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a b s t r a c t

Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm
inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is
based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO
method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO
(QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A
13-units test system with incremental fuel cost function that takes into account the valve-point loading
effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simula-
tion results based on the classical PSO, the QPSO, and other optimization algorithms reported in the
literature.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Electric power utilities are expected to generate their power at
minimum cost. The economic dispatch problem (EDP) of electric
power generation pertains to the optimum generation scheduling
of available generators in the power system to minimize the cost
of generation subject to systems constraints [1].

Previous efforts at economic dispatch by engineers and
researchers have applied various mathematical programming
methods based on several optimization techniques, such as linear
programming, dynamic programming, homogenous linear pro-
gramming, and nonlinear programming techniques [2–8]. In recent
years, as an alternative to the conventional mathematical ap-
proaches, modern heuristic optimization techniques such as simu-
lated annealing [9], taboo search [10], evolutionary algorithms
[11], artificial neural networks [12], fuzzy systems [13], and ant
colony [14] have been given much attention by many researchers
due to their ability to find an almost global optimal solution in
EDPs. One of these heuristic optimization paradigms is particle
swarm optimization (PSO) [15–17].

Inspired from nature, PSO is a stochastic search algorithm based
on population cooperation and competition of individuals and is
motivated by the simulation of social behavior instead of the sur-
vival of the fittest individual. It is based on the simulation of sim-
plified social models, such as bird flocking, fish schooling, and the
ll rights reserved.
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swarming theory [17]. PSO is generally considered to be an evolu-
tionary computation paradigm or swarm intelligence algorithm. In
a classical PSO system, a swarm of individuals (called particles) fly
through the search space. Each particle represents a candidate
solution to the optimization problem. The position of a particle is
influenced by the best position visited by itself (i.e. its own experi-
ence) and the position of the best particle in its neighborhood (i.e.
the experience of neighboring particles).

Recently, the concepts of quantum mechanics and computation
have motivated the generation of optimization methods, see [18–
20]. Quantum-behaved particle swarm optimization (QPSO), which
was proposed in [21,22], is a novel optimization algorithm inspired
by the fundamental theory of particle swarm and features of quan-
tum mechanics such as the use of Schrödinger equation and poten-
tial field distribution. In the QPSO proposed in [21,22], the delta-
potential-well is chosen to be a suitable attractive potential
distribution.

This work presents a QPSO approach using another potential
distribution, the harmonic oscillator potential well (HQPSO), to
solve optimization problems. The harmonic oscillator is a very
common potential distribution, and also it is one of the most
important model systems in quantum mechanics.

An EDP is employed to demonstrate the performance of the
HQPSO. In this context, a 13-units test system [23] with incremen-
tal fuel cost function that takes into account the valve-point load-
ing effects is used to illustrate the effectiveness of the proposed
HQPSO method. The results obtained with the proposed HQPSO ap-
proach were analyzed and compared with the classical PSO, the
QPSO [21,22] and other optimization results reported in the
literature.
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The remainder of this paper is organized as follows: Section 2
describes the formulation of an EDP, while Section 3 explains the
classical PSO and the proposed QPSO, respectively. Section 4 pre-
sents the optimization results for the 13-units test system. Lastly,
Section 5 outlines our conclusions and future research.

2. Formulation of economic dispatch problem

The primary concern of an economic dispatch problem is to
minimize the total fuel cost at thermal power plants subjected to
the operating constraints of a power system. Therefore, it can be
formulated mathematically with an objective function and two
constraints. The equality and inequality constraints are repre-
sented by Eqs. (1) and (2) given byXn

i¼1

Pi � PL � PD ¼ 0; ð1Þ

Pmin
i 6 Pi 6 Pmax

i : ð2Þ

In the power balance criterion, an equality constraint must be
satisfied, as shown in Eq. (1). The generated power should be the
same as the total load demand plus total line losses. The generating
power of each generator should lie between maximum and mini-
mum limits represented by Eq. (2), where Pi is the power of gener-
ator i (in MW); n is the number of generators in the system; PD is
the system’s total demand (in MW); PL represents the total line
losses (in MW) and Pmin

i and Pmax
i are, respectively, the output of

the minimum and maximum operation of the generating unit i
(in MW). The total fuel cost function is formulated as follows:

min f ¼
Xn

i¼1

FiðPiÞ; ð3Þ

where Fi is the total fuel cost for the generator unity i (in $/h), which
is defined by

