IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Anomalous diffusion for a class of systems with two conserved quantities

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2012 Nonlinearity 25 1099
(http://iopscience.iop.org/0951-7715/25/4/1099)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 140.77.141.87
The article was downloaded on 16/07/2012 at 14:40

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0951-7715/25/4
http://iopscience.iop.org/0951-7715
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

TIOP PUBLISHING NONLINEARITY

Nonlinearity 25 (2012) 1099-1133 doi:10.1088/0951-7715/25/4/1099

Anomalous diffusion for a class of systems with two
conserved quantities

Cédric Bernardin' and Gabriel Stoltz2

! Université de Lyon and CNRS, UMPA, UMR-CNRS 5669, ENS-Lyon, 46, allée d’Italie,
69364 Lyon Cedex 07, France

2 Université Paris Est, CERMICS and INRIA, MICMAC project-team, Ecole des Ponts
ParisTech, 6 & 8 Av. Pascal, 77455 Marne-la-Vallée, France

E-mail: cedric.bernardin@ens-lyon.fr and stoltz@cermics.enpc.fr

Received 19 May 2011, in final form 31 January 2012
Published 19 March 2012
Online at stacks.iop.org/Non/25/1099

Recommended by C Liverani

Abstract

We introduce a class of one-dimensional deterministic models of energy—
volume conserving interfaces. Numerical simulations show that these dynamics
are genuinely super-diffusive. We then modify the dynamics by adding
a conservative stochastic noise so that it becomes ergodic. A system of
conservation laws are derived as hydrodynamic limits of the modified dynamics.
Numerical evidence shows that these models are still super-diffusive. This is
proven rigorously for harmonic potentials.

Mathematics Subject Classification: 82C05, 82C70, 82C31

(Some figures may appear in colour only in the online journal)

1. Introduction

Over the last decade, transport properties of one-dimensional systems consisting of coupled
oscillators on a lattice have been the subject of many theoretical and numerical studies, see the
review papers [35, 8, 28]. Despite many efforts, our knowledge of the fundamental mechanisms
necessary and/or sufficient to have a normal diffusion remains very limited. Nevertheless, it has
been recognized that conservation of momentum plays a major role and numerical simulations
provide strong evidence of the fact that one-dimensional chains of anharmonic oscillators
conserving momentum are super-diffusive.

In this paper we propose a new class of models for which anomalous diffusion is observed.
The system under investigation presents several analogies with standard chains of oscillators,
but, and it is our main motivation, has a simpler mathematical structure.
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1.1. Description of the model

Let U and V be two potentials on R and consider the Hamiltonian system (w(f));»0 =
(r (1), p(t) )i>0 described by the equations of motion

dp X / / dr X / /
= Vi(re) — Vi), —— =U'(px) = U (px-1)s x € Z, ey
dr dr
where p, is the momentum of particle x, g, its position and r, = ¢, — g,_; the ‘deformation’.
Standard chains of oscillators are recovered for a quadratic kinetic energy U(p) = p?/2.
The dynamics conserves three physical quantities: the total momentum ) p,, the total
deformation ) r, and the total energy > &, with & = V(r,) + U(p,). Consequently,

every product probability measure vg ;- defined by

dvgs () =[] 2B, 2, 2) " exp {=BE — Ap. — W1} drodp, )

xX€Z

is invariant under the evolution. For later purposes, let us also introduce the short-hand notation

Ex B Vg (Eo)
e =1pr:1, u=1\|xr], e=1\| vgarr(po)
I A vg . (ro)
In this paper, we are mainly interested in the case U = V (except for instance in

section 4.4), which has the advantage of introducing more symmetries into the problem.
The state of the system at time ¢ is then more conveniently described by the variable
n(t) = {n:(t); x € Z} € RZ with 92,1 = r, and 12, = p,. The dynamics can be rewritten as

dne(0) = (V/Orn) = V') di. 3)

The system can therefore also be interpreted as a fluctuating interface where the algebraic
volume of the interface at site x € Z is given by n, and the energy by V (n,). We focus our
study on the (anomalous) diffusion of the energy. The three quantities, momentum ) 1y,
deformation ) ., n2.+1 and energy Y _, V(1,), are conserved but, for reasons which will
become clear later, our interest lies only in the ‘volume’ " _, 1, and in the energy.

1.2. Hydrodynamic limit

Energy transport properties strongly depend on the chosen time scale. The first natural scale
to consider is the hyperbolic scale where the system is followed on long times Nt, the space
being renormalized by a factor N~!, with N — 0.

To this end, we define the empirical energy/momentum/deformation measure as follows:

aV(t,dg) = N' Y etN)Syw(dg), g eR. @
XEL
Attime ¢ = 0, this measure is supposed to converge in probability to some macroscopic profile
I1y(q) dg which has a density w.r.t. the Lebesgue measure. If we assume that a local equilibrium
hypothesis holds, it is not difficult to show that the expected macroscopic evolution equation
for I1(t, ¢) dg = limy_.o 7™ (¢, dg) is given by a triplet of compressible Euler equations:

0,IT+9,1(IT) =0, I1(0, -) = Ip(+), 5)

where I(IT) € R3 is the macroscopic current whose explicit expression is not important here.
Unfortunately, proving the local equilibrium hypothesis for (1) is out of the range of the
current mathematical techniques. The main difficulty comes from our inability to show that
the dynamics is ergodic (in the sense of definition 1 below). If the ergodicity is proved, in the



Anomalous diffusion for a class of systems with two conserved quantities 1101

time interval where (5) has a smooth solution, the relative entropy method of Yau (see [43])
can be adapted to show that the system has (5) as a hydrodynamic limit. Hence, the problem
can be reduced to proving the ergodic behaviour of the underlying dynamics. Deriving the
convergence to (5) after the shocks is considerably more difficult since even the concept of a
solution to a system of conservation laws is not fully understood.

To overcome the above mentioned lack of ergodicity of deterministic systems, it has
been proposed to add a stochastic perturbation to the dynamics. The theory of stochastic
perturbations of Hamiltonian dynamics has a long history. To our knowledge, the first paper
on the ergodicity of infinite lattice models is [11] (see also [1,2, 16-18,26,32]). The added
noise must be carefully chosen in order not to destroy the conservation laws we are interested in.
In the general case U # V, the Hamiltonian dynamics can be perturbed by a local noise acting
on the velocities (as proposed in [16]) but conserving the three physical invariants mentioned
at the end of section 1.1 (see section 4.4). With such additional noises, the perturbed dynamics
can be proved to be ergodic (see theorem 3), so that (5) is obtained as a hydrodynamic limit.
However, our motivation being to simplify as much as possible the dynamics consideredin [1, 2]
without destroying the anomalous behaviour of the energy diffusion, we mainly focus on the
symmetric case U = V with a noise conserving only the two important quantities responsible
for the anomalous transport behaviour, namely the energy and the volume. Thus, we introduce
a new stochastic energy—volume conserving dynamic, which is still described by (3) between
random exponential times where two nearest neighbour heights 7, and 7,,; are exchanged
(see section 2.3 for a precise definition). Observe that the noise still conserves the total energy
and the total volume but destroys the conservation of momentum and deformation. Therefore,
only two quantities are conserved and the invariant Gibbs measures of the stochastic dynamics
correspond to the choice A = A’ in (2). We denote vg ; , (respectively, Z(8, A, 1)) by g
(respectively, Z(B, A)) and we use in the following the short-hand notation

(Vo) (B - Mﬁ,A(V(Tlo))>
S = ( M ) Y= </\> 5= ( wpa(mo) ) ©

The first main result of this paper is that the perturbed dynamics informally described
above is ergodic (see theorem 2). Consequently, before the appearance of shocks, the stochastic
energy—volume conserving dynamics has a hyperbolic system of two conservation laws as a
hydrodynamic limit (see theorem 1).

1.3. (Super)Diffusive limit

In the second part of the paper we investigate the diffusion of the energy at a longer time scale.
If the process has a diffusive behaviour then the relevant time scale is the diffusive one, where
the system is studied over long times N2t with space renormalized by a factor N~!. We claim
that the system genuinely displays an anomalous energy diffusion so that the diffusive scale is
not the relevant one. Heuristically, we can interpret this anomalous diffusion as a consequence
of the volume conservation law (see section 2.2).

We start the infinite system (1) under the equilibrium distribution g ; - and consider first
the fluctuation field in the hyperbolic time scaling:

1 by -
In(t, @) = ﬁéa(ﬁ) ® (e.(tN) — 5), )
where
Gi(y)
GO = [ G

G3(y)



1102 C Bernardin and G Stoltz

is a smooth vector valued test function with compact support. We expect that Yy (¢, -) converges
in law to ) (, -), where ) is the solution of the linearized equation

&Y +DIF)d,Y =0, ®)

with DI (¢) the differential of I at £&. Hence, in the hyperbolic scaling, fluctuations evolve
deterministically according to

V(t,G) =Y (0,e"G),

where U = [D1(€)]0, and U* = —[D1(&)]*9, with [DI(&)]* the transpose matrix of DI ().

To see a nontrivial behaviour of the fluctuation field, we need to look at )y on a longer
time scale t N'*®, for some o > 0. It is expected that, after subtracting the transport term
appearing in the hyperbolic time scale, the field

it G) = Iy (1N, e ) ©)

converges to some limiting field Y. The case @ = 1 would correspond to a diffusive behaviour
with ) the solution of the linear stochastic partial differential equation

8,V =V (D® VY) +./2XD> VW,

where W (x, 1) is a standard space-time white noise. Here, X is the compressibility and
D> = lim;_, o 55, v (1) the limiting diffusivity (see (41) and (43) for the definitions of these
quantities). We refer the reader to [39] for a general background reference, and to [27] for a
rigorous proof of the convergence for asymmetric simple exclusion processes.

For the class of models we consider, our conjecture is that « is in general strictly lower
than 1. The value of « and the nature of Y are not expected to be universal and should depend
on some specific properties of the potentials. We also expect a similar picture when the
deterministic dynamics (1) is replaced by the stochastic energy—volume conserving dynamics
(we then denote by Dg , and Cg ;, the corresponding diffusivity and current—current correlation
function). This anomalous value of « should be reflected in the divergence of the diffusivity
Dg s.n (t) or Dg () for the stochastic dynamics in the large time limit t — oo.

