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     Abstract: Performance is one of the key features of parallel 
and distributed computing systems. Therefore, in the past a 
significant research effort was invested in the development of 
approaches for performance modeling and prediction of 
parallel and distributed computing systems. In this paper we 
identify the trends, contributions, and drawbacks of the state 
of the art approaches. We describe a wide range of the 
performance modeling approaches that spans from the high-
level mathematical modeling to the detailed instruction-level 
simulation. For each approach we describe how the program 
and machine are modeled and estimate the model development 
and evaluation effort, the efficiency, and the accuracy. 
Furthermore, we present an overall evaluation of the described 
approaches. 

 
1. Introduction 
 
The solution of resource-demanding scientific and 
engineering computational problems involves the execution 
of programs on parallel and distributed computing 
machines, in order to solve large problems or to reduce the 
time to solution for a single problem [13]. However, the 
development of this kind of computing systems is an 
expensive and time-consuming endeavor. For instance, the 
development cost of the Earth Simulator Center (ESC) [10] 
was about US$350 million [43], and its development took 
about five years. While the life of parallel and distributed 
computing machines is commonly up to five years long, the 
life of parallel and distributed programs is up to 30 years 
[9]. Therefore, it is important to have means for the 
performance evaluation of programs not only on existing 
machines, but also on machines that are under development 
or being planned. 
     Because the performance is a key indicator of computing 
systems, the performance evaluation was a preoccupation of 
many computer scientists in the past [1, 35, 18, 23, 25]. The 
commonly used techniques for the performance evaluation 
of computing systems include: measurement, mathematical 
modeling, and simulation. Each of these techniques has its 
limitations. Measurement techniques require that the system 

under study is available for experimentation, and their 
applicability is limited to only existing systems. 
Mathematical performance models usually lack the system’s 
structural information, and therefore, are not suitable for the 
model based performance analysis. The model-based 
performance analysis involves the modification of structure 
of the model to reflect system structural changes, in order to 
predict what would be the performance of the system under 
study if its structure is changed. Detailed simulation models 
demand large computational and storage resources, and their 
evaluation may be so slow that the performance assessment 
of real-world programs is impractical. 
     In this paper we systematically present a collection of the 
state of the art approaches for performance modeling and 
prediction of parallel and distributed computing systems. 
The range of the approaches for performance modeling and 
prediction that we cover spans from the high-level 
mathematical modeling to the detailed instruction-level 
simulation. For each approach we describe how the program 
and machine are modeled and estimate the model 
development and evaluation effort, the efficiency and the 
accuracy. In addition, we evaluate the suitability of the 
presented approaches for the model-based performance 
analysis of parallel and distributed computing systems. 
     The rest of this paper is organized as follows. 
Preliminaries are described in Section 2. Section 3 describes 
a collection of approaches for performance modeling and 
prediction of computing systems. An evaluation of the 
described approaches is presented in Section 4. Finally, 
Section 5 presents some concluding remarks. 
 
2. Preliminaries 
 
The terms workload, machine, and system are used 
frequently in the literature, but not always with the same 
meaning. In the context of this paper the term workload 
indicates a distributed and parallel program, whereas the 
term machine indicates a distributed and parallel computing 
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architecture. The term system indicates a computing system. 
In our approach, the workload model and the machine 
model are considered as integral parts of the computing 
system model (see Figure 1). 
 

 
 

Figure 1 : Computing system model. 
 
     In this paper, for each performance modeling and 
prediction approach, we describe how the workload and 
machine are modeled. In addition, the following properties 
of approaches are discussed: 
     Model development effort indicates the endeavor of the 
user of a specific approach for building the model. 
     Model evaluation effort indicates the time and the 
computing resources that are needed to evaluate the model. 
     Efficiency of the approach considers the effort needed to 
develop and evaluate the model. For instance, the efficiency 
of an approach is high if the model development and 
evaluation effort is low. 
     Accuracy indicates the exactness of an approach. For 
estimation of the accuracy is commonly performed a 
comparison of prediction results with measurement results. 
 
2.1 Performance-oriented program development 
There is a widening gap between the maximal theoretical 
performance of a computing machine and the achieved 
performance when a certain program is executed [13]. This 
gap may be reduced by tuning the performance of a program 
for a specific computing machine. The procedure for 
improvement of the program performance involves multiple 
cycles of code editing, compilation, and execution (see 
Figure 2(a)). For real-world programs this procedure of 
code-based performance tuning is time-consuming, 
expensive and error-prone. Furthermore, its applicability is 
limited to the available computing machines. 
     Model based performance tuning involves the model 
editing, model transformation to a form that is suitable for 
evaluation, and model evaluation (see Figure 2(b)). In this 
manner, instead of making experiments with the real 
program code on the real computing machine, we are able to 
experiment with the model of the program and the model of 
the computing machine. Commonly, the model-based 
performance tuning is: efficient, inexpensive, and non 
intrusive. Moreover, it is applicable not only to the available 
computing machines but also to those that are under 
development or being planned. 
 

 
 

Figure 2 : Performance tuning. 
 
 
3. Performance Modeling and Prediction 
Approaches 
 
In this section we present some of the most relevant 
approaches for performance modeling and prediction of 
parallel and distributed computing systems. 
 
