals of the countries bordering theBaltic and Sweden?". (masque/sql can handle conjunctions only if they involve progressiveverb phrases.) The result is that the users are often forced to rephrase their requests, untila phrasing that falls within the linguistic coverage of the nldbi is found. Since the users donot have a clear view of the nldbi's linguistic coverage, several rephrasings may be needed.This is obviously very annoying for the users, and it may be one of the main reasons forthe small market-share of nldbis. In contrast, the capabilities of graphical and form-basedinterfaces are usually clear from the options that are o�ered on the screen, and typically anyrequest that can be input can also be processed. We believe that it is crucial for nldbisto incorporate robust parsing techniques, in order to overcome this problem (we return tothis issue in section 10.7). An alternative approach is to restrict severely, deliberately, andexplicitly the natural language inputs that the users are allowed to enter, so that the thelinguistic capabilities of the system will be clearer to the them. We discuss this approach insection 10.6.We should note, at this point, that there are also nldbis that appear to be using pattern-matching techniques instead of parsing and semantic analysis. (The authors of some of thosenldbis seem unwilling to con�rm this.) To illustrate a pattern-matching question-answeringapproach, let us assume that the database contains the following table that holds informationabout countries and their capitals. (In the examples of this chapter, we assume that thedatabase is structured according to the relational model [25], in which information is storedin relations, intuitively tables consisting of rows and columns. Most of the techniques of thischapter apply to other database models as well.)countriescountry capitalAustralia CanberraGreece Athens.

8 CHAPTER 10. DATABASE INTERFACESA simplistic pattern-matching system could use a rule like the following, which would map\What is the capital of Greece?" to an appropriate masque/sql-like mrl expression:If the input string matches the following pattern:. . . \capital" . . .<country name> . . .then generate the mrl expression:answer([Capital]):-capital of(<country name>, Capital).The main advantage of the pattern-matching approach is its simplicity. The linguisticshallowness of this method, however, very often leads to irrelevant answers. In (10.1), forexample, the pattern-matching rule above would cause the nldbi to report the capital ofGreece.10.3.4 Semantic post-processingThe mrl expressions that are generated by the semantic analysis may be initially underspe-ci�ed, i.e. they may leave the semantic contribution of some linguistic mechanisms unclear.For example, they may not specify the exact entities to which anaphoric expressions refer, orthey may not specify the exact scopes of logical quanti�ers (see the discussion in chapter 6).There is usually one or more additional post-processing phases (�gure 10.1), that resolve suchunderspeci�ed elements of the logical expressions (e.g. they modify the logical expressions sothat the referents of anaphoric expressions and the scopes of logical quanti�ers are explicit;see [3] for a detailed discussion of how this is achieved in the cle system).Anaphoric expressions (e.g. \him", \these", \the project") are supported by severalnldbis. They are particularly useful because they allow follow-up questions to be short.For example, in the following interaction between the user and loqui (from [19]), the userrefers to the people who report to E. Feron as \they", instead of re-typing the �ve names.> Who leads tpi?E.Feron> Who reports to him?C.Leonard, C.Willems, E.Bidonnet, P.Cayphas, J.P.Van Loo> What do they work on?project workerdocdis C.WillemsJ.P.Van LooP.Cayphaseurs C.LeonardC.WillemsE.Bidonnet> Which of these are leaders?J.P.Van LooAnaphoric expressions are resolved by consulting a discourse model (chapter 7). Thediscourse models of most nldbis are rather simplistic, as they are typically used only toresolve anaphoric expressions. They can be simply lists of entities that have been mentioned,along with information on the properties of these entities, and the locations in the discoursewhere the entities have been mentioned. For each anaphoric expression, the nldbi searchesthis list until it �nds an appropriate referent (e.g. for the pronoun \him", a male singular entity

10.3. ARCHITECTURE AND MAIN COMPONENTS 9
person

employee

company

technician salesperson manager

feature

client licensesalary

driving_license export_license

root_type

Figure 10.2: A type hierarchy of world entitieshas to be found). Various heuristics can be employed in cases where an anaphoric expressionhas multiple possible referents in the list (e.g. the most recently mentioned possible referentmay be preferred.). (See [15] for information on the anaphora resolution module of a linguisticfront-end. [47] also discusses relatively simple methods for resolving pronoun anaphora thatcan be used in nldbis.)More elaborate discourse models and reference resolution rules are needed to handle el-liptical sentences, like \How about mit?" and \The smallest department?" in the followinginteraction (from [17]) between the user and parlance:> Does the highest paid female manager have any degrees from Harvard?Yes, 1.> How about mit?No, none.> Who is the manager of the largest department?Name Dept. CountPatterson 045 40> The smallest department?Name Dept. CountSaavedra 011 2Consult [2] and [3] for a discussion of practical ellipsis resolution techniques.10.3.5 Type hierarchy and selectional restrictionsDuring the semantic analysis and the post-processing, a type hierarchy of world entities, anda set of selectional restrictions are often employed. We discuss these below.The type hierarchy shows the various types and subtypes of world entities that are mod-elled in the database. (The term \entity" should be interpreted with a broad meaning. Itmay include, for example, salaries or ages.) Figure 10.2 shows a fragment of a possible typehierarchy that could be used when interfacing to a company's database. (Similar hierarchiesare used in team [36, 37], masque/sql [5, 7], and the cle [3].) The hierarchy of �gure10.2 shows that, in the context of that particular database, a person can be either a client oran employee, that employees are divided into technicians, sales-persons, and managers, etc.(The hierarchy does not need to be a tree. There could be, for example, a common subtypeof employee and client for employees that are also clients of the company.)The selectional restrictions typically specify the types of entities that the various predicate-arguments of the mrl may denote. To illustrate the use of the type hierarchy and the

10 CHAPTER 10. DATABASE INTERFACESselectional restrictions, let us consider the hierarchy of �gure 10.2, and let us assume that thedatabase stores the salaries of all employees, but not the salaries of clients. (For simplicity, letus assume that an employee cannot also be a client.) Then, (10.3) will retrieve no information,because the database does not store salaries of clients. We would like the nldbi to be ableto detect that the question is conceptually problematic from the database's point of view.(10.3) What is the salary of each client?In masque/sql, (10.3) would receive an mrl expression like (10.4):(10.4) answer([Salary, Person]):-is client(Person),salary of(Salary, Person).The selectional restrictions could specify that: (i) the argument of is client must alwaysdenote an entity of type client, (ii) that the �rst argument of salary of must always denotea salary, and (iii) that the second argument of salary of must always denote an employee.Then, restriction (i) and the second line of (10.4) require the variable Person to denote a cli-ent. This, however, leads to a violation of restriction (iii) in the third line of (10.4): restriction(iii) requires Person to denote an employee; this is incompatible with the requirement thatPerson must denote a client, because neither client nor employee are subtypes of each other.The system would, thus, be able to detect that the question is conceptually anomalous. It isrelatively easy to generate a message like \A client does not have a salary." to reportthis anomaly to the user. This could be achieved, for example, by associating a messagetemplate of the form \A X does not have a salary." with constraint (iii), and by repla-cing X with the type-name of the second argument of salary of whenever the constraint isviolated.In contrast, (10.5) would receive (10.6). Assuming that the argument of is technicianmust denote an entity of type technician, (10.6) does not violate any restriction, becausetechnician is a subtype of employee.(10.5) What is the salary of each technician?(10.6) answer([Salary, Person]):-is technician(Person),salary of(Salary, Person).The type hierarchy and the selectional restrictions are also useful in disambiguation. Forexample, from a nldbi's point of view (10.7) is potentially ambiguous: \with a driving licence"may refer either to \employees" or to \company". The two readings correspond to (10.8) and(10.9) respectively.(10.7) List all employees in a company with a driving licence.(10.8) answer([Employee]):-is employee(Employee),is company(Company),is licence for(driving, Licence),in(Employee, Company),has(Employee, Licence).

