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In many situations, researchers collect multilevel (clustered or nested) data yet analyze the data
either ignoring the clustering (disaggregation) or averaging the micro-level units within each
cluster and analyzing the aggregated data at the macro level (aggregation). In this study we in-
vestigate the effects of ignoring the nested nature of data in confirmatory factor analysis (CFA).
The bias incurred by ignoring clustering is examined in terms of model fit and standardized
parameter estimates, which are usually of interest to researchers who use CFA. We find that
the disaggregation approach increases model misfit, especially when the intraclass correlation
(ICC) is high, whereas the aggregation approach results in accurate detection of model misfit in
the macro level. Standardized parameter estimates from the disaggregation and aggregation ap-
proaches are deviated toward the values of the macro- and micro-level standardized parameter
estimates, respectively. The degree of deviation depends on ICC and cluster size, particularly
for the aggregation method. The standard errors of standardized parameter estimates from
the disaggregation approach depend on the macro-level item communalities. Those from the
aggregation approach underestimate the standard errors in multilevel CFA (MCFA), especially
when ICC is low. Thus, we conclude that MCFA or an alternative approach should be used if
possible.

In many circumstances researchers collect data that have an
internal multilevel structure. For example, researchers may
administer questionnaires to students in different classrooms,
to participants across several states, or to employees from
many departments. In doing so, they often ignore the multi-
level structure of the data and use analytic methods designed
for single-level data. This practice can cause inaccurate pa-
rameter estimates and standard errors (SEs) of target param-
eters as well as inflated or deflated Type I error (Moerbeek,
2004),1 depending on which level researchers ignore. They
might lose an opportunity to capture relationships among
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1Moerbeek (2004) illustrated the consequences of ignoring a level in
three-level data. Moerbeek’s findings can be applied to two-level data by
fixing Level 1 error variance (�σ

2
e ) to 0 and Level 1 sample size (n1) to 1. The

variables at different levels. Moreover, if the relationships
differ across levels (e.g., if the effect of socioeconomic sta-
tus on academic achievement is stronger at the school level
than at the student level), not only can researchers not acquire
any information about the effect at the ignored level but also
the effect in the desired level might be distorted (Raudenbush
& Bryk, 2002).

The differences in parameter estimates yielded by single-
level methods compared with the methods accounting for
clustering (e.g., multilevel models) depend on several as-
pects of the data. The proportion of overall variability in
a variable explained by macro (Level 2) units, indicated by
intraclass correlation (ICC), is one of the most important fac-
tors (Chen, Kwok, Luo, & Willson, 2010; Julian, 2001; Kim,
Kwok, & Yoon, 2012; Moerbeek, 2004). If ICC is higher,

class level in her study can be thought of as the micro level and the school
level can be thought of as the macro level.
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IGNORING CLUSTERING IN CFA 519

ignoring the macro level (disaggregation) will be more detri-
mental. For example, the SEs of regression coefficients tend
to be greater or less under disaggregation, which leads to
deflated or inflated Type I error (Moerbeek, 2004; Opde-
nakker & Van Damme, 2000). In the case of confirmatory
factor analysis (CFA), Julian (2001) showed that parameter
estimates—including factor loadings, unique variances, fac-
tor variances, and factor covariances—are higher than the
parameter values at the micro level and their SEs are lower
under disaggregation. Chi-square model fit statistics are also
increased, leading to inflated Type I error such that true mod-
els are rejected at a rate greater than the nominal level. Note
that inflated Type I error is an indication that clustering is
ignored in disaggregated analysis (Stapleton, 2006).

Although it has been 13 years since Julian’s (2001) article
was published, from our brief search we could still find many
recent applications of factor analysis that do not take clus-
tering into account when the data may show nontrivial ICCs
(e.g., Babakus, Bienstock, & Van Scotter, 2004; Cassidy,
Hestenes, Hegde, Hestenes, & Mims, 2005; C. J. Collins
& Smith, 2006; Detert, Schroeder, & Cudeck, 2003; Ebe-
sutani, Okamura, Higa-McMillan, & Chorpita, 2011; Garb,
Wood, & Fiedler, 2011; Glisson & James, 2002; González-
Romá, Peiró, & Tordera, 2002; Han, Chou, Chao, & Wright,
2006; Hatami, Motamed, & Ashrafzadeh, 2010; Keller, 2001;
Law, Shek, & Ma, 2011; Merrell, Felver-Gant, & Tom,
2011; Nelson, Canivez, Lindstrom, & Hatt, 2007; Oliver,
Jose, & Brough, 2006; Patterson et al., 2005; Philips et al.,
2006; Raspa et al., 2010; Riordan, Vandenberg, & Richard-
son, 2005; Robert & Wasti, 2002; Salanova, Agut, & Peiró,
2005; Schaubroeck, Lam, & Cha, 2007; Takeuchi, Lepak,
Wang, & Takeuchi, 2007; C. M. Tucker et al., 2011; van
der Vegt & Bunderson, 2005; Zohar & Tenne-Gazit, 2008)
and only a few studies that properly account for clustering
(Breevaart, Bakker, Demerouti, & Hetland, 2012; Jackson,
Levine, & Furnham, 2003; Mathisen, Torsheim, & Einarsen,
2006; Subramony, Krause, Norton, & Burns, 2008; Wang,
Willett, & Eccles, 2011). Throughout this article, we show
that a few methods accounting for clustering in CFA are
readily applicable in such situations, and we encourage re-
searchers to avoid disaggregation. Note that there are some
articles that illustrate those methods for applied researchers
(Cheung & Au, 2005; Cheung, Leung, & Au, 2006; Dyer,
Hanges, & Hall, 2005; B. O. Muthén & Satorra, 1995;
Stapleton, 2006; Zyphur, Kaplan, & Christian, 2008).

The American Psychological Association (APA; 2010)
and Wilkinson and the Task Force on Statistical Inference
(1999) encouraged researchers to use effect sizes along with
test statistics. APA (2010) stressed that “it is almost always
necessary to include some measure of effect size in the Re-
sults section” (p. 34). Therefore, we also investigate the
effects of disaggregation on the effect sizes in CFA using
standardized parameter estimates (i.e., standardized factor
loadings and factor correlations), which may be different
from Julian’s (2001) results pertaining to unstandardized pa-

rameter estimates. Standardized factor loadings and factor
correlations are computed as ratios of unstandardized pa-
rameters (e.g., a correlation is the ratio of a covariance and
two standard deviations). In this article, we show that in some
circumstances the differences in unstandardized parameters
are canceled out and, as a result, single-level analyses can
yield unbiased standardized parameter estimates. Standard-
ized factor loadings are almost always used in interpreting
results of a factor analysis (Floyd & Widaman, 1995) and
factor correlations directly describe the relationships among
factors in a universally understandable way. Approximately
two thirds of applied factor-analytic studies cited in this ar-
ticle reported standardized factor loadings.2 Therefore, this
study builds on the existing literature by exploring the influ-
ences of ignoring nested data on CFA parameter estimates
that are commonly used and reported. Applied researchers
will want to know the consequences of ignoring the nested
data structure on standardized parameter estimates.

Julian (2001) demonstrated the effects of disaggregation,
or ignoring the macro level and analyzing only the micro-
level units. However, the aggregation method, which involves
averaging variables within each macro-level unit and ana-
lyzing only these macro-level averages, is another way that
researchers might ignore the multilevel structure of nested
data. For example, students could be assessed within each
classroom, but the student data could be averaged within
each classroom and the averaged classroom-level data used
in the analysis. In regression analysis, ignoring the micro
level does not affect the SEs of regression coefficients in the
macro level (Moerbeek, 2004). From our brief search we
found many applications of factor analysis using aggregated
data (Bell, Mengüç, & Stefani, 2004; Ehrhart, 2004; Gib-
son & Birkinshaw, 2004; Gong, Chang, & Cheung, 2010;
Hoegl, Parboteeah, & Munson, 2003; King & Figueredo,
1997; Mathisen, Einarsen, Jørstad, & Brønnick, 2004; Zhou,
Gao, Yang, & Zhou, 2005). We also found two articles that
ran separate factor analyses on the same but disaggregated or
aggregated data (Håvold, 2007; Hoegl & Gemuenden, 2001).
In most cases, multilevel CFA (MCFA), which is one way of
accounting for nested data structure, should be applied to any
data sets with nested structure. Instead of using aggregation,
MCFA accurately estimates the macro-level parameters of

2Almost all substantive studies that we classified as reporting standardized
loadings used the term loadings or factor loadings to refer to standardized
factor loadings. We checked that the reported “loadings” or “factor loadings”
were in fact standardized. If researchers provided any guidelines on the non-
trivial values of factor loadings, we assumed that they implied standardized
factor loadings. Also, if all values of “loadings” or “factor loadings” were
not over 1, we assumed that they reported standardized loadings. In the
marker variable method of scale identification, at least one loading is fixed
at 1. In the fixed factor method of scale identification, all unstandardized
factor loadings would be less than 1 when standard deviations of observed
variables are close to or lower than 1. In such cases, we assumed the ob-
served variables had been standardized and thus the reported loadings were
standardized.
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520 PORNPRASERTMANIT, LEE, PREACHER

interest. The only circumstances under which it is appropri-
ate to apply CFA to aggregated data are when (a) the target
construct is in a formative measurement model (see the next
two sections for more details about formative and reflec-
tive measurement models) and (b) the sampling ratio (i.e.,
the proportion of the observed cluster size and total cluster
size of a group) is close to 1 (Lüdtke, Marsh, Robitzsch,
& Trautwein, 2011), such as when measuring job stress of
team members (nested in teams) when almost all members
answered the questionnaires (Keller, 2001). Unfortunately,
not many analyses fall into this category. Thus, we focus on
the more common case where MCFA is required and explore
the effects of ignoring the micro level in CFA. Therefore, we
show that the standardized parameter estimates and their SEs
can be biased due to aggregation.

Although ignoring one level can lead to inaccurate re-
sults depending on researchers’ target parameters, ignoring
clustering is sometimes necessary. Researchers may not have
information on macro-level units that is necessary for mul-
tilevel analyses. For example, the school variable may be
inadvertently lost when researchers merge data sets. Also,
they may find that multilevel analyses do not converge (Ryu
& West, 2009), especially in data characterized by low ICCs.
In addition, specifying a multilevel structure in the analysis
model creates additional parameters that may not be directly
relevant to the goal of the study—for instance, researchers
may be interested in the factor structure at only the individ-
ual level. In such cases, researchers often choose single-level
CFA instead of MCFA, thereby ignoring either the micro or
macro level. Thus, using Monte Carlo simulation, we inves-
tigate when the effect of ignoring clustering is minimal or
significant, focusing on ICC and other important factors. At
the end of this article, we also discuss several alternatives to
avoid ignoring the nested data structure.

The goal of this study is to extensively investigate the
effects of ignoring the nested structure of data (either the
macro or micro level) by using single-level CFA rather than
MCFA on standardized measures. The organization of this
article is as follows. First, we explain CFA and MCFA and
the techniques used for model fit evaluation. We then dis-
cuss the meanings of parameters from disaggregated CFA,
aggregated CFA, and different types of MCFA. We show
the effects of disaggregation and aggregation on standard-
ized parameter estimates analytically. Next, we provide the
results of our simulation studies that examine the effects of
ignoring clustering. We also illustrate the consequences of
ignoring nested data structure in a real data set. Finally, we
summarize the study findings and provide recommendations
for handling nested data in CFA.