We are not able to study theoretically this problem for the deterministic dynamics and we
have to turn to computer simulations of nonequilibrium systems in their steady states. A chain
of length 2N + 1 is coupled at each extremity (left and right) to a thermal reservoir fixing the
temperature (7, on the left, 7, on the right). In the stationary state (-), the average current
(Jn)ss 1s measured (see section 6 for more precise definitions). The quantity of interest is the
divergence exponent § of the transport coefficient

Ky = (NJN>ss - N(S.
T, - 1T,
Anomalous diffusion corresponds to § > 0.

For a normal transport, the link between the two situations can be seen through a Green—
Kubo formula for the limiting diffusivity, which expresses the latter as a quantity proportional
to the time integral of the equilibrium current—current correlation function (see (49) and (48)
for a precise definition). It is widely accepted, but not proved, that for normal diffusive
systems the limiting diffusivity coincides with the transport coefficient k = limy_,« k. For
anomalous diffusion, ¥k = +00 and the current—current autocorrelation function which appears
in the Green—Kubo formula is not integrable because it decays very slowly. Consequently the
limiting diffusivity is infinite.

Our second main results are the following. First, we show numerically that, for generic
anharmonic potentials V, the dynamics (3) has an anomalous diffusion. We also show that
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this phenomenon persists if the deterministic dynamics is replaced by the stochastic energy—
volume conserving dynamics, and that the divergence exponent § depends on the strength of
the random perturbation. Secondly, for the stochastic energy—volume conserving dynamics
and a harmonic potential V (r) = r?/2, we compute explicitly the equilibrium current—current
correlation function Cg ; () and show that it decays as # =/ for large 7 (see theorem 4). This
implies that the diffusivity Dg ; (1) diverges as /7, which is a clear manifestation of the super-
diffusion of the energy for this model.

1.4. Organization of the paper

We present more precisely the model under investigation in section 2. We first study the
hydrodynamic limit in sections 3 (presentation of the general result) and 4 (proof of the
fundamental ingredient for the limit to hold, namely the ergodicity of the dynamics). We
then consider diffusion properties, starting with analytical results on the longtime tail of
the current autocorrelation function, which can be obtained for harmonic potentials (see
section 5), and then providing scalings of the energy current obtained by numerical simulations
of nonequilibrium systems in their steady states in section 6. Some proofs are gathered in the
appendix.

2. The models

2.1. The deterministic models

2.1.1. Finite systems. Consider the finite box Ay = {—N, ..., N} C Z (with N > 1). The
product space RA* is denoted by R, and a typical element of Qy isn = {n, € R; x € Ay}.
The deterministic finite volume dynamics (n" (¢)) >0 € Qy is defined by its generator

N-1

Ay = Z (V/(nxﬂ) - V,(nx—l))am — V/(T]N_l) 8,,N + V/(n—NH) a'LN’ (10)
x=—(N-1)

where V is a smooth convex potential such that the partition function

Z(B,A) = /00 exp (—BV(r) — Ar) dr

is well defined for 8 > 0 and A € R. The following microscopic energy—volume conservation
laws hold forx = —-N+1,...,N —1:
AV ==V i) Avme=-V[i ]

where V is the discrete gradient defined, for any function u : Z — R, by (Vu)(x) =
u(x + 1) — u(x), and where the microscopic energy and volume currents are, respectively,

Jn = =V 0DV i =—(V 00+ V ().

2.1.2. Infinite systems. The dynamics in the infinite volume A = Z, with formal generator

A=Y (V) = V') )y,
X€eZ
is also very important. Since the state space is unbounded, explosion problems can arise and
the construction of solutions of the dynamics in infinite volume may become a technically
nontrivial problem. To avoid such issues, we restrict ourselves (apart from section 6) to the
case 0 < V" < C for some positive constant C > 0. Then, the construction is quite standard
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since the pioneering work [25] of Lanford ez al. We refer the interested reader to [12, 16] for
further precisions. For any a > 0, let 2, be the set of configurations n such that

E n?e M < o0,

X€Z

and equip Q2 = Ny=0$2, With its natural product topology and its Borel o-field. The set of
Borel probability measures on €2 is denoted by P(€2). A function f : & — R is said to be
local if it depends on » only through the coordinates {n,; x € Af}, A being a finite box
of Z. We also introduce the sets C’g(Q) (k > 1) of bounded local functions on €2 which are
differentiable up to order k& with bounded partial derivatives.

For each initial condition o € €2 the existence and uniqueness of a solution to (3) can
be proved by a classical fixed-point argument a la Picard. The solution n(-) := n(-, o)
defines a process with continuous trajectories. Moreover, each path 7 (-, o) is a continuous and
differentiable function of the initial data . We define the corresponding semigroup (P;);>0
by (P; f)(0) = f(n(t, o)) for any bounded measurable function f on 2. The differentiability
with respect to initial conditions shows that the Chapman—Kolmogorov equations

(P, f)o) = f(<7)+f0 (AP; f)(o)ds, f e i)
l (11)
(P f)lo) = f(0*)+/0 (PyAf)(o)ds, f e CyR)

are valid. With these equations, probability measures v € P(£2) invariant by the deterministic
dynamics are characterized by the stationary Kolmogorov equation:

Vf e Cy(R), /(Af)(n)dv(n) =0.

Denoting the usual scalar product between two vectors a, b € R? by a - b, and recalling the
notation introduced in (6), it is easily seen that every product measure jg; defined by

dpps(m =]2B. 0" exp{—w-&} dn,

X€Z

is invariant for the infinite dynamics. In the following, we denote the average of a function f
with respect to g by (f)g.x-

Depending on the potential V at hand, the properties of the dynamics can be very different.
In the next subsection we discuss the case V (r) = /2, which leads to a linear dynamics. A
second remarkable potential is the exponential potential Vxym(g) = €7 9+g — 1, corresponding
to the so-called Kac—van-Moerbecke system, which is integrable (see [23]). The corresponding
system is related to the famous Toda lattice [41], i.e. a chain of oscillators with coupling
potential Vkxywm, by a simple transformation.

2.2. The deterministic linear model

We consider here the specific case V (r) = r?/2. The dynamics is then linear and can be solved
analytically using Fourier transform. To simplify the exposition we consider the dynamics in
infinite volume. We introduce the kth mode 7(k, -) for k € T = R/Z, the one-dimensional
torus of length 1:

A,k =D () ™.

X€Z
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Then, the equations of motion are equivalent to the following decoupled system of first-order
differential equations:

%(n k) = iw (k) (e, k),
where the dispersion relation w (k) reads
w (k) = —2sin(2wk),
and the group velocity vy is
v (k) = o'(k) = —4m cos(2mk).

By inverting the Fourier transform, the solution can be written as

ne(t) = / B, k) e 2
T

Note also that the energy of the kth mode

1
Ex(t) = 17, k) = Ex(0)

is conserved by the time evolution, and that the total energy current J¢ = ), j¢ ., takes
the simple form

Je=/vg(k)Ek dk.
T

We interpret the waves 7(k, t) as fictitious particles similar to phonons in solid state
physics. In the absence of nonlinearities, they travel the chain without scattering. If the
potential is nonquadratic, it may be expected that the nonlinearities produce a scattering
responsible for the diffusion of the energy. Nevertheless, the conservation of the volume,
which is expressed by

7(t, 0) =71(0,0), 12)

plays a crucial role. The identity (12) is valid even if V is not quadratic. It means that the
Oth mode is not scattered at all and crosses the chain ballistically. In fact, the modes with
small wave number k do not experience a strong scattering and they therefore contribute to the
observed anomalous diffusion of energy. For anharmonic chains of oscillators, a similar picture
arises with 77(k) replaced by the phonons. As the conservation of momentum for these chains
is responsible for the small scattering of phonons with small wave numbers, the conservation
of the volume for the model considered in this paper is responsible for the small scattering of
the waves 77(k) with small wave numbers.

2.3. Stochastic energy—volume conserving dynamics

We now consider energy—volume conserving stochastic perturbations of the deterministic
dynamics generated by A or Ay. The generator of the finite volume perturbed dynamics
is written as

Ly = An +ySy, (13)

where Sy is the generator of the noise and y > 0 its intensity. The generator Sy reads

N-1

SvHm =Y [Fa™ = fm]. (14)

x=—N
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where n***! is the configuration obtained from 7 by exchanging the variables 7,
and Nx+1-

By arguments similar to the one used to prove the well-posedness of the infinite
deterministic dynamics, it can be shown that the stochastic energy—volume conserving
dynamics in infinite volume is also well defined (see [16] for details). Its formal generator is
givenby £ = A+ yS where

SHM =D [F0 = fm],

X€Z

and the corresponding Chapman—Kolmogorov equations (11) are valid for this process upon
replacing A by L. In particular the probability measures pg ; are still invariant.

3. Hyperbolic scaling

We present in this section the hydrodynamic limit of the models described in the previous
section. To this end, we first need to define some thermodynamic quantities useful to describe
local equilibria (section 3.1). We then informally describe the expected hydrodynamic limit in
section 3.2, and conclude this section by stating precisely the convergence result (theorem 1)
in section 3.3.

3.1. Definition of thermodynamic variables

Recall that the probability measures (g, form a family of invariant probability measures for
the infinite dynamics defined in section 2. The following thermodynamic relations (which are
valid since we assumed that the partition function Z is well defined on (0, +00) x R) relate
the chemical potentials 8, A to the mean volume v and the mean energy e under g :

V(B2 = ppang) =~ (log Z(8. 1)),
e(B. ) = 1p(V(n) = =05 (log Z(B, 1))

These relations can be inverted by a Legendre transform to express B and A as a function of e
and v. Define the thermodynamic entropy S : (0, +o0) x R — [—00, +00) as

Se.v)= inf {ﬁe + v +1log Z(B, A) }

15)

Let U be the convex domain of (0, +00) x R where S(e, v) > —o0 and U its interior. Then,
for any (e, v) := (e(B, 1), v(B, X)) € U, the parameters §, A can be obtained as

B = (9.5)(e, v), A =(3,5)(e, v). (16)
We also introduce the tension 7(8, 1) = g (V'(19)) = —A/B. Then,
12 G ) = =77 1 Gy ) = =27 (17)

In the following, with a slight abuse of notation, we also write t for 7(8(e, v), A(e, v)) where
B(e, v) and (e, v) are defined by relations (16).

