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In this paper we review the literature on appointment policies, specifically in terms of the objective
function commonly used and the assumptions made about the behavior of demand. First, we provide
an economic framework to analyze the problem. Based on this framework we make a critical analysis
of the objective functions used in the literature. We also question the validity of the assumption made
throughout the literature that demand is exogenous and independent of customers’ waiting times. We
conclude that the objective functions used in the literature are appropriate only in the case of a central
planner facing a demand that is unresponsive to waiting time. For other scenarios, such as a private
server facing a demand that does react to waiting time, these objective functions are only shortcuts
for the real objective functions that must be used. A more general model is then proposed that fits
these scenarios well. Finally, we determine the impact of using the literature’s objective functions on
optimal appointment policies.
(SERVICE OPERATIONS; APPOINTMENT POLICIES; PRIVATE SERVER AND CENTRAL
PLANNER)

1. Introduction

Nowadays many service companies operate in highly competitive markets and face
increasingly demanding customers. Competition is waged not only in terms of price, but also
through the quality of service provided. One of the aspects of quality that has become
important in recent years is the speed with which services are delivered: customers do not like
having to waste their time waiting to be served or attended to. As a result, long waiting times
cause customers to become dissatisfied with the service received, and this undermines the
competitiveness of the company concerned. Taylor (1994) and Katz, Larson, and Larson
(1991), among other authors, have drawn attention to the negative impact that being forced
to wait has on customers’ overall satisfaction with the service they receive. The first of these
papers reports survey data and the second reports personal interviews. Both find that
customers’ assessment of the service worsens if waiting time increases.

Related to speed of service, there are two characteristics that have to be considered: (i) the
customer’s perception of waiting time, and (ii) the actual waiting time itself. Clearly, a
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waiting period that can be kept short will directly produce a lower perception of waiting time.
If the waiting time cannot be controlled, however, it may be possible to reduce customers’
perception of it. Baker and Cameron (1996) present an integrative review of customers’
perception of waiting time. They make propositions to manage the service environment in
order to reduce customers’ perception of waiting time and increase their overall satisfaction.
For example, they recommend that the service environment should be as comfortable as
possible, regarding lighting, temperature, music, and waiting room furniture. Besides, a
sensation that the system of attending to customers is “socially fair” (first-in first-out) helps
to reduce the perception of waiting time.

A decisive factor in controlling customer waiting time is the appointment system used by
the provider of the service, if such a system exists. Several papers in the literature discuss the
main trade-off considered when deciding on an appointment policy. For example, Bailey
(1952) points out, “Again, the congestion that arises in the hospitals’ waiting rooms means
that an undue amount of hospital accommodation, which is also in short supply, is devoted
merely to sheltering a large crowd of people, many of whom could have been given
appointments at more suitable times. On the other hand, it is important that the time of the
consultant in charge of the clinic is used to the best advantage. In practice, the requirement
that the consultant be kept fully occupied is usually regarded as an over-riding consideration:
large queues of patients are often allowed to build up in order to avoid the possibility of the
consultant ever having to wait for a patient.” This trade-off can be summarized as follows:
if the time between appointments is short compared to average service time, then expected
customer waiting time will be long and expected server idle time will be short.

In brief, the appointment policy used has a direct effect on customer waiting time and
consequently on satisfaction with the service. Accordingly, the design of the appointment
policy may be fundamental in explaining the success or failure of the service-providing
enterprise.

Bailey (1952) was one of the first to draw attention to the importance of a well-designed
appointment policy, addressing the topic from a quantitative operations management per-
spective. He showed that the use of quantitative tools can improve the performance of an
appointment-based system of attention, in terms of controlling both customer waiting time
and server idle time. Since then, a number of articles have been published which approach
the topic from different points of view. Several different appointment policies have been
studied under different scenarios (different service time distributions, service companies, and
patterns of customer behavior toward appointments). A brief literature review is presented in
Section 2.

This paper makes a critical analysis of the literature on appointment policies, focusing on
the objective function commonly used and the assumptions made about the behavior of
demand. In this analysis it is crucial to distinguish between a private server and a central
planner, and therefore, different subsections are devoted to analyze the economic formulation
in these two cases. We define a private server as an agent that maximizes his/her own utility.
On the other hand, a central planner is defined as an agent, commonly a public entity, whose
goal is to maximize the social welfare that includes the utility of the server plus the utility
of the customers or users.

We observe in practice that public services do not always behave as central planners; it is
common to find public institutions with poor services from the customers’ point of view: long
waiting times and little concern for customers’ satisfaction. However, there are examples of
public entities that, in fact, act as central planners. For example, in Chile the public health and
the IRS are public services that act, in some dimensions, as central planners. Although they,
in theory, can provide a low quality service in terms of the customers’ waiting time, they
actually incorporate the customers’ utility in their objective functions. In fact, during the last
four years the Chilean IRS has reduced the customers’ waiting time significantly through the
implementations of operations management tools (e.g., design of the optimal number of
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cashiers and elimination of paperwork through Internet services, see The Economist (2000)).
Also, the secretary of health of the current government received a mandate from the president
to reduce the waiting time in public hospitals to those common in the private system within
the first three months of her period (El Mercurio (2000)).

The rest of this paper is organized as follows. First, in Section 2 we present a brief
literature review, describing the specific problems that have been addressed in the literature.
In Section 3 we analyze the economic framework of the problem of designing an appointment
policy and make a critical analysis of the objective functions used in the literature, discussing
their economic interpretation. This is crucial for understanding the economic scenarios under
which the results obtained are valid. We also question the assumption made throughout the
literature that the amount of the service demanded is exogenous, i.e., demand is assumed to
be independent of appointment-policy decisions. A more realistic model is proposed that
includes customers’ sensitivity to waiting times and adequately represents the objective
function of a central planner or private server. In Section 4 we solve the new model proposed
and compare the optimal appointment policies derived from it with those obtained using the
formulations from the literature. Finally, in Section 5 we present conclusions and recom-
mendations for future research.

2. Literature Review

In this section we present a brief literature review on appointment policies, describing the
problems addressed and the main conclusions obtained in the literature.

Jansson (1966), Soriano (1966), Mercer (1973), Geiszler (1981), Sabria and Daganzo
(1989) assume that the system reaches steady state, thereby making it possible to use results
from queuing theory which provide analytical expressions to describe the long-run evolu-
tionary behavior of the system. In Geiszler (1981) and Sabria and Daganzo (1989) this
assumption is direct and realistic in the context considered; they study systems that operate
continuously in time (productive processes and cargo-handling in ports, respectively). In the
other papers assuming the system achieves steady state is merely a simplifying assumption.

In practice, it is common, however, to find services where the system never reaches steady
state, because they operate for finite time periods of only a few hours each. Thus, the papers
discussed in what follows assume that the planning horizon is finite and steady state is never
reached.