FiðPiÞ ¼ aiP
2
i þ biPi þ ci; ð4Þ

where ai, bi and ci are cost coefficients of generator i.
A cost function is obtained based on the ripple curve for more

accurate modeling. This curve contains higher order nonlinearity
and discontinuity due to the valve-point effect, and should be re-
fined by a sine function. Therefore, Eq. (4) can be modified [24], as

eF iðPiÞ ¼ FðPiÞ þ ei sin fi Pmin
i � Pi

� �� ���� ��� or ð5Þ

eF iðPiÞ ¼ aiP
2
i þ biPi þ ci þ ei sin fi Pmin

i � Pi

� �� ���� ���; ð6Þ

where ei and fi are constants of the valve-point effect of generators.
Hence, the total fuel cost that must be minimized, according to Eq.
(3), is modified to

min f ¼
Xn

i¼1

eF iðPiÞ; ð7Þ

where eF i is the cost function of generator i (in $/h) defined by Eq.
(6). In the case study presented here, we disregarded the transmis-
sion losses, PL (mentioned in Eq. (1)), i.e., in this work PL = 0.

3. Particle swarm optimization approaches to solve the
economic dispatch problem

3.1. Classical particle swarm optimization

The PSO was first introduced by Kennedy and Eberhart in the
middle of 90s [15,16]. It is an evolutionary population-based algo-
rithm, where each member is seen as a particle, and each particle is
a potential solution to the problem under analysis. Each particle in
PSO has a randomized velocity associated to it, which moves
through the space of the problem.

Each particle in PSO keeps track of its coordinates in the prob-
lem space, which are associated with the best solution (fitness) it
has achieved so far. This value is called pbest (personal best). An-
other ‘‘best” value that is tracked by the global version of the par-
ticle swarm optimizer is the overall best value and its location
obtained so far by any particle in the population. This location is
called gbest (global best).

The PSO concept consists of, in each time step, changing (accel-
erating) the velocity of each particle flying toward its pbest and
gbest locations (global version of PSO). Acceleration is weighted
by random terms, with separate random numbers being generated
for acceleration toward pbest and gbest locations, respectively. In
this work, the gbest version of PSO is adopted. The gbest (star
structure) version is a fully connected neighborhood relation. Each
particle has all the other particles as neighbors; this implies that
the global best particle-position for all particles is identical [25].

The procedure for implementing the global version of PSO is gi-
ven by the following steps [26–28]:

Step 1. Initialization of positions and velocities: Initialize a popula-
tion (array) of particles with random positions and veloci-
ties in the n-dimensional problem space using a uniform
probability distribution function.

Step 2. Evaluation of particle’s fitness: Evaluate each particle’s fit-
ness value.

Step 3. Comparison to pbest: Compare each particle’s fitness with
the particle’s pbest. If the current value is better than
pbest, then set the pbest value equal to the current value
and the pbest location equal to the current location in n-
dimensional space.

Step 4. Comparison to gbest: Compare the fitness with the popula-
tion’s overall previous best. If the current value is better
than gbest, then reset gbest to the current particle’s array
index and value.

Step 5. Updating of each particle’s velocity and position: Change the
velocity, vi, and position of the particle, xi, according to Eqs.
(8) and (9):
vi;jðt þ 1Þ ¼ w � vi;jðtÞ þ c1 � r1 � ½pi;jðtÞ � xiðtÞ�
þ c2 � r2 � ½pg;jðtÞ � xi;jðtÞ�; ð8Þ

xi;jðt þ 1Þ ¼ xi;jðtÞ þ Dt � vi;jðt þ 1Þ; ð9Þ

where i = 1,2, . . .,N indicates the particles of population
(swarm); j = 1,2, . . .,n indicates the dimension;
t = 1,2, . . ., tmax indicates the iterations, w is defined as iner-
tia weight factor; vi,j(t + 1) stands for the velocity of the ith
particle with respect to the jth dimension in iteration t; and
pi,j(t + 1) represents the best previous position of the ith
particle to the jth dimension. The variable pg,j(t) is the best
previous position among all the particles along the jth
dimension in iteration t. The first part in Eq. (8) is the
momentum part of the particle. The inertia weight w repre-
sents the degree of the momentum of the particles. The sec-
ond part is the ‘cognition’ part, which represents the
independent thinking of the particle itself. Positive con-
stants c1 and c2 are the cognitive and social components,
respectively, which are the positive acceleration constants
responsible for varying the particle speed towards pbest
and gbest, respectively. Index g represents the index of
the best particle among all the particles in the swarm. Vari-
ables r1 and r2 are vectors with components uniformly dis-
tributed in the range [0,1]. Eq. (9) represents the position
update, according to its previous position and its velocity,
considering Dt = 1.
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Step 6. Repeating the evolutionary cycle: Return to Step 2 until a
stop criterion is met, usually a sufficiently good fitness or
a maximum number of iterations (generations), tmax. Max-
imum number of iterations criterion is adopted in this
work.