3.2. Description of the hydrodynamic limit

Consider the finite closed stochastic energy—volume dynamics with periodic boundary
conditions, that is the dynamics generated by Ly per = AN per + ¥ Si per Where

(Avperf ) = D2 [V/G1at) = V/G1a-0)] 0y, £ O, (1)

xeTy
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and

(Snper S = D [F) = F],
xeTy
where Ty = R/(NZ) is the discrete torus of length N. We choose to consider the dynamics
on Ty rather than on Z to avoid nontrivial technicalities. We are interested in the macroscopic
behaviour of the two conserved quantities on a macroscopic time scale Nt as N — oo.
We assume that the system is initially distributed according to a local Gibbs equilibrium
state corresponding to a given energy—volume profile Xy : T — u:

[4))
X =
o= ().

in the sense that, for a given system size N, the initial state of the system is described by the
following product probability measure:

N _ exp {—=Po(x/N)V (nx) — ko(x/N)1s}
d/’Leo»Uo(n) - Xle_T[N Z(ﬁo(x/N), )\,0(X/N))

where (Bo(x/N), Ag(x/N)) is actually a function of (eo(x/N), vo(x/N)) through the
relations (16).

Starting from such a state, we expect the state of the system at time ¢ to be close, in
a suitable sense, to a local Gibbs equilibrium measure corresponding to an energy—volume

profile
_ e(tv ')
X(ta')_( U(l,) )5

satisfying a suitable partial differential equation with initial condition X, at time t = 0. In
view of (17), and assuming local equilibrium, it is not difficult to show that the expected partial
differential equation is the following system of two conservation laws:

dn, (19)

de— 3,17 =0,
(20)
db — 29,7 =0,
with initial conditions ¢(0, -) = eg(-), (0, -) = v(-). We write (20) more compactly as
atX + 8q3(X) = Oa X(Ov ) = XO(')v
with
—12(e, 0)
J(X) = ’ . 21
10’9 (_ZT . n)> 1)

The system of conservation laws (20) has other nontrivial conservation laws. In particular,
the thermodynamic entropy S is conserved along a smooth solution of (20):

0;S(e,v) =0. (22)

Since the thermodynamic entropy is a strictly concave function on U, the system (20) is strictly
hyperbolic on U (see [37]). The two real eigenvalues of (DJ) (&) are 0 and —[8,(t2)+23,()],
corresponding, respectively, to the two eigenvectors

—0,T T
. 2
() () @
It is well known that classical solutions to systems of n > 1 conservation laws develop

shocks, even when starting from smooth initial conditions. Nevertheless, the Cauchy problem
is locally well-posed in the Sobolev spaces H*(T) (fors > 3/2). If we consider weak solutions
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rather than classical solutions, then a criterion is needed to select a unique, relevant solution
among the weak ones. For scalar conservation laws (n = 1), this criterion is furnished by
the so-called entropy inequality and existence and uniqueness of solutions is fully understood.
If n > 2, only partial results exist (see [6,37]). This motivates the fact that we restrict our
analysis to smooth solutions before the appearance of shocks.

3.3. Derivation of the hydrodynamic limit

We now turn to the question of deriving the system of conservation laws as the hydrodynamic
limit of the interacting particle system under investigation. We assume that the potential V
satisfies the following assumption.

Assumption 1. The potential V is a smooth, non-negative function such that the partition
function Z(B, \) = f_oooo exp(—BV (r) — Ar) dr is well defined for B > 0 and A € R and there
exists a positive constant C such that

0<V'(ry<c, (24)
and

. V'(r)

lim sup € (0, +00), (25)
|r|—=+00 r

Vv’ 2

lim sup ﬂ < +00. (26)
|r|—+00 V(r)

The hypothesis (24) allows one to define easily the dynamics in infinite volume; (25) is
needed in the proof of theorem 2; (26) ensures that the currents of the conserved quantities
are bounded by the energy. This is useful to introduce a suitable cutoff for the derivation of
hydrodynamic limits (see [4, section 3]).

Provided we can prove that the infinite volume dynamics is ergodic in a suitable sense (see
definition 1), then we can rigorously prove, using the relative entropy method of Yau, that (5)
is indeed the hydrodynamic limit in the smooth regime, i.e. for times ¢ up to the appearance
of the first shock (see, for example, [24,42]). Recall indeed that a simple computation shows
that the stochastic perturbation does not modify the hydrodynamic limit since the effect of the
latter is observed in the diffusive scale only.

In most cases, the derivation of hydrodynamic limits is performed for stochastic interacting
particle systems which are trivially ergodic by construction. For deterministic systems on the
other hand, the ergodicity is extremely difficult to prove. We are only able to show a weaker
form of such ergodicity for the process generated by A (with the additional assumption that
the invariant measure is exchangeable). This weaker form is nonetheless sufficient to show
that the process generated by L is ergodic (see theorem 2).

As argued in [42], it turns out that when there is more than one conservation law, the
conservation of thermodynamic entropy (22) must hold for the hydrodynamic limit to be well
defined. This relation is indeed fundamental for Yau’s method where, in the expansion of the
time derivative of relative entropy, the cancellation of the linear terms is a consequence of the
preservation of the thermodynamic entropy.

Averages with respect to the empirical energy—volume measure are defined, for continuous

functions G, H : T — R, as
1 X
% 2 G (%) Vo)

<5N(l, G)) _ x€Ty
) = I (2

xeTy
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We can then state the following result.

Theorem 1. Fix some y > 0 and consider the dynamics on the torus Ty generated by Ly per
where the potential V satisfies assumption 1. Assume that the system is initially distributed
according to a local Gibbs state (19) with smooth energy profile ¢y and volume profile v,.
Consider a positive time t such that the solution (e, v) to (20) belongs to U and is smooth on
the time interval [0, t]. Then, for any continuous test functions G, H : T — R, the following
convergence in probability holds as N — +00:

(ex N, G VxaN, ) — ( | c@ee.ana. [ H(q)n(nq)dq)
T T

The derivation of the hydrodynamic limits beyond the shocks for systems of conservation
laws of dimension n > 2 is very difficult and is one of the most challenging problems in the
field of hydrodynamic limits. The first difficulty is of course our poor understanding of the
solutions to such systems. Recently, Fritz proposed in [13] to derive hydrodynamic limits for
hyperbolic systems (in the case n = 2) by some extension of the compensated-compactness
approach [10, 31, 40] to stochastic microscopic models. This program has been achievedin [15]
(see also [14]), where the authors derive the classical n = 2 Leroux system of conservation
laws. In fact, to be exact, only the convergence to the set of entropy solutions is proved, the
question of uniqueness being left open. It remains nonetheless the best result available at this
time. The proof is based on a strict control of entropy pairs at the microscopic level by the
use of logarithmic Sobolev inequality estimates. It would be very interesting to extend these
methods to systems such as the ones considered in this paper.

4. Ergodicity

We prove here the ergodicity of the stochastic dynamics, which is the fundamental ingredient
for the hydrodynamic limit.

4.1. Definitions and notation

In order to explain what is meant by ergodicity of the infinite volume dynamics we need to
introduce some notation. For any topological space X equipped with its Borel o-algebra we
denote by P(X) the convex set of probability measures on X. The relative entropy H (v|u) of
v € P(X) with respect to u € P(X) is defined as

HWw|p) = sup{/qbdv — log </ e¢du)}, (27)
¢

where the supremum is carried over all bounded measurable functions ¢ on X. Recall also
the entropy inequality, which states that for every positive constant @ > 0 and every bounded
measurable function ¢, it holds

/¢dv <a™! {log </ e¢ du> + H(vm)} . (28)

Let 6,,x € Z, be the shift by x: (6:n); = n.,. For any function g on 2, 6,g
is the function such that (6,g)(n) = g(6,n). For any probability measure u € P(2),
0, € P(2) is the probability measure such that, for any bounded function g : @ — R,
it holds fQ gdO,n) = fQ O.gdp. If 6,0 = p for any x then p is said to be translation
invariant.
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If A is a finite subset of Z the marginal of 1 € P(2) onR? is denoted by st| . The relative
entropy of v € P(£2) with respect to u € P(L2) in the box A is defined by H (v| | |a) and
is denoted by Hj (v|i). We say that a translation invariant probability measure v € P(£2) has
finite entropy density (with respect to w) if there exists a finite positive constant C such that
for any finite A C Z, Hy (v|u) < C|A|. In fact, if this condition is satisfied, then the limit

— . Ha([w)
H(v = lim ———
(i) AT TA
exists and is finite (see [16]). It is called the entropy density of v with respect to .
We are now in position to define ergodicity.

Definition 1. We say that the infinite volume dynamics with infinitesimal generator G is ergodic
if the following claim is true: if v € P(K2) is a probability measure invariant by translation,
invariant by the dynamics generated by G and with finite entropy density with respect to (41 o,
then v is a mixture of the ug ., f > 0, A € R.

4.2. Ergodicity of the stochastic dynamics

We are not able to prove the ergodicity of the deterministic dynamics in general, but we can
prove it under the additional assumption that the invariant measure is exchangeable.

Theorem 2. Suppose that assumption 1 holds. Let v be a translation invariant measure with
a finite local entropy density w.r.t. [Ly o such that

Ve ), /Afdv:O. (29)
If v is exchangeable then v is a mixture of ug, B > 0, A € R

The proof of theorem 2 is provided in section 4.3. This result has an interesting
consequence.

Corollary 1. The infinite volume dynamics generated by L is ergodic.

The proof of this corollary is similar to the proof given in [16] (or [4]). It is based on
the fact that, if v is invariant for £, then it can be shown, by some entropy arguments, that
v is invariant separately for A and for S. The invariance with respect to S implies that v is
exchangeable and we can then apply theorem 2 to conclude.

4.3. Proof of theorem 2

We call Fiy,y the o-field generated by the 6;-invariant sets and .7-'§W the o -field generated by the
6,-invariant sets. We denote by ¥ the conditional measure v(-| 72, ).
By the entropy inequality (28), it is easy to show that

v(1o) < +00, v(noV'(n0)) < +00.