Fries and Marathe (1981), Liao, Pegden, and Rosenshine (1993), Liu and Liu (1998a,
1998b), and Vanden Bosch, Dietz, and Simeoni (1999) address the problem of scheduling N
people in K predetermined instants of time. Thus, the problem is to decide the number of
customers to schedule in the K instants of time (n1, n2, . . . , nK), such that ¥i�1

K ni � N.
The length of the intervals between appointments are considered constant and of equal size,
and there is no freedom to change them. They conclude that making appointments in
variable-sized blocks may be better than other more common appointment systems like
scheduling customers in equal blocks.

Pegden and Rosenshine (1990), Healy (1992), Wang (1993, 1997), and Stein and Cote
(1994) remove the assumption that appointment instants are predetermined. They consider
more general appointment policies, where appointment instants are decision variables.
Therefore, these papers find the optimal vector X � ( x1, x2, . . . , xN), where xi is the time
of the appointment of customer i, given that there are N customers to be scheduled. We
remark that, in this case, the set of feasible appointment policies considers all possible
alternatives. For particular cases, where customers are punctual and do not fail to show up,
service times are i.i.d. and have exponential or phase-type distributions, and there is a single
server, it is possible to derive mathematical expressions to determine the optimal appoint-
ment policy. They conclude that the commonly used equally spaced appointment policy is
not necessarily optimal.
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Ho and Lau (1992, 1999) and Yang, Lau, and Quek (1998) consider specific sets of
feasible appointment policies and analyze a large number of scenarios using simulation
techniques. These scenarios consider different service time distributions, percentages of
absenteeism, and numbers of customers to be served. They conclude that there is no universal
appointment rule; what is best depends on the scenario being considered. For example, if
customers’ time has a high valuation compared to server’s time in the objective function, then
the optimal policy will lead to short customer waiting time. On the other hand, if the
coefficient of variation of service time increases, customers will wait longer and the server
will be idle for longer periods of time.

Charnetsky (1984), Weiss (1990), Klassen and Rohleder (1996), Wang (1999), and
Rohleder and Klassen (2000) study appointment policies for customers that come from
populations with different service time distributions. Given that service times are not i.i.d.,
it is relevant to decide the instant at which appointments are made and their order. This
problem is common in scheduling interventions in an operating room, where different
surgical procedures have different time duration distributions (Charnetsky (1984) and Weiss
(1990)). Most of these papers (except Wang (1999) that uses a nonlinear optimization
approach) use simulation to solve the problem. They conclude that the best policy is to make
appointments in increasing order of service time variance.

Finally, Jackson, Welch, and Fry (1964), Vissers and Wijngaard (1979), Rising, Baron,
and Averill (1973), Cox, Birchall, and Wong (1985), O’Keefe (1985), Babes and Sarma
(1991), Brahimi and Worthington (1991), and Bennett and Worthington (1998) provide more
general and qualitative recommendations for appointment policy design. Most of them are
based on the use of operations research to improve service quality in medical clinics. In
particular, Jackson, Welch, and Fry (1964) observe that punctuality of patients and doctors,
together with the variability of service times, are key variables in running an appointment
system. Bennett and Worthington (1998) suggest a flexible and open approach to deal with
this type of problem, which includes qualitative and quantitative tools.

3. Economic Framework

In this section we analyze the general economic framework of the appointment policy
design problem. In Subsection 3.1 we show how the problem is usually formulated in the
literature in objective function terms, and we discuss the assumptions made about the
behavior of demand. Then, in Subsection 3.2 we propose a new model to describe the
optimization problem faced by a service company that has to choose an optimal appointment
policy. This new model has more realistic customer behavior than what is usually assumed
throughout the literature. Finally, in Subsection 3.3 we give an economic interpretation of the
objective functions used in the literature and identify the assumptions under which these
objective functions may adequately represent the problem solved by a central planner or a
private server.

3.1. Analysis of the Objective Functions Used in the Literature

Several of the papers that study appointment policies consider an objective function
equivalent to minimizing a linear combination of expected total customer waiting time and
server completion time. The latter is defined as the total time the server spends in the system
from the beginning of the session until the last customer scheduled for the period has been
served. For example, if a physician begins to work at 8:00 AM and in a particular day he
finishes serving the last customer at 12:15 PM, the completion time for that particular day
would be 4 hours and 15 minutes. Furthermore, during the time the server spends in the
system (the completion time), he/she is either busy serving customers or idle when the system
is empty. Hence, completion time is equal to the sum of customer service time plus total idle
time. This statement is valid for any customer arrival process (i.e., any type of appointment
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policy and pattern of customer delays), and any service time distribution even if service times
are not identically distributed.

Alternatively, some papers use total expected customer time in the system, instead of total
expected customer waiting time, which only differs by a constant equal to the total expected
service time. As this is equivalent from the optimization point of view, in this paper we use
total expected customer waiting time to refer to both cases. The objective function mentioned
above is denoted as A1 and is used in Pegden and Rosenshine (1990), Healy (1992), Wang
(1993), Stein and Cote (1994), and Wang (1997, 1999).

An alternative objective function is used in Bailey (1952), Jansson (1966), Vissers and
Wijngaard (1979), Charnetsky (1984), Weiss (1990), Ho and Lau (1992), Klassen and
Rohleder (1996), Yang, Lau, and Quek (1998), Liu and Liu (1998b), Ho and Lau (1999), and
Rohleder and Klassen (2000). These papers minimize a linear combination of expected server
idle time (instead of completion time) and total expected customer waiting time; this is
denoted as A2. The factors used to multiply the expected times are usually described as the
“economic values of the server’s and clients’ times” (see Yang, Lau, and Quek (1998)).

All the studies assume that the number of customers to be attended is exogenous and
independent of the problem’s decision variables. This assumption implies that demand is
independent of customer waiting time, which is directly affected by the appointment policy
imposed. We denote by N the fixed and exogenous demand considered in the literature,
which corresponds to the total number of customers to be served in a period of time. Thus,
the problem solved in the papers mentioned above can be written as follows:

� A1� min
s�SN

�NW� �s� � �E�tc �s�� or min
s�SN

�NW� �s� � �E�tI �s��, �A2�

where W� (s) is the average customer waiting time, which depends on the appointment policy
implemented (s), � is the unit cost of customer waiting time, and � is the unit value of server
time in the objective function. In addition, tc is server completion time and tI is server idle
time. E(X) is the expected value of the random variable X. The literature only considers
policies in which the N customers are given scheduled appointments; we denote this set by
SN. In this case, the only decision to be made is how those N appointments are given (for
example, schedule customers at intervals equal to average service time or schedule customers
in blocks of two at intervals equal to twice the average service time, etc.).

As mentioned above, for a fixed number of customers, N, expected server completion time
is equal to expected server idle time plus total expected customer service time, i.e.,

E�tc� � E�tI� � �
i�0

N

E�ts
i�, (1)

where tI is total server idle time and ts
i is the time required to serve customer i. Using

equation (1) and the fact that total expected customer service time (¥i�0
N E(ts

i )) is constant
over all appointment policies, we observe that the two objective functions (A1 and A2) are
equivalent except for a constant term. Thus, minimizing a linear combination of total
expected customer waiting time and expected server completion time (A1) is equivalent to
minimizing a linear combination of total expected customer waiting time and expected server
idle time (A2). Accordingly,

�A1� min �NW� � �E�tc �N min �NW� � �E�tI � � � �
i�0

N

E�ts
i�N min �NW� � �E�tI � �A2�

Furthermore, the cost of server idle time (opportunity cost of idle server time) is equal to
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the cost of server time. Given these equivalences, throughout the rest of the paper we use
objective function A1, unless the contrary is explicitly stated.