CONFIRMATORY FACTOR ANALYSIS MODEL

Factor analysis is a statistical technique used to identify
latent variables that explain relationships among observed

variables. This technique is based on partitioning the vari-
ance of each variable into two major parts: common fac-
tor variance (that part of a variable’s variance explained
by common factors) and unique variance (uniqueness; that
part of a variable’s variance not explained by common fac-
tors). In CFA, researchers have hypotheses about the com-
mon factor structure in advance (i.e., the number of fac-
tors and the assignment of observed variables to factors),
whereas in exploratory factor analysis, the goal often is to
identify the number of interpretable factors that explain co-
variances among observed variables. We focus on the case
of CFA. The results from CFA include model fit indices
showing the degree to which a hypothesized model accu-
rately represents relationships among observed variables. Be-
cause CFA is a special case of structural equation modeling
(SEM), fit indices from SEM are often used, such as the
chi-square statistic, root mean square error of approximation
(RMSEA; Steiger & Lind, 1980), standardized root mean
square residual (Jöreskog & Sörbom, 1981), comparative fit
index (CFI; Bentler, 1990), and Tucker-Lewis Index (TLI;
L. R Tucker & Lewis, 1973).

As with other statistical models, CFA has several as-
sumptions. One of the most important assumptions is in-
dependence of observations. This assumption is violated
when cases are organized into natural clusters (e.g., stu-
dents can be grouped based on schools), which leads to a
nested data structure. In such cases, using CFA that is de-
signed for single-level data can lead to biased parameter es-
timates and SEs (Julian, 2001). MCFA, which is a submodel
of the multilevel SEM (MSEM) framework, was devel-
oped to address these issues (Ansari, Jedidi, & Dube, 2002;
Ansari, Jedidi, & Jagpal, 2000; Chou, Bentler, & Pentz, 2000;
Jedidi & Ansari, 2001; B. O. Muthén & Asparouhov, 2009;
Rabe-Hesketh, Skrondal, & Pickles, 2004; Rabe-Hesketh,
Skrondal, & Zheng, 2007; Raudenbush & Sampson, 1999;
Skrondal & Rabe-Hesketh, 2004). MCFA can account for
the covariation of observed variables in more than one level
of the data hierarchy. The next sections illustrate models and
assumptions underlying both single- and multilevel CFA.

Single-Level CFA

The CFA model separates observed scores of an individual
into three components: a measurement intercept, a part due
to common factor, and a part due to unique factor:

Yi = μ + �ηi + εi , (1)

where Yi is a p-dimensional vector of observed variables
for individual i; μ is a p-dimensional vector of observed
means; � is a p × m factor loading matrix, where m indi-
cates the number of latent variables; ηi is an m-dimensional
vector of latent variable scores for individual i; and εi is
a p-dimensional vector of unique factors. In this model, μ

and � are constant across individuals, ηi ∼ N (0m,�), and
εi ∼ N

(
0p,�

)
, where 0m and 0p are m- and p-dimensional
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IGNORING CLUSTERING IN CFA 521

zero vectors, � is an m × m matrix of latent variable covari-
ances, and � is a p × p matrix of unique factor covariances.
Therefore, μ, �, �, and � contain parameters to be esti-
mated. The most popular way to estimate these parameters
is via maximum likelihood (ML).

The CFA model can be reparameterized to estimate stan-
dardized coefficients by

Yi − μ = D1/2
Y Y∗

i (2)

and

Y∗
i = �∗η∗

i + ε∗
i , (3)

where Y∗
i contains standardized indicators; DY is a p × p

diagonal matrix containing variances of indicators on the
diagonal; �∗ is a p × m matrix of standardized factor load-
ings; η∗

i is an m-dimensional vector of factor scores in the
standardized scale; and ε∗

i is a p-dimensional vector of the
rescaled unique factors, the variances of which are nonlin-
early constrained by

diag
(
�∗) = diag

(
I − �T ∗�∗�∗) , (4)

where the diag function extracts only the unique variances
and fixes the covariances to 0, �∗ is the p × p scaled unique
factor covariance matrix, and �∗ is the m × m factor corre-
lation matrix.

In ML, scores are assumed independent across individ-
uals. If any observations are correlated and this correlation
is not modeled, the ML likelihood function will be inflated,
resulting in bias in fit indices and SEs. One way to account
for dependency among observations is to use MCFA or, in
general, MSEM.

CFA Accounting for the Nested Data Structure

There are two general ways to account for nested data struc-
ture: design-based or model-based approaches (B. O. Muthén
& Satorra, 1995; Stapleton, 2002; Sterba, 2009). The design-
based framework is based on defining how a sample has
been drawn from a target population in a nested data structure
(Asparouhov, 2005; Kaplan & Ferguson, 1999; B. O. Muthén
& Satorra, 1995; Stapleton, 2002, 2006, 2008). Then, selec-
tion probabilities are created for each micro-level unit (ac-
counting for the size of each cluster; see Sterba, 2009 for an
example). The selection probabilities are used to create sam-
pling weights such that micro-level units with low selection
probabilities will be given more weight. For example, with
large-scale survey data sets, such as the National Assessment
of Educational Progress or the Program for International Stu-
dent Assessment (PISA), how each micro-level unit is drawn
is carefully described, and sampling weights are provided
for all micro-level units. Finally, CFA is implemented while
incorporating sampling weights, which are the inverse selec-
tion probabilities of each case (Kaplan & Ferguson, 1999).

Macro-level units are accounted for in the data analysis by
estimation procedures. Parameter estimates and SEs are ag-

gregated across clusters, such as with Taylor series lineariza-
tion (Asparouhov, 2005; Asparouhov & Muthén, 2005). The
aggregation accounts for the fact that the probabilities of
all micro and macro units are drawn from a finite population
through the use of sampling weights. Note that if the probabil-
ities of selecting each macro-level unit and each micro-level
unit are equal, the sampling weights are equal and some
programs (e.g., Mplus) can appropriately normalize equal
weights and provide accurate parameter estimates and SEs.
However, results from the design-based framework represent
neither micro- nor macro-level factor structure. We discuss
the meanings of the parameters from design-based CFA in
the next section. Because the factor structure at both micro
and macro levels cannot be examined by this approach, we
do not focus on the design-based approach in this study.

MCFA is a model-based framework that includes higher
level units into the models. MCFA is the extension of CFA to
the analysis of nested data. A score in a nested data structure
can be influenced by two latent variables: the latent cluster
score and latent individual score (Lüdtke et al., 2008):

Yij = μ + υj + υ ij , (5)

where i indexes individual cases and j indexes clusters, Yij is
a p-dimensional vector of observed variables for individual i
in cluster j, μ is a p-dimensional vector of grand means, υj is
a p-dimensional vector containing latent cluster (macro-level
deviation) scores for cluster j, and υ ij is a p-dimensional
vector containing latent individual (micro-level deviation)
scores for individual i in cluster j.

Similar to single-level CFA, both latent cluster scores and
latent individual scores also can be classified into two sources
of variation: common factors and unique factors. The micro-
level (or Within) measurement model is

υ ij = �WηWij + εij , (6)

where �W is a p × m micro-level factor loading ma-
trix, where m indicates the number of micro-level latent
variables, ηWij is an m-dimensional vector of micro-level
latent variable scores for individual i in cluster j, and
εij is a p-dimensional vector of micro-level unique fac-
tors. ηWij is multivariate normally distributed with zero
means and m × m micro-level covariance matrix �W . εij
is multivariate normally distributed with zero means and
p × p micro-level covariance matrix �W . The macro-level
(or Between) measurement model is

υj = �BηBj + ζ j , (7)

where �B is a p × h macro-level factor loading matrix, where
h indicates the number of macro-level latent variables, ηBj is
an h-dimensional vector of macro-level latent variable scores
for cluster j, and ζ j is a p-dimensional vector of macro-level
unique factors. ηBj is multivariate normally distributed with
zero means and h × h micro-level covariance matrix �B . ζ j
is multivariate normally distributed with zero means and p
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522 PORNPRASERTMANIT, LEE, PREACHER

× p micro-level covariance matrix �B . Note that the factors
in both levels can represent the same or different constructs
across levels (Klein & Kozlowski, 2000). As an example of
different constructs, self-efficacy might represent the relative
efficacy of individuals (to their peers within a group) at the
micro level but collective team efficacy at the macro level.

The model described earlier is referred to as a random
intercept model. Almost any parameters, however, can be
allowed to vary across clusters. For example, factor loading
values can be normally distributed across clusters. A model
with different path coefficients across clusters is referred to
as a random effect model (B. O. Muthén & Asparouhov,
2009). We, however, concentrate only on models with ran-
dom intercepts.

The MCFA model can be reparameterized to estimate
standardized coefficients by rescaling the micro- and macro-
level deviation scores:

υ ij = ((I − P) DY )1/2 υ∗
ij (8)

υj = (PDY )1/2 υ∗
i , (9)

where I is a p × p identity matrix, P is a p × p diagonal matrix
containing ICCs of all variables, DY is a p × p diagonal matrix
containing the total observed variances of all variables, υ∗

ij is
a vector of the standardized micro-level scores of individual i
in cluster j, and υ∗

i is a vector of the standardized macro-level
scores of cluster j. The measurement models of the standard
scores of both levels are

υ∗
ij = �∗

Wη∗
Wij + ε∗

ij (10)

υ∗
j = �∗

Bη∗
Bj + ζ ∗

j , (11)

where �∗
W and �∗

B are micro- and macro-level standardized
factor loading matrices, η∗

Wij and η∗
Bj are the micro- and

macro-level factor scores in the standardized scale, and ε∗
i

and ζ ∗
j are the micro- and macro-level unique factors. The

micro- and macro-level unique variances are nonlinearly con-
strained by

diag
(
�∗
W

) = diag
(
I − �T ∗

W �∗
W�∗

W

)
(12)

diag
(
�∗
B

) = diag
(
I − �T ∗

B �∗
B�∗

B

)
, (13)

where �∗
W and �∗

B are micro- and macro-level scaled unique
factor covariance matrices and �∗

W and �∗
B are micro- and

macro-level factor correlation matrices.
This model is estimated by full information maximum

likelihood (FIML; see B. O Muthén & Asparouhov, 2009,
for further details). A chi-square statistic is provided to de-
termine the amount of misfit in the model. This chi-square
statistic reflects misfit in both micro and macro levels (Ryu
& West, 2009). Other fit indices, such as CFI, TLI, and RM-
SEA, are available to evaluate overall model fit as well. These
fit indices tend to represent misfit in the micro level much
more than the macro level (Ryu & West, 2009). To separate
the misfit into components specific to the macro and micro
levels, Ryu and West (2009) proposed that saturation in one

level is needed. If researchers wish to quantify the misfit in
the micro level, researchers need to saturate the macro-level
model, such as by specifying all possible covariances among
variables to be freely estimated. If researchers wish to find
the misfit in the macro level, the micro-level model needs to
be saturated. This strategy is useful only in case of random
intercept models.