Thus, the ergodic theorem gives the existence of the ]—'iiv—measurable functions

1 _
Vi) = Jim o D e = 901,

lxI<e

> (et = V)V (q2e) = 5 [(m = VH V()]

lx|<e

(30)

1
1 T
00 = Jim 7
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where the convergence occurs in L!(v) and v-almost surely. The random variable V' can be
considered as a constant under v. Let us fix x € Z and define

F) = (st — VHo (),

where ¢ € Cé (£2) is a function depending only on the even sites {1,;},;cz. By lemma 2, the
conditional probability measure v is A invariant. Therefore,

/ Afds=0= / (V' (nes2) — V' ()b di ()

# 30 [V ) = VO )i = V100, 85

Z€Z

= /(V/(Uzﬁz) — V'(n2:))¢ dv(n)
+ /(772x+1 = V) [V'Oiaest) =V (2x-1)] By, 6 dD
+ /(772x+l - Vl) [V’(n2x+3) - V/(rl2x+1)] anz(m)Qﬁ dv

+ Z /(flzxn —Vh [V/(n2241) = V' (12:-1) ] By, dV.

7#x,x+1

By lemma 1, v is exchangeable. By exchanging 1.4, and n,,_; in the terms appearing in the
last sum above, we see that the sum over z # x, x + 1 is actually equal to 0. Moreover, by
lemma 1 again, the functions depending on even sites are independent of functions depending
on odd sites under v, so that

0= / (V' (aasa) — V' (120)) 7

. ( / (et — VOV (12es) dﬁ) ( / (3, — On) dﬁ)
- ( / (Movat — v1>V’<n2x_l>dD) ( / Oy da>
. ( / (Maest — vl)V’mM)da) ( / B da) . a1

By exchangeability of v, it holds, for any k # —1:

V ((M2xe1 = VOV eI Fiy) = v ((2xs2krt = VOV (n2x-0)1 Fiy) -
Thus,
v ((M2war — V])V/(ﬁzxfl)) =v % Z (Mesakst — VOV (naee1)| Fiy
k<L, kA1
The L' (v) limit in (30) then gives
7 ((n2xs1 = VOV (2x-1)) = 0.
Similarly, it can be shown that v ((n,+1 — VYV (112.43)) = 0. Since

a' =0 [ = VH V@] =[x — V) V()]
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(31) implies
0= /(V’(ﬂzmn) —V'(nx))p di(n) + o' / (B — Onagyary) P AV,
(32)
0= f(ﬂ2x+1 -V dv.
In the same way, it can be shown that
0= [ Vo) = V0129 0500+ [ B = ) 85,
(33)
0= /(ﬂzx -V dv,

where ¢ = ¢ ((N2;41)z¢2) € Cé (£2) is now a test function depending on the odd sites only, and
VO &0 are the ]-"fw measurable functions defined by

V0 = v(nol Fiy). a® = v V(o) (o — VO)IFZ,) .
In fact, the 6,-invariance of v gives
VO =V = v(nol Finy) 1=V, o’ =a' = vy = V)V 110)| Finy) = .

By lemma 3, it holds o > 0 v-almost surely. Taking into account the fact that (,,).cz and
(M2z+1)zez are independent under v, (32) and (33) allow us to show, by lemma 4, that the
probability measure v is a product measure with marginals given by

dv(n, € [r,r+dr]) = E(V, oz)_l exp (—aV(r) — Ar) dr,

where Z (V, o) is a normalizing constant, and A := A(V, &) is such that
ZW,a)”! /r exp (—aV(r) — Ar) dr = V.

Let us summarize our results: denoting by P the law of the random variables
(a(w), V(w)) € (0, +o00) x R under v, we have proved that, for any bounded local function f,

V() = 21T = [ (D] = [ £ AP,
This concludes the proof of theorem 2.

Lemma 1. Let v be an exchangeable translation invariant measure with a finite entropy density
wrt. 1. Then, v(-) = v(-|F2,) is exchangeable and under v, the variables (1) ez and
(M2x+1)xez are independent.

Proof. Foragiven x € Z, consider the function T+ Q — Qdefinedas (T***1y) = p**+1,
and denote by 7 be the set of local transformation 7 : 2 — € which are obtained as
compositions of transformations 77¥*!, y € Z. To show that ¥ is exchangeable, we prove
that, for a given x € Z and for any bounded function g,

fgoTLH] d\'):/gdf).

This amounts to proving that, for any 72

v(gp) = v(v (g1 ) p) = v(v (go T 7o) ,0) =v(goT""p).

By exchangeability of v, it is therefore sufficient to show that any F? -measurable bounded
function p is invariant by T5~*!,

-measurable bounded function p,
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To prove this result, we write p as an ergodic limit of local functions. Observe first that
p = limg_ o v(,ok|f§w) v a.s. and in L'(v), where the local functions p; are defined as
pr = v(p | Fa,), with F,, the o-algebra generated by {n, ; x € A¢}. Moreover,
¢

. 1
V(| Finy) = lllglom Z 02 Pr

so that

Z 2 Pk (34)

Now, since oy is a local function, (02 J ,ok) o T***l = ¢, ipx for | j| large enough. Therefore,

p—h

k—00 €~>oo 2£

1
20+1 292’”‘ OT”+l_2e+1 Zez,pk+0(z ),

j==t Jj==

which, together with (34), gives indeed p o T***! = p.

We turn now to the second part of the lemma. Let ¢° (respectively, ¢') be a bounded local
measurable function depending only on the even (respectively, odd) sites. We have to show
that

v (%' 17n,) = v (0°1Fa,) v (01 Fmy) - (35)

Fix k, j € Z and consider a local transformation T € 7 such that ¢° o T = 05¢° and
@' o T = 6,;¢'. This is possible because ¢° (respectively, ¢') depends only on the even

(respectively, odd) sites. Now, for any F2 -measurable positive bounded function p,

v(v (@°9'17m) p) = v (96 0) = v (@ o T) @' o T) (poT)) = v (6u0° 6259 p).

where the second equality is a consequence of the exchangeability of v, and the third one is
obtained thanks to the invariance of p by T proved above. It follows that

m

(g 1
o(v (0017 ) = v <2e+1k22592"¢0) 2m+lj2 00" | P

Taking first the limit £ — oo and then the limit m — oo, we obtain, by the ergodic theorem,

v(v(#°0"175) p) = v(v (6172 v (¢'178) o)

which is indeed (35). O

Lemma 2. Let v a probability measure invariant by translation, invariant by A and with finite
entropy density. Let f € C; 1(Q) and p be a F?, bounded measurable function. Then

[can pav=v(vasizi) =0 (36)

In other words, v(- |.7-"1%W) is A-invariant.

Proof. The tail o-field Fi is defined by Fray = Mi>1Fa¢ where Fy¢ is the o-field generated
by {n.; |x| > k}. Any ]-"lfw-measurable function p coincides v almost surely with a F-
measurable function (this can be seen for example as a consequence of (34)). In particular, for
any k € Z, 9,,p = 0v as.. Thus,if f € Cé(Q), then pf € C&(Q) and by (29) applied to the
latter, we obtain 0 = [ A(pf)dv = [(Af) pdv. O
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Lemma 3. Letax = v ((170 -V) V’(n0)|]-'inv) where V = v(no|Finv). Then,
v({e < 0}) = 0. (37)

Proof. Let ¥ = v(:|F) and remark first that « = D((no — n1)V’'(19)), so that the
exchangeability of v implies @ = D((1; — 19)V'(11)), and

1 _ , /
a=_7 (o — n)(V' (o) = V'(m))) .

The convexity of V already gives o > 0. It remains to show that v({& = 0}) = 0. To prove
this, it is sufficient to show that the restriction of V|, to the box A = {0, 1} has (v a.s.) a
density with respect to the Lebesgue measure. In fact, we claim that the relative entropy of v|5
w.r.t. Lo, 1| A 1s finite, which implies the existence of the desired density. Indeed, consider any
non-negative Fi,,-measurable function p and any positive bounded F, -measurable function ¢.
By the same argument as in the proof of lemma 2, p is Fi,;-measurable. Consequently, using
this and the definition of the conditional expectation, we have

v(p V[a(@)) = v(pv(p) = v(pg) = v(pv|r(@)).

By the variational definition (27) of the relative entropy and the previous equality, we obtain

v(p Bl (9)) < v(p [H (v1a [ mo11n ) +10g (/ewduo.lﬂ).

By assumption, v has a finite entropy density so that H (v|a ‘/,L(),]| A) < +oo. Since
the previous inequality is valid for any JFj,,-measurable function p > 0, the claim
H (f}| A ‘ 1o.1]a ) < +oo follows by the variational formula of the relative entropy (27). [

Lemmad. Let V : R — R be a potential satisfying assumption 1 and 8 > 0 a constant. Let
W be a probability measure on 2 satisfying, for any j € 7. and any ¢ € Cé (),

/(V (77]+1)_V(77]))§0dﬂ+ﬂ f n; @ r]ﬁ](p) du = 0.

Then, w is a product probability measure whose marginals are given by [Z(B,1)]!
exp(—BV (n;) — An;) dn; where X is such that v(B, L) defined in (15) coincides with (1 ;).

Proof. Define v, () = eXiz BV@+in) wwhere the value of A is chosen so that

/ no e=FYm=40 g

/ &PV Om—Am g
R

Choosing ¢(n) = x(n)y¥¢(n) with x(n) a local compactly supported smooth function, we
obtain, forany j =1,...,¢ — 1,

v(B, 1) = = (o).

B~ f (3, % — By X)) Ye () dpa(m) = 0.

We now consider

4
X = xp(n)g (Z m) X001, ... 1e)
i=1
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where y; is a local function not depending on 7y, ..., 1y, and g is a smooth function on R.
Since

4
By, X () = By, X () = X5 ()8 (Z m) (0, x007) = 3y, X0 (D)

i=1

if j =1,...,€—1,wecan further condition on Zﬁzl nx = Lu and on the exterior configuration
{n;,i #1,...,4}, and obtain, forall j =1,...,€—1,

4
> e = tu. i, i;«él,...,(Z):O.