10.3. ARCHITECTURE AND MAIN COMPONENTS 11(10.9) answer([Employee]):-is employee(Employee),is company(Company),is licence for(driving, Licence),in(Employee, Company),has(Company, Licence).Of course, humans can �gure out immediately that the intended reading is (10.8), be-cause typically persons and not companies have driving licences. (In \List all employees ina company with an export licence.", however, the situation would be reversed.) This know-ledge can be encoded using selectional restrictions. One could specify that the arguments ofis employee and is companymust denote entities of types employee and company respectively,that when the �rst argument of is licence for is driving, the second argument must denotea driving licence, and that if the second argument of has denotes a driving licence, the �rstargument must denote a person. This would rule out (10.9), where the second argument ofhas denotes a driving licence, and the �rst one a company.Anaphora resolution methods can also exploit the type hierarchy and the selectional re-strictions. Knowing, for example, that only employees have salaries, limits the possible refer-ents of \his" in \What is his salary?" to male employees, excluding any previously mentionedmale clients.Type hierarchies and selectional restrictions have been employed in many natural languageprocessing areas. In systems that target broad knowledge domains (e.g. newspaper articles),type hierarchies and selectional restrictions are often di�cult (if at all possible) to construct,because of the very large number of involved entity types, and the enormous variety of possiblerelations between those types (see [2] for related discussion). Databases, however, typicallystore information about very few types of entities, and hence type hierarchies and selectionalrestrictions become manageable. In fact, very often the entity types that are relevant to thedatabase and many of their relations will have already been identi�ed during the design of thedatabase (e.g. in the form of \entity-relationship" diagrams [77]), and this information canbe exploited when specifying the type hierarchy and the selectional restrictions of the nldbi.10.3.6 Paraphrasing the inputWhenever the nldbi \understands" a natural language request to be ambiguous, several mrlexpressions are generated at the end of the post-processing, each corresponding to what thenldbi considers to be a possible reading of the input. (The input may be truly ambiguous,as in (10.10). It may also be { as it is often { the case that the nldbi has generated morereadings than the input can actually have.)(10.10) Which disabled and female applicants speak German?Some nldbis employ heuristics in the form of preference measures to determine the mostlikely reading (see [3] for related discussion). Another common technique is to generate anunambiguous paraphrase of each reading, asking the user to select the intended one. In(10.10), for example, an nldbi could ask the user to select one of the following:(10.11) Which applicants that are both disabled and female speak German?(10.12) Which disabled and which female applicants speak German?

12 CHAPTER 10. DATABASE INTERFACESIn the case of questions, if there are relatively few possible readings and the answersare short, the nldbi may generate the answers to all the readings, showing which answercorresponds to which paraphrased reading, without asking the user. Paraphrasing the inputis useful even when the nldbi generates only one reading. In the following interaction (from[75]) between the user and ask, for example, ask repeats the user's input with the pronounreplaced by what the system assumes to be its referent. This prevents the user from beingmisled, in case the system has not chosen the referent the user had in mind.> Is there a ship whose destination is unknown?yes> What is it?What is [the ship whose destination is unknown]?SaratogaRepeating the user's input with anaphoric expressions replaced by their referents is relat-ively easy. (We can augment the list of previously mentioned entities of the discourse modelto record the natural language expressions that introduce the entities; see section 10.3.4.) Inthe general case, however, one has to use natural language generation techniques (see chapter8; [31] and [55] also discuss paraphrasing techniques in nldbis).10.3.7 From meaning representation to database languageThe mrl expressions that are generated at the end of the semantic post-processing are sub-sequently translated into expressions of a database language (typically sql [60]) that is sup-ported by the underlying database management system (dbms). (The dbms is the part ofthe database system that is responsible for manipulating the information in the database).Various methods to translate from forms of logic to and from database languages have beenproposed (see, for example, [2], [5], [33] [56], [58], [67], [77], [78]). The full details of some ofthese proposals are highly technical, and hence beyond the scope of this chapter. Here, weonly attempt to highlight some of the central ideas on which several of these proposals arebased.Let us return, for example, to the mrl expression of (10.2), repeated here as (10.13):(10.13) answer([Capital, Country]):-is country(Country),borders(Country, greece),capital of(Country, Capital).Before mrl expressions like (10.13) can be translated into database language, one has to linkprimitivemrl expressions, like constants (e.g. greece) and predicate functors (e.g. is country,borders), to database constructs. For mrl constants, one has to specify a systematic way tomap them to database values (e.g. the country denoted by the mrl constant greece may berepresented in the database as Greece or GR). In the case of predicate functors, one mustlink each functor which may appear in the mrl expressions to a database construct thatshows for which arguments the predicates of the functor hold. (There are some cases wherethis linking is impossible. We discuss this in section 10.5.1.)Assuming, for example, that the database contains the following tables, one can simplylink the functor borders to the table borders info, meaning that borders(X, Y) is true if andonly if borders info contains a row for X and Y. (We make a closed-world assumption, i.e. we

10.3. ARCHITECTURE AND MAIN COMPONENTS 13assume that if a pair of two geographical areas is not included in borders info, the two areasdo not border each other.)countries infocountry capital currencyItaly Rome LiraAustralia Canberra DollarGreece Athens Drachma.
borders infoborders1 borders2Australia PacificGreece BulgariaAlbania GreeceBulgaria Greece.The database constructs to which functors are linked need not be stored directly in thedatabase. They may be computed indirectly from the contents of the database. The functorsis country and capital of, for example, could be linked to the tables countries and capitals.These are obtained by retaining only the �rst column or by dropping the third column ofcountries info respectively. (In sql, these derived tables can be de�ned as \views" [60].)countriescountryItalyAustraliaGreece. . .

capitalscountry capitalItaly RomeAustralia CanberraGreece Athens.Once primitive mrl expressions have been linked to the information of the database,mrl formulae can be translated into database language using a set of translation rules.These are of two sorts: base (non-recursive) rules that translate atomic mrl formulae (e.g.borders(Country, greece)), and recursive rules that translate non-atomic mrl formulae (e.g.(10.13)) by recursively calling other rules to translate their subformulae.In (10.13), a base rule could map borders(Country, greece) to (10.14), which generatesthe table of (10.15). (10.15) means that the resulting table should have the same contentsas borders info, except that only rows whose borders2 value is Greece should be retained.Intuitively, (10.14) shows all the argument values for which borders(Country, greece) holds.(In this case, the second argument is a constant, and hence the second column of (10.15)contains the same value in all rows.)(10.14) SELECT *FROM borders infoWHERE borders2 = 'Greece'(10.15) (result of (10.14))borders1 borders2Albania GreeceBulgaria GreeceTurkey Greece.The base rule that maps borders(Country, greece) to (10.14) could be formulated asfollows: each atomic formula �(�1; �2; �3; : : : ; �n) (where � is a predicate functor and �1; : : : ; �npredicate-arguments) is to be mapped to the sql expression of (10.16), where table is the name