This model can also be estimated by the segregation ap-
proach (B. O. Muthén, 1989, 1990, 1994; Yuan & Bentler,
2007) involving two steps. First, the covariance matrices of
the micro-level deviations (υ ij ) and macro-level deviations
(υj ) are estimated. Second, the models at each level can be
estimated by ML or other estimators. This approach can be
used only for random intercept models and when the cluster
size is uniform (Yuan & Bentler, 2007). Because the segre-
gation approach is less general than MCFA using FIML, we
focus only on the latter approach in this study.

Although MCFA using FIML is an appropriate analytic
approach for nested data, the models do not always converge,
especially when ICC is low (Ryu & West, 2009). The segre-
gation approach is not easily employed using popular SEM
packages. Thus, sometimes researchers may deem it neces-
sary to ignore clustering when MCFA does not converge.
Using single-level CFA on multilevel data, however, will vi-
olate the assumption of independent observations. Therefore,
it is necessary to know the effects of ignoring clustering when
MCFA cannot be used.

THE MEANINGS BEHIND TARGET
PARAMETERS FOR DISAGGREGATED,

AGGREGATED, AND DESIGN-BASED CFA
AND MCFA

A construct can be represented by two types of measurement
models: formative or reflective. Note that the terms forma-
tive and reflective are used here in a purely conceptual sense
to describe the nature of aggregation (Lüdtke et al., 2008),
unlike the terms used to distinguish two opposing measure-
ment models (Bollen, 1989). Sometimes, the terms formative
and reflective in aggregation are referred to as direct consen-
sus and referent-shift consensus, respectively (van Mierlo,
Vermunt, & Rutte, 2009).

In a formative measurement model, latent variables at
the micro level represent the properties of micro-level units.
Macro-level constructs are the collective properties of micro-
level latent variables, such as means or variances of the micro-
level latent variables. For example, items measuring individ-
ual neuroticism can be considered formative indicators of a
neuroticism construct. Any statistic about neuroticism (e.g.,
average or maximum) can be considered a macro-level for-
mative construct. The relationships among variables at the
micro and macro levels can be represented by factor-analytic
models.
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IGNORING CLUSTERING IN CFA 523

On the other hand, the primary unit in a reflective mea-
surement model is the macro-level unit. For example, if em-
ployees in a department answer items measuring their super-
visor’s performance, the measurement target is at the macro
level (supervisor). The relationships among variables at the
macro level can be represented by a factor-analytic model.
The differences within a macro-level unit represent system-
atic differences unique for each micro-level unit (e.g., differ-
ences in rating styles) and measurement errors. If researchers
are interested in the micro-level difference, they may con-
struct a factor structure to explain the relationships among
variables at the micro level. Otherwise, they can simply es-
timate all possible covariances among variables at the micro
level to avoid model misspecification. For example, suppose
that each student rates the hostility level in a classroom.
The individual differences within the classroom may indi-
cate classroom dominance hierarchy or bullying behaviors.
Thus, researchers may want to model the shared systematic
student differences as well. See Lüdtke et al. (2011), Lüdtke
et al. (2008), and Marsh et al. (2012) for further details.

Different analytic methods in the previous section treat
nested data in different ways resulting in different meanings
of the same parameters (e.g., factor correlations). The mean-
ings depend on whether the construct under investigation is
formative or reflective. In MCFA, micro-level parameter esti-
mates represent the relations among variables controlled for
the influence of clusters. For example, a micro-level standard-
ized factor loading in an independent cluster factor pattern
(i.e., each indicator loads on only one factor) represents the
correlation between micro-level variations of a variable and
scores of a micro-level latent variable. In other words, this
loading represents the change in the expected value of a vari-
able in standard deviation units if a latent variable increases
by one standard deviation within a macro-level unit. In a pure
formative measurement model (Lüdtke et al., 2011; Lüdtke
et al., 2008), researchers can interpret the meaning of a micro-
level latent variable based on the magnitudes of the micro-
level standardized factor loadings. That is, the meanings of
micro-level latent variables should be based on the items
with high micro-level standardized factor loadings. Note that
a micro-level factor structure is not needed in a pure reflective
measurement model. If a micro-level structure is specified in
a pure reflective model, the interpretation is similar to the
micro-level structure in a pure formative model.

Macro-level parameter estimates in MCFA represent the
relations among variables at the macro level. For example,
a macro-level standardized factor loading for an indepen-
dent cluster factor pattern represents the correlation between
macro-level variations of a variable and scores of a macro-
level latent variable. Its squared value corresponds to the
proportion of macro-level variance of a variable explained
by a macro-level latent variable. In a formative measurement
model, factor loadings reflect the degree of differences in
measurement intercepts across clusters. If scalar invariance
is established across macro-level units, macro-level measure-

ment unique variances are equal to 0 and macro-level stan-
dardized factor loadings are equal to 1 (Jak, Oort, & Dolan,
2013). If metric invariance holds but scalar invariance is not
established, macro-level measurement errors represent the
variances of the intercepts across macro-level units. Then, a
macro-level standardized loading is negatively related to the
degree of the differences between the intercepts of a variable
across macro-level units. Thus, if researchers have a factor
structure at the micro level, they should be careful in inter-
preting macro-level standardized loadings. For example, if
scalar invariance is established, all macro-level standardized
loadings would be 1 even though a macro-level factor repre-
sents the means of micro-level factors. On the other hand, in
a pure reflective measurement model, macro-level standard-
ized factor loadings should be used to interpret the meanings
behind macro-level latent variables.

Disaggregated CFA investigates the relations of variables
uncontrolled for the influences of clusters. For example, a
disaggregated standardized factor loading for an indepen-
dent cluster factor pattern represents the correlation between
an observed variable and a latent variable without consider-
ing the cluster membership of each case. In other words, this
loading represents the change in the expected value of a vari-
able in standard deviation units if a latent variable increases
by one standard deviation, regardless of cluster member-
ship. Loosely speaking, target parameters from MCFA are
similar to regression coefficients from group-mean center-
ing, whereas those from disaggregated CFA are similar to
regression coefficients from grand-mean centering. Aggre-
gated CFA, on the other hand, explains the relations among
macro-level units so that the meanings of parameters are the
same as macro-level parameters.

Design-based CFA also explains the relations of variables
uncontrolled for the influences of clusters (Stapleton, 2006).
Design-based CFA and disaggregated CFA differ mostly in
terms of the type of population (finite vs. infinite) being
targeted. Design-based CFA requires a well-defined finite
population (e.g., all high school students in Florida) and
parameters represent the relations of variables within the
defined finite population. Disaggregated CFA, however, is
based on the model-based approach in which the target pop-
ulation is infinite. A model-based analysis can generalize the
results derived from a sample to the hypothetical, infinite
population under certain conditions (Sterba, 2009). That is,
if a model is correct (i.e., all assumptions are met and the
conditionality principle is satisfied),3 researchers can use pa-
rameter estimates from a nonrandom or random sample to
explain the relations of variables. Estimating parameters in
disaggregated CFA, however, limits generalizability because

3Under the conditionality principle, two random sets of scores of de-
pendent (endogenous) variables should be independent after controlling
for independent (exogenous) variables (Sterba, 2009). In other words, the
conditionality principle implies that a model has no omitted variables. If
researchers ignore clustering, the conditionality principle is violated.

D
ow

nl
oa

de
d 

by
 [

V
U

L
 V

an
de

rb
ilt

 U
ni

ve
rs

ity
],

 [
K

ri
st

op
he

r 
J.

 P
re

ac
he

r]
 a

t 1
8:

13
 0

2 
D

ec
em

be
r 

20
14

 



524 PORNPRASERTMANIT, LEE, PREACHER

TABLE 1
The Meanings of Standardized Factor Loadings, Factor Correlations, and Regression Coefficients Across Different Types

of Analyses

Analysis
Type of

Construct Meanings

Standardized factor loadings

Micro level Formative Represent the relationship between factor and indicators controlling for clusters
Reflective Represent the relationship between factor and indicators controlling for clusters. Researchers may not use the factor

structure if micro-level shared systematic variances are not of interest
Macro level Formative Reflect the degree of differences between measurement intercepts across clusters

Reflective Represent the relationship between factor and indicators at the macro level
Disaggregated Represent the relationship between factor and indicators when clustering is ignored. Should not be used because inference

under the model-based approach is incorrect (the conditionality principle is not satisfied)
Aggregated Have the same meanings as the macro-level standardized factor loadings in both formative and reflective measurement

models
Design-based Represent the relationship between factor and indicators in a target finite population uncontrolled for the influences of

clusters

Factor correlations

Micro level Formative Represent the relationship between two factors controlling for clusters
Reflective Represent the relationship between two factors controlling for clusters. Researchers may not use the factor structure if

micro-level shared systematic variances are not of interest
Macro level Formative Reflect the relationship between the cluster averages of two factors (that are targeted to measure properties of micro-level

units)
Reflective Reflect the relationship between two factors (that are targeted to measure properties of macro-level units)

Disaggregated Represent the relationship between two factors when clustering is ignored. Should not be used because inference under
the model-based approach is incorrect (the conditionality principle is not satisfied)

Aggregated Have the same meanings as the macro-level factor correlations in both formative and reflective measurement models
Design-based Represent the relationship between two factors in a target finite population uncontrolled for the influences of clusters

Regression coefficients

Micro level Formative Represent the directional relationship between two variables controlling for clusters
Reflective Represent the directional relationship between shared systematic differences of two variables within clusters

Macro level Formative Reflect the directional relationship between the cluster averages of two variables (that are targeted to measure properties
of micro-level units)

Reflective Reflect the directional relationship between two variables (that are targeted to measure properties of macro-level units)
Disaggregated Represent the directional relationship between two variables when clustering is ignored. Should not be used because

inference under the model-based approach is incorrect (the conditionality principle is not satisfied)
Aggregated Have the same meanings as the macro-level regression coefficients in both formative and reflective measurement models
Design-based Represent the directional relationship between two variables in a target finite population uncontrolled for the influences of

clusters

clustering is ignored; thus, the conditionality principle is not
fully satisfied.

Table 1 summarizes the meanings of standardized factor
loadings and factor correlations from different analytic meth-
ods. We also provide the meanings of regression coefficients
in multilevel regression in this table highlighting the similar-
ity between factor correlations and regression coefficients.

The different meanings of parameters are analogous to
the interpretations of parameters from multiple-group CFA.
Micro-level parameters from MCFA are analogous to within-
group parameters. Macro-level parameters from MCFA de-
tect the differences in mean-structure parameters (e.g., in-
tercepts or latent means) across groups. Disaggregated CFA
is analogous to a single-group analysis of the overall sam-
ple without considering groups. Design-based CFA is also

analogous to a single-group analysis of overall samples but
accounts for the proportions of groups in a target finite
population.