Particle velocities in each dimension are clamped to a maxi-
mum velocity Vmax. If the sum of accelerations causes the velocity
in that dimension to exceed Vmax, which is a parameter specified by
the user, then the velocity in that dimension is limited to Vmax. Pre-
vious experience with PSO (trial and error, mostly) led us to set the
Vmax to 20% of the dynamic range of the variable in each dimension.

3.2. HQPSO

Quantum mechanics is a fundamental approach in the descrip-
tion and understanding of physical and chemical phenomena. In
terms of classical mechanics, a particle is depicted by its position
vector x and velocity vector v, which determine the trajectory of
the particle. The particle moves along a determined trajectory in
Newtonian mechanics, but this is not the case in quantum mechan-
ics. In quantum world, the term trajectory is meaningless, because
x and v of a particle can not be determined simultaneously accord-
ing to uncertainty principle [22,29]. The quantum particle swarm
optimization algorithm allows all particles to move under quan-
tum-mechanical rules rather than the classical Newtonian random
motion [30].

On the basis of the fundamental hypotheses proposed by Hei-
senberg, Schrödinger, Bohr, Dirac, and others established the the-
ory of linear quantum mechanics which describes the properties
and motions of microscopic particle systems. This theory states
that once the externally applied potential fields and initial states
of the particles are given, the states of the particles at any time la-
ter and any position can be determined by the Schrödinger equa-
tion [31].

In the proposed version of the QPSO algorithm, we apply an
attractive potential field that will eventually pull all particles to
the location defined by local attractors. In quantum mechanics, this
implies that the potential field will generate bound states. Details of
the bound states and its formulations are presented in [30,32].

In the quantum model of a PSO called here QPSO, the state of a
particle is associated with an appropriate time-dependent Schrö-
dinger equation [32,33], instead of position and velocity, given by

jh
o

ot
wðx; tÞ ¼ ĤðxÞwðx; tÞ; ð10Þ

where ĤðxÞ is a time-independent Hamiltonian operator of the sys-
tem given by

ĤðxÞ ¼ � �h2

2m
r2 þ vðxÞ; ð11Þ

where ⁄ is the Planck’s constant, m is the mass of the particle, and
v(x) is the potential energy distribution. The solutions of the Schrö-
dinger satisfy the linear superposition principle. Solutions w(x, t) of
the Eq. (10) are called wavefunctions or state functions and are used
to describe the behavior of the system. In particular, the product of
the wavefunction and its complex conjugate is considered to be a
probability density for position.

The dynamic behavior of the particle is widely divergent form
that of that the particle in classical PSO systems in that the exact
values of x and v cannot be determined simultaneously. In this con-
text, the probability of the particle’s appearing in position x from
probability density function jw(x, t)j2, the form of which depends
on the potential field the particle lies in [34].

The design step in deriving the HQPSO algorithm of QPSO pro-
posed in [21,22] is the choice of a suitable attractive potential field
that can guarantee bound states for the particles moving in the
quantum environment. A potential distribution, which is very com-
mon in quantum mechanics, is the harmonic oscillator potential
well given by

vðxÞ ¼ k � x2

2
; ð12Þ

where k is a parameter defining the well ‘‘depth” or ‘‘strength.” This
problem has the following well-known analytical solution

wmðxÞ ¼
a

2mm!p1=2

� �1=2

Hmða � xÞ � e�0:5a2x2
; ð13Þ

where a = (mk/⁄)1/4 and Hm is the Hermite polynomial. Eq. (13)
shows that multiple possible eigen-states exits in this system, each
with integer index m. However, we may simplify the problem con-
siderably by assuming that only the lowest possible mode (the
ground state m = 0) is available. In this case, the Gaussian probabil-
ity distribution can be obtained. In this case, the Gaussian probabil-
ity distribution is given by

QðxÞ ¼ affiffiffiffi
p
p e�a2x2

: ð14Þ

Again, the characteristic length of this well can be seen to be
a=

ffiffiffiffi
p
p

, a quantity that is directly controlled by the strength of the
well k.