/ [85, x0(1) = By, X0 (D) ] Yre () (dm, o, dng

k=1
(38)
These relations allow us to show that the Borel measure
¢
e(mp (dm,...,dnz D me=tu,m, i # 1,...,£> ,
k=1
which has support on the hyperplane H, = {(n1, ..., n¢) : Zi:l nx = Lu}, is invariant by any

translation of H,. By theorem 2.20 in [36], this measure is therefore the Lebesgue measure on
H, up to a multiplicative constant. This multiplicative constant is fixed by ensuring that the
correct value of u(ng) is recovered, so that finally

e Lio1(BY )+in)
dn,...,d L iFElL . )= —
p(dm nelni, i # ) 7B

This concludes the proof of the lemma. O

dT)[ e d)]g.

4.4. Derivation of a triplet of compressible Euler equations from perturbed Hamilton
dynamics

It is also natural to consider the Hamiltonian dynamics (1) perturbed by the random exchange
of neighbouring velocities py and p.,i, so that Y p,, > ry and Y (U(py) + V(ry)) are
preserved during the time evolution. This has been considered in [16] in the case of a quadratic
kinetic energy U(p) = p?/2. In the case of a nonquadratic kinetic energy U, it is possible
to adapt the arguments of [16] to show that the corresponding dynamics is ergodic and that
the triplet of compressible Euler equations (5) is obtained as a hydrodynamic limit by Yau’s
method. We give only a sketch of the proof of the ergodicity of the perturbed dynamics.

Let U and V be two convex potentials satisfying assumption 1. We state the dependence
of the partition function with respect to the potential V (respectively, U) by the notation Zy
(respectively, Zy). ~

We consider the set Q = € x Q equipped with its natural product topology and its
Borel o-field. A typical configuration w € 2 is denoted by w = (r, p). Let {w(#)};>0 =
{r(t), p(t)};>0 be the dynamics generated by L = A+ yS, y > 0, with

A=V () = V)8, + > (U (p) = U'(pas1)y,
X€L X€ZL
and S the momenta exchange noise operator, acting on test functions f : 2 x @ — Ras
SH@ =Y [fo,p) = f@r,p)],
X€EL
where p***! is the configuration obtained from p by exchanging the momentum p, with p,,;.

Observe that £, A and S conserve the energy, the momentum and the deformation. All the
equilibrium Gibbs measures {vg, ;. , 8 > 0, A, A" € R} are invariant.
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Theorem 3. Assume that the potentials U,V satisfy assumption 1. The infinite volume
dynamics generated by L is ergodic.

Proof. Let v be a translation invariant probability measure with finite entropy density invariant
for £. We have to show this is a mixture of the vg; . As stated before, it can be shown by
entropy arguments that v is separately invariant for .4 and for S. The invariance w.r.t. S
implies that the law of p is exchangeable under v. Thus, we are reduced to proving that if v is
invariant for .4, translation invariant with finite entropy density and such that the law of p is
exchangeable, then v is a mixture of the vg ; ;’s.

Let v as above and call F;,, the o-field of invariant events for the shift. As in lemma 1
or in the proof of theorem 2.1 of [16], one can show that p and r are independent under
V() = v(|Finy)-

Moreover, since an invariant set is, up to a v-negligible set, a tail invariant set, as argued
in lemma 2, it can be proved that ¥ is invariant for A. Observe also that the law of p under v
is exchangeable. Now, we can identify the distribution of 7 as follows. The thermodynamic
relations give a one to one correspondence between the averages of the momentum and kinetic
energy, (7, T), and the chemical potentials, 8 > 0, A € R, through the relations

(B, X)) = —dylog Zy (B, A), T(B,2) =—0glogZy(B, ).
Let B8, A be the Fi,,-measurable functions defined by the relations
(B, ) = v(pk), T(B, 1) =vU(pi)). (39

Consider a test function of the form v (r, p) = ¢(r)(p; — 7) for a smooth function ¢.
Since [ Ay dv = 0, using the independence of r and p under v and the exchangeability of
the law of p under v, we obtain easily that

f V() = V' (rj)pdi+ B~ / (3,10 — 9) 45 =0 (40)

where B! = [U’(p;)(p; — ) dv. The fact that =" is well defined, i.e. § is strictly positive
vV a.s., can be proved as in lemma 3.

By lemma 4, equation (40) is sufficient to identify the distribution of 7 under v as a product
measure [ [, ., Zy (,8 z ) exp{— ,BV(rX) Y ry} dry. Moreover, ,8 and 3/ satisfy

—0;log Zy (B, 1) = b(r0), —dplog Zv(B, 2)) = B(V ().

Setting u = v(ry) and using a test function of the form ¢ (p) (r; —u), a similar computation
shows that the law of p under v is in the form [ [ .., Zy (ﬁ A) exp{— ,B U(py)— kpx} dp, where
= [V'(r;)(rj — u)dv and

—d, log Zy (B, ) = v(px), —dglog Zy (B, %) = D(U(pr)).

As above, ﬁ is v a.s. strictly positive. In view of (39), we have ,3 B and = A Injecting
this information in the definition of ﬂ , we obtain ,8 B.
We have therefore proved that v = v, ; 5, and the conclusion easily follows. ]

5. (Sub)Diffusive scaling

The hydrodynamic limit is nothing but a law of large numbers. The second step of the
study consists in looking at the fluctuations. As explained in the introduction, we expect that
fluctuations appear at a shorter time scale than the diffusive one. The study of the fluctuation
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field (9) for the deterministic system is very difficult. A more tractable quantity which allows
one to decide whether @ = 1 or @ < 1 is the diffusivity Dg ;  (1).

To define this quantity, we introduce some notation. The equilibrium compressibility
matrix ¥ is the symmetric matrix defined by

g (Eos ) (€0 Po) g n (Eo; 7o)
X = | g (poi &) mpan(po: o) g (poiro) | . 41)
g (ro; £0) g an(Fos po) g n (Fo; o)

Here, 11g,5,1 (f; g) denotes the covariance of the two functions f and g w.r.t. g ». Let };,Hl
be the normalized current associated with the three conservation laws. We do not give a precise
definition of the latter for the deterministic dynamics but the reader will translate easily in this
case the one we give in (47) for the energy—volume conserving dynamics. Roughly speaking,
7;, x+1 18 obtained from the usual microscopic currents of the three conserved quantities by a
change of frame prescribed by the linearized flow (8) of the hydrodynamic equations. Let
Cg 5., be the current—current correlation function defined as

Coon® =Y (T T01(0)"),, -

X€Z

Then, the diffusivity is given by

~ ~ 00 S\t ~
Bran =7 [ (1-3) Cprtords. @2)
0 t

When the current—current correlation function is integrable, the limit when t — +00 of
the diffusivity is well defined, and the following Green—Kubo formula is obtained:

52‘3,» = l]_i)rgoﬁﬂ,/\,w(l) = )7_1/0 Eﬂ,m/(s)ds. (43)

The existence of the above limit depends on the time decay of 5,3,/\,» For a diffusive
(respectively, super-diffusive) behaviour, Dg, () is of order O(1) (respectively, of order
o(t'=)).

The super-diffusive behaviour of the deterministic dynamics (y = 0) can be proved
easily for the linear dynamics, i.e. V(r) = r2 /2, and the Kac—van-Moerbecke dynamics, i.e.
V(r) = e +r — 1. In these cases, the dynamics is actually ballistic since the diffusivity
is of order O(¢). For the linear dynamics, this follows from the fact that the total current is
a constant of motion. For the Kac—van-Moerbecke dynamics, an application of the Mazur
inequality (see [30]), as done in [45] and [3] for the Toda lattice, shows that the diffusivity
is also of order O(¢). Apart from these two cases, showing a super-diffusive behaviour for
general potentials remains challenging.

We now turn to the energy—volume conserving dynamics. In this case, we also do notknow,
in general, what the large time behaviour of the diffusivity is. Nevertheless, when V (r) = r2/2,
we can compute explicitly the value of the current—current correlation function and deduce
the behaviour of the diffusivity. However, before stating precisely the result, we first need to
modify the definition (42) of the diffusivity to account for the stochastic perturbation. We have
now only two conserved quantities. The local energy—volume conservation is expressed by
the formulae

V(e (D) = V(e (0)) = =V [/0 B0 (9)ds + MY (t)} ;

Nx(1) = 1:(0) = =V [/) B () ds + Mf:‘_yl(t)} ;
(
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where the instantaneous currents ji*, |, j."},, are
Jornt = Jran —YVIV@DI, Joret = Jrasr — ¥V Inid, (44)
while the local martingales My (t), My"Y (¢) read

M;’V<r)=fo [V (1t 7)) — V(s 0] d[Naorn(s) — ys].
M;’y(t):/() [ﬂx+1(S )_nx(s )] [ x— lx(s) ]

where (N,_; x(t))xez are independent Poisson processes of intensity y. Denoting by [X, Y],
the quadratic variation at time ¢ between two adapted processes X and Y, it is easy to see that
the martingales M;"', M;"" are such that

M7, Mrr] =0, a,bee v}, y+#z,

[ ,
(M7 M), =y / [V (st (5)) = V()P d
[M;
[

45
MY MY = / [Mes1(s) — 1 (s)]* d (45)

MY MY ] = )// [V (nx41(5)) = V(0 ()] [x41(s) — 02 ()] ds.
Let us also introduce the equilibrium compressibility matrix x:

y = <,U«ﬂ,x(V(770)§ V(o)) g (V(no); 770)) _ (—356 —8,311) 46)
g (mo; V(no)) g, (Mo No) —0e —0v/)°

Observe that x is symmetric since dgv = 9, e. We define the normalized current Zc.x+1 as

-~

Jx,x+1 = Jx,x+1 — 3(5) - DJ(E) (%-x - é) s Jx,x+1 = (;J;’XH) s (47)
x,x+1
where the term DJ(£) (éx — §) has been subtracted in order to study fluctuations in the transport
frame. We introduce now
M- V(n (s)>] <M§’V(t)>
Wy a1 (t) = Jy xi1(s) —yV " ds+ M (), M!(t)= N .
() /O [ wnt(®) =y (nx(s) 0, M0 =y
Then, the diffusivity is defined by

*

71
Dp (1) = NIE’%OT (2N+1)t< ‘Z Ween @ | [ D2 Wern® > : (48)

<N IxI<N B

Let us rewrite this expression in a more convenient way, introducing the current—current
correlation function

Cpa) =Y (Terr1 () Joa1 (O ), - (49)

X€Z
Remark first that the terms in (48) coming from the discrete gradients in W, ,.; disappear.
Indeed, after summation over x| < N, only two boundary terms at x = £ N remain and since
they are divided by 2N + 1, their contribution vanishes in the limit N — +oco. Besides, the
cross terms between the martingales and the normalized currents Jy 4 cancel. The argument

is based on a time-reversal property of the current and can be read in [2]. Moreover, by (45),
*

< ZM;(r) ZM}C’(I) > =2t2N+1)y x.