Disaggregated analysis does not permit inference to an
infinite population in model-based inference (because inde-
pendence of observations is violated) or a finite population
in design-based inference (because sampling weights are not
used). This study focuses on model-based inference. That is,
we investigate the degree to which micro- and macro-level
parameters influence disaggregated parameters. Note that pa-
rameters from disaggregated CFA have different meanings
than micro- and macro-level parameters from MCFA. There-
fore, we do not refer to the differences in estimates between
disaggregated CFA parameters and micro-level parameters
from MCFA as “bias.”
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IGNORING CLUSTERING IN CFA 525

Aggregated CFA parameters and macro-level parameters
from MCFA convey the same meanings thus the differences
can be interpreted as “bias.” Aggregated analysis is usually
inferior to MCFA because the reliability of group means is not
accounted for (Lüdtke et al., 2011; Lüdtke et al., 2008). This
study investigates the degree to which micro-level parameters
influence bias in the estimation of macro-level parameters in
aggregated CFA.

EFFECTS OF IGNORING CLUSTERING

Clustering can be ignored in two ways: disaggregation and
aggregation. The estimation of parameters and their SEs of
disaggregated analysis is different from micro-level parame-
ters from multilevel analysis (Chen et al., 2010; Julian, 2001;
Moerbeek, 2004; Noortgate, Opdenakker, & Onghena, 2005;
Opdenakker & Van Damme, 2000). The disaggregated vari-
ance of a variable is greater than the micro-level variance
from multilevel analysis because the macro-level variance is
not estimated but added to the disaggregated variance instead.
When the micro-level and macro-level regression coefficient
estimates are the same, the disaggregated regression coeffi-
cient remains the same; however, its SE can be lower (for
an independent variable with high ICC) or higher (for an
independent variable with low ICC). If ICC is larger, the
difference in the SE is stronger. However, when the effect
of an independent variable on a dependent variable differs
between levels (i.e., a contextual effect exists), the disag-
gregated regression coefficient is a weighted average of the
effects from both levels, which obscures the effect within
each level (Raudenbush & Bryk, 2002).

Aggregation is another way of ignoring clustering. The av-
erage scores contain some measurement error derived from
within-cluster variability yet are treated as having no mea-
surement error at the macro level (Lüdtke et al., 2008; Marsh
et al., 2012). The aggregated variance is greater than the
macro-level variance because some part of the micro-level
variance is not estimated but added to the macro-level vari-
ance. The difference between the aggregated and macro-level
variances becomes smaller as cluster size increases. How-
ever, even when the micro level is ignored, the parameter
estimates and SEs of regression coefficients for true macro-
level predictors are not biased in a balanced design (i.e., a
design in which all clusters are the same size; Moerbeek,
2004).

Regarding CFA, Julian (2001) found that the disaggre-
gation method led to inflated chi-square statistics, increased
parameters estimates, and decreased SEs for all parameters
in a model compared with micro-level counterparts. The pa-
rameters included factor loadings, factor variances, factor
covariances, and unique factor variances. The difference be-
came larger as ICC increased. In every condition, Julian used
equal total sample size (i.e., 500) but varied the balance of
micro- and macro-level sample sizes. The difference was

more pronounced when the total sample was allocated into a
smaller number of clusters (i.e., the condition with 10 clus-
ters and cluster size of 50 had larger bias than the condition
with 50 clusters and cluster size of 10). However, the differ-
ence due to sample size was relatively small compared with
that due to ICC. Finally, if the macro-level factor structure
differed from the micro-level factor structure (e.g., two fac-
tors in the macro level but four factors in the micro level),
the difference was larger.

Julian (2001) examined only unstandardized factor load-
ings and factor covariances. However, researchers usually
report standardized factor loadings and factor correlations
for interpreting their results. Moreover, the standardized pa-
rameters are, in fact, ratios of unstandardized parameters. For
example, a factor correlation is the ratio of a factor covariance
(numerator) and factor standard deviations (denominator).
When both the numerator and denominator are influenced
by ignoring clustering, the resulting difference in the factor
correlation is difficult to predict. Therefore, in this study, we
examine the differences in standardized parameters and their
SEs that are due to ignoring clustering. Further, this study
extends to the situation where ICC and macro-level com-
munalities are different across indicators of the same factor
(leading to differences in macro-level standardized factor
loadings).

The amount of difference in estimates of standardized fac-
tor loadings and factor correlations can be predicted math-
ematically. The disaggregated standardized parameters are
used to represent the factor structure in both micro-level
units (e.g., Cassidy et al., 2005; Ebesutani et al., 2011; Garb
et al., 2011; Hatami et al., 2010; Law et al., 2011; Merrell
et al., 2011; Nelson et al., 2007; Oliver et al., 2006; Philips
et al., 2006; Raspa et al., 2010; C. M. Tucker et al., 2011) and
macro-level units (mostly in organizational studies; Babakus
et al., 2004; C. J. Collins & Smith, 2006; Glisson & James,
2002; González-Romá et al., 2002; Han et al., 2006; Keller,
2001; Patterson et al., 2005; Riordan et al., 2005; Robert &
Wasti, 2002; Salanova et al., 2005; Schaubroeck et al., 2007;
Takeuchi et al., 2007; van der Vegt & Bunderson, 2005; Zo-
har & Tenne-Gazit, 2008). Because micro-level constructs
are very unlikely to illuminate macro-level constructs (Klein
& Kozlowski, 2000) and disaggregated analysis represents
the relations among variables in micro-level units (uncon-
trolled for macro-level units), we do not focus on comparing
the results from disaggregated data with macro-level param-
eters. Rather, the parameter estimates from the analysis of
disaggregated data are compared against micro-level param-
eters (see Moerbeek, 2004). The parameter estimates from
the analysis of aggregated data are compared against macro-
level parameters because their parameters convey the same
meanings. The procedures used to predict the differences of
the disaggregated and aggregated parameter estimates (from
the micro- and macro-level models, respectively) are de-
scribed in Online Appendix A. Readers may access all of
the appendices on the following website: http://quantpsy.org
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We also derive closed-form formulas for the difference in
the disaggregated and aggregated parameters in three special
cases. The first case is when (a) ICCs of all variables are
equal, (b) factor correlations are equal across levels, and (c)
standardized factor loadings are equal across levels. In this
case, the disaggregated standardized loadings and factor cor-
relations are not different from the micro-level parameter es-
timates, and the aggregated standardized loadings and factor
correlations are not different from the macro-level parame-
ter estimates. This case is referred to as standardized factor
loading and factor correlation invariance. The second case
is when (a) the micro-level standardized factor loadings are
proportional to the macro-level standardized factor loadings
and (b) ICCs of all variables are equal. This case is referred
to as standardized metric (weak) cross-level invariance. The
third case is when (a) ICCs of all variables are equal and (b)
unstandardized factor loadings are equal across levels. This
case is referred to as true metric (weak) cross-level invari-
ance (Jak et al., 2013). As shown in Online Appendix A, in
both the standardized and true metric invariance cases, the
disaggregated standardized loadings and factor correlations
can be computed by

λ∗
Drs =

√
λ∗
Wrs

(
λ∗
WrsσWrr + λ∗

BrsσBrr
)

σWrr + σBrr
(14)

and

ψ∗
Dst =

√
ψBss

ψBss + ψWss
ψ∗
Bst

√
ψBtt

ψBtt + ψWtt

+
√

ψWss

ψBss + ψWss
ψ∗
Wst

√
ψWtt

ψBtt + ψWtt
, (15)

where λ∗
Wrs and λ∗

Drs are the micro-level and disaggregated
standardized factor loadings linking indicator r to factor s;
σWrr and σBrr are micro- and macro-level observed variances
of indicator r; ψWss and ψBss are the micro- and macro-level
variances of factor s when using the marker variable ap-
proach of scale identification in both levels (and choosing
the same marker indicator); and ψ∗

Wst , ψ
∗
Bst , and ψ∗

Dst are the
micro-level, macro-level, and disaggregated factor correla-
tion between factor s and factor t.

As shown in Online Appendix A, under either standard-
ized metric invariance or true metric invariance, the aggre-
gated standardized loadings and factor correlations can be
computed by

λ∗
Ars =

√
λ∗
Brs

(
λ∗
Wrs

σWrr
n

+ λ∗
BrsσBrr

)
σWrr
n

+ σBrr
(16)

and

ψ∗
Ast =

√
ψBss

ψBss + ψWss
n

ψ∗
Bst

√
ψBtt

ψBtt + ψWtt
n

+
√

ψWss
n

ψBss + ψWss
n

ψ∗
Wst

n

√
ψWtt
n

ψBtt + ψWtt
n

, (17)

where λ∗
Brs and λ∗

Ars are the macro-level and aggregated stan-
dardized factor loadings from indicator r to factor s, andψ∗

Ast

are the aggregated factor correlation between factor s and
factor t. Other symbols are defined as in Equations 14 and
15.

We realize that real-world applications will deviate to
some degree from these three simple cases. We use these
simple cases to derive some general consequences of ignor-
ing clustering. To account for more complex cases, we also
conduct two additional simulation studies. The first simu-
lation study investigates differences due to disaggregation,
replicating and extending Julian’s (2001) study. The sec-
ond simulation study examines the bias due to aggregation.
In these simulation studies, we compare single-level CFA
(which ignores the nested nature of data) against MCFA in
terms of model fit, standardized parameter estimates, and
their SEs.4

HYPOTHESES TO BE TESTED

Our hypotheses are based on only the situations where (a)
ICCs are equal across variables and (b) the standardized
factor loadings (and thus communalities) are equal across
variables within each level (but not equal across levels).
From Equation 14, if λ∗

Wrs = λ∗
Brs , then λ∗

Drs = λ∗
Wrs . If

λ∗
Wrs < λ∗

Brs , then λ∗
Drs > λ∗

Wrs and vice versa. The same
relations hold among ψ∗

Dst , ψ
∗
Wst , and ψ∗

Bst . Therefore, the
disaggregated standardized factor loadings or factor correla-
tions are expected to deviate from the micro-level standard-
ized factor loadings or factor correlations toward the values of
the macro-level standardized factor loadings or factor corre-
lations, respectively. The degree of this deviation is expected
to be larger if ICC is higher. This statement implies that if
the micro- and macro-level standardized loadings (or factor

4Based on a reviewer’s suggestion, we also analytically prove the conse-
quences of ignoring clustering on scale reliability. We consider coefficient
alpha (α), coefficient omega (ω), and maximal reliability (H) in this proof.
In Online Appendix A, we show that disaggregated and aggregated α, ω,
and H lay between micro- and macro-level α, ω, and H assuming true or
standardized metric invariance, equal micro- and macro-level standardized
loadings across items, and equal micro- and macro-level observed variances
across items. Geldhof, Preacher, and Zyphur (2014) discuss some conse-
quences of ignoring the nested data structure on scale reliability and also
discuss consequences for other types of reliability estimates.
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IGNORING CLUSTERING IN CFA 527

correlations) are equal (Case 1), the disaggregated standard-
ized parameter estimates are not deviated.