We note that there are other papers that use alternative objective functions. Fries and
Marathe (1981) and Liu and Liu (1998a) consider an objective function that includes the cost
of customer expected waiting time, the cost of server idle time, and the cost associated with
the expected overtime, defined as the extra time the server works beyond a predefined period.
Finally, Liao, Pegden, and Rosenshine (1993) and Vanden Bosch, Dietz, and Simeoni (1999)
only consider the cost associated with customer waiting time and the cost associated with
overtime in the objective function. However, the analysis we make throughout the paper
using objective function A1 can be easily extended to consider these different objective
functions. For this purpose, it is necessary to use different costs associated with the server’s
operation.

The optimal appointment policy depends on the relative weights of expected server’s
completion time (or idle time) and expected customers’ waiting time in the objective function
(�/�). If this ratio is low, then the optimal policy will be one where average customers’
waiting time is low. This is because customers’ waiting time is more valuable compared to
server’s idle time in the objective function. For example, customers are scheduled individ-
ually at increasing intervals of time, greater than the average service time. On the other hand,
if the ratio �/� is high, the optimal appointment policy will be one where customers suffer
longer waits and the server will be occupied most of the time. For example, a big block of
customers is scheduled at the beginning of the day. Therefore, in practice, a crucial factor to
determine the optimal policy is to have a good estimation of the ratio �/�.

Some papers analyze the objective function and its parameters in terms of its economic
interpretation. Bailey (1952) mentions that objective function A2 represents a social benefit
function that takes account of the time spent by both customers and server. Referring to the
costs associated with customer waiting time, Fries and Marathe (1981) point out: “. . . in
private medical practice, the value of waiting time is more amorphous, including aspects of
goodwill, loss of return business, etc. In the public sector, and in particular in public
hospitals, it becomes yet harder to identify the aspects of the cost of waiting. . . . [in this
case,] issues of goodwill, and “cost of society” place a value on the time patients wait.”
Finally, Wang (1999) defines � as the cost “for the system to handle the waiting client” and
� as the cost “per hour for hiring a server.”

The main goal of the literature on appointment systems has been to find an optimal
appointment policy that minimizes the corresponding objective function, which incorporates
the fundamental trade-off between customers’ waiting time and server’s idle time. We
believe, however, that the literature lacks analysis in terms of defining the implicit economic
framework in the objective functions considered and giving a correct interpretation of the
fundamental parameters of the model (�/�). When analyzing and implementing appointment
policies derived from models, it is crucial to know whether the objective function describes
a private server or a central planner, and what revenues and costs are involved.

In the next subsection we propose a new model to address the problem of choosing an
appointment policy, which includes more realistic assumptions about the economic behavior
of both server and customers (they are sensitive to waiting time). We formulate the model for
both a central planner and a private server. The model is also useful for analyzing the
economic interpretation of the objective functions commonly used in the literature. The
model has some similar elements to the one used in Stenbacka and Tombak (1995), where
they analyze the effects of privatizing a service company, in particular, the effect on service
speed.

3.2. New Model

We assume the existence of a population of risk-neutral customers that potentially want to
receive the service. Utility in each case is given by the value the service has for the customer
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concerned, which is defined as the maximum amount of money he or she is willing to pay
for the service when there is no waiting time (the reservation price) minus the price of the
service and the cost associated with waiting time. We denote the utility of customer i by ui ,
which can be written as follows:

ui � ri � p � aw,

where ri is the customer’s reservation price, p is the price of the service, w is the customer’s
waiting time, and a is the unit cost of waiting time for the client. Customers make their
demands for the service effective if the expected utility of doing so is positive, i.e.,

E�ui� � ri � p � aW� � 0, (2)

where W� is the expected waiting time (E(w)). We note that the expected utility of a potential
customer that does not receive the service is equal to zero.

A similar customer utility function has also been used in papers dealing with the problem
of finding pricing mechanisms that induce socially optimal customer queuing behavior,
considering that a customer produces a negative externality when joining a queue, as all
customers behind him have to wait longer (see, for example, Mendelson and Whang (1990)
and Hassin (1995)). This utility function assumes customers are risk-neutral with respect to
waiting time. An alternative utility function for risk-averse customers might consider not
only expected waiting time but also its variance. For example, a customer might prefer a
system in which there is a certain wait of 10 minutes, rather than a service where half the time
there is no wait at all and in the other half waiting time is 20 minutes long. In fact, Leclerc,
Schmitt, and Dubé (1995) show through empirical studies that individuals tend to be
risk-averse in decisions that involve the use of their time. One possible explanation is that
they want to avoid risk in the time domain so as to plan better.

We assume that the potential customer population is of size M, i.e., M is the number of
customers that would demand the service if waiting time and the price were both zero. In a
more general model this potential demand could be described by a stochastic process, for
example, a Poisson process. Although every customer knows his or her own reservation
price, from the server’s (or decision-maker’s) point of view these are independent random
variables. Without loss of generality, we assume that customers come from a homogeneous
population, i.e., their reservation prices are identically distributed. We define R as the random
variable that represents the reservation price of a customer from the server’s perspective and
fR(r) as its pdf. fR(r) is positive in the interval [R� , R� ] and zero elsewhere (r � R� and r � R�

with 0 � R� � R� ). We note that the results presented below can also be obtained by defining
several market segments with different reservation-price probability density functions.

Given an appointment policy s and a price p, the number of customers who demand the
service is a binomial random variable with parameters M and Pr[R � p � aW� (s, p)]. Then,

Pr�G�s, p� � i� � � M
i ��Pr�R � p � aW� �s, p���i�1 � Pr�R � p � aW� �s, p���M	i,

i � 0, . . . , M, (3)

where G(s, p) is the demand for the service. Thus the expected number of customers who
demand the service is equal to

E�G�s, p�� � M � Pr�R � p � aW� �s, p�� � M �
p�aW� �s,p�

R�

fR �r�dr. (4)

If the waiting time and/or the price increase, the quantity of the service demanded decreases.
We assume that customers have rational expectations (Muth (1961)) in estimating their
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expected waiting time (W� (s, p)). This means that the expectations customers form about
their average waiting time is the same for all customers and proves to be correct; i.e., it is
exactly the value this variable does in fact take. Consequently, given the appointment policy
s defined by the server, and a price p, customers estimate a value W� (s, p), which they use
to make their demand decisions. This demand (equation (3)) generates an average waiting
time that coincides exactly with their initial estimate. When assuming that customers have
rational expectations in estimating their average waiting time, we implicitly assume that they
learn from experience. Using data gathered in previous visits to the service and information
provided by other customers, they are able to make a correct estimate of average waiting
time, which is quite close to reality. Even though customers of a service are not able to
estimate the complete distribution of the waiting time, they might be capable of estimating
its average. This is a widely used assumption in the economics literature.