IS <N s



Anomalous diffusion for a class of systems with two conserved quantities 1119

In conclusion, the diffusivity for the stochastic energy—volume conserving dynamics is given by

v N S\*
DY) = X fo (1—;) Cpoi(s) ds + 1dy, (50)

where Id, is the 2 x 2 identity matrix. Observe that the long-time behaviour of Dg , (¢) is
clearly driven by the long-time behaviour of the current—current correlation function.

Theorem 4. Define the function g : [0, /2] x (0, +00) — R by

4 o
glw, 1) = — e "M@ cos? (o),
T

and consider the infinite volume dynamics generated by L, with the potential V (r) = r*/2,
started at equilibrium under the Gibbs measure ig . Then,

/2
e e -2
S Taii® Toa @), = | F /0 glendw 0 (51)

X€L 0 0
It follows that the only nontrivial term of this matrix is of order t—'/?
particular Dgyk(t) is of order O(t'/%). More precisely,

s (1)
Pral) ™ 35 73 o o)

as t goes to infinity. In

Proof. To simplify the notation we omit the indices 8, ». We denote by < -, - > the semi-inner
product defined on local integrable functions by

i 1
< f.g»>= sz [ Ox9) = () = lim o ‘XIM%N(@J, by8) = (F)e),

and by H the Hilbert space obtained by the completion of the vector space of local functions
with respect to < -, - >>. Note that every discrete gradient, i.e. a local function of the form
01f — f,isequal to 0 in H.

We introduce the Laplace transform matrix L(z) (for z > 0) of the current—current
correlation function:

L(z)=/ e € Tor(s), Toa(0) > ds =< e — £ oy Ty >
0

where we adopted the short notation (z — £)~! .’]?),1 for

(=0T,
< (Z—E)_ljg,l ) G
Since V(r) = r?/2, it holds Z(8,1) = (13/2].[)71/2612/2,3’ v =1 = —A/B and e =
ﬁ (A?/B +1). It follows that
L2
_ 2[32 ﬁ.’) ﬂZ
X - _i l k)
B? p
~y_ (0 2T =~ _ o o—=1)m — 1)+ 700 = no)
n®=(g ) A= o )
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Since any discrete gradient is equal to zero in H, the only nonzero entry of L(z) is the (1, 1)
component
LM (@) =< (2= L) To, o1 >,

where ;]\x,y = (nx - T)(ny - ‘E).

The determination of the current—current correlation function therefore amounts to solving
the resolvent equation (z — £)u = 7,1 Consider the vector space V spanned by the orthogonal
basis {'ﬁx,ﬂk}xez,k?] (which is also the space spanned by the family ﬁx,y for x # y). This
space is stable by £ since

(@) ANy ek = (01 — D7 k-1 — (01 — D7x_1 x4 is the difference of two discrete gradients,
hence is equal to 0 in H;
(b) when k > 2, St vk = (1 + 0D N xk—1 + (1 + 0171 xsks1 — Hx xek» While SOy i1 =
ﬁx—l,x+l +ﬁx,x+2 - 2/77\x,x+l-
We may thus look for a solution of the form
=YY" o) s (53)
x€Z k>1
with the condition
D3 )P < +00 (54)
x€Z k>1
since u is sought in H. In view of point (a) above, u should actually be a solution to

o0
G—ySu=T1=)_ Y Fel)rcst

x€Z k=1
with
Fi(x) = (2 +2y)p1(x) — y(p2(x) + p2(x — 1)) and, for k > 2,
Fi) = @+ 4o ) = 7 (Pt () + 1 (6 + D) + ot (0 + it (8 = 1))

Using the fact that {7 x4k }rez.k>1 i an orthogonal basis of V, and identifying the coefficients
in front of the different terms, it follows that

Fr(x) = 1=y x—0}- (55)
Introducing the Fourier transform iz\(a)) (for w € T)) of a given function & € [*(Z, R):
iz\(a)) — Z e2i7m)xh(x)’
X€Z
the conditions (55) can be equivalently reformulated as
{<z+2y),a(w) — v+ h(w) =1, ,
(Z+4Y)Pe(@) — y (1 +e7 ) p1 (@) — y (1 +7™) B (@) =0, k> 2.
By Parseval’s relation, condition (54) is equivalent to

Z/ |5k (@)]? do < +00.
T

k=1

(56)

It is then easy to show that (56) and the above integrability condition lead to p;(w) =
1 (@) (X (w))*~!, with

- 2+2/Q2y) cos(mTw) 2
X() =75 1_\/1_(T/(47/)> ’




Anomalous diffusion for a class of systems with two conserved quantities 1121

and the boundary condition (z + 2y)p; (@) — y (1 +e*7®) ) (w) X (w) = 1. It follows that
1 V4

Ll'l = n = -2 = -2 0 = —T _— s

() =< u, 0,1 >=p E p1(x) = B~ p1(0) P ERA v

X€Z

where

Ty =[y+ Vv 1]

A simple computation shows that, for any y > 0,
oo ! 2 /2 ) 2 /2 C052
/ e |:—'/ e 2SI () 682 (x) dx:| dr = —/ —(xz) dx =7 (y).
0 T Jo T Jo y+2sin“(x)
Since the Laplace transform uniquely characterizes the underlying function, we deduce that

the current—current correlation function is indeed given by (51).
Now, by dominated convergence, the following limit holds as t — +oc0:

\/_/n/Z 4 T1)2 L, L
t g(w,t)dw = —/ ex (—Syt sin (—)) cos <—> dw
0 T Jo P «/? \/;

4 / oo 8yt g 1
— — e w= .
7 Jo V2ny
We then obtain the desired result with (50). O

6. Steady-state nonequilibrium systems

6.1. General setting

The results of the previous section were limited to harmonic potentials (and the Kac—van-
Moerbecke potential in the special case y = 0). For generic anharmonic potentials, we can
only provide numerical evidence of the super-diffusivity. However, it is difficult to estimate
numerically the time autocorrelation functions of the currents because of their expected long-
time tails, and because statistical errors are very large (in relative value) when ¢ is large.
Also, for finite systems (the only ones we can simulate on a computer), the autocorrelation
is generically exponentially decreasing for anharmonic potentials, and, to obtain meaningful
results, the thermodynamic limit should be taken before the long-time limit.

A more tenable approach consists in studying a nonequilibrium system in its steady state.
We consider a finite system of length 2N + 1 in contact with two thermostats which fix the
value of the energy at the boundaries. The generator of the dynamics is given by

Lyopen = An +ySy + AB_n 1, + 1By 1, (57)

where Ay (respectively, Sy) is defined by (10) (respectively, (14)) with Ay = {—N, ..., N}
and By r = Ta,i — V'(n,)0,,. The positive parameters A, and A, are the intensities of the
thermostats.

The generator B, can be seen as a thermostating mechanism since the semigroup (S;);>0
generated by B, r has, under suitable assumptions on V, a unique (reversible) invariant
probability measure on R given by

vr(dg) = Z(B, 0)e PV dg, p=T", (58)

and S; f converges exponentially fast to vy (f) for any observable f € L%(vr) (we will,
however, not use these facts in the following). Observe that

vr(V) = —dg(log Z(B,0)) = e(B. 0).
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Hence, in order to fix the energy at site —N (respectively, N) to the value e, (respectively, e, ),
we have to choose 8, = T[' (respectively, B, = T,_l) such that e(8,, 0) = e, (respectively,
e(Br,0) =e;).

In the special case when T; = T, the Gibbs measure (g ola, is invariant, and it can then
be shown (see appendix A) that the law of the stochastic process associated with (57) converges
exponentially fast to g ola,-

The proof of the existence and uniqueness of an invariant measure in the case when 7, # T,
is given in proposition 1 for a suitable class of potentials (see appendix A for a proof in the
case ¥ = 0 and appendix B for a proof when y > 0). We denote by (-) the unique stationary
state for the dynamics generated by Ly open-

Proposition 1. Assume that the smooth potential V satisfies
o (Growth at infinity) there exist real constants k > 2, a; > 0, C > 0 such that

lim A *V(aq) = alglt,
A—>+00

59
lim 2'4V'(hg) = kaglq*sign(g), o9
A—>+00
V//

im i) =0; (60)

lgl—o0 (V'(q))?

e (Nondegeneracy) For any q € R there exists m := m(q) > 2 such that

vV (g) # 0. (61)

Then, there exists a unique stationary probability measure for the Markov process generated
by Ly open- This stationary state has a smooth positive density with respect to the Lebesgue
measure.

The energy currents ji°7, ., which are such that Ly open(V(nx)) = —Vj_, . (for
x =—N,..., N+ 1), are given by the expressions (44) forx = —N +1,..., N — 1 while

JSh oy =2 [TV -y) — (V' (-w))?]
I == [TV () = (V)]

Since (Ly.open(V (1x)))ss = 0, it follows that, forany x = =N, ..., N + 1, (j'7, ) is equal
to a constant J ,C (T;, T,) independent of x. In fact,

N-—1
1
BRI = (R To=5y 2 il (62)
x=—N

The latter equation is interesting from a numerical viewpoint since it allows one to perform
some spatial averaging, hence reducing the statistical error of the results. Finally, letus mention
that, for finite systems, standard results of linear response theory (see for instance [4, 34]) allow
one to relate the nonequilibrium current J, to the current autocorrelation at equilibrium as

. J;(Te, T,) 2N [**®
lim ——7=— = —
7.7,—-T T, — T, T2 Jo

E, ., [T4 0T O)] di,

where the expectation is over all initial conditions and realizations of the paths.
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6.2. Harmonic potentials

The current can be computed explicitly for harmonic potentials when no stochastic perturbation
is present. In this case, a ballistic behaviour (no damping of the current with the system size) is
found, as for standard harmonic oscillator chains [35]. It can also be shown that the macroscopic
profile of energy g € [—1, 1] — (V (nxq/n1))ss 1s flat and equal to (T, + T,) /4.