From Equation 16, if λ∗
Wrs = λ∗

Brs , then λ∗
Ars = λ∗

Brs . If
λ∗
Wrs < λ∗

Brs , then λ∗
Ars < λ∗

Brs and vice versa. The same
relations hold among ψ∗

Ast , ψ
∗
Wst , and ψ∗

Bst . Therefore, the
aggregated standardized factor loadings or factor correlations
are anticipated to deviate from the macro-level standardized
factor loadings or factor correlations toward the values of
the micro-level standardized factor loadings or factor corre-
lations, respectively. The deviation will be larger if ICC is
lower or the cluster size is smaller. This statement implies
that if the micro- and macro-level standardized loadings (or
factor correlations) are equal (Case 1), the aggregated stan-
dardized parameter estimates are not biased.

SIMULATION STUDY 1: DISAGGREGATION

This simulation study examines the case in which cluster-
ing is ignored and the data are analyzed by single-level CFA
directly. We examine some conditions similar to those inves-
tigated by Julian (2001) for the sake of comparability.

The model used in this simulation study has six observed
variables. Both micro and macro levels have the same factor
structure: two factors with three indicators each. All micro-
level standardized factor loadings are fixed to .7. As a conse-
quence, all micro-level uniquenesses are .51. The micro-level
factor correlation is fixed to .5. The macro-level factor corre-
lation and standardized loadings are varied across conditions.

Design Conditions

Sample size. There are four sample size conditions.
Two conditions, with a total sample size of 500, are 100/5
and 10/50. The first and the second numbers indicate the
number of clusters and cluster size, respectively. The other
two conditions, with a total sample size of 8,000, are 400/20
and 40/200. We add these much larger total sample size
combinations in order to increase the convergence rate in
MCFA so the results from the disaggregated single-level CFA
and MCFA can be compared. In sum, there are four sample
size conditions: 100/5, 10/50, 400/20, and 40/200.

Intraclass correlation. There are five ICC conditions
in this study: .05, .15, .25, .50, and .75.

Distribution of intraclass correlation across items
within a factor. ICCs of all indicators within the same
factor can have the same or different values. To specify val-
ues for the unequal ICC conditions, first, the distances from
the ICC and both 0 and 1 are calculated (e.g., .15 – 0 =
.15 and 1 – .15 = .85). Next, the shortest distance is chosen
(e.g., choose .15). Then, the shortest distance is divided by
2 (e.g., .15/2 = .075), which is referred to as the margin.
In each factor, three indicators have an ICC value equal to

the average ICC, the average ICC minus the margin, and the
average ICC plus the margin (e.g., .075, .15, and .225).

Macro-level communalities. There are three condi-
tions for the macro-level communality: low, medium, and
high. For the medium condition, we set the macro-level
communality equal to the micro-level communality: .49 (i.e.,
standardized factor loadings of .7). The low and high commu-
nalities are different from the medium communality condi-
tion by .25, that is, .24 and .74, respectively (i.e., standardized
factor loadings of .49 and .86).5

Distribution of macro-level communalities across
items within a factor. Similar to ICC, we also specify
communalities to be equal or unequal across indicators of
a factor. For unequal conditions, the communality of one
indicator is less than the average communality by .20, the
communality of the second indicator is equal to the average
communality, and the communality of the last indicator is
greater than the average communality by .20. For example,
the communalities in the low, unequal condition are .04, .24,
and .44.

When unequal ICCs were combined with unequal com-
munalities, we prevented an extreme match (e.g., high ICC
and high communality) on the same indicator, such that the
first indicator has the largest communality with the average
ICC, the second indicator has the average communality with
the lowest ICC, and the third indicator has the lowest com-
munality with the highest ICC.

Macro-level factor correlation. The macro-level factor
correlation is .2, .5, or .8. Note that the medium level is the
same as the value of the micro-level factor correlation.

Therefore, there are 4 × 5 × 2 × 3 × 2 × 3 = 720
conditions in total. Each condition is analyzed in 1,000
replications.

Data Generation and Analysis Methods

Data were generated by an MCFA model with the parameter
values described earlier. Three analysis methods were used:
(a) full MCFA, (b) MCFA with a saturated macro level, and
(c) single-level CFA that ignores clustering. For the disag-
gregated single-level CFA, we use the reparameterization

5In most MCFA applications with formative constructs (similar to Sim-
ulation Study 1), the macro-level communalities are expected to be higher
than micro-level communalities. Because the measurement error variances
consist of systematic and random error variances, the amount of random
error variances in the macro level is usually lower because random errors
are averaged out by multiple observations (i.e., the central limit theorem),
especially with a large cluster size. The amount of systematic error variance,
however, could be different at each level. Although macro-level communali-
ties are typically higher than micro-level communalities, in order to account
for all possibilities, we include all scenarios such that communalities could
be lower or higher at the macro level.
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528 PORNPRASERTMANIT, LEE, PREACHER

FIGURE 1 The single-level confirmatory factor analysis (CFA) model.
The grey circles represent unique factors, variances of which are constrained
equal to 1 − λ∗2

rs . σr is the standard deviation of indicator r.

method from Equations 2–4 to obtain standardized coeffi-
cients. Figure 1 shows the single-level CFA analysis model.
For the full MCFA model, we use the reparameterization
method from Equations 5 and 8–13. Figure 2 shows the full
MCFA model. Finally, the partially saturated MCFA model
is used to fit a CFA model to the micro level using the repa-
rameterization method (Equations 2–4) and freely estimate
all covariances among variables in the macro level (a satu-
rated model). Figure 3 depicts the partially saturated model
used in this simulation. We used Mplus 7 (L. K. Muthén &
Muthén, 1998–2013) for both data generation and data anal-
ysis. Online Appendix B shows example Mplus code.

FIGURE 2 The multilevel CFA model. The grey circles represent macro-
level unique factors, the variances of which are constrained equal to 1 −
λ∗2
Brs . The black circles represent micro-level unique factors, the variances

of which are constrained equal to 1 − λ∗2
Wrs . σr is the standard deviation of

indicator r. ρr is the intraclass correlation of indicator r.

FIGURE 3 The micro-level CFA model with a saturated macro level. The
black circles represent micro-level unique factors, the variances of which
are constrained equal to 1 − λ∗2

Wrs . The macro-level CFA model with a
saturated micro level is similar to this diagram but has the CFA model at
the macro level and estimates all possible covariances at the micro level.
σr is the standard deviation of indicator r. ρr is the intraclass correlation of
indicator r.

The Evaluation of Different Analysis Methods

All three analysis models are investigated in terms of (a)
model fit, (b) differences in standardized loadings and their
SEs, and (c) differences in factor correlations and their SEs.
Because the data are generated from the full MCFA model,
the model fit values for the full MCFA model and the par-
tially saturated MCFA model should indicate good fit. The
model fit estimates for disaggregated CFA models should
indicate poor fit because clustering is ignored (Julian, 2001;
Stapleton, 2006). We use two indices to evaluate model fit:
the chi-square goodness-of-fit statistic and RMSEA. First,
the rejection rate for the chi-square test based on an alpha
level of .05 is used to evaluate each analysis model. The re-
jection rate from the full MCFA model and partially saturated
MCFA model should be approximately equal to the nominal
alpha of .05, whereas the rejection rate from the disaggre-
gated single-level CFA should be greater than .05. Second,
we transformed the chi-square statistic to RMSEA (ε) by

ε =
√

Max

(
χ2 − df

df · q , 0

)
(18)

where χ2 is the observed chi-square value from each replica-
tion, df is the degrees of freedom from each analysis model,
and q is the appropriate sample size correction for each anal-
ysis model. The sample size corrections for the full MCFA
model, the partially saturated MCFA model, and the disag-
gregated single-level CFA model are N – 1, N, and N – 1,
respectively, where N is the total sample size (see Equations
8 and 19 in Ryu & West, 2009). The average RMSEA is
calculated in each condition. The average RMSEA for the
full MCFA and partially saturated MCFA models should be
close to 0 to indicate no misfit and that for the single-level
CFA model should be systematically greater than 0.
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IGNORING CLUSTERING IN CFA 529

To examine differences in parameter estimates and SEs,
we used the results from only the disaggregated CFA and the
full MCFA because the (micro-level) parameter estimates and
SEs from the full MCFA and the partially-saturated MCFA
are not different theoretically. The micro-level standardized
loadings and factor correlations are averaged across repli-
cations. The MCFA model should have average micro-level
standardized parameter estimates close to the population pa-
rameter values (standardized loadings = .7 and factor cor-
relation = .5), whereas the disaggregated CFA should pro-
vide average parameter estimates that follow the patterns
described in the aforementioned hypotheses (i.e., positive
differences in standardized factor loadings when the macro-
level standardized factor loadings are higher). The average
SEs of standardized loadings and factor correlations in each
condition are also calculated.

There are several ways to define differences (or biases in
appropriate circumstances) in parameter estimates and their
SEs, such as relative difference (Hoogland & Boomsma,
1998) or standardized difference (L. M. Collins, Schafer,
& Kam, 2001). Because factor loadings and factor covari-
ances often are considered more meaningful when they are
in standardized form (i.e., as standardized loadings and factor
correlations), we use absolute bias:

Absolute Difference (θ ) = θ̄est − θtrue, (19)

where θ̄est is the average of parameter estimates in each con-
dition and θtrue is the population value of that parameter. If
the difference in standardized factor loadings or factor corre-
lations is less than 0.05, the difference is arguably acceptable
because this amount of bias rarely changes the interpretation
of factor analysis results (Widaman, 1993).

For the SEs, an absolute difference may not be directly
interpretable. Therefore, we use the relative difference of the
estimated SE (Hoogland & Boomsma, 1998):

Relative Difference (SEθ ) = SEθest − σθest

σθest
, (20)

where SEθest is the average SE of a parameter estimate and
σθest is the standard deviation of the parameter estimate across
replications. We use the standard deviations of the parameter
estimates from the full MCFA model and consider a value of
0.10 to be an acceptable difference for the SEs (Hoogland &
Boomsma, 1998).

To determine which of the design conditions contributed
to the rejection rate, RMSEA, and the differences in parame-
ter estimates and SEs, we used ANOVA where design condi-
tions are used as fixed factors. Similar to Lüdtke et al. (2011)
and Lüdtke et al. (2008), ANOVA was conducted at the cell
mean level where the average of a desired result (e.g., rejec-
tion rate) of each cell is used as a dependent variable—one
observation for each cell so the highest level (seven-way) in-
teraction could not be separated from the error. We used the
proportion of variance explained (η2) as a measure of effect

size for each of the main effects and interaction effects. We
considered the factors with η2 greater than .01 (Lüdtke et al.,
2011) and .05 (Geldhof, Preacher, & Zyphur, 2014) as target
factors. We found that the factors with η2 between .01 and
.05 did not provide detectable differences in our graphical il-
lustrations shown later. Therefore, we considered the factors
with η2 greater than .05 only.

Results

Overall summary. Table 2 shows η2 for all main and
interaction effects of each design condition on target de-
pendent variables: rejection rate from the chi-square test,
RMSEA, differences in standardized factor loadings, and
differences in factor correlations. All main and interaction ef-
fects involving equal/unequal ICC and equal/unequal macro-
level communalities have η2 less than .05. Therefore, we do
not show these conditions in Table 2 and provide them in
Online Appendix C.