In the model defined above, an appointment policy that generates long customer waiting
times leads to a reduction in the quantity demanded, which concurs with practical observa-
tions in most services. Empirical studies by Taylor (1994) and by Katz, Larson, and Larson
(1991) find that waiting time has a negative effect on customers’ overall assessment of the
service. Moreover, Boulding, Kalra, Staelin, and Zeithaml (1993) conclude that the more
satisfied customers are with service quality, the more likely their behavior will benefit the
company’s profitability (by demanding the service again, recommending it, etc.). Accord-
ingly, we can claim that demand is sensitive to waiting time in most service industries; the
longer the waiting time, the more customers will turn to the competition or simply they may
decide not to seek the service.

Let K (K � M) be the number of available slots in an appointment policy, i.e., K is the
maximum number of customers that can be accommodated. Therefore, in this model an
appointment policy is defined not only in terms of how the appointments are given, but also
in the maximum number of customers to be scheduled. Thus, the model also allows for
capacity decisions, which gives more flexibility when defining an appointment policy
compared to the models in the literature. For example, overbooking policies can be imple-
mented when the percentage of absenteeism is high.

Given an appointment policy s, with K available slots, and a price p, the expected number
of customers attended is equal to

E�Q�s, p�� � E�min �K, G�s, p���

� �
i�0

K

i � Pr�G�s, p� � i� � K �
i�K�1

M

Pr�G�s, p� � i�, (5)

where Q(s, p) corresponds to the number of customers attended to.
In the case of a private server whose goal is to maximize profits, the server’s expected

utility is given by the revenue obtained from serving customers minus the expected cost. We
assume this cost to be associated with the server’s completion time. Thus, defining the
server’s expected utility as E(�), the problem faced by a private server when choosing an
appointment policy is equal to

max
s�S,p

E���s, p�� � pE�Q�s, p�� � bE�tc �s, p��, (6)

where tc(s, p) is the completion time, b is the unit value of server time, and S is the set of
feasible policies. As we previously mentioned, an appointment policy s is defined by the
number of slots available to serve customers in a given session, and the way in which those
appointments are scheduled. In the general case, the server also has to decide the price of the
service. Note that we explicitly include only costs that depend directly on the appointment

273APPOINTMENT POLICIES IN SERVICE OPERATIONS



policy used. Other costs are invariant from the optimization point of view (e.g., electricity
and payroll).

We now consider the problem faced by a central planner whose goal is to maximize
expected social welfare, defined as the sum of total expected consumer utility plus the
expected utility of the server. We define E(UT(s, p)) as total expected customer utility,
namely, the sum of the expected individual utilities of customers obtaining the service. As
discussed at the beginning of this subsection, the expected utility of customers that do not
receive the service is zero. Given an appointment policy s, with K available slots and a price
p, total expected customer utility is equal to

E�UT�s, p�� � �
i�0

K

i � E�u�R � p � aW� �s, p�� � Pr�G�s, p� � i�

� K �
i�K�1

M

E�u�R � p � aW� �s, p�� � Pr�G�s, p� � i�, (7)

where E(u�R � p � aW� (s, p)) is the expected utility of a single customer who obtains the
service, and

E�u�R � p � aW� �s, p�� �
1

Pr�R � p � aW� �s, p�� �
p�aW� �s,p�

R�

�r � p � aW� �s, p�� fR �r�dr. (8)

Considering that E(u�R � p � aW� (s, p)) is constant over all i, replacing equation (8) in (7)
and recalling equation (5) we have

E�UT�s, p�� �
1

Pr�R � p � aW� �s, p�� �
p�aW� �s,p�

R�

�r � p � aW� �s, p�� fR �r�dr � E�Q�s, p��. (9)

Defining social benefit by Bs, the problem faced by a central planner is given by:

max
s�S,p

E�Bs�s, p�� � E�UT �s, p�� � E���s, p��, (10)

where E(UT(s, p)) is given by equation (9) and E(�(s, p)) by equation (6).
Thus, equation (6) and equation (10) define the optimization problems faced by a private

server and a central planner, respectively.
In the next section we determine the relationship between the objective functions used in

the literature and those corresponding to our new model, which recognizes customers’
sensitivity to waiting times.

3.3. Economic Interpretation of the Objective Functions Used in the Literature

Throughout the literature it is implicitly assumed that the price p is fixed and exogenous,
so we rule out any dependence thereon. To derive an economic interpretation of the objective
functions used in the literature, we also limit the feasible policy space to the set SM, i.e., the
set containing policies in which there are available slots for all potential customers (M).

In the literature, it is also assumed that the number of customers to be attended is
exogenous and does not depend on the problem’s decision variables. This implies a fixed
demand (N) for all appointment policies. Thus, we also consider that the fixed number of
customers to be attended, assumed in the literature, is equal to the size of the potential
customer population, and therefore, M � N.

In this case, recalling equation (4), the expected number of customers served by an
appointment policy s � SN is equal to
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E�Q�s�� � E�min �N, G�s��� � E�G�s�� � N �
p�aW� �s�

R�

fR �r�dr. (11)

The private server’s expected utility is given by (replacing equation (11) in equation (6)):

E���s�� � pN �
p�aW� �s�

R�

fR�r�dr � bE�tc�s��. (12)

The assumptions that potential demand is equal to N and the space of feasible policies is
the set SN leads to (replacing equation (11) in equation (9)):

E�UT�s�� � N �
p�aW� �s�

R�

�r � p � aW� �s�� fR�r�dr. (13)

Thus, using equations (12) and (13), expected social welfare in this particular case is given
by:

E�Bs�s�� � N �
p�aW� �s�

R�

�r � aW� �s�� fR�r�dr � bE�tc�s��, (14)

since pN 
p�aW� (s)
R� fR(r)dr is only a transfer from the customers to the server.

In the following subsections we determine how well the objective functions used in the
literature represent the problem solved by a central planner or a private server. In doing so,
we use our new model including the assumptions mentioned in this subsection, i.e., equations
(12) and (14).

3.3.1. CENTRAL PLANNER. Throughout the literature it is assumed that the number of
customers to be attended is exogenous; i.e., independent of the waiting time. In our model,
this assumption is equivalent to assuming that p � aW� (s) � R� , if demand for the service
is N, @s � SN. In other words, for all feasible appointment policies, the value customers
place on the service is sufficiently high for everyone to demand it, no matter how long their
expected waiting time may be. Building this assumption into our model (14) and keeping in
mind that fR(r) is zero if r � R� , the social benefit maximization problem can be written as

max
s�SN

E�Bs�s�� � N �
R�

R�

rfR �r�dr � aNW� �s� �
R�

R�

fR �r�dr � bE�tc �s��. (15)

Given that the first term is equal to NE(r) and is constant for all appointment policies, and
that the second integral is equal to one, then the central planner case problem corresponds to
maxs�SN

	 aNW� (s) 	 bE(tc(s)) or, equivalently, to mins�SN
aNW� (s) � bE(tc(s)), which

is the objective function (A1) used in Pegden and Rosenshine (1990), Healy (1992), Wang
(1993), Stein and Cote (1994), and Wang (1997, 1999), considering � � a and � � b. Thus,
given the assumptions made in these papers (fixed price and exogenous demand), the
objective function does a good job of describing a central planner whose goal is to maximize
social welfare. Another important implication of the above derivation relates to the direct
interpretation of the parameters involved in the objective function, which is useful for
estimation purposes. In this particular case, the parameter � represents the unit cost of
waiting time for the customer, and � corresponds to the unit operating cost for the server.