Proposition 2. Consider the system described by the generator (57) with y = 0, for the
harmonic potential V (r) = r*/2. Then the steady-state energy current is
T, — T,

: (63)
PR PR Y Y

Iy, Ty) =

Proof. Introduce C, y = (n:ny)ss = C, x for (x,y) € AZ. First, note that the stationarity of
the current implies Cy 41 = —J9(T¢, T,) for x = —N, ..., N and

A(Ty = Cy—y) = = (T, = Cyy) = JN(T0, T,). (64)
Moreover, forx = —-N+1, ..., N — 2, it holds
<£N,open(77x77x+l)>ss =0=Crp101+Cr 12 — (Crx + Ci1141).

Therefore, CN—l,N—l + CN—Z,N = C—N+l,—N+l + C—N,—N+2~ NOW,
(Ln,openM-nN-N+1))ss = 0= C_ny1,-n41 + Coniovy —2eCn —ne1 — C_n —n,
and, similarly, Cy y—2 + Cy—1 n—1 = Cy .y — A-Cy n—1. In conclusion,

AMC_N, N1 +C_y N =Cyn —ACnN-1.

The expression (63) is then obtained by combining the above equality with (64) and the relation
Cyn-1=C_n_nn = —JIN(Te, T)). O

When y > 0, we expect to observe an anomalous diffusion with divergence rate 6 = 1/2,
ie. NJ, ~ C,+/N when N is large enough. This is indeed confirmed by numerical
simulations, see figure 1.

6.3. Anharmonic potentials

The nonlinear case is much more difficult. We estimate the exponent § > 0 such that
NJ, ~ N° (65)

using numerical simulations. If § = 0, the system is a normal conductor of energy. If on the
other hand § > 0, it is a superconductor.

6.3.1. Numerical scheme. The time-discretization of the dynamics with generator (57) is done
with a standard splitting strategy, decomposing the generator as the sum of a deterministic part
Ay, athermostat part A¢B_y 1, + A, By 1., and the stochastic perturbation y Sy, and integrating
each part in this order. We denote by At the time-step.

A simple numerical scheme for the deterministic part of the dynamics can be obtained
from the Hamiltonian interpretation of the system. The longtime integration of the Hamiltonian
system is well understood. The most standard scheme used in practice is the so-called Stormer—
Verlet scheme (see [20]), which, for separable Hamiltonians (where the total energy is the sum
of a kinetic part depending only on the momenta, and a potential part depending only on the
positions) can be seen as a Strang approximation of the Hamiltonian evolution with positions
and momenta updated successively. This amounts here to updating successively variables
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Figure 1. Current J. ,\y, as a function of the system size 2N + 1 for harmonic potentials V (r) = r2/2
(in log, — log, scale), with three values of y: y = 0 (black), y = 0.1 (blue) and y = 1 (red).

with odd and even indices. This corresponds to the Strang splitting based on the following
decomposition of the generator:

-AN __ geven +Aodd
=AY ,
with, in the case when N is even,
N-1
A5 = 3 (V02010 = V02001200 ) Oy + V) = V Oy,
x=1
and a similar definition for A"dd. This splitting is particularly convenient since the time

evolutions generated by A$" are A% are both analytically integrable. In conclusion, the
numerical scheme used for the determlmstic part reads:

Py A N __ _ _
0 ="+ > Vi) —V'i_)), x=—-N+1,-N+3,..., N—-1
=t A (VO - viath). vy =N -N+2 N

At
m = (VR = VD). x =N LN

with the convention that V'(n" y_3) = V'(n},5) = 0.
The thermostat part is taken care of by a simple Euler—Maruyama discretization:

M =0y = M ALV () + V2T AL G™
=0t — A ALV (%) + V24, T, At G,

where (G’ ) are 1ndependent and identically distributed standard Gaussian random variables.
Finally, the noise term with generator yS is simulated by exchanging 7, and 7y, (for
x = —N, ..., N — 1) at exponentially distributed random times, with an average time y‘l
between two such exchanges. More precisely, we attach to each couple (x, x + 1) a random
time 7", with .L.[O drawn from an exponential law with parameter y, and where (z/"); ,, are
independent. This time is updated as follows: if 7" > At, then 7" is replaced by 7" — At,
otherwise 7, and 7, are exchanged and a new exchange time r’”*l is resampled from an
exponential law of parameter y .
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Figure 2. Current as a function of the system size 2N + 1 for anharmonic potentials V(r) =
r2/2+r*/4 (in log, — log, scale), with four values of y: y = 0 (black), y = 0.01 (blue), y = 0.1
(pink) and y =1 (red).

6.3.2. Numerical results. We considered the following potentials:

(i) harmonic potential V (r) = r?/2;

(ii) anharmonic FPU-like potential V (r) = r?/2 +r*/4;
(iii) Kac—van-Moerbecke potential V(r) = e +r — 1;
(iv) rotor V(r) = 1 — cos(r).

The time-step Ar is chosen to ensure a good longtime preservation of energy for the
deterministic dynamics in the absence of stochastic perturbation. In order to have a relative
error in energy less than 107>, we used At = 0.005 except for rotors where At = 0.025. We
set A, = A, = 1 (this choice maximizes the observed current in the harmonic case according
to (63)), and considered a small temperature difference 7, = 1.1, 7, = 0.9. We performed
10 iterations for N < 22, 5 x 108 iterations for N = 213, 2.5 x 108 iterations for N = 24
and 1.25 x 108 iterations for N = 2'5. The corresponding system size in the latter case is
2N +1 = 65,537.

The simulation results are presented in figures 1 to 4. The conductivity exponents extracted
from the numerical simulations presented in figures 1 to 3 are reported in table 1. Exponents
in the harmonic case agree with their expected values (see the discussion in section 6.2). For
nonlinear potentials, except for the singular value § = 1 when y = 0, the exponents seem
to be monotonically increasing with . We conjecture that these exponents should attain the
limiting value 0.5 as y — +oco. A similar behaviour of the exponents is observed for Toda
chains [22]. Note also that the value found for y = 0 with the anharmonic FPU potential
V(r) = r?/2 +r*/4 is smaller than the corresponding value for standard oscillator chains,
which is around 0.33 (see [29]).

Appendix A. Existence and uniqueness of the stationary state for v = 0

We adapt in our context the methods introduced in [9] (see [34] for a review) for the chains
of coupled oscillators, following closely the exposition given in [7]. The proof is divided
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Figure 3. Current as a function of the system size 2N + 1 for the Kac—van-Moerbecke potential
V(r) =e " +r —1 (inlog, — log, scale), with five values of y: y = 0 (black), y = 0.001 (blue),
y = 0.01 (green), y = 0.1 (pink) and y = 1 (red).
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Figure 4. Current as a function of the system size 2N + 1 for a chain of rotors: V(r) = 1 —cos(r).
A normal conductivity is observed since the estimated conductivity exponent is § >~ 0.02.

Table 1. Conductivity exponents § (see (65) for the definition of §).

o Harmonic ~ Anharmonic KVM
0 1 0.13 1
0.01 — 0.14 0.12
0.1 0.50 0.27 0.25

1 0.50 0.43 0.33
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into three steps: (i) the aim of appendix A.2 is to prove the Lyapunov condition (A.5); (ii)
we then prove the smoothness of the transition probability using hypoellipticity arguments
(appendix A.3), and finally (iii) show that the process is irreducible (appendix A.4). These
three arguments, together with [33, theorem 8.9] allow one to conclude the existence and the
uniqueness of an invariant measure with smooth density, as well as the exponential convergence
of the law of the process to the invariant measure.

A.l. Definition of the process
The process generated by Ly open 1s denoted by ((2));>0 and is the solution of the system

dn_y(t) = V'(n_y+1) dt — AV (n_n)dt + /240, T, dB_y (1),
(S) 1dn(®) = (V' (ix1) — V'(nx—1)) dt, x=-N+1,...,N -1,
dygy(t) = =V (gn-1)dt — 1, V' (ny) dt + /24, T, dBy(2),

where B_y, By are two standard independent Brownian motions. Since the drift coefficients
are only locally Lipschitz, it is unclear whether a solution to (S) exists for any time. This
problem can, however, easily be solved using a suitable Lyapunov function, as we now show.
For a > 0, consider

N
We (1) = exp {a > V<nx)} : (A1)

x=—N

A simple computation shows that
(EN,openWa)(n) - O[I:)\rTr V”(UN) + )"r(Tra - 1)(V/(nN))2
FRTV 0) + he(Tea = DOV (0-0)) [ W

so that, using the assumption (60), Ly open Wo < AW, for some positive constant A as soon
as « is sufficiently small. This is sufficient to prove the existence of a unique solution to (S)
for any initial condition and for any time ¢t > 0. We denote by (7;),>0 the corresponding
semigroup.

A.2. Proof of the Lyapunov condition (A.5)
Given a solution (17(t)),;>0 of (S), we define the scaled process nf (for E > 0) as follows:
") = E-VEEYA. (A2)
The scaling is chosen so that there is no explicit dependence in E in the formal limit £ — 400
(see the system (So,) below). The process n” is a solution of
dnfy (1) = BV (VIEY 0 ) = e V(M) ) di
22.T,
E
dnf 0y = EVE (VIE nEy) = VIEYE ) ) dr,
x=—-N+1,...,N —1,
dnfy(6) = —EVE (VIE nf_) + 2, VI (E ) ) d

+/ 2Ty dBy (1)
E N 5

+

dB_y (1),

(Se) (A.3)
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where B_y, By are two standard independent Brownian motions. Observe that the scaled
process is such that if H(5(0)) = E then Hg(n% (0)) = 1, where the scaled energy H is
| X
— 1/k
He () = — ;N V(E ).
In the limit £ — +o00, the noise disappears and, by the scaling property (59) of the potential,
(Sg) reduces formally to the following deterministic system:

dn-y (1) = (6 (1-xs1) = 8/ (n-) ),
(Seo) () = (60/Cran) = 0'(r)) d, x=—N+1.. N—1,
dnn (6) = = (6'(n-1) + 2,6 () ) i,

where 0(q) = ak|q|" is a C! function since k > 2. We also introduce the corresponding
limiting energy function
N
Hoo(m) = Y 0(1).
x=—N
Arguing by contradiction, it is easy to show that if (57(¢)),>o is a solution of (S.) starting
from an initial condition 77(0) such that Hy,(77(0)) = 1, then, for any T > 0,

‘ [(0'G_n(5))* + (O Gin(5)))?] ds > 0. (A4
0

Using the continuity of solutions of stochastic differential equations with respect to both
parameters and starting points, we can then state the following asymptotic result.