Convergence rate. We examined the convergence rate
by checking the output of each replication for inadmissable
estimates (e.g., negative variances). The full results of the
proportions of converged replications in the disaggregated
CFA, full MCFA, and partially saturated MCFA models
across different sample sizes and ICCs are shown in On-
line Appendix C. The convergence rate of the full MCFA
model is low in conditions with few clusters (10), small total
sample size (500), or low ICC (.05) and unequal ICC across
items. Most nonconvergent replications of the partially sat-
urated model are in conditions with small total sample size,
especially with low and unequal ICC or few clusters. On the
other hand, the convergence rate for the single-level CFA is
low when ICC is large, especially when the total sample size
is small with few clusters (10).

The rejection rate for the chi-square test. We sum-
marize the simulation results with regard to the analysis meth-
ods, in which the main effect has η2 greater than .05. The
single-level CFA model is rejected in almost all replications
(97%). The full MCFA model and the partially saturated
MCFA model are rejected at a rate close to the nominal level
(8.6% and 4.6%, respectively).

RMSEA. We summarize the simulation results with re-
gard to the analysis methods and ICC only—the main or
interaction effects involving these design conditions had η2

greater than .05. The results for the average RMSEA across
conditions are shown in Figure 4. The RMSEA of the full
MCFA and partially saturated MCFA models, on average,
are close to 0, indicating good fit. The RMSEA for the dis-
aggregated CFA indicated bad fit, especially in the large ICC
condition.
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530 PORNPRASERTMANIT, LEE, PREACHER

TABLE 2
Eta-Squared Values for Analysis of Variance Table of the Simulation Conditions for the Results in Simulation Study 1

Effects RR RMSEA Loading RD SE Loading CorW RD SE CorW

N .005 .005 .002 .011 .004 .029
ICC .005 .122 .004 .006 .006 .009
h2 .000 .002 .302 .270 .000 .083
CorB .000 .000 .000 .002 .295 .025
Method .945 .619 .010 .001 .004 .005
N : ICC .006 .000 .001 .025 .013 .078
N : h2 .000 .000 .001 .002 .002 .007
ICC : h2 .000 .000 .171 .131 .004 .067
N : CorB .000 .000 .000 .002 .002 .003
ICC : CorB .000 .000 .000 .004 .140 .016
h2 : CorB .000 .000 .000 .001 .020 .001
N : Method .008 .014 .000 .019 .003 .013
ICC : Method .003 .226 .006 .009 .003 .002
h2 : Method .000 .005 .301 .237 .000 .061
CorB : Method .000 .000 .000 .005 .264 .020
N : ICC : h2 .001 .000 .001 .006 .010 .098
N : ICC : CorB .000 .000 .000 .003 .004 .017
N : h2 : CorB .000 .000 .000 .002 .001 .018
ICC : h2 : CorB .000 .000 .000 .004 .008 .009
N : ICC : Method .013 .001 .001 .006 .006 .004
N : h2 : Method .001 .000 .001 .002 .000 .000
ICC : h2 : Method .001 .001 .168 .143 .001 .042
N : CorB : Method .000 .000 .000 .000 .003 .000
ICC : CorB : Method .000 .000 .000 .004 .145 .010
h2 : CorB : Method .000 .000 .000 .000 .021 .002

Note. All four-way or higher order interactions are not shown because η2< .01. All main effects and interaction effects involving unequal ICC and unequal
h2 are not shown because η2 < .05. Bold values indicate η2 > .05. N = sample size (100/5, 10/50, 400/20, and 40/200, where the first value is the number of
clusters and the second value is cluster size). ICC = average intraclass correlations across indicators (.05, .15, .25, .50, and .75); h2 = average macro-level
communality (low, medium, and high); CorB = average macro-level factor correlation (.2, .5, and .8); Method = the method of analysis (full multilevel
structural equation modeling (MSEM), saturated-macro-level MSEM, and disaggregated structural equation modeling); RD = relative difference; RR =
rejection rate based on χ2 test; RMSEA = root mean square error of approximation; SE = standard error; CorW = the estimated micro-level correlation. See
the full table in Online Appendix C, http://quantpsy.org.

FIGURE 4 The average root mean square error of approximation
(RMSEA) of Simulation Study 1. MSEM = Multilevel Structural Equa-
tion Modeling; CFA = Confirmatory Factor Analysis.

Micro-level standardized factor loadings. As men-
tioned earlier, only the full MCFA model and the disaggre-
gated single-level CFA model are used. We summarize the
simulation results with regard to the analysis methods, ICC,
and macro-level communalities only (η2s > .05).

The average standardized loadings of all conditions are
shown in Figure 5. The results support our hypothesis—the
disaggregated standardized loadings are not biased when
the micro- and macro-level standardized loadings are equal.
When the standardized loadings are not equal across levels,
the disaggregated standardized loadings are different from
micro-level standardized loadings, especially when ICC is
high. The disaggregation method generally results in in-
creases of parameter values when the macro-level com-
munality is high (high macro-level standardized loadings)
and decreases when the macro-level communality is low
(low macro-level standardized loadings). The absolute dif-
ference is within ± .05 when ICC is less than .25 or
when the micro- and macro-level standardized loadings are
equal.

The simulation results of the relative differences in SEs
of standardized loadings are summarized for the analysis
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IGNORING CLUSTERING IN CFA 531

FIGURE 5 The average standardized factor loadings in each condition.
The solid horizontal lines denote absolute differences of –.05, 0, and .05 to
represent the acceptable range for the average standardized factor loadings.
CFA = Confirmatory Factor Analysis; MCFA = Multilevel CFA.

methods, ICC, and macro-level communalities (η2s > .05).
The relative difference in the SE is shown in Figure 6. When
the macro-level communality is equal to micro-level com-
munality, the relative difference in the SE is not greater than
.10 in most conditions. Almost all of the SEs in the condi-
tions with low or high macro-level communalities are biased.

FIGURE 6 The relative differences in standard errors (SEs) of standard-
ized factor loadings in each condition. The solid horizontal lines denote
relative differences of –0.1, 0, and 0.1 to represent the acceptable range for
the relative difference in the SEs. CFA = Confirmatory Factor Analysis;
MCFA = Multilevel CFA.

FIGURE 7 The average factor correlation in each condition. The solid
horizontal lines denote absolute differences of –.05, 0, and .05 to represent
the acceptable range for the average factor correlation. CFA = Confirmatory
Factor Analysis; MCFA = Multilevel CFA.

When the macro-level communality is low (low macro-level
standardized loadings), the SEs tend to be higher, and vice
versa. The difference in the SE is larger when ICC is higher.
In sum, the SEs of standardized factor loadings are negatively
related to their parameter estimates. When the standardized
factor loadings are increased, their SEs are decreased. When
standardized factor loadings are decreased, their SEs are in-
creased.

Micro-level factor correlation. The analysis methods
and macro-level communality affect the estimates (η2s >
.05). Therefore, we summarize the simulation results only
for ICC and macro-level factor correlations. The average
factor correlations are shown in Figure 7. The results for the
micro-level factor correlation show patterns similar to those
of the micro-level standardized factor loadings, supporting
our hypothesis. The absolute bias is within ± .05 when ICC
is less than .25 or when the micro- and macro-level factor
correlations are equal.

The macro-level communality, rather than macro-level
factor correlations, affects the relative differences in SE of
the estimates so the simulation results are summarized for the
analysis methods, sample size, ICC, and macro-level com-
munalities (η2s > .05). The relative difference in the SEs
is shown in Figure 8. The results are similar to the relative
differences in SE of the standardized loadings. When the
macro-level communality is low (low macro-level standard-
ized loadings), the SEs tend to be higher, and vice versa. The
pattern is clearer for the total sample size of 8,000. In most
conditions with the total sample size of 8,000, the magnitude
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532 PORNPRASERTMANIT, LEE, PREACHER

FIGURE 8 The relative difference in standard errors of factor correlation in each condition. k is the number of clusters and n is the cluster size. The solid
horizontal lines in each plot denote relative differences of –0.1, 0, and 0.1 to represent the acceptable range for the relative difference in the standard errors.
MSEM = Multilevel Structural Equation Modeling; CFA = Confirmatory Factor Analysis.
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IGNORING CLUSTERING IN CFA 533

of relative difference in the SE is less than .10 when ICC is
less than .25.

SIMULATION STUDY 2: AGGREGATION

In this simulation study, we use the same data structure
as in the first simulation study—six variables within two
factors in both the micro and macro levels—but the micro
level is ignored instead. All population macro-level stan-
dardized factor loadings are set to 0.7. As a consequence,
the population uniqueness of each variable is 0.51. The
population macro-level factor correlation is set to 0.5. The
micro-level factor correlation and standardized loadings are
varied across conditions. Note that we use “bias” in de-
scribing the difference between macro-level and aggregated
parameters.

Design Conditions

Sample size. Different sample size conditions are used
in this study because the sample size in an aggregated anal-
ysis (the resulting sample size when ignoring nesting) is the
number of clusters, not the total sample size. The number of
clusters is 50 or 200. The cluster size is 10 or 40. Thus, there
are four conditions for sample size: 50/10, 50/40, 200/10,
and 200/40.

Intraclass correlation. We examine five ICC condi-
tions: .05, .25, .50, .75, and .95. The ICC of .95 is used
rather than .15 in the first simulation because we would like
to examine the condition when the micro-level variances are
very low, where the aggregation method should have the least
impact compared with other ICC conditions.

Distribution of intraclass correlation across items
within a factor. ICC can be equal or unequal across items
within a factor. The values of ICC for each item are deter-
mined by the method described in the first simulation study.

Micro-level communalities. Similar to Simulation
Study 1, the micro-level communalities are specified as low
(.24), medium (.49), or high (.74).

Distribution of micro-level communalities across
items within a factor. Micro-level communalities can be
equal or unequal across items within a factor. The values of
micro-level communalities for each item are determined by
the method described in the first simulation study.

Micro-level correlation. Similar to Simulation Study
1, the micro-level correlation is low (.2), medium (.5), or
high (.8).

There are 4 × 5 × 2 × 3 × 2 × 3 = 720 conditions in
total. Each condition is analyzed in 1,000 replications.

Data Generation and Analysis Methods

Data were generated by the full MCFA model (Figure 2).
Three analysis methods were used: (a) full MCFA, (b) MCFA
with a saturated micro level, and (c) single-level CFA that
ignores the micro level. The details are similar to those in the
first simulation study.

The Evaluation of Different Analysis Methods

All three analysis models are investigated in terms of (a)
model fit (rejection rate by the chi-square test and RMSEA),
(b) the bias in standardized loadings and their SEs, and (c) the
bias in factor correlations and their SEs. The full MCFA and
partially saturated MCFA models should indicate good fit
(rejection rate approximately equals .05; low RMSEA). The
aggregated single-level CFA model should still indicate good
fit because the analysis does not violate the independence of
observations assumption. The MCFA parameter estimates
should be unbiased. The parameter estimates from the ag-
gregated single-level CFA should be in the same direction
as our hypotheses suggested (e.g., the aggregated parameter
estimates are weighted averages of the micro- and macro-
level parameter estimates). We also used η2 in ANOVA to
determine the contributions of each simulation condition.