14 CHAPTER 10. DATABASE INTERFACESof the database table to which the predicate functor is linked, �1, . . . , �n are all the mrlconstants among �1, . . . , �n, h(�1) . . . , h(�n) are the database values that correspond to theseconstants, and �1, �n are the names of the columns that correspond to the predicate-argumentpositions where �1, . . . , �n appear. (If there are no constants among �1, . . . , �n, the WHEREclause is omitted.)(10.16) SELECT *FROM tableWHERE �1 = h(�1) AND �2 = h(�2) AND �3 = h(�3) AND ... AND �n = h(�n)(10.16) would also map the is country(Country) and capital of(Country, Capital) of (10.13)to (10.17) and (10.18) respectively.(10.17) SELECT *FROM countries(10.18) SELECT *FROM capitalsAs an example of a recursive translation rule, an mrl conjunction of the form:�1(�11 ; : : : ; �1n1), �2(�21 ; : : : ; �2n2), : : : ; �k(�21 ; : : : ; �2nk)could be mapped to (10.19), where trans(�1(�11 ; : : : ; �1n1)), . . . , trans(�k(�k1 ; : : : ; �knk)) are thesql translations of �1(�11 ; : : : ; �1n1), . . . , �k(�21 ; : : : ; �2nk), and variable constraints stands foran expression that requires columns corresponding to the same variable to have the samevalues. For example, (10.20) would be mapped to (10.21), where \((10.17))", \((10.14))",\((10.18))" stand for the expressions of (10.17), (10.14), and (10.18) respectively. (10.21)generates (10.22), that intuitively shows all the combinations of predicate-argument valuesin (10.20) that make (10.20) true. (r1.country refers to the country column of the tablegenerated by (10.17), r2.borders1 refers to the borders1 column of the table generated by(10.14), etc.) (Several improvements can be made to our translation rules, for example toremove identical columns from (10.22).)(10.19) SELECT *FROM trans(�1(�11 ; : : : ; �1n1)), trans(�2(�21 ; : : : ; �2n2)), ..., trans(�k(�k1 ; : : : ; �knk))WHERE variable constraints(10.20) is country(Country),borders(Country, greece),capital of(Country, Capital)(10.21) SELECT *FROM ((10.17)) AS r1, ((10.14)) AS r2, ((10.18)) AS r3WHERE r1.country = r2.borders1 AND r2.borders1 = r3.country(10.22) (result of (10.21))r1:country r2:borders1 r2:borders2 r3:country r3:capitalAlbania Albania Greece Albania T iranaBulgaria Bulgaria Greece Bulgaria SofiaTurkey Turkey Greece Turkey Ankara.

10.3. ARCHITECTURE AND MAIN COMPONENTS 15Another recursive rule would generate the sql expression for the overall (10.13), using(10.21) (the translation of (10.20)). In masque/sql, the resulting sql expression wouldgenerate a table containing only the last column of (10.22).In some systems (e.g. [56]) the mrl expressions are translated �rst into more theoreticaldatabase languages (e.g. relational calculus [77]). Although these languages are not supporteddirectly by the dbmss, they are closer to logic-based mrls, which simpli�es the formulationof the translation rules and the proof of their correctness. In these cases, there is a separatemapping from the theoretical database language to the language that is actually supportedby the dbmss (e.g. sql). This extra mapping is often trivial (e.g. part of sql is essentially anotational variant of the tuple relational calculus).At the end of the translation from mrl to database language, the generated databaselanguage expression is executed by the dbms. This retrieves the appropriate informationfrom the database (in the case of questions), or modi�es the contents of the database (in thecase of requests to update the database; we discuss these in section 10.5.2).10.3.8 Response generationSo far, we have focussed mainly on the interpretation of the natural language input. Gener-ating an appropriate response to the user is also very importantIn the case of questions, simply printing the database constructs that were retrieved by theexecution of the database language expression (table rows in the case of relational databases) isnot always satisfactory. For example, the retrieved database constructs may contain encodedinformation (e.g. department codes instead of department names). An output formatter(�gure 10.1) is needed in this case, to convert the information to a more readable format.The retrieved information may also be easier to grasp if presented in graphical form (e.g.pie-charts). Commercial nldbis often provide such graphical output facilities.In other cases, the nldbi may fail to \understand" the user's request. The cause ofthe failure (e.g. unknown word, syntax too complex, conceptually ill-formed input) shouldbe explained to the user. (Some methods to detect conceptually ill-formed requests werediscussed in section 10.3.5.)A more challenging task is to generate what is known as cooperative responses. These areneeded when the user's requests contain false presuppositions, or do not express literally whatthe users want to know. These cases are illustrated in the following interaction with Loqui(based on examples from [19] and [20]):> Does every person that works on 20 projects work on hoscom?There is no such person.> Does David Sedlock work on something?Yes. bim loqui, mmi2, nlpad.In the �rst question, the system has detected the false presupposition that there are peopleworking on 20 projects, and it has generated a suitable message. In the second and thirdquestions, the system did not generate a simple \yes" or \no"; it also reported additionalinformation that the user probably wanted to know.In some cases, such cooperative responses can be generated using relatively simple mech-anisms. Let us consider, for example, yes/no questions that contain expressions introducingexistential quanti�ers (e.g. \something", \a
ight"), like the second question of the dialogueabove. Whenever the answer is a�rmative, one strategy is to print a \yes", followed by the

16 CHAPTER 10. DATABASE INTERFACESanswer to the question that results when the expressions that introduce existential quanti�ersare replaced with suitable interrogatives (e.g. \what", \which
ight"; this is easier to achieveby operating on the mrl representation of the question). In the second question of the dia-logue above, this generates a \yes" followed by the answer to \On what does David Sedlockwork?".When the answer is negative, one can generate a \no", followed by the answer to thequestion that results when a constraint of the original question is modi�ed. In the followingdialogue (based on an example from [49]), the nldbi has replaced the constraint that the
ight must be an American
ight with the similar constraint that the
ight must be a United
ight.> Do American Airlines have a night
ight to Dallas?No, but United have one.One must be careful to limit the types of constraints that can be modi�ed. In the previousdialogue, for example, the nldbi must not be allowed to modify the constraint that the
ightmust be to Dallas, otherwise (as pointed out in [49]) the dialogue could have been:> Do American Airlines have a night
ight to Dallas?No, but they have one to Miami.Kaplan [50, 51, 52] discusses relatively simple mechanisms for generating cooperative re-sponses, including methods to detect false presuppositions. It is not always possible, however,to generate reasonable cooperative responses using simple mechanisms. In some cases, to gen-erate an appropriate cooperative response, the nldbi must be able to reason about the user'sintentions, as discussed in chapter 7. This requires an inferencing component. We return tothis issue in section 10.5.1.10.4 PortabilityA signi�cant part of nldbi research has been devoted to portability issues. We discuss belowthree kinds of nldbi portability. Most of the discussion relates to the architecture of �gure10.1.10.4.1 Knowledge-domain portabilityCurrent nldbis can cope only with natural language requests that refer to a particular know-ledge domain (e.g. requests only about the employees of a company, or only about train-schedules). Before a nldbi can be used in a new knowledge domain, it has to be con�gured.This typically involves modifying the pre-processing rules (section 10.3.2), the lexicon, thetype hierarchy and selectional restrictions (section 10.3.5), and the information that linksprimitive mrl expressions to database constructs (section 10.3.7). One of the advantages ofthe architecture of �gure 10.1 is that it separates clearly these domain-dependent modulesfrom the rest of the system. Di�erent assumptions about the skills of the person who willcon�gure the nldbi are possible:Programmer: In some systems a (preferably small and well-de�ned) part of the nldbi'scode has to be rewritten during the con�guration. This requires the con�gurer to be aprogrammer.