Lemma 5. Assume that (0" (t)):>0)nen is a sequence of solutions of (S) starting from n" (0),
with E, = H(n"(0)) — +oco. Then there exists a subsequence (™ (t));>0)men Such that, for
any C > 0andty > 0,
fo
lim _Eyn) |:exp (—c /O [0 ™y () + O (i ()] ds>:| =0.
Proof. Recall that (™" (t)):>0 is the solution of (Sg,) starting from n™En(0), which is such

that Hg, (n£7(0)) = 1. This implies that the sequence ("£7(0)), <y remains in a compact set
and we can extract a subsequence, denoted by (£ (0)),,en, such that ™ En (0) converges to

(Soo) starting from 77*.
We fix C > Oand#y > 0. Forany t > 0, thanks to the continuity of solutions of stochastic
differential equations with respect to both parameters and starting points, it holds

lim E |:sup ™ Er () — ﬁ(t)|2:| =0.
m—00 <t

For any n € RN N} wwe denote the term [(6/(n—n))? + (8’ (nn))?] by K (n). Then, for any
a >0,

T
lim ]E,]mAEm(O) [exp (_af K (nm,Em (S)) ds):| — efal(r)’
0

m—0oQ

where I (1) = for K (7(s)) ds > 0 by (A.4). Observe also that, for E,, > 1,

fo

fo En 1
/ K" (s)) ds = E,, / KO ) du > Ey / K™ (u)) du.
0 0 0
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Now, consider some arbitrary constant A > 0. By choosing m sufficiently large so that
A < CE,, it follows

im0y [eXP (—C /Ofo K" (s)) dS)} L e A,
The result is then obtained by letting A go to infinity. (|
We now claim that there exists a time 7, > 0, finite constants b,, and «,, € (0, 1) with
lim,_, o k, = 0, and compact sets K,, such that
Vi € RN, T, W) < W () + b, 1k, (), (A5)

where W := W, is the Lyapunov function (A.1). By choosing compact sets K, of the form
{n € RENN W () < a,) with a, — +00, it is enough to show that

LW _,

n—>+00 g W(n)

Therefore, (A.5) is a consequence of lemma 5 and the following result.

Lemma 6. If o is sufficiently small, there exist ¢,C > 0 and q > 1 such that, for all

L,Wmn©) _ /g

waoy < Eo [exp (‘Cfo [©'G1on )+ @ G ()] ds)}

Proof. It holds
H(n(t)) = H(n(0)) +/0 Ly open H(n(s))ds + M(1),

where M (¢) is a continuous martingale of quadratic variation

(1), = [ (ExapnH) = 2H Ly en) 1657 s
0

=2 /0 (ReTV (w4 A TV G () )ds.

Now, for any constants p, ¢ > 1suchthat p~' +¢~! =1,

T, W (1(0)) B
LY R ea(H(n(t)) H(n(0))
W (7(0)) o | ]

=E,0 [exp (aM(r) +a / (LN open H) (0 (5)) ds)]
0?2 O{2 t
=E,0 [exp (aM(t) —p M)+ p— [M], +a / (L open H) (1(5)) ds>]
0
= Ey [X:Y,] < By [X/1VPE, ) [¥7]7,

where

2
X! = exp (paM(t) R [M],)

is an exponential martingale with constant mean equal to 1. Moreover,
2

Y9 = exp (M% (M), +ag f (cN,openH)m(s))ds)
0

= exp (/) (F(T)—N(S), Ag, Tp) + F(qn (), Ay, Tr)) dS> ,
(
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with
F(r,A, T) = raq[(paT — (V' (r)*+TV"(r)].

Taking « sufficiently small, and using (59) and (60), we see that there exist two constants
C, ¢ > 0 (depending on «, p, Ty, T,, A¢, A, and V') such that

Y, A, T) € R x {A¢g, A} X {Ty, T,} F(r,A, T) < gc—C[0' ()]

This completes the proof of the lemma. g

A.3. Smoothness of the transition probability

The generator Ly open can be written as
Ly .open = Xo+AeTe X2y + 4, T, X%,
where X, X1y are first-order differential operators:
Xo=Ayx — 2V (n-n)3y_y, — A,V ()0 Xin =9

If the Lie algebra £ generated by the vector fields Xy, X1y, i.e. the smallest Lie algebra
containing

NN NN *

{(Xitici-nvony, X, XjVije=nony X X, Xelbi,jket=n,0,81
has full rank at every point 1, then the generator Ly open i hypoelliptic, and, by Hormander’s
theorem on hypoelliptic operators (see [21]), the semigroup (7});>0 generated by Ly open has a
smooth transition probability density, is strong Feller and the invariant measures, if they exist,
also have a smooth density.

To show that £ has full rank, we first observe that 9,, € £. We then prove that
Oy, € L. Indeed, [Xo, ny] = =V"(qn)0y,_, + 1. V" (n)0y,,, so that —=V"(ny)0,,_, € L.
If V'(ny) # O we already have 9,, , € £. Otherwise we compute the iterated Lie bracket
[...,[Xo, 3], - ..,y ] and obtain V™ (ny)d,, , € £ for any m > 2. The nondegeneracy
condition (61) on V therefore gives 9,, , € £. By iterating the above argument, it follows
easily that 9, € £ foreveryx € {=N,..., N}

A.4. Irreducibility of the dynamics

‘We show here that the semigroup (7} ), is strongly irreducible, that s, for every n, every ¢ > 0,
and every nonempty open set A, it holds 7;(n, A) > 0. Recall that, in general, irreducibility
is not a consequence of hypoellipticity.

Irreducibility can be proved using a well-known relationship between stochastic
differential equations and control theory (see for instance the discussions in [9, section 3]
or [7, section 4]). In [19], a general approach for obtaining the desired controllability is
presented for divergence-free systems having a conserved quantity and satisfying a Hormander
condition. Since our system satisfies these assumptions, we can apply theorem 2.1 of [19] and
deduce that the semigroup (7;),> is strongly irreducible.

Appendix B. Existence and uniqueness of the stationary state for v > 0

We denote by (7;);>0 the semigroup generated by Ly open fOr some given y > 0, and by (7",),20
the semigroup corresponding to Ly open for y = 0. The same arguments as for the case y = 0
can be used to show that (7;),>¢ satisfies some Lyapunov condition similar to (A.5). Relying
on [33, theorem 8.1] for instance, it is then enough to show that the process is irreducible and
that the transition probability has a smooth density.
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B.1. Irreducibility of the dynamics

We show first that (7;),>¢ is strongly irreducible. Let us denote the probability transition of
T; by p;(n, §) d¢ and the probability transition of T; by p;(n, d&).

Let o, be the stopping time defined as the first time when two variables 1, and 7, are
exchanged. Observe that o has an exponential law of parameter 2y N. For every bounded
measurable function f : R{=N---N _ R it holds

(1) =Ey [f )5 ] +Ey [ f(1()16, <]
=e V! /g (0, £) f(&)dE

; N—1
+y A dse™™ 37 fé d& Pu(n. &) ( fé,pt_s@x’“%ds’)f(s’)).

x=—N
Iterating the above argument, we obtain the following formula for p;:

pe(n, d&) = e 7N B, (n, £)dE
N—-1

o0 o0
—2y N (s1+...+s,
E |:/ / dsy .. dsgppe PNEFAO L it si)
0 0

)C],...,X;\-=7N

X / P (0, DD (& 8 L
1seeesbi

P BB 6 )81 a8 d.

This shows that p,(n, d§) = p,(n, §) d§ is absolutely continuous with respect to the Lebesgue
measure. Moreover, the semigroup (7;),>0 is strongly irreducible because 7; is strongly
irreducible.

(B.1)

Lemma 7. The semigroup (1), is strongly Feller, i.e. it maps bounded measurable functions
to continuous bounded functions.

Proof. The semigroup (7~})t>0 is strongly Feller. This implies (see, e.g., [38, corollary 2.4])
that for every t > 0 and every compact set K,

lim  sup sup |(7~",u) (n) — (T,u) | =0. (B.2)
820 1y <8 lullw<t
n.n €K

Let f be a bounded measurable function with || f || < 1. We have to show that, for any fixed
t > 0, T; f is a continuous bounded function. By (B.1) we have

(T, )y — (T, /)() = e~ 2N ((T, /(") — (T, ()

N—1 . _ _
+y ) /O e N (Tiy o FroTyo f) () = (Ti—y 0 Fxo Ty 0 f) ()} ds.

x=—

Here, F, is the operator acting on functions f = f (1) as (Fy f)(n) = f(n®**!). Observe that
the absolute value of the second term on the right-hand side is bounded above by

N '
vy / e 2V sup |(Tr—sg) () — (Ti—sg) ()| ds.
ey Jo lglloe<1
By the bounded convergence theorem and (B.2) we have
nl,iinn(Trf)(n’) — (T f)Y(m) =0,

which concludes the proof. ]
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These two last properties (irreducibility and strong Feller property) are sufficient to have

uniqueness of the invariant measure wg. To show that the latter has a density, we observe that

—N,...N}

for any ¢ > 0, the condition us7T; = T; implies that, for any measurable set A of Rf s

Hss(A) = /dﬂss(’?) (/ 14)p:(n, §)d§)

_ / 14(8) ( / A () pr (1, s)> de,

where the second line follows from Fubini’s theorem.
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