The common assumption in the literature, that demand is exogenous, is equivalent to
assuming that it is not sensitive to the waiting time. This might be close to reality in some
special cases, for example, where the service company sells a “prime necessity” service (or
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product)—for example, a public hospital or the IRS. In these cases, customers place a high
value on the service so they are willing to obtain it regardless of the waiting time, and the
service can nearly always fill all the appointment times. Other examples include the case of
manufacturing companies where “customers” are products or parts instead of people. Now-
adays, however, customers do business with the company that delivers the “best” service and
where speed is a fundamental attribute (see, for example, Taylor (1994) and Katz, Larson,
and Larson (1991).) In these cases the problem to be solved is to maximize the expected
social benefit, considering that the quantity of the service demanded depends on waiting time,
which in turn depends on the appointment policy imposed, and is therefore endogenously
determined in the model. In addition, the maximization problem is carried out on a feasible
set containing policies that have from one to N available slots and is not restricted to policies
with exactly N available slots (set SN).

It should be noted that the expected customers’ waiting time appears in the objective
function (10) not only because customers’ utility in E(Bs) is considered explicitly, but also
because it determines the quantity demanded. The longer the waiting time, the fewer the
number of customers served and the lower the social benefit. In these cases, objective
function A1 is only a shortcut to the true objective function of the central planner. To make
the right decisions with these objective functions, it is crucial to correctly choose the ratio
�/�.

Thus, in the general case, we assume that the server faces a positive demand that reacts to
waiting time, i.e., R� � p � aW� (s) � R� , @s � SN. For example, when assuming that R is
uniformly distributed between 0 and R� , maximizing E(Bs) is equivalent to maximizing
(recalling equation (14)):

Na2

2R�
W� 2 � aNW� � bE�tc�,

which is a nonlinear function of W� . Additionally, W� is the expected waiting time corre-
sponding to the rational expectations equilibrium. We remark that this expected waiting time
is different to the one obtained when demand is fixed (N) as assumed in the literature (A1).
Although these two quantities increase or decrease together according to the implemented
appointment policy, they do not necessarily take the same value. Therefore, a single
parameter �/� in A1 is, in fact, a complex function of several fundamental quantities (a, b,
and the reservation price R). Thus, the calibration of the ratio �/� commonly used in the
literature is not an easy task. In Section 4 we develop some numerical examples to compare
the optimal policies obtained when maximizing E(Bs) to those obtained when using objective
functions A1 or A2 for different values of �/�. We also do numerical examples for the case
of a private server.

3.3.2. PRIVATE SERVER. In the case of a profit-maximizing private server, it is not possible
to give any direct interpretation of the objective functions commonly used in the literature.
They can only be interpreted as a shortcut to a private objective function. Thus, minimizing
these objective functions would lead to “reasonable” appointment policies from a private
point of view. However, we show that using this shortcut is inconsistent with the widely held
assumption that the number of customers to be served is independent of waiting time.

Without loss of generality, we assume that the relevant cost for the server is that associated
with completion time. As in the analysis of the central planner case, we assume a fixed
potential demand equal to N and set of feasible policies equal to SN. Thus, from equation
(12), the objective function for the private server can be written as

max
s�SN

pN �
p�aW� �s�

R�

fR �r�dr � bE�tc �s��. (16)
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Despite the fact that consumers’ utility is not considered in the private server’s objective
function, the latter does internalize the waiting time imposed customers through the demand
function; accordingly there are incentives to provide a good service. Indeed, if waiting time
is short, a higher price can be charged since customers’ willingness to pay for the service
increases. The private server also perceives a cost by making customers wait as a result of
market coverage. The longer the waiting time, the lower the demand, so the server earns
lower sales revenue. Therefore, average waiting time appears in the objective function of a
private service provider if it faces a positive demand that reacts to waiting time. As we
previously mentioned, one way of introducing this fact in the model is to assume that R�
� p � aW� (s) � R� , @s � SN. Moreover, to see the direct relationship with the objective
function A1, we assume that fR(r) is uniformly distributed in [R� , R� ]. Given this, the private
objective function (16) can be written as

max
s�SN

pN
�R� � �p � aW� �s���

R� � R�
� bE�tc �s��.

The above problem is equivalent to

min
s�SN

pa

R� � R�
NW� �s� � bE�tc �s��. (17)

This objective function is similar to A1, except for the factors that multiply W� (s) and
E(tc(s)). We also notice that the expected waiting time and completion time considered in
our objective function correspond to the rational expectations equilibrium, which do not
necessarily correspond to those obtained using the literature’s objective functions. In the
latter case, the expected waiting time and completion time considered are the ones reached
when demand is fixed and equal to N.

In some cases, when the ratio �/� is correctly estimated, the use of objective function A1
would lead to the optimal appointment policy according to the model proposed in this paper.
However, this is not an easy task, considering that the values of W� (s) and E(tc) are different
from the ones obtained using the objective function developed in this paper. Also, the ratio
�/� has to summarize a series of effects ( p, a, b, and R) in a complex way.

As we previously mentioned, a flaw in the equivalence stated above is that in the literature
the number of customers to be served during a session is assumed known, so demand remains
fixed for all appointment policies, or equivalently, it does not react to waiting time. However,
it is clear that different appointment policies will lead to different waiting times, and, as we
assumed initially to derive equation (17), to different numbers of customers served. In fact,
average waiting time appears in the private server’s objective function because it determines
the quantity demanded, a fact that contradicts the assumption made in the literature that
demand is fixed. Thus, in industries where demand reacts to waiting time, a model to
determine the optimal appointment policy from the private standpoint should maximize
revenue and explicitly consider that the number of customers to be served during a given
period of time is endogenously determined in the model. Thus, one possible formulation is
described by our model (equation (6)). For other cost structures, the conclusions are
analogous.

4. Impact of Different Objective Functions on Optimal Appointment Policies

In this section, we numerically determine the impact of using the literature’s objective
functions on optimal appointment policies. For example, we quantify the revenue losses that
incur a private firm that faces a waiting time sensitive demand function (objective function
(12)), but determines its appointment policy using the literature’s objective functions, i.e., it
uses a fixed demand that does not react to waiting time. We make a similar analysis for the
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case of a central planner (objective function (14)). In this analysis, we keep the assumptions
made in Subsection 3.3: the feasible policy space is the set containing policies in which slots
are available for all potential customers. We also consider that the fixed number of customers
to be attended, assumed in the literature, is equal to the size of the potential customers’
population.

To assess the analysis described above, we use the framework proposed by Ho and Lau
(1992). In that paper, the authors present a study of appointment policies under a broad range
of managerial scenarios. They study the performance of eight different appointment rules
(selected out of 50) under different scenarios defined by the coefficient of variation of service time
(CV), the number of customers to be attended (N), and the percentage of absenteeism (	).