10.4. PORTABILITY 17Knowledge engineer: Other systems provide tools that allow the con�guration to be car-ried out without any programming. They still assume, however, that the con�gurer is familiarwith knowledge representation techniques (e.g. logic), databases, and linguistic concepts. Forexample, masque (an enhanced version of chat-80 from which masque/sql was developed)provides a \domain-editor" [10], that helps the con�gurer to \teach" the system new wordsand concepts that are common in the new knowledge domain. The use of the domain-editoris illustrated in the following dialogue, where the con�gurer teaches the system the verb \toexceed" (as in \Does the population of Germany exceed the population of Portugal?"):7editor> add verbwhat is your verb? exceedwhat is its third singular present? exceedswhat is its past form? exceededwhat is its participle form? exceedingto what set does the subject belon? numericis there a direct object? yesto what set does it belong? numericis there an indirect object? nois it linked to a complement? nowhat is its predicate? greater thanIn the dialogue above, apart from teaching the system the morphology of the various formsof the verb, the con�gurer has also declared that the verb introduces mrl predicates of theform greater than(X,Y), where X and Y denote entities that belong to the numeric type ofthe type hierarchy (section 10.3.5).Some nldbis (e.g. parlance [17], the cle [3]) provide morphology modules that allowthem to infer the various forms of the new words without asking the con�gurer. Other systemshave large built-in lexicons that cover the most common words of typical database domains,minimising the need to elicit lexical information from the user. (According to the vendor ofone current commercial nldbi, their system comes with a built-in lexicon of 16,000 words; seealso the discussion in chapter 2.) In some cases, it is also possible to construct automaticallylexicon entries from the contents of the database (see, for example, the discussion on proper-names in section 10.3.2).Database administrator: In practice, nldbis may often be con�gured by the adminis-trators of existing databases. In that case, it is reasonable to assume that the con�gurerswill be familiar with database concepts and the targetted database, but not with mrls orlinguistics. This is the approach adopted by the designers of team [36, 37]. In the followingdialogue (based on an example from [36]), team collects information about the databasetable (\file") chip. Notice that team uses database terminology (e.g. \primary key"), butnot terms from linguistics or logic (e.g. \participle" and \predicate" in the masque dialogueabove).file name: chipfields: id maker width7masque's domain-editor does not actually shield completely the knowledge-engineer from the programminglanguage. The knowledge engineer is still required to write some Prolog to relate mrl expressions to thedatabase.

18 CHAPTER 10. DATABASE INTERFACESsubject: processorsynonyms for processor: chipprimary key: idCan one say ``Who are the processors?': noPronouns for subject (he, she, it,they): itfield: MAKERtype of field (symbolic, arithmetic, feature): symbolic. . .End-user: Other nldbi designers emphasise that the con�guration can never be complete,and that the end-users should be allowed to teach the system new words and concepts usingnatural language. This approach is illustrated in the following interaction with parlance[17], where the user de�nes the terms \yuppie" and \rich employee":> de�ne: a yuppie is a person under 30 with a graduate degree who earns over 5K per month> de�ne: a rich employee is an employee who earns over 100K per yearAlthough large built-in lexicons and con�guration tools have made nldbis much easier toport to new knowledge domains, con�guring a nldbi for a new knowledge domain is oftenstill a complicated task, and it may still require at least some familiarity with basic naturallanguage processing concepts. Alternative graphical and form-based database interfaces areusually easier to con�gure. As we noted in section 10.2, this is probably one of the mainreasons for the small market-share of nldbis.10.4.2 DBMS portabilitynldbis that adopt widely-supported database languages (e.g. sql [60]) can often be used withdi�erent dbmss that support the same database language with only minor modi�cations. Ifthe original database language is not supported by the new dbms, the part of the nldbi thatis responsible for translating from mrl to database language (the database back-end of �gure10.1) has to be rewritten. In that case, one of the advantages of the architecture of �gure 10.1is that no modi�cations are needed in the linguistic front-end, provided that the knowledgedomain remains the same.The architecture of �gure 10.1 also leads to the development of generic linguistic front-ends, that apart from nldbis can be used as components of other natural language processingsystems. (An example of such a system is the cle [3], that has been used as a component ofboth a nldbi and a machine translation system.)10.4.3 Natural language portabilityAlmost all of the existing nldbis require the user's requests to be formulated in English.Modifying an existing nldbi to be used with a di�erent natural language can be a formidabletask, because the nldbi may contain deeply embedded assumptions about the targettednatural language. [54] provides some information about an attempt to build a Portugueseversion of chat-80 [80]. Information about Swedish, French, and Spanish versions of the clecan be found in [3] and [66].

10.5. ADVANCED ISSUES 1910.5 Advanced issuesHaving introduced the basic components of the typical nldbi architecture, we now move onto some more advanced issues, namely the \doctor-on-board" problem, database updates,meta-knowledge, modal, and temporal questions.10.5.1 The \doctor-on-board" problemThe discussion of section 10.3.7 assumed that each predicate functor can be linked to adatabase construct (a table in the relational model) that shows the arguments for which thepredicates of the functor hold. That database construct, it was assumed, is either storeddirectly in the database, or can be computed from the contents of the database. There aresome cases, however, where this assumption does not hold. The \doctor-on-board" problem[63] is a well-known example of such a case.Let us imagine a database that contains only the following table, which holds informationabout the ships of a
eet. The third column shows if a doctor is on board the ship (\y") ornot (\n"). ships infoship crew doctorV incent 420 yInvincible 514 ySparrow 14 n.Let us also consider (10.23), which would receive the masque/sql-like mrl expression of(10.24). (10.24) shows that the answer should be a�rmative i� there is a doctor D that is onboard Vincent.(10.23) Is there a doctor on the Vincent?(10.24) answer([]):-is doctor(D),on board(D, vincent).To apply the mrl to database language translation method of section 10.3.7, one needs tolink is doctor to a database table that shows the entities that are doctors. This is impossible,however, because the database (which contains only ships info) does not list the doctors.Similarly, on board has to be linked to a table that shows which entities are on board whichships. Again, this table cannot be computed from the information in the database.What is interesting is that (10.24) is equivalent to (10.25), where doctor on board(D,S) isintended to be true i� is doctor(D) and on board(D,S) are both true. Unlike (10.24), (10.25)poses no problem for the translation method of section 10.3.7, because doctor on board canbe linked to a version of ships info without the crew column.(10.25) answer([]):-doctor on board(D, vincent).The problem is that (10.23) cannot be mapped directly to (10.25). The mrl expression(10.24) is typical of what most natural language front-ends would generate, with predicateswhich are introduced by linguistic constituents (e.g. is doctor(X) is introduced by the noun

20 CHAPTER 10. DATABASE INTERFACESphrase \a doctor", and on board(X, vincent) by the prepositional phrase \on Vincent").What is needed is a mechanism to convert the mrl expressions that are generated by thelinguistic front-end to equivalent mrl expressions that contain only predicate functors whichcan be linked to appropriate database tables. [67] proposes a mechanism which can, amongother things, perform this conversion. Roughly speaking, the conversion is carried out by aninferencing component that employs rules like (10.26).(10.26) (doctor(�1), on board(�1, �2)) � doctor on board(�2)(10.26) allows any mrl expression of the form doctor(�1), on board(�1, �2) (where �1 and�2 stand for mrl terms) to be replaced by doctor on board(�2). (10.26) would license theconversion from (10.24) to (10.25). (10.25) would then be translated into database languageas discussed in section 10.3.7.Inferencing components are also useful in cases where the nldbi has to reason aboutthe user's intentions to generate cooperative responses (section 10.3.8). They can also beemployed to allow the nldbi to deduce new facts from the information in the database (e.g.with appropriate reasoning rules, a nldbi connected to a hospital's database could answer\Which patients need attention overnight?" even if the database does not
ag explicitlypatients who need overnight attention). In some nldbis (e.g. intellect), the inferencingcomponent can be a full expert system, which acts as an intermediate layer between thelinguistic front-end and the database back-end.[4] provides a detailed description of clare, a nldbi with reasoning capabilities. clareis based on the cle [3], and includes the inferential mechanism of [67].10.5.2 Database updatesApart from answering questions, some nldbis also allow the user to update the informationin the database. This is illustrated in the following dialogue with ask [75] [76]:> What is the home port of the Tokyo Maru?Yokohama> Home port of the Tokyo Maru is Hong Kong.Yokohama has been replaced by Hong Kong as home port of Tokyo Maru.ask knows that a ship may have only one home port, and hence in the second request itreplaced Yokohama by Tokyo Maru. In contrast, it knows that a ship may carry many typesof cargo. Hence, the input \The Tokyo Maru carries coal." would lead ask to add coal to thepreviously known cargoes of the Tokyo Maru, instead of replacing the previous information.Natural language database updates can be di�cult to process, because they may lead tounanticipated side-e�ects. These side-e�ects are due to database constraints that the user isnot aware of. This is illustrated in the following dialogue (the example is borrowed from [30]).> List the employees and their managers.employee managerAdams FisherWhite BakerBrown JonesSmith Jones> Change Brown's manager from Jones to Baker.