The derivation of the corresponding iterative equation for the
harmonic oscillator is presented in [30]. In this context, employing
the Monte Carlo method, the particles move according to the fol-
lowing iterative equation:

xi;jðt þ 1Þ ¼ Pj þ b � 1
0:47694�g � Mbestj � xi;jðtÞ

�� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=uÞ

p
;

if z P 0:5
xi;jðt þ 1Þ ¼ Pj � b � 1

0:47694�g � Mbestj � xi;jðtÞ
�� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð1=uÞ
p

;

if z < 0:5

8>>>><>>>>: ð15Þ

where i = 1,2, . . .,N indicates the particles of population, b is a de-
sign parameter called contraction–expansion coefficient [29]; g is
a constant value (g > 1); u and z are values generated according to
a uniform probability distribution in the range [0,1]. In this work,
g = 2 is adopted.

The global point called Mainstream Thought or Mean Best
(Mbest) of the population is defined as the mean of the pbest posi-
tions of all particles and it is given by

Mbest ¼ 1
N

XN

j¼1

pi;jðtÞ

¼ 1
N

XN

j¼1

pi;1ðtÞ;
1
N

XN

j¼1

pi;2ðtÞ; . . . ;
1
N

XN

j¼1

pi;nðtÞ
 !

¼ Mbest1;Mbest2; . . . ;Mbestnð Þ; ð16Þ

where pi,j is the pbest position of ith particle to the jth dimension. In
this case, the local attractor [17,35] to guarantee convergence of the
optimization method presents the following coordinates:

Pj ¼
c1 � pi;j þ c2 � pg;j

c1 þ c2
: ð17Þ

In this case, the potential well will be centered around the vec-
tor P given by Eq. (17). The procedure for implementing the HQPSO
is given by the following steps:

Step 1. Initialization of swarm positions: Initialize a population
(array) of particles with random positions in the n-dimen-
sional problem space using a uniform probability distribu-
tion function.



Table 2
Convergence results (50 runs) of a case study of 13 thermal units with valve-point
and PD = 1800 MW

Optimization
method

Maximum
cost ($/h)

Minimum
cost ($/h)

Mean cost
($/h)

Standard
deviation ($/h)

PSO 18878.8271 18239.7537 18589.1527 128.3804
QPSO 18760.2152 18321.4745 18291.4029 126.7042
HQPSO(1) 18693.5371 18146.7234 18391.3499 118.7776
HQPSO(2) 18542.4122 18083.6341 18278.8418 111.2173
HQPSO(3) 18795.8387 18134.1893 18280.3750 116.9973
HQPSO(4) 18524.2866 18092.7130 18274.9907 112.9353
HQPSO(5) 18633.0435 17963.9571 18273.8610 123.2242

Table 3
Best result (50 runs) obtained for the case study using HQPSO(5)

Power Generation (MW) Power Generation (MW)

P1 628.3180 P8 60.0000
P2 149.1094 P9 109.8664
P3 223.3226 P10 40.0000
P4 109.8650 P11 40.0000
P 109.8618 P 55.0000
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Step 2. Evaluation of particle’s fitness: Evaluate the fitness value of
each particle.

Step 3. Comparison to pbest (personal best): Compare each parti-
cle’s fitness with the particle’s pbest. If the current value
is better than pbest, then set the pbest value equal to the
current value and the pbest location equal to the current
location in n-dimensional space.

Step 4. Comparison to gbest (global best): Compare the fitness with
the population’s overall previous best. If the current value
is better than gbest, then reset gbest to the current parti-
cle’s array index and value.

Step 5. Updating of global point: Calculate the Mbest using Eq. (16).
Step 6. Updating of particles’ position: Change the position of the

particles where c1 and c2 are two random numbers gener-
ated using a uniform probability distribution in the range
[0,1].

Step 7. Repeating the evolutionary cycle: Loop to Step 2 until a stop
criterion is met, usually a sufficiently good fitness or a
maximum number of iterations (generations), tmax.

4. Case study of 13 thermal units and analysis of optimization
results

This case study consisted of 13 thermal units of generation with
the valve-point effects, as given in Table 1. The system data shown
in Table 1 is also available in [23,36]. In this case, the load demand
expected to be determined was PD = 1800 MW.

Each optimization method was implemented in Matlab (Math-
Works). All the programs were run on a 3.2 GHz Pentium IV pro-
cessor with 2 GB of random access memory. In each case study,
50 independent runs were made for each of the optimization
methods involving 50 different initial trial solutions for each opti-
mization method.