Results

Overall summary. As in the first simulation study,
Table 3 shows η2 for all main and interaction effects of each
condition on target dependent variables. We do not show
all main and interaction effects involving equal/unequal ICC
and equal/unequal macro-level communalities (η2s ≤ .05) in
Table 3; these are provided in Online Appendix D.

Convergence rate. The convergence rate for both the
MCFA models is low when the cluster size is small (10),
when ICC is low (e.g., .05), or when ICC is not equal
across items (see Online Appendix D). The convergence
rates for the aggregated single-level model are generally
good.

The rejection rate from the chi-square test. As in the
first simulation study, we summarize the simulation results
with regard to the analysis methods, sample size, and ICC
only (η2s > .05). The results for the rejection rate across
conditions are shown in Figure 9. All rejection rates are
between .03 and .07 regardless of the analysis methods. As an
exception, the full and saturated MCFA models had rejection
rates close to 0 if the number of clusters is 200, cluster size
is 10, and ICC is .05 (the convergence rate of this condition
is only 10%). The rejection rates are slightly greater than the
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534 PORNPRASERTMANIT, LEE, PREACHER

TABLE 3
Eta-Squared Values for Analysis of Variance Table of the Simulation Conditions for the Results in Simulation Study 2

Effects RR RMSEA Loading RB SE Loading CorB RB SE CorB

N .215 .283 .007 .038 .062 .055
ICC .149 .010 .008 .007 .088 .018
h2 .002 .000 .144 .013 .001 .010
CorW .001 .000 .000 .000 .093 .002
Method .087 .559 .023 .179 .023 .144
N : ICC .150 .013 .033 .145 .081 .199
N : h2 .003 .000 .025 .006 .000 .004
ICC : h2 .010 .001 .232 .024 .002 .013
N : CorW .002 .000 .000 .000 .016 .002
ICC : CorW .001 .000 .000 .001 .143 .005
h2 : CorW .000 .000 .000 .000 .009 .000
N : Method .037 .096 .014 .059 .028 .049
ICC : Method .127 .015 .044 .347 .070 .293
h2 : Method .007 .000 .144 .001 .000 .006
CorW : Method .001 .000 .000 .000 .094 .001
N : ICC : h2 .003 .001 .029 .013 .001 .008
N : ICC : CorW .001 .000 .000 .001 .017 .004
N : h2 : CorW .003 .000 .000 .000 .001 .000
ICC : h2 : CorW .000 .000 .000 .001 .009 .003
N : ICC : Method .049 .016 .032 .120 .071 .111
N : h2 : Method .007 .000 .022 .001 .000 .000
ICC : h2 : Method .005 .000 .213 .001 .000 .006
N : CorW : Method .004 .000 .000 .000 .015 .001
ICC : CorW : Method .003 .000 .000 .000 .132 .003
h2 : CorW : Method .001 .000 .000 .000 .008 .000

Note. All four-way or higher order interactions are not shown because η2 < .05. All main effects and interaction effects involving unequal ICC and
unequal h2 are not shown because η2 < .05. Bold values indicate η2 > .05. N = sample size (50/10, 50/40, 200/10, and 200/40, where the first value
is the number of clusters and the second value is cluster size). ICC = average intraclass correlations across indicators (.05, .25, .50, .75, and .95); h2 =
average micro-level communality (low, medium, and high); CorW = average micro-level factor correlation (.2, .5, and .8); Method = the method of analysis
(full multilevel structural equation modeling (MSEM), saturated-micro-level MSEM, and aggregated structural equation modeling); RB = relative bias;
RR = rejection rate based on chi-square test; RMSEA = root mean square error of approximation; SE = standard error; CorB = the estimated macro-level
correlation. See the full table in Online Appendix D, http://quantpsy.org

nominal level of .05 in most conditions for the aggregated
single-level CFA.

RMSEA. We summarize the simulation results in terms
of the analysis methods and sample size (η2s> .05). The re-
sults for the average RMSEA across conditions are shown in
Figure 10. The RMSEA indicates better fit in the full MCFA
model than in the other two analysis models. The average
RMSEA values of the partially saturated MCFA model pro-
vided slightly better fit than the aggregated single-level CFA
model. When the number of clusters increases, the RMSEA
indicates better fit.

Macro-level standardized factor loadings. We sum-
marize the simulation results of the estimates of standardized
loadings in terms of the analysis methods, sample size, ICC,
and micro-level communalities only (η2s > .05). The av-
erage standardized loadings of all conditions are shown in
Figure 11. The results support our hypothesis—the aggre-
gated standardized loadings are not biased when the micro-
and macro-level standardized loadings are equal. When the
standardized loadings are not equal across levels, the aggre-

gated standardized loadings are biased, especially when ICC
is low and cluster size is low. Aggregation results in over-
estimated parameters when the micro-level communality is
high (high micro-level standardized loadings) and underesti-
mated parameters when the micro-level communality is low
(low micro-level standardized loading). The absolute bias is
within ± .05 when ICC is greater than .25 or the micro- and
macro-level standardized loadings are equal.

We summarize the simulation results of the relative biases
of the SE of standardized loadings in terms of the analysis
methods, ICC, and sample size only (η2s> .05). The relative
bias of the SEs is shown in Figure 12. In general, the SEs
from the aggregated single-level CFA are underestimated,
especially when ICC is low and cluster size is low. The SEs
from the MCFA are overestimated when ICC is low and
cluster size is low. The relative bias is within ± .1 when ICC
is greater than .25 and .5 for the MCFA and the aggregated
single-level CFA, respectively.

Macro-level factor correlation. Similar to the first sim-
ulation study, we summarize the simulation results of the
parameter estimates only for the analysis methods, sample
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IGNORING CLUSTERING IN CFA 535

FIGURE 9 Rejection rate based on the chi-square statistics from Simulation Study 2. k is the number of clusters and n is the cluster size. The solid horizontal
lines denote a rejection rate of .05, the nominal alpha. CFA = Confirmatory Factor Analysis; MCFA = Multilevel CFA.

size, ICC, and micro-level factor correlation (η2s> .05). The
average factor correlations of all conditions are shown in
Figure 13. The results of the factor correlation are simi-
lar to those observed for the macro-level standardized fac-
tor loadings and support our hypothesis—the aggregated
factor correlations are not biased when the micro- and
macro-level factor correlations are equal, except when ICC
is low (.05). When the factor correlations are not equal
across levels, the aggregated factor correlations are bi-
ased, especially when ICC is low (.05) and cluster size
is low (10). Aggregation results in overestimated param-
eters when the micro-level factor correlation is high and

underestimated parameters when the micro-level factor
correlation is low. Bias is lower when the cluster size is
higher. The absolute bias of the aggregated factor correlation
is within ±.1 when ICC is greater than .25.

Similar to the standardized loadings, we summarize the
simulation results of the relative bias of SE of factor correla-
tion only for the analysis methods, sample size, and ICC. The
relative bias of the SEs is shown in Figure 14. The pattern
is similar to the relative bias of SE of standardized loadings.
The relative bias is within ± .1 when ICC is greater than .25
and .5 for the MCFA and the aggregated single-level CFA,
respectively.
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536 PORNPRASERTMANIT, LEE, PREACHER

FIGURE 10 The average root mean square error of approximation from
Simulation Study 2. k is the number of clusters and n is the cluster size. CFA
= Confirmatory Factor Analysis; MCFA = Multilevel CFA.

EMPIRICAL ILLUSTRATION

The data include responses from 5,357 American children
in 273 schools on eight items of the Interest in Mathematics
subscale of the PISA (Organization for Economic Coopera-
tion and Development, 2003, 2005). Table 4 lists these items.
These eight items were originally classified equally into two
factors: interest in and enjoyment of mathematics (INT) and
instrumental motivation in mathematics (MOT). This scale
was originally designed for measuring at the student level.
Thus, according to Lüdtke and colleagues (2011), these con-
structs are considered formative, where the construct at the
school level can be considered the school average of INT
and MOT across students. Researchers may inappropriately
use disaggregation in this example so we show the impact
of disaggregation here. Aggregated analysis in a formative
measurement model is sometimes used in practice (Håvold,
2007). Thus, we investigate the impact of aggregation in this
example as well.

Two data-analytic methods were used in confirmatory fac-
tor analysis: single-level analysis that ignores nested data
structure (disaggregated and aggregated) and multilevel anal-
ysis to investigate factor structures at both micro and macro
levels simultaneously. Both analyses used the ML estimator
implemented in Mplus 7.6 The chi-square test and RMSEA

6Items are measured on a 4-point response scale including (1) Strongly
Agree, (2) Agree, (3) Disagree, and (4) Strongly Disagree. We used the
ML estimator here to show the impact of ignoring nesting as an empirical
illustration. We also used the diagonally weighted least squares estimator

were used for model fit evaluation. For the multilevel anal-
ysis, the RMSEA values at the micro and macro levels are
computed using Ryu and West’s (2009) method.

In the disaggregated analysis, some researchers may
reject the two-factor model because of high RMSEA,
χ2(19) = 521.04, RMSEA = .070. In the aggregated analy-
sis, most researchers will reject the two-factor model because
of high RMSEA, χ2(19) = 74.503, RMSEA = .103. The full
multilevel analysis revealed that the two-factor model fits
well in the macro level, χ2(19) = 9.97, RMSEA = 0,7 but
the model fit in the micro level is not as good as in the
macro level, χ2(19) = 503.72, RMSEA = .069. Thus, some
researchers may inadvertently reject the two-factor model
at both levels when they ignore the nested data structure in
spite of the fact that the two-factor solution fits well in the
macro-level model.

The standardized factor loadings and their SEs from
the disaggregated, aggregated, and multilevel analyses are
reported in Table 4. The factor correlations from disaggre-
gated and aggregated analyses were .664 (SE = .010) and
.751 (SE = .031), respectively, whereas the factor correla-
tions from the multilevel analysis were .658 (SE = .010) in
the micro level and .896 (SE = .066) in the macro level. The
differences in the standardized factor loadings, factor corre-
lation, and their SEs between the disaggregated analysis and
the micro level of the multilevel analysis were trivial because
of low ICCs (.017–.056). If ICCs were higher, the difference
between two analyses would be higher. However, the dif-
ferences in standardized factor loadings, factor correlation,
and their SEs between the aggregated analysis and the macro
level of the multilevel analysis were nontrivial. Standardized
factor loadings and factor correlations were underestimated
in the aggregated analysis.

in Mplus (WLSMV) to account for the categorical nature of the indicators
(Flora & Curran, 2004). We found that the impact of ignoring nesting was
similar for WLSMV and ML.