10.5. ADVANCED ISSUES 21Done.> List the employees and their managers.employee managerAdams FisherWhite BakerBrown BakerSmith BakerNotice that Smith's manager also changed from Jones to Baker, although this was not reques-ted. This happens because in the database (which contains the two tables below) employeesare linked to managers indirectly, through their departments.employees tableemployee salary departmentAdams 3000 inventoryWhite 3500 marketingBrown 2500 salesSmith 2500 sales
departments tabledepartment managersales Jonesmarketing Bakerinventory F isherTo satisfy the user's request to change the manager of Brown, the system has changed thesales manager from Jones to Baker. This caused all other employees in the sales department(e.g. Smith) to receive Baker as their new manager. Users not aware of the database structurewould �nd this behaviour hard to explain. (nldbi users are usually not informed about thestructure of the database. Not having to be aware of the database structure is supposed tobe an advantage of nldbis over graphical or form-based interfaces.)The indirect link between employees and managers actually makes the update request inthe dialogue above ambiguous: instead of changing the sales manager from Jones to Baker,the nldbi could have moved Smith from the sales department (which is managed by Jones)to the marketing department (which is managed by Baker). piquet [30] maintains a modelof the user's conceptual view of the database. Whenever a user input re
ects awareness orpresupposition of a database object, link, or restriction, the model is modi�ed accordingly.If the user enters an ambiguous request (in the above sense), the nldbi consults the modelto select the reading that has the fewest side-e�ects with respect to the user's current viewof the database. In the dialogue above, after \List the employees and their managers." hasbeen answered, the user's view of the database corresponds to the table:employee managerAdams FisherWhite BakerBrown JonesSmith JonesIf \Change Brown's manager from Jones to Baker." is interpreted as a request to changethe sales manager from Jones to Baker, the answer causes the user's view to become as shownbelow on the left. A side-e�ect (shown in bold) occurs. If, in contrast, the sentence is inter-preted as a request to move Brown from the sales department to the marketing department,the user's view becomes as shown below on the right.employee managerAdams FisherWhite BakerBrown BakerSmith Baker employee managerAdams FisherWhite BakerBrown BakerSmith Jones

22 CHAPTER 10. DATABASE INTERFACESThe second interpretation introduces no side-e�ects to the user's view, and would have beenpreferred by piquet.10.5.3 Meta-knowledge, modal, and temporal questionsThis section discusses brie
y some types of questions that present particular interest.Meta-knowledge questions: Apart from questions about the entities that are representedin the database, the user may want to submit queries about the conceptual organisation ofthe database's knowledge (e.g. \What information does the database contain?", \What arethe properties of employees?"). These can be considered meta-knowledge questions, as theyrefer to knowledge about the database's knowledge. The following example (from [75]) showshow ask reacts to a question of this kind.> What is known about ships?Some are in the following classes: navy, freighter, tankerAll have the following attributes: destination, home port...Most nldbis do not support meta-knowledge questions.Modal questions: Database systems usually enforce a set of integrity constraints to guardagainst contradicting or incorrect information (e.g. an employee cannot have two dates ofbirth, and in practice, the age of an employee is never greater than 80), and to enforcecorporate policies (e.g. that employees cannot earn more than their managers, or that allemployees must be over 20). [57] presents a method that exploits these integrity constraintsto answer modal questions, questions that ask if something may or must be true (e.g. \Can anemployee be 18 years old?", \Is it the case that J.Adams must earn more than T.Smith?").Temporal questions: Most nldbis do not provide adequate support for temporal linguisticmechanisms. For example, users are often allowed to use very few (if any) verb tenses,temporal adverbials (e.g. \for two hours", \before 5:00pm"), or temporal subordinate clauses(e.g. \while J.Adams was personnel manager"). [6, 9] discuss how some of these mechanismscan be supported when constructing nldbis for temporal databases (databases designed tohandle time-dependent data).10.6 Restricted input systemsWe noted in section 10.3.3 that one of the main problems of nldbis is that their linguisticcoverage is usually not obvious to the user. This often has the annoying consequence thatusers are forced to rephrase their requests several times, until a phrasing that falls within thelinguistic coverage of the system is found. To overcome this problem, most nldbi developersattempt to expand the linguistic coverage of their systems, hoping that eventually it will bepossible to process successfully most of the users' inputs. An alternative approach, which wediscuss in this section, is to restrict drastically the linguistic coverage of the nldbi, and todo this in a manner that allows the users to obtain a clearer view of the system's linguisticcapabilities.

10.6. RESTRICTED INPUT SYSTEMS 2310.6.1 Controlled languagesOne way to make the linguistic capabilities of nldbis clearer is to support only a naturallanguage fragment whose syntax is made explicitly known to the user. (The term controlledlanguage is often used to refer to such fragments.) The fragment must be selected carefully,to make its syntax easy to explain. A well-chosen fragment may also allow a direct mappingfrom natural language to database language.In pre [34], for example, the user was allowed to input only questions of the followingpattern: what is/areconjoined noun phrasesnested relative clausesconjoined relative clausesThe user could, for example, enter the following question (simpli�ed example from [34]). Line(1) contains the conjoined noun phrases. Lines (2) { (4) contain the nested relative clauses(they are nested, because (3) refers to \schedules" in (2), and (4) refers to \appointments"in (3)). Lines (5) { (7) contain the conjoined relative clauses (these are not nested; they allrefer to the \orders" of (4)).what is/arethe names, ids, and categories of the employees (1)who are assigned schedules (2)that include appointments (3)that are executions of orders (4)whose addresses contain `maple' and (5)whose dates are later than 12/15/83 and (6)whose statuses are other than `comp' (7)In contrast, the following question was not accepted by pre. In this case, line (2) containsthe only clause of the nested relative clauses part. Both (3) and (4) are conjoined relativeclauses referring to the \schedules" of (2). However, (5) is nested with respect to (4), becauseit refers to the \orders" of (4), not the \schedules" of (2). pre's question pattern does notallow conjoined relative clauses to be followed by other nested relative clauses.what arethe addresses of the appointments (1)that are included in schedules (2)whose call times are before 11:30 and (3)that are executions of orders (4)whose statuses are other than `comp' (5)Epstein claims that pre's question pattern is easy to remember, though this is probablyarguable.8 pre's question pattern is also chosen to simplify the retrieval of information fromthe database. pre adopts an entity-relationship-like database model [77]. Figure 10.3, for8appeal by Winformation Software adopts a similar controlled language approach, but with a more re-stricted and easier to remember syntax; see http://wwwiz.com/home/mather.