They consider 27 different scenarios and choose the optimal appointment policy for each
of them, which in turn depends on the ratio �/�. As described in the previous section, this
ratio corresponds to the relative importance given to server’s idle time and customers’
waiting time in the objective function A2.

We define Ai as the appointment time for customer i, 
 as the expected value, and � as
the standard deviation of the service times, respectively. In Table 1 we describe the eight
rules used in Ho and Lau (1992) (we keep the same order used in the paper).

The appointment rules are listed in a decreasing order of average customers’ waiting time.
Thus, appointment rules 5 and 8 lead to the highest and lowest average customers’ waiting
times, respectively.

4.1. Model’s Resolution

We briefly describe the algorithm used to solve the mathematical model proposed in this
paper for the private server and the central planner, respectively.

For the case of a private server, we maximize the objective function (12) and find the
optimal appointment policy among the eight rules proposed by Ho and Lau (1992), for each
managerial scenario. For this purpose, we apply the following algorithm:

0. STEP 0: Initialization.
● Set the values of CV, N, 	, a, b, p, and a pdf for R.
● SN � s1, s2, . . . , s8, where si corresponds to the ith appointment rule proposed by

Ho and Lau.
● k � 1, s � sk.

1. STEP 1: Find the rational expectation equilibrium for the customers’ waiting time:
W� *(s), solving the following fixed point equation:

W� �s� � T�W� �s�, s�, (18)

TABLE 1

The Eight Appointment Rules Used in Ho and Lau (1992)

Rule Number Description

5 A1 � A2 � A3 � A4 � 0; for i � 4, Ai � Ai	1 � 

3 A1 � 0, A2 � 0.3, A3 � 0.6, A4 � 0.9; for i � 4, Ai � Ai	1 � 

4 A1 � 0, A2 � 0.5, A3 � 1.0, A4 � 1.5; for i � 4, Ai � Ai	1 � 

2 A1 � 0, A2 � 0.2, A3 � 0.6; for i � 3, Ai � Ai	1 � 

1 A1 � A2 � 0; for i � 2, set Ai � Ai	1 � 

6 Ai � (i 	 1)
 	 k�, (k � 0.1)
7 Ai � (i 	 1)
; for i � 5, Ai � Ai 	 0.15(5 	 i)�

for i � 5, Ai � Ai 	 0.3(5 	 i)�
8 Ai � (i 	 1)
; for i � 5, Ai � Ai 	 0.25(5 	 i)�

for i � 5, Ai � Ai 	 0.5(5 	 i)�
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where T(W� (s), s) � average customer waiting time given W� (s) and s. We note that for
a given value of the customers’ waiting time, W� (s), a stochastic demand for the service,
is generated, which has a binomial distribution with parameters N and Pr[R � p
� aW� (s)]. This demand, in turn, generates an average waiting time (T(W� (s), s))
which is computed using simulation (we use a precision of 1% with a level of
confidence of 95%, as in Ho and Lau (1992).) To find the fixed point, we solve equation
(18) with the Van Wijngaarden, Dekker, and Brent method (Press, Flannery, Teukol-
sky, and Vetterling (1990)).

2. STEP 2: Once W� *(s), corresponding to the rational expectations equilibrium, is
known, determine E(�(s)) � pN 
p�aW� (s)

R� fR(r)dr 	 bE(tc(s)) using simulation.
3. STEP 3: If k � 8, go to Step 4. Otherwise, k � k � 1, s � sk and return to STEP 1.
4. STEP 4: Determine maxs�SN

E(�(s)) and assign the value of the optimal appointment
rule and the maximum expected utility to s* and E(�(s*)), respectively.

A similar procedure is used to find the optimal appointment rule for the case of a central
planner.

We programmed the algorithm in C and ran it in a Pentium III PC. For each scenario, the
algorithm took 5 minutes on average to find the optimal appointment policy.

4.2. Numerical Examples

In this subsection we compare the performance of the optimal policies obtained using the
literature’s objective function against those obtained using the economic framework pro-
posed in this paper. In order to do this, for a given managerial scenario, we compute the
optimal policy for the private server and the central planner, respectively, and compare the
resulting optimal objective function against the one obtained, if the optimal policy proposed
by Ho and Lau (1992) was implemented.

For the numerical experiments, we consider a set of managerial scenarios consisting of
different values of the parameters involved in the problem. Similar to Ho and Lau (1992), we
consider different values of the coefficient of variation of the service times (CV � 0.2, 0.5,
and 1), of the total number of customers to be served (N � 10, 20, and 30) and of the
no-show probability (	 � 0, 0.1, and 0.2). Additionally, different values for the reservation
price expected value were used (E(R) � 1, 2, and 4) in order to include services that are
more and less valuable for the customers. Finally, different values of the unit value of the
server time were used (b � 0.3 and 0.7) to incorporate services with low- and high-operation
costs. We also set the price ( p) equal to 1 and the unit cost of waiting time for the customer
(a) equal to 0.3.

In what follows we present the results obtained in a specific managerial scenario; we
remark, however, that similar results were obtained in the other cases. The scenario is given
by a uniform service time distribution with an expected value of 1 and a coefficient of
variation of 0.5 (CV � 0.5), a total number of customers to be served equal to 20 (N � 20),
no absenteeism (	 � 0), a service price equal to one ( p � 1), a Weibull distribution for the
reservation price with a coefficient of variation of 0.5, and a unit cost of waiting time for the
customer of 0.3 (a � 0.3). In the experiments, we use different values for the reservation
price expected value (E(R)) and for the unit value of the server time (b). Table 2 shows the
optimal policy obtained by Ho and Lau (1992) for the scenario when N � 20, CV � 0.5,
and 	 � 0, for different ranges of the ratio �/�. The objective function used by these authors
is given by mins�SN

�NW� (s) � �E(tI(s)) (A2). The first column shows the different ranges
for �/� and the second column contains the optimal appointment rule obtained using
objective function A2, within each range for the ratio �/�. We note that a higher value of �/�
leads to an appointment rule with higher average customers’ waiting time.

4.2.1. PRIVATE SERVER. Table 3 presents a comparison of the performance of the optimal
appointment rules obtained with our model against those obtained with the Ho and Lau
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model. The first two columns contain different expected value levels for the customers’
reservation price (the value that the service has for the customer) and for the unit value of the
server time, respectively. Columns 3, 4, and 5 contain the optimal appointment rule (s*),
which is independent of �/�, the expected customers’ waiting time obtained (corresponding
to the rational expectations equilibrium) when implementing the optimal policy (W*), and
the maximum expected private utility (E(�)*), obtained when solving the problem devel-
oped in this paper.

Finally, in the last eight columns, we show the percentage difference of the optimal
expected utility obtained using our model and the one obtained using the optimal appoint-
ment rule recommended by Ho and Lau (1992), for different ranges of the ratio �/�. In order
to do this, for each range of the ratio �/�, we evaluate the objective function for a private
server, proposed in this paper (equation (12)), using the optimal appointment rule obtained
by Ho and Lau (1992) (Table 2). We define this objective function by E(�)Ho–Lau. Finally,
we compute the percentage difference as

�E��� � 100 �
E���* � E���Ho–Lau

E���*
.