In this case study, the population size N was 20 particles and the
stopping criterion tmax was 800 generations for the classical PSO,
QPSO and HQPSO approaches. The parameters used for verifying
the performance of the classical PSO in searching the decision vari-
ables of EDP are:

� acceleration constant c1 = 2.05 and c2 = 2.05;
� w decreases linearly from about 0.9–0.4 during a run.The setup

of QPSO and HQPSO approaches used was the following:
� QPSO: QPSO proposed in [21,22] using a constant contraction–

expansion coefficient given by b = 0.6;
� HQPSO(1): HQPSO using a constant contraction–expansion coef-

ficient given by b = 0.6;
� HQPSO(2): HQPSO using b = 0.7;
� HQPSO(3): QPSO using b = 0.8;
Table 1
Data for the 13 thermal units

Thermal unit Pmin
i Pmax

i a b c e f

1 0 680 0.00028 8.10 550 300 0.035
2 0 360 0.00056 8.10 309 200 0.042
3 0 360 0.00056 8.10 307 150 0.042
4 60 180 0.00324 7.74 240 150 0.063
5 60 180 0.00324 7.74 240 150 0.063
6 60 180 0.00324 7.74 240 150 0.063
7 60 180 0.00324 7.74 240 150 0.063
8 60 180 0.00324 7.74 240 150 0.063
9 60 180 0.00324 7.74 240 150 0.063

10 40 120 0.00284 8.60 126 100 0.084
11 40 120 0.00284 8.60 126 100 0.084
12 55 120 0.00284 8.60 126 100 0.084
13 55 120 0.00284 8.60 126 100 0.084
� HQPSO(4): QPSO with adaptive control parameter using a linear
reduction of b with initial and final values of 0.8 and 0.6,
respectively;

� HQPSO(5): QPSO using a sinusoidal function for the contraction–
expansion coefficient given by b = a + jA � sin(x � t)j, where A is
the amplitude of signal and x is the angular frequency of signal.
The choice of values was a = 0.6, A = 0.2 and x = 0.1 � t.

A key factor in the application of optimization methods is how
the algorithm handles the constraints relating to the problem. In
this work, the penalty-based method proposed in [11] was used.

The results in Table 2 illustrated that HQPSO(4) and HQPSO(5)
has the highest probability of achieving better solutions among
these tested PSO algorithms. The results obtained for this case
study are given in Table 2, which shows that the QPSO(5) has both
a better economic cost and lower mean cost than the other tested
PSO approaches. However, the QPSO(4) outperformed the other
tested methods in terms of maximum cost.

The best results obtained for solution vector Pi, i = 1, . . .,13 with
HQPSO(5) with minimum cost of 17963.9571 $/h is given in Table
3. Furthermore, considering the accurate cost model, the proposed
HQPSO(5) algorithm not only has the best economic dispatch of
tested methods, but also completely satisfies the system
constraints.

Table 4 compares the results obtained in this paper with those
of other studies reported in the literature. Note that in studied case,
5 12

P6 109.8656 P13 55.0000
P7 109.7912

P13
i¼1Pi 1800.0000

Table 4
Comparison of best results for fuel costs presented in the literature

Optimization method Total cost ($/h) for the case study
with 13 thermal units

Evolutionary programming [23] 17994.07
Particle swarm optimization [37] 18030.72
Hybrid evolutionary programming with SQPa

[37]
17991.03

Hybrid particle swarm with SQP [37] 17969.93
Improved genetic algorithm [38] 17963.9848
Modified particle swarm optimization [39] 17973.34
Best result of this paper using HQPSO(5) 17963.9571

a SQP: sequential quadratic programming.
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the best result reported here using HQPSO(5) is comparatively low-
er than recent studies presented in the literature.

5. Conclusions and future research

Most power system optimization problems, including EDP, have
complex and nonlinear characteristics with heavy equality and
inequality constraints. Traditionally, optimization methods in-
volved derivative-based techniques. Such techniques can encoun-
ter difficulties in EDPs such as getting trapped in local minima,
increasing computational complexity, and not being applicable to
certain classes of objective functions. This led to the need of devel-
oping a new class of solution methods that can overcome these
shortcomings. Optimization techniques, such as PSO, are fast grow-
ing tools that can overcome most of the limitations found in deriv-
ative-based techniques [40]. Recently, many researchers
attempted to apply the PSO algorithm in solving optimization
problems in electric power systems [37,39–52].

This paper discusses the use of a HQPSO to solve economic dis-
patch problems. The classical PSO, QPSO and HQPSO methodolo-
gies were validated for a test system consisting of 13 thermal
units whose incremental fuel cost function takes into account the
valve-point loading effects.

The proposed HQPSO(5) has the lowest cost of all methods
tested, demonstrating that the proposed algorithm is more effec-
tive than other methods for the case study consisted of 13 thermal
units of generation. The tested HQPSO techniques provide new ap-
proaches with promising new features. In future work, we plan to
study the HQPSO techniques applied to multi-objective optimiza-
tion in EDPs.
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