24 CHAPTER 10. DATABASE INTERFACES
employeeschedule

call_time name id category

includes

appointment order
execution_of

address address date status

assigned_a

Figure 10.3: The structure of a pre-like database.example, shows the structure of the database to which the previous two examples refer.9 Ovalboxes correspond to entity types, rectangular boxes correspond to attributes of entities, andcontinuous lines correspond to relations between entities.The conjoined noun phrases of pre's question pattern correspond to a projection operator[77]. Projection operators specify which attributes (e.g. name, address) of an entity are tobe reported. The nested relative clauses correspond to traversals of continuous line links(relationships between entities). Finally, the conjoined relative clauses correspond to selectoperators. These pick individual entities of particular types according to certain criteria.For example, to answer the �rst question of this section, pre �rst transforms the conjoinedrelative clauses to a select operator. This selects all the order entities that contain `maple'in their addresses, and that have dates later than 12/15/83, and statuses other than `comp'.Next, pre transforms the nested relative clauses to a sequence of relationship (continuousline) traversals. In our example, this connects the orders that were selected in the previousstep to appointment via the execution of relationship, appointments to schedule via theincludes relationship, and schedules to employees via the assigned a relationship. Finally,Pre transforms the conjoined noun phrases to a projection operator. For each employeeentity reached during the previous step, the system reports its name, id, and category.The main disadvantage of nldbis with controlled languages is that the user has to betaught the syntax of the supported fragment. In applications where the users need to be ableto submit complex queries, it may not be easy to de�ne a natural language fragment whichis both rich enough to allow these queries and easy to understand.10.6.2 Menu-based systemsAnother approach is to require the users to form their requests by choosing words or phrasesfrom menus displayed on the screen. Figure 10.5, for example, shows the initial screen ofnlmenu [73, 74] (the example is from [74]). The highlighted border of the commands menuindicates that the �rst word of the user's request has to be chosen from that menu. (Sy-mantec's q&a o�ered a similar menu-based mode of interaction.)9[34] does not provide much information about pre's database. Figure 10.3 may not re
ect the exact formof pre's database model.

10.7. CONCLUSIONS 25
Find Delete

Insert

attributes

commands

weight

quantity

city

color

name

part#

supplier#

status

between

greater than

less than

greater than or equal to

less than or equal to

equal to

suppliers

parts

shipments

<specific suppliers>

<specific parts>

<specific shipments>

nouns

comparisons

modifiers

whose part city is

whose color is

whose part name is

whose part# is

whose supplier city is

whose supplier name is

whose supplier supplier# is

whose shipment part# is

whose shipment supplier# is

whose supplier status is

whose shipment quantity is

which are shipments of

which were shipped by

who ship

who supply

which are supplied by

whose part weight is

connectors

of

the total

the average and

or

>

the number of

Figure 10.4: The initial nlmenu screen.nlmenu used a context-free semantic grammar (section 10.2). Whenever a new word orphrase was selected, nlmenu used the grammar to determine which words or phrases couldbe attached to the string that the user had assembled up to that point, to form a request thatthe system could process. These words and phrases were then shown in the menus. Figure10.5, for example, shows the nlmenu screen after entering \Find color and name of parts".Notice how the modi�ers menu has changed to contain only completions that the system canhandle.The main advantage of menu-based nldbis is that only requests that the systems canhandle can be input, and the users can obtain an understanding of the systems' capabilitiesby browsing the menus. This approach works well in domains where small dictionaries andshort questions are adequate. With large dictionaries and longer questions, however, themenus proliferate, and become lengthy and di�cult to use.10.7 ConclusionsThis chapter has attempted to serve two purposes: to introduce the reader to the �eld ofnldbis by describing some of the central issues, and to highlight the state of the art innldbis by outlining the facilities, methods, and problems of typical implemented systems. Inthe light of the discussion in the previous sections, the following observations seem valid tous. The area of nldbis is mature enough, to the extend that usable systems can be constructedfor real-world applications, and indeed several commercial nldbis have appeared.Although usable nldbis can and have been constructed, nldbis currently hold a rathersmall market-share, mainly because of competition from graphical and form-based interfaces.Despite their limitations, these alternative interfaces are often more appealing, because theircapabilities are usually clearer to the users, and they are easier to con�gure. To improve the

26 CHAPTER 10. DATABASE INTERFACES
Find Delete

Insert

attributes

commands

weight

quantity

city

color

name

part#

supplier#

status

between

greater than

less than

greater than or equal to

less than or equal to

equal to

suppliers

parts

shipments

<specific suppliers>

<specific parts>

<specific shipments>

nouns

comparisons

modifiers

whose part city is

whose color is

whose part name is

whose part# is

connectors

whose part weight is

which are supplied by

Find color and name of parts> Figure 10.5: nlmenu's screen at a later stage.position of their systems in the market, nldbi developers need to address these two issues,and to explore applications where the alternatives to nldbis are di�cult to use.One example of such an application might involve remote access to databases by tele-phone. There is a growing body of research (e.g. [1]) integrating speech recognition, robustinterpretation, and dialogue-handling techniques, with the goal of implementing systems thatengage users in spoken dialogues to assist with certain tasks (see chapter 15). This line ofresearch is likely to have a signi�cant impact on future nldbis, giving rise to systems thatwill allow users to access databases via speech, in situations where graphical and form-basedinterfaces are di�cult to use (cf. the atis domain [87]).Regarding the obscurity of the capabilities of nldbis, we believe that this problem canbe overcome by incorporating robust language interpretation methods and dialogue-handlingtechniques (chapters 5 and 15). These will allow nldbis to make reasonable guesses about thecontent of any user inputs which cannot be \understood" in their entirety. Also, such systemscan engage in reasonably cooperative dialogues that will both help the users to realise thecapabilities of the nldbi and also assist the system in determining the task to be performed.The con�guration di�culties of nldbis are more of an obstacle. Portability has beena primary research focus of nldbi research for almost two decades. Although signi�cantimprovements have been made, nldbis still cannot compete with graphical or form-basedinterfaces in terms of ease of con�guration. The situation may become worse if nldbis adoptrobust interpretation and dialogue-handling techniques as suggested above, since many ofthese techniques rely heavily on domain-dependent information. There could be a possibleniche for nldbis, nevertheless, in accessing a small number of very large, centrally held,widely accessed databases (e.g. telephone directories). The con�guration of the nldbis forthese databases could be assigned to nldbi experts, with the understanding that it will be alengthy and resource-consuming e�ort, the cost of which will be balanced by the subsequentwide use of the nldbis.

Bibliography[1] D. Albesano, P. Baggia, M. Danieli, R. Gemello, E. Gerbino, and C. Rullent. DIA-LOGOS: A Robust System for Human-Machine Spoken Dialogue on the Telephone. InProceedings of the International Conference on Acoustics, Speech, and Signal Processing,Munich, Germany, 1997.[2] J.F. Allen. Natural Language Understanding. Benjamin/Cummings, Menlo Park, USA,1995.[3] H. Alshawi, editor. The Core Language Engine, Cambridge, Massachusetts, 1992. MITPress.[4] H. Alshawi, D. Carter, R. Crouch, S. Pulman, M. Rayner, and A. Smith. CLARE {A Contextual Reasoning and Cooperative Response Framework for the Core LanguageEngine. Final report, SRI International, Cambridge, UK, 1992.[5] I. Androutsopoulos. Interfacing a Natural Language Front-End to a Relational Database.Master's thesis, Department of Arti�cial Intelligence, University of Edinburgh, 1992.[6] I. Androutsopoulos. A Principled Framework for Constructing Natural Language Inter-faces to Temporal Databases. PhD thesis, Department of Arti�cial Intelligence, Universityof Edinburgh, 1996.[7] I. Androutsopoulos, G. Ritchie, and P. Thanisch. An E�cient and Portable NaturalLanguage Query Interface for Relational Databases. In P.W. Chung, G. Lovegrove,and M. Ali, editors, Proceedings of the 6th International Conference on Industrial &Engineering Applications of Arti�cial Intelligence and Expert Systems, Edinburgh, pages327{330, Langhorne, PA, U.S.A., 1993. Gordon and Breach Publishers Inc.[8] I. Androutsopoulos, G.D. Ritchie, and P. Thanisch. Natural Language Interfaces toDatabases { An Introduction. Natural Language Engineering, 1(1):29{81, 1995.[9] I. Androutsopoulos, G.D. Ritchie, and P. Thanisch. Time, Tense and Aspect in NaturalLanguage Database Interfaces. Natural Language Engineering, forthcoming.[10] P. Auxerre and R. Inder. MASQUE Modular Answering System for Queries in English{ User's Manual. Technical Report AIAI/SR/10, Arti�cial Intelligence ApplicationsInstitute, University of Edinburgh, 1986.[11] B. Ballard and M. Jones. Computational Linguistics. In S.C. Shapiro, editor, Encyclo-pedia of Arti�cial Intelligence, volume 1, pages 203 { 224. John Wiley and Sons, NewYork, 1992. 27