7Based on a reviewer’s suggestion, we found that the chi-square goodness-
of-fit test for detecting misspecification at the macro level severely deflates
Type I error and has low power. That is, we simulated 1,000 data sets from
the obtained parameter estimates from MCFA with a saturated micro level
and fitted those simulated data with the data-generating model. Given a
cluster size of 20, Type I error rates were less than 1% when the numbers of
clusters were 50, 150, 250, 350, and 450—Type I error was calculated from
the proportion of obtained chi-square values greater than 30.144, which is
the critical value with α = .05 for the chi-square distribution with df = 19.
We also fit the simulated data with a severely misspecified model such that
Items 4 and 6 loaded on MOT (instead of INT) and Items 2 and 5 loaded
on INT (instead of MOT). The power of the chi-square test for detecting
this misspecification was less than 4% for the number of clusters of 50,
150, 250, 350, and 450. The power to reject a severely misspecified model
was extremely low even though the number of clusters was 450. Based on
the result of this brief simulation, future research is needed to evaluate the
performance of the chi-square test and provide an alternative approach for
detecting misfit at the macro level.
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IGNORING CLUSTERING IN CFA 537

FIGURE 11 The average standardized factor loadings in each condition. k is the number of clusters and n is the cluster size. The solid horizontal lines in
each plot denote absolute biases of –.05, 0, and .05 to represent the acceptable range of bias for the average standardized factor loadings. MSEM = Multilevel
Structural Equation Modeling; CFA = Confirmatory Factor Analysis.
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538 PORNPRASERTMANIT, LEE, PREACHER

FIGURE 12 The relative bias in standard errors (SEs) of standardized factor loadings in each condition. k is the number of clusters and n is the cluster
size. The solid horizontal lines in each plot denote relative biases of –0.1, 0, and 0.1 to represent the acceptable range for the relative bias in the SEs. CFA =
Confirmatory Factor Analysis.

DISCUSSION AND CONCLUSION

The purpose of this study was to examine the effects of
ignoring clustering by conducting single-level CFA when
MCFA is a theoretically more appropriate option. We in-
vestigated the effects of ignoring clustering, either by us-
ing disaggregation or aggregation, on model fit indices,

standardized factor loadings, and factor correlations. We
examined standardized parameters rather than unstandard-
ized parameters (e.g., Julian, 2001) because standardized
parameters are usually used in interpreting factor analysis
results.

When the macro level is ignored, model fit indices (the
chi-square statistic and RMSEA) from the disaggregated

TABLE 4
Item Wording for the Interests in Mathematics Scale, Their Intraclass Correlations (ICC), and Their Resulting Standardized

Factor Loadings From the Disaggregated and Aggregated Single Level Confirmatory Factor Analysis (CFA) and Full Multilevel
CFA (MCFA)

Disaggregated CFA Aggregated CFA MCFA (Micro) MCFA (Macro)

Items ICC INT MOT INT MOT INT MOT INT MOT

1. I enjoy reading about mathematics. .032 .796 (.006) .883 (.015) .789 (.006) .988 (.031)
3. I look forward to my mathematics lessons. .056 .881 (.004) .932 (.011) .876 (.004) .984 (.019)
4. I do mathematics because I enjoy it. .029 .885 (.004) .912 (.012) .883 (.004) .994 (.025)
6. I am interested in the things I learn in

mathematics.
.039 .850 (.005) .884 (.015) .844 (.005) .988 (.023)

2. Making an effort in mathematics is worth it
because it will help me in the work that I
want to do later on.

.020 .881 (.006) .875 (.017) .807 (.006) .996 (.056)

5. Learning mathematics is worthwhile for me
because it will improve my career
(prospects, chances).

.017 .832 (.005) .854 (.019) .830 (.006) .984 (.059)

7. Mathematics is an important subject for me
because I need it for what I want to study
later on.

.018 .835 (.005) .895 (.015) .833 (.006) .993 (.053)

8. I will learn many things in mathematics that
will help me get a job.

.025 .801 (.006) .873 (.017) .796 (.006) .992 (.048)

Note. The values in parentheses are standard errors (SEs) of standardized factor loadings. INT = interest in and enjoyment of mathematics; MOT =
instrumental motivation in mathematics.
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IGNORING CLUSTERING IN CFA 539

FIGURE 13 The average factor correlation in each condition. k is the number of clusters and n is the cluster size. The solid horizontal lines in each plot
denote absolute biases of –.05, 0, and .05 to represent the acceptable range of bias for the average factor correlation. MSEM = Multilevel Structural Equation
Modeling; CFA = Confirmatory Factor Analysis.

single-level CFA indicate poor fit, especially when ICC is
large. The model fit indices from the full MCFA and the par-
tially saturated MCFA show good fit. These results show that
the model fit of the disaggregated single-level CFA deterio-

rates when the nested data structure is ignored, even when
ICC is very low (.05).

Regarding the standardized parameter estimates, if the
micro- and macro-level standardized parameters have the
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540 PORNPRASERTMANIT, LEE, PREACHER

FIGURE 14 The relative bias in standard errors (SEs) of factor correlation (right column) in each condition. k is the number of clusters and n is the cluster
size. The solid horizontal lines in each plot denote relative biases of –0.1, 0, and 0.1 to represent the acceptable range of bias for the relative bias in the SEs.
CFA = Confirmatory Factor Analysis.

same values, the disaggregated estimates are equal to those
parameters. If the micro- and macro-level standardized pa-
rameters have different values, the disaggregated estimates
will be deviated toward the macro-level standardized param-
eter values. The difference is large when ICC is high (see
Equations 14–15 and Online Appendix A). The difference in
parameter estimates is ignorable when ICC is less than .15
or the standardized parameters in both levels are equal.

Regarding the SEs of standardized parameter estimates,
when the macro-level communalities are large, the disaggre-
gated SEs are underestimated. When the macro-level commu-
nalities are small, the disaggregated SEs are overestimated.
The degree of under- and overestimation is greater when ICC
is higher. The relative difference in SEs is ignorable when
ICC is .05 or lower.

These results are similar to Julian’s (2001) results in that,
when ICC is higher, the differences in parameter estimates
and their SEs are greater. Because this study and Julian’s
targeted different parameters, two important results are dif-
ferent. First, although Julian found that unstandardized factor
loading and factor covariance are always overestimated when
ICC is large, our results reveal that standardized parameter
estimates are not necessarily different. If standardized coef-
ficients are equal across levels, disaggregated standardized
estimates are not biased. On the other hand, disaggregated un-
standardized estimates are inflated although unstandardized
coefficients are equal across levels (Julian, 2001). If stan-
dardized coefficients are not equal, disaggregated standard-
ized parameters are not always overestimated like unstan-
dardized ones (Julian, 2001). If the macro-level standardized
coefficients are lower than the micro-level standardized co-

efficients, the disaggregated standardized estimates will be
underestimated.

Second, although Julian (2001) found that the SEs of un-
standardized estimates are always underestimated when ICC
is high, the SEs of standardized estimates may be overesti-
mated, underestimated, or unbiased. In the low macro-level
communality conditions, the SEs of standardized estimates
(i.e., standardized factor loadings and factor correlations) are
overestimated, whereas in the high macro-level communality
conditions, they are underestimated.

In addition, we show in an empirical example that re-
searchers may inadvertently reject a hypothesized (single-
level) model even when it fits well in the macro level. Some
interesting findings from the macro level can be overlooked
if this level is ignored. Based on these findings, we rec-
ommend, if possible, using the full MCFA or the partially
saturated MCFA. If the number of clusters is small, the fixed
effect approach (i.e., multiple-group CFA) can be an option.
If MCFA is not a viable option (e.g., if MCFA does not con-
verge), we highly encourage analysts to use the segregation
approach for MCFA (Yuan & Bentler, 2007), which pro-
vides accurate model fit statistics, parameter estimates, and
SEs. The sampling-design-based MCFA (Stapleton, 2002,
2006, 2008) can be an option if researchers know how their
samples are randomly drawn from their target finite popula-
tion and wish to interpret parameters uncontrolled for clus-
tering. If researchers adopt the disaggregated single-level
CFA, this approach can provide accurate estimates and SEs
of standardized estimates when, and only when, ICC is very
small (.05). However, researchers will still encounter inflated
model misfit because of the violation of the independence-
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IGNORING CLUSTERING IN CFA 541

of-observations assumption. It is likely that the inflation in
model misfit will oblige researchers to reject models that are
actually acceptable or modify the models in order to reduce
the model misfit, which likely would reduce model parsi-
mony and introduce unnecessary bias.

When the micro level is ignored, the model fit from the
aggregated single-level CFA is similar to that from the par-
tially saturated MCFA, especially for high ICC. This finding
indicates that both the aggregated CFA and the partially sat-
urated MCFA detect model misfit in the macro level (Ryu &
West, 2009). The full MCFA, however, detected the overall
model misfit (both micro and macro levels). The aggregated
CFA provided the same values of chi-square statistics and
RMSEA as partially saturated MCFA.

Regarding the parameter estimates, if the micro- and
macro-level standardized coefficients are the same, the ag-
gregated parameter estimates are not biased. If the micro- and
macro-level standardized coefficients differ, the aggregated
standardized parameter estimates will be biased toward the
micro-level standardized estimates. Bias is large when ICC is
low or the cluster size is low (See Equations 16–17 and Online
Appendix A). The bias in parameter estimates is ignorable
when ICC is greater than .25 or the standardized coefficients
are equal across levels. Regarding the SEs of standardized
parameters, the aggregated single-level CFA provides lower
SEs than the full MCFA, especially when ICC is low. The
relative bias is ignorable when ICC is greater than .75.

These findings differ from those of Moerbeek (2004) in
that the parameter estimates and SEs are unbiased when the
micro level is ignored. However, the target parameters in
this study are standardized parameters in CFA, and their es-
timates are biased by aggregation. A potential reason for
the biased standardized parameter estimates is that the stan-
dardized estimates are functions not only of unstandardized
coefficients (i.e., unstandardized factor loadings or factor co-
variances) but also of indicator or factor variances. If the
unstandardized coefficients were not biased, the indicator
and factor variances would be overestimated by aggregation
(Moerbeek, 2004), thereby biasing the resulting standardized
coefficients.

Based on this finding, we still recommend, if possible,
using the MCFA approach, except in the case of a formative
measurement model with sampling ratio close to 1. If MCFA
is not a viable option (e.g., if MCFA does not converge), we
highly encourage analysts to use the segregation approach for
MCFA (Yuan & Bentler, 2007). If analysts adopt the aggre-
gated single-level CFA, they can obtain accurate parameter
estimates and SEs of standardized coefficients when ICC is
greater than .75, which is quite high and relatively rare in
practice.

One limitation of this study is that we do not examine
differences when the factor structure differs across level. For
example, the numbers of factors in the micro and macro levels
were four and five, respectively, in Julian’s (2001) simula-
tion study and the disparity in factor structure exacerbated
the differences in model fit, unstandardized parameter esti-

mates, and their SEs. The differences in parameter estimates,
however, may be predicted by the procedures we provided
in Online Appendix A. Also, this study does not account for
the possibility of random coefficients, such as micro-level
standardized factor loadings or standardized factor correla-
tions that differ across clusters. The effects of ignoring the
hierarchical structure of nested data when the micro-level
coefficients are random would be an interesting topic for fu-
ture investigation. In this study we investigated the effects of
ignoring the nested data structure only when indicators are
continuous. Future research is needed to investigate the ac-
curacy of different types of estimator when indicators are not
continuous (e.g., ordered categorical) as well as the biases
in parameter estimates and standard errors when the nested
data structure is ignored.
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Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., &
Muthén, B. (2008). The multilevel latent covariate model: A new, more re-
liable approach to group-level effects in contextual studies. Psychological
Methods, 13, 203–229.
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