For example, when E(R) � 2 and b � 0.3, the optimal appointment policy is 7, which
leads to an expected waiting time of 0.5 units and to an expected utility of $10.2. When using
Ho and Lau’s formulation, the appointment rule obtained coincides with the optimal ap-
pointment policy only when �/� � [2.6, 6.7]. For any other estimation of this ratio, there

TABLE 2

Results Obtained by Ho and Lau (1992):
Optimal Appointment Rule for Different Values

of �/� (N � 20, CV � 0.5, 	 � 0)

Range of �/� No. of Optimal Rule

�79.5 5
37.4–79.5 3
29.1–37.4 4
19.2–29.1 2
15.1–19.2 1
6.7–15.1 6
2.6–6.7 7
�2.6 8

TABLE 3

Comparison of Appointment Rules for Different Objectives Functions for a Private Server

Parameters

Optimal
Appointment

Policy �E(�) for Different Ranges of �/�

E(R) b s* W* E(�)* �79.5 37.4–79.5 29.1–37.4 19.2–29.1 15.1–19.2 6.7–15.1 2.6–6.7 �2.6

1 0.3 8 0.4 5 41.4 31.4 22.9 24.8 19.4 8.3 0.1 0.0
0.7 6 0.6 1.7 27.3 16.2 8.3 9.4 5.7 0.0 6.9 11.0

2 0.3 7 0.5 10.2 24.0 14.2 8.9 8.4 5.4 2.6 0.0 0.7
0.7 1 1.2 3.8 13.6 4.2 1.0 0.6 0.0 1.7 17.4 31.2

4 0.3 6 1 12.6 5.2 2.3 0.9 0.8 0.3 0.0 1.8 4.0
0.7 3 2 5.1 1.6 0.0 1.5 1.2 3.0 6.3 26.0 40.9
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would be a loss in the private server’ utility. Furthermore, as long as this estimation departs
from this range, the utility loss increases until it reaches a maximum value of 24%.

From Table 3, we observe that higher values of b lead to higher customers’ waiting times
in the optimal appointment policy. In these cases, the unit value of the server time (b) is more
expensive, and therefore, the optimal policies reduce the idle time at expenses of the
customers’ waiting time. Similarly, when the expected customers’ reservation price E(R)
increases (a higher customer’s willingness to pay for the service), the optimal appointment
rules lead to higher customers’ waiting times. Given that the price is fixed, a higher value of
E(R) implies a higher customers’ willingness to wait to be served.

In the computational experiments, we also observed that if a (the unit cost of customers’
waiting time) is low, the optimal appointment policies lead to high customers’ waiting times.

Thus, in service systems where b and E(R) are high and a is low, the optimal appointment
rules lead to high customers’ waiting times. Therefore, when using the objective function
proposed by Ho and Lau (1992), it is necessary to use a high value for the ratio �/� in order
to obtain appointment rules close to the optimal ones. It is not an easy task to know the exact
value for this ratio. As it was discussed earlier in the paper, the ratio corresponds to a
complex function of the customers’ behavior fundamental parameters as well as the structural
model’s parameters.

On the other hand, several papers in the literature suggest to choose the parameters � and
� in objective function proposed by Ho and Lau (1992) as the customers’ waiting cost per
unit time and the server’s idle cost per unit time, respectively (see Yang, Lau, and Quek
(1998)). This implies that � � a and � � b.

In most of these cases, there are significant losses in the server’s utility. These losses are
shown in the last column of Table 3. In these experiments, we use a value of a � 0.3, and
therefore, Table 3 considers ratios of �/� � b/a equal to 1 and 2.3. We observe that there
are important utility losses for the higher values of this ratio; for example, there is a 41%
difference in the utility when E(R) � 4 and b � 0.7, because of the implementation of a
suboptimal policy. When this ratio increases (over 1) the optimal policies lead to higher
customers’ waiting times. However, the appointment rule chosen in Ho and Lau (1992)
corresponds to 8, which keeps customers’ waiting time to a low level.

4.2.2. CENTRAL PLANNER. Table 4 is similar to Table 3 and shows the results for the central
planner case. We observe that the maximization of the social welfare leads to optimal
appointment policies with lower expected customers’ waiting times compared to those
obtained with the private server’s objective function (fourth column in Tables 3 and 4). Thus,

TABLE 4

Comparison of Appointment Rules for Different Objectives Functions for a Central Planner

Parameters

Optimal
Appointment

Policy �E(Bs) for Different Ranges of �/�

E(R) b s* W* E(Bs)* �79.5 37.4–79.5 29.1–37.4 19.2–29.1 15.1–19.2 6.7–15.1 2.6–6.7 �2.6

1 0.3 8 0.4 8.3 46.0 35.9 27.1 29.1 23.3 11.0 0.7 0.0
0.7 8 0.4 4.8 41.9 31.0 21.7 23.6 18.0 6.3 0.0 0.0
1.5 5 1.4 0.0 0.0 16.3 39.9 29.0 54.8 119.9 257.8 291.8

2 0.3 8 0.3 29.7 36.5 25.6 18.6 18.2 14.0 9.2 1.9 0.0
0.7 8 0.3 22.2 35.1 23.3 15.5 15.4 10.8 6.4 0.2 0.0
1.5 6 0.9 8.5 34.5 17.9 9.0 8.7 4.0 0.0 4.5 15.2

4 0.3 8 0.3 70.5 18.2 12.3 9.0 8.6 6.8 4.7 0.7 0.0
0.7 8 0.3 61.4 17.1 10.9 7.5 7.1 5.3 3.3 0.0 0.0
1.5 7 0.5 44.2 16.1 8.7 4.9 4.8 2.8 1.3 0.0 1.9
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the expected number of customers attended is higher in the case of a central planner than in
the case of a private server. For example, for E(R) � 2 and b � 0.7, the customers’
expected waiting time is four times higher for the case of a private server than for the one
obtained in the central planner case (1.2 units of time compared with 0.3). This is due to the
fact that a central planner explicitly considers customers’ utility in its objective function.

For the scenario analyzed above (E(R) � 2 and b � 0.7), only in the case when �/�
� 2.6, the formulation A2 used in the literature leads to the optimal appointment policy. In
any other case, there is an utility loss that increases as long as the ratio �/� also increases.
The maximum loss is obtained when �/� � 79.5, with a loss of 35.1%.

If the parameters � and � in objective function used in Ho and Lau (1992) are chosen as
the customers’ waiting cost per unit time and the server’s idle cost per unit time, respectively
(i.e., � � a and � � b), it is possible to obtain significant utility losses. The boldface
numbers in Table 4 show the percentage social welfare loss when appointment policies are
chosen using the objective function in Ho and Lau (1992) and the ratio �/� is chosen using
the parameters described above. We observe that for the cases where the ratio is 5 (� � a
� 0.3 and � � b � 1.5), we obtain utility losses from 0 to 257.8%.