28 BIBLIOGRAPHY[12] B. Ballard and D. Stumberger. Semantic Acquisition in TELI. In Proceedings of the 24thAnnual Meeting of ACL, New York, pages 20{29, 1986.[13] B.W. Ballard. The Syntax and Semantics of User-De�ned Modi�ers in a Transport-able Natural Language Processor. In Proceedings of the 22nd Annual Meeting of ACL,Stanford, California, pages 52{56, 1984.[14] B.W. Ballard, J.C. Lusth, and N.L. Tinkham. LDC-1: A Transportable, Knowledge-based Natural Language Processor for O�ce Environments. ACM Transactions on O�ceInformation Systems, 2(1):1{25, January 1984.[15] F.A. Barros and A. De Roeck. Resolving Anaphora in a Portable Natural Language FrontEnd to a Database. In Proceedings of the 4th Conference on Applied Natural LanguageProcessing, Stuttgart, Germany, pages 119{124, 1994.[16] M. Bates, M.G. Moser, and D. Stallard. The IRUS transportable natural languagedatabase interface. In L. Kerschberg, editor, Expert Database Systems, pages 617{630.Benjamin/Cummings, Menlo Park, CA., 1986.[17] BBN Systems and Technologies. BBN Parlance Interface Software { System Overview,1989.[18] J.E. Bell and L.A. Rowe. An Exploratory Study of Ad Hoc Query Languages to Data-bases. In Proceedings of the 8th International Conference on Data Engineering, Tempe,Arizona, pages 606{613. IEEE Computer Society Press, February 1992.[19] BIM Information Technology. Loqui: An Open Natural Query System { General Descrip-tion, 1991.[20] J.-L. Binot, L. Debille, D. Sedlock, and B. Vandecapelle. Natural Language Interfaces:A New Philosophy. SunExpert Magazine, pages 67{73, January 1991.[21] R.J. Bobrow. The RUS System. In Research in Natural Language Understanding, BBNReport 3878. Bolt Beranek and Newman Inc., Cambridge, Massachusetts, 1978.[22] R.J. Bobrow, P. Resnik, and R.M. Weischedel. Multiple Underlying Systems: TranslatingUser Requests into Programs to Produce Answers. In Proceedings of the 28th AnnualMeeting of ACL, Pittsburgh, Pennsylvania, pages 227{234, 1990.[23] R.A. Capindale and R.G. Crawford. Using a Natural Language Interface with CasualUsers. International Journal of Man-Machine Studies, 32:341{361, 1990.[24] N. Cercone, P. McFetridge, F. Popowich, D. Fass, C. Groeneboer, and G. Hall. The Sys-temX Natural Language Interface: Design, Implementation, and Evaluation. TechnicalReport CSS-IS TR 93-03, Centre for Systems Science, Simon Fraser University, Burnaby,BC, Canada, 1993.[25] E.F. Codd. A Relational Model for Large Shared Data Banks. Communications of ACM,13(6):377{387, 1970.[26] E.F. Codd. Seven Steps to RENDEZVOUS with the Casual User. In J. Kimbie andK. Ko�eman, editors, Data Base Management, pages 179 { 200. North-Holland Publish-ers, 1974.

BIBLIOGRAPHY 29[27] P.R. Cohen. The Role of Natural Language in a Multimodal Interface. Technical Note514, Computer Dialogue Laboratory, SRI International, 1991.[28] A. Copestake and K. Sparck Jones. Natural Language Interfaces to Databases. TheKnowledge Engineering Review, 5(4):225{249, 1990.[29] F. Damerau. Operating Statistics for the Transformational Question Answering System.American Journal of Computational Linguistics, 7:30{42, 1981.[30] J. Davidson and S.J. Kaplan. Natural Language Access to Data Bases: InterpretingUpdate Requests. Computational Linguistics, 9(2):57{68, 1983.[31] A.N. De Roeck and B.G.T. Lowden. Generating English Paraphrases from Formal Re-lational Calculus Expressions. In Proceedings of the 11th International Conference onComputational Linguistics, Bonn, Germany, pages 581{583, 1986.[32] S.M. Dekleva. Is Natural Language Querying Practical? Data Base, pages 24{36, May1994.[33] C. Draxler. Accessing Relational and Higher Databases through Database Set Predicatesin Logic Programming Languages. PhD thesis, University of Zurich, 1992.[34] S.S. Epstein. Transportable Natural Language Processing Through Simplicity { ThePRE System. ACM Transactions on O�ce Information Systems, 3(2):107{120, 1985.[35] B. Grosz, K. Sparck Jones, and B. Webber. Readings in Natural Language Processing.Morgan Kaufmann, Los Altos, USA, 1986.[36] B.J. Grosz. TEAM: A Transportable Natural-Language Interface System. In Proceedingsof the 1st Conference on Applied Natural Language Processing, Santa Monica, California,pages 39{45, 1983.[37] B.J. Grosz, D.E. Appelt, P.A. Martin, and F.C.N. Pereira. TEAM: An Experiment in theDesign of Transportable Natural-Language Interfaces. Arti�cial Intelligence, 32:173{243,1987.[38] C.D. Hafner. Interaction of Knowledge Sources in a Portable Natural Language Interface.In Proceedings of the 22nd Annual Meeting of ACL, Stanford, California, pages 57{60,1984.[39] C.D Hafner and K. Godden. Portability of Syntax and Semantics in Datalog. ACMTransactions on O�ce Information Systems, 3(2):141{164, April 1985.[40] L.R. Harris. User-oriented Data Base Query with the ROBOT Natural Language QuerySystem. International Journal of Man-Machine Studies, 9:697{713, 1977.[41] L.R. Harris. The ROBOT System: Natural Language Processing Applied to Data BaseQuery. In Proceedings of the ACM'78 Annual Conference, pages 165{172, 1978.[42] L.R. Harris. Experience with ROBOT in 12 Commercial Natural Language Data BaseQuery Applications. In Proceedings of the 6th International Joint Conference on Arti�cialIntelligence, Tokyo, Japan, pages 365{368, 1979.