From Table 4, we observe that for small values of b, the optimal appointment policy leads
to the lowest customers’ expected waiting time. However, when b increases, this is not valid
any longer. For example, when E(R) � 2 and b � 1.5, the optimal appointment policy is
6, which is not the most convenient rule from the customers’ point of view.

On the other hand, for higher values of E(R), the optimal appointment rules lead to lower
customers’ waiting times (see the case b � 1.5). Thus, in the case of a central planner, when
customers assign a higher value for the service, they also receive a faster service, i.e., the
central planner does not take advantage from the higher disposition of customers to buy the
service. This is due to the fact that the central planner incorporates the customers’ utility in
its objective function; lower waiting times will lead to a larger demand and a higher total
customers’ utility and, therefore, result in a higher social welfare. This effect is more
important as E(R) increases. The statement above is not valid for the cases where the
customers’ valuation of the service is extremely high, and therefore, all customers demand
the service, independently of the waiting time. We notice that the effect of E(R) over the
optimal appointment policy described above is the opposite for a private server.

In contrast, in the computational experiments we observed, if a decreases, the optimal
appointment policy makes customers wait more, similarly to the private server case.

4.3. Managerial Implications

The mathematical formulation commonly used in literature assumes a fixed demand that
is insensitive to the customers’ waiting time. Thus, in the general, an important feature of
customers’ behavior is not considered in the models. However, in some instances, where the
ratio �/� is “adequately” chosen, the optimal appointment policies that consider a demand
function that reacts to customers’ waiting time can be selected. In order to choose this ratio
adequately, it is crucial to distinguish between a private server and a central planner.
Furthermore, as we analyzed in Section 3, these parameters are a function of several
fundamental parameters (e.g., customers’ willingness to pay for the service, customers’ value
of waiting time, and server’s value of his/her time). Therefore, an adequate estimation of this
ratio is not direct. If the estimation belongs to a reasonable range, then the optimal policy is
chosen. Otherwise, it is possible to incur in significant revenue losses.

The model developed in this paper proposes an economic framework that allows the
understanding of the economic insights of the problem. For example, in Chile we observe that
some public services do not deliver a high-quality service and customers wait for long
periods of time before being served. Why? An immediate answer to this question is that the
public server is not acting as a central planner, i.e., it does not consider the customers’ utility
in its objective function. If this were not the case, the public server would select an
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appointment policy where customers would wait much less. Furthermore, if the service is
highly valued by customers (a high value for E(R)), then the service should be even better.
The only case where it is optimal for a central planner to generate high customers’ waiting
times is when the unit cost of waiting time for the client is small and the unit value of the
server time is high, for example, the case of very specialized medical equipment.

As we mentioned before, similar results to those presented in Subsection 4.2 were obtained
in several computational experiments, with a wide variety of managerial scenarios. Depend-
ing on the scenario chosen, the losses in the private server and the central planners’ expected
utility are more or less sensitive to the correct estimation of the ratio �/�. For example, a very
sensitive scenario for a private server is N � 20, CV � 0.5, 	 � 0.2, p � 1, a � 0.3,
E(R) � 2, and b � 0.7. In this scenario, the optimal appointment rule for a private server
is 5. If �/� is greater than 9.6, then the appointment rule chosen by Ho and Lau (1992) is the
optimal one. However, if �/� is between 6.3 and 9.6, the utility loss is 9% and it starts
growing as �/� decreases. Consequently, if �/� is less than 1.6, the utility loss is 83%. On
the other hand, a scenario which is not so sensitive is N � 10, CV � 0.5, 	 � 0, p � 1,
a � 0.3, E(R) � 4, and b � 0.3. In this case, the optimal appointment rule for a private
server is 1 and the worst appointment rule, in terms of expected utility, is 5. However the
utility loss is only 4%.

We notice that we would have observed similar effects when using the literature’s
objective function on optimal appointment policies, if we would have considered other
framework different from the one proposed in Ho and Lau (1992) (for example, another set
of feasible appointment rules).

It is important to mention that the model developed in this paper involves several
parameters that require estimation when applying it to practice. Depending on the nature of
the parameter, different methodologies are available in the literature. To estimate the unit cost
of waiting time for a client, a, standard techniques in transportation economics can be used,
which relate the parameter to customers’ salaries. The percentage of absenteeism, 	, can be
estimated using historical data collected in the service company. To estimate N, the size of
the potential demand, we can assume that all available slots could be filled if the price and
the waiting time were zero. Therefore N could be equal to the length of the service day
divided by the average service time.

Finally, for an estimation of the reservation price distribution (random variable R),
methodologies from marketing can be used (based, for example, on surveys and historical
data). Regarding the latter, it is interesting to note that we performed numerical experiments
showing that, for unimodal distributions, the optimal appointment rules depend only on the
mean and standard deviation of the reservation price.

5. Conclusions and Recommendations for Future Research

The problem of appointment policy has been widely addressed in literature, by studying
the performance of different appointment policies under a variety of scenarios. Studies have
come up with recommendations that have made it possible to improve the performance of
appointment-based systems and have shown that the use of quantitative tools in this area can
be extremely useful. We believe the work of Ho and Lau (1992) and Yang, Lau, and Quek
(1998) are particularly interesting as they study different appointment policies under various
scenarios. Moreover, Yang, Lau, and Quek (1998) construct a general appointment rule that
can be used under various scenarios without the need for complicated additional calculations
or simulations. It would be important to extend their work to a larger number of scenarios and
consider other variables such as a larger number of servers or walk-ins.

On the other hand, we believe it is essential that assumptions about the behavior of demand
be made more realistic: demand must depend on waiting time. The objective function used
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should be appropriate to the case, taking into account whether the server is a central planner
or a private server. It should consider the benefits and costs involved.

The objective functions used in the literature correctly represent the situation of a central
planner facing a demand that does not react to waiting time. A few decades ago this situation
was the context of many services, especially medical services, most of which were state-
owned monopolies. Nowadays, however, the vast majority of services are private (including
medical services), and they face more competitive environments with customers who do not
want to wait; this fact needs to be taken into consideration in the models. The objective
functions used in the literature are only shortcuts for the real objective functions that must be
used in these scenarios. In these cases a single parameter (the ratio between the weights of
expected server idle time—or completion time—and expected customer waiting time in the
objective function) has to include a series of effects given by the customers’ behavior
fundamental parameters and structural model’s parameters. This is not a trivial task and if
this single parameter is not correctly estimated, the decision maker can have important losses
in utility.

A new model that fits well in these more general scenarios is proposed in this paper. The
model can be used in other managerial frameworks where other decisions related to service
operations are made. For example, with this model it would also be possible to address the
more general problem in which the firm has to jointly decide on its appointment policy and
the price to charge for the service. In addition we could analyze capacity decisions, such as
overbooking policies.

Although more realistic models that include these aspects are more difficult to solve than
those traditionally used in literature, we believe they could be very useful, especially in
studies of a more theoretical nature. In this type of study it is essential to use models that are
as close to reality as possible, so as to obtain results with greater validity and gain correct
insights to the problem.1
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