30 BIBLIOGRAPHY[43] L.R. Harris. Experience with INTELLECT: Arti�cial Intelligence Technology Transfer.The AI Magazine, 5(2):43{50, 1984.[44] L.R. Harris. Proliferating the Data Warehouse Beyond the Power User. White paper,Linguistic Technology Corporation, 1996.[45] G. Hendrix, E. Sacerdoti, D. Sagalowicz, and J. Slocum. Developing a Natural LanguageInterface to Complex Data. ACM Transactions on Database Systems, 3(2):105{147, 1978.Reprinted in [35], pages 563{584.[46] E.W. Hinrichs. Tense, Quanti�ers, and Contexts. Computational Linguistics, 14(2):3{14,1988.[47] C.H. Hwang and K. Schubert. Resolving Pronoun References. Lingua, 44:311{338, 1978.Reprinted in [35], pages 339{352.[48] M. Jarke, J.A. Turner, E.A. Stohr, Y. Vassiliou, N.H. White, and K. Michielsen. A FieldEvaluation of Natural Language for Data Retrieval. IEEE Transactions on SoftwareEngineering, SE-11(1):97{113, 1985.[49] T. Johnson. Natural Language Computing: The Commercial Applications. Ovum Ltd.,London, 1985.[50] S.J Kaplan. Indirect Responses to Loaded Questions. Theoretical Issues in NaturalLanguae Processing, 2:202{209, 1978.[51] S.J. Kaplan. Cooperative Responses from a Portable Natural Language Data Base QuerySystem. Arti�cial Intelligence, 19:165{187, 1982.[52] S.J. Kaplan. Cooperative Responses from a Portable Natural Language Database QuerySystem. In M. Brady and R.C. Berwick, editors, Computational Models of Discourse,chapter 3, pages 167{208. MIT Press, Cambridge, Massachusetts, 1983.[53] M.C. Linebarger, L.M. Norton, and Dahl D.A. A Portable Approach to Last ResortParsing and Interpretation. In Human Language Technology { Proceedings of the ARPAWorkshop, Princeton, NJ, pages 31{36. Morgan Kaufmann, 1993.[54] G.P. Lopes. Transforming English Interfaces to Other Languages: An Experiment withPortuguese. In Proceedings of the 22nd Annual Meeting of ACL, Stanford, California,pages 8{10, 1984.[55] B.G.T. Lowden and A.N. De Roeck. REMIT: A Natural Language Paraphraser forRelational Query Expressions. ICL Technical Journal, 5(1):32{45, 1986.[56] B.G.T. Lowden, B.R. Walls, A.N. De Roeck, C.J. Fox, and R. Turner. A Formal Ap-proach to Translating English into SQL. In Jackson and Robinson, editors, Proceedingsof the 9th British National Conference on Databases, 1991.[57] B.G.T. Lowden, B.R. Walls, A.N. De Roeck, C.J. Fox, and R. Turner. Modal Reas-oning in Relational Systems. Technical Report CSM-163, Dept. of Computer Science,University of Essex, 1991.

BIBLIOGRAPHY 31[58] R. Lucas. Database Applications Using Prolog. Halsted Press, 1988.[59] P. Martin, D. Appelt, and F. Pereira. Transportability and Generality in a Natural-Language Interface System. In Proceedings of the 8th International Joint Conference onArti�cial Intelligence, Karlsruhe, Germany, pages 573{581. Morgan Kaufmann, 1983.Reprinted in [35], pages 585{593.[60] J. Melton and A.R. Simon. Understanding the New SQL: A Complete Guide. MorganKaufmann Publishers, San Mateo, California, 1993.[61] J. Mylopoulos, A. Borgida, P. Cohen, N. Roussopoulos, J. Tsotsos, and H. Wong.TORUS: A Step Towards Bridging the Gap Between Data Bases and the Casual User.Information Systems, 2:49{64, 1976.[62] N. Ott. Aspects of the Automatic Generation of SQL Statements in a Natural LanguageQuery Interface. Information Systems, 17(2):147{159, 1992.[63] C.R. Perrault and B.J. Grosz. Natural Language Interfaces. In H.E. Shrobe, editor,Exploring Arti�cial Intelligence, pages 133{172. Morgan Kaufmann Publishers Inc., SanMateo, California, 1988.[64] C. Pollard and I.A. Sag. Head-Driven Phrase Structure Grammar. University of ChicagoPress and CSLI Stanford, 1994.[65] F. Popowich, P. McFetridge, D.C. Fass, and G. Hall. Processing Complex Noun Phrasesin a Natural Language Interface to a Statistical Database. In Proceedings of the 15thInternational Conference on Computational Linguistics, Nantes, France, volume 1, pages47{52, 1992.[66] M. Rayner, D. Carter, and P. Bouillon. Adapting the Core Language Engine to Frenchand Spanish. In Proceedings of the Conference on Natural Language Processing andIndustrial Applications, Moncton, New Brunswick, Canada, 1996.[67] Manny Rayner. Abductive Equivalential Translation and its Application to Natural Lan-guage Database Interfacing. PhD thesis, Royal Institute of Technology, Stockholm, 1993.[68] R.J.H. Scha. Philips Question Answering System PHILIQA1. In SIGART Newsletter,no.61. ACM, New York, 1977.[69] D.W. Small and L.J. Weldon. An Experimental Comparison of Natural and StructuredQuery Languages. Human Factors, 25(3):253{263, 1983.[70] D. Stallard and R. Bobrow. The Semantic Linker { A New Fragment Combining Method.In Human Language Technology { Proceedings of the ARPA Workshop, Princeton, NJ,pages 37{42. Morgan Kaufmann, 1993.[71] M. Templeton. EUFID: A Friendly and Flexible Frontend for Data Management Systems.In Proceedings of the 17th Annual Meeting of ACL, pages 91{93, 1979.[72] M. Templeton and J. Burger. Problems in Natural Language Interface to DBMS with Ex-amples from EUFID. In Proceedings of the 1st Conference on Applied Natural LanguageProcessing, Santa Monica, California, pages 3{16, 1983.

32 BIBLIOGRAPHY[73] H.R. Tennant, K.M. Ross, M. Saenz, C.W. Thompson, and J.R. Miller. Menu-BasedNatural Language Understanding. In Proceedings of the 21st Annual Meeting of ACL,Cambridge, Massachusetts, pages 151{158, 1983.[74] R. Tennant, K.M. Ross, and Thompson C.W. Usable Natural Language Interfacesthrough Menu-Based Natural Language Understanding. In Proceedings of CHI'83, Con-ference on Human Factors in Computer Systems, Boston. ACM, 1983.[75] B.H. Thompson and F.B. Thompson. Introducing ASK, A Simple Knowledgeable Sys-tem. In Proceedings of the 1st Conference on Applied Natural Language Processing, SantaMonica, California, pages 17{24, 1983.[76] B.H. Thompson and F.B. Thompson. ASK is Transportable in Half a Dozen Ways. ACMTransactions on O�ce Information Systems, 3(2):185{203, April 1985.[77] J.D. Ullman. Principles of Database and Knowledge-Base Systems { Volume 1. ComputerScience Press, Rockville, Maryland, 1988.[78] A. Van Gelder and R.W. Topor. Safety and Translation of Relational Calculus Queries.ACM Transactions on Database Systems, 16(2):235{278, 1991.[79] D.L. Waltz. An English Language Question Answering System for a Large RelationalDatabase. Communications of ACM, 21(7):526{539, July 1978.[80] D. Warren and F. Pereira. An E�cient Easily Adaptable System for Interpreting NaturalLanguage Queries. Computational Linguistics, 8(3-4):110{122, 1982.[81] R. Weischedel. A Hybrid Approach to Representation in the JANUS Natural Lan-guage Processor. In Proceedings of the 27th Annual Meeting of ACL, Vancouver, BritishColumbia, pages 193{202, 1989.[82] S. Whittaker and P. Stenton. User Studies and the Design of Natural Language Systems.In Proceedings of the 4th Conference of the European Chapter of ACL, Manchester,England, pages 116{123, April 1989.[83] W.A. Woods. Procedural Semantics for a Question-Answering Machine. In Proceedingsof the Fall Joint Computer Conference, pages 457{471, New York, NY, 1968. AFIPS.[84] W.A. Woods. Lunar Rocks in Natural English: Explorations in Natural Language Ques-tion Answering. In A. Zampoli, editor, Linguistic Structures Processing, pages 521{569.Elsevier North-Holland, New York, 1977.[85] W.A. Woods. Semantics and Quanti�cation in Natural Language Question Answering.In M. Yovitz, editor, Advances in Computers, volume 17. Academic Press, New York,1978. Reprinted in [35], pages 205 { 248.[86] W.A. Woods, R.M. Kaplan, and B.N. Webber. The Lunar Sciences Natural LanguageInformation System: Final Report. BBN Report 2378, Bolt Beranek and Newman Inc.,Cambridge, Massachusetts, 1972.

BIBLIOGRAPHY 33[87] V. Zue, S. Sene�, J. Polifroni, M. Phillips, C. Pao, D. Goddeau, J. Glass, and E. Brill.PEGASUS: A Spoken Language Interface for On-Line Air Travel Planning. In Pro-ceedings of the ARPA Human language Technology Workshop, Princeton, New Jersey,1994.