3.1 A1: PAL 
This approach for the performance modeling and prediction 
of distributed computing systems is commonly used by the 
Performance and Architecture Laboratory (PAL) at Los 
Alamos National Laboratory [24, 25]. 
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     The PAL approach expresses the execution time of a 
program on a machine as a parameterized mathematical 
model. The model parameters characterize the problem size 
S, and computational and communicational capabilities of 
the machine M. The program execution time TProgExec is 
estimated as follows, 
 

       (1) 

 
     where TComp is the computation time, TComm is the 
communication time, and TMemCont is the time spent for 
memory contention within a multiprocessor node. By 
expressing the performance of the whole program with a 
mathematical expression the structural information (for 
instance the control flow) of the program is not preserved. 
For this reason, this approach may not be suitable for the 
model-based performance evaluation of various program 
designs. 
     Workload model. The development of the workload 
model is based on a detailed analysis of the source code of 
the program (such as counting computation and 
communication operations). The modeling procedure results 
with a parameterized mathematical model (see Equation 1). 
     Machine model. Machine is not modeled separately. 
Machine is characterized by a set of parameters such as 
number of processors per node, number of nodes, number of 
communication links per node, communication latency and 
bandwidth, and sequential processing capacity. These 
parameters serve as input for themodel that predicts the 
program execution time. 
     Model development effort. PAL modeling approach 
requires a careful analysis of the program control flow and 
data structures. Furthermore, computer measurement 
techniques are used for determining the values of various 
machine parameters such as communication latencies and 
bandwidths, sequential processing capacity, and memory 
contention. Therefore, the modeling effort for this approach 
is considered to be high. 
     Model evaluation effort. The modeling procedure 
results with a mathematical expression, which is suitable for 
fast evaluation. Therefore, the model evaluation effort for 
this approach is low. 
     Efficiency. We consider that the efficiency of this 
approach is medium, since the model development effort is 
high but the model evaluation effort is low. 
     Accuracy. In [25] authors of PAL approach report 
performance prediction results for various systems with 
average accuracy between 5% and 11%. We should 
emphasize that the performance effects of the overlapping of 
computation and communication phases are not considered. 
Therefore, models that are built based on PAL approach 
may provide accurate results only for that class of programs 
for which the overlapping of computation and 
communication does not affects significantly the overall 
program performance. 

3.2 A2: PEVPM 
Performance Evaluating Virtual Parallel Machine (PEVPM) 
[14, 16] is a performance modeling system for message-
passing programs. The basic idea behind PEVPM is to use 
statistical distributions to model the performance of the 
message passing operations, such as send and receive. The 
use of PEVPM is limited to message passing programs. 
Therefore, it is not possible to use it for shared memory 
programs, or mixed message passing and shared memory 
programs.  
     Authors of PEVPM state that, because of the network 
contention, the completion of message-passing operations 
varies over time. Therefore, by using statistical distributions 
instead of the average completion time the effect of network 
contention is captured. However, authors of PEVPM do not 
provide an empirical or theoretical proof that the use of 
statistical distributions instead of mean values to model the 
execution time of message passing operations results with a 
better estimation of the programs execution time. On the 
other hand, their basic claim of prediction accuracy 
improvement is not supported by fundamental probability 
theorems [22]. 
     In order to generate statistical distributions for message 
passing operations, authors of PEVPM have developed a 
special-purpose benchmarking tool MPI Bench [15]. This 
tool measures the performance of operations of an MPI 
implementation on a particular machine, and automatically 
fits the measurement data with statistical distributions. For 
each MPI operation is generated one statistical distribution. 
     Workload model. During the workload modeling 
procedure the user manually inserts in the source code 
performance directives as comments. Basically, these 
directives describe all computation and communication 
operations of the program. In addition, these directives 
partially describe the program control flow. Since PEVPM 
provides no compiler support, the user manually generates 
the driving program for the simulation, by extending the 
program code with directives. 
     Machine model. PEVPM comprises a simple machine 
model. The machine is modeled as a set of processors each 
having one send queue and one receiving queue. The 
memory hierarchy is not modeled. The network topology is 
not modeled as well. 
     Model development effort. An obstacle for the usage of 
PEVPM is the difficulty of performance model description; 
the user describes the model textually by manually 
modifying the source code of the program that is modeled. 
For real world codes that may comprise thousands of lines 
of codes this approach is impractical. Furthermore, since 
PEVPM workload models correspond closely (virtually to 
each program statement correspond one or more directives) 
to the modeled program, it is difficult to build performance 
models at a higher level of abstraction. 
     Model evaluation effort. Commonly the time needed to 
evaluate a PEVPM model is shorter than the time needed to 
execute the real program on a real machine. 
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     Efficiency. We consider that the efficiency of this 
approach is medium, since the model development effort is 
high but the model evaluation effort is low. 
     Accuracy. The prediction accuracy of PEVPM is 
illustrated for small programs such as Jacobi iteration. Since 
PEVPM workload model is based on platform-dependent 
performance models of communication/computation 
operations and because of the workload model matches 
closely the program code the expected prediction accuracy 
is relatively high. The authors of PEVPM report that 
commonly the prediction error is within 5%. The machine 
model of PEVPM does not consider the memory hierarchy 
and the network topology. Therefore, in the case that the 
program performance is influenced by these subsystems the 
prediction accuracy may be substantially lower. 
 
3.3 A3: PP 
Performance Prophet (PP) [36] is a tool for performance 
modeling and prediction of parallel and distributed 
computing systems. This tool provides a graphical user 
interface, which alleviates the problem of specification and 
modification of the performance model. The user specifies 
graphically the performance model using the Unified 
Modeling Language (UML) [35, 33]. Afterwards, PP 
automatically transforms the performance model from UML 
to C++ and evaluates it by simulation. 
     PP is suitable for exploring a large set of possible 
program’s versions, because of its efficiency of model 
building and evaluation. The rapid performance model 
evaluation capability of PP is due to a methodology that 
involves model simplification, and the combination of 
mathematical modeling with discrete event simulation. The 
aim is to combine the model evaluation efficiency of 
mathematical performance models with the structure 
awareness of simulation models. The behavior of the whole 
computing system is split-up into action states and waiting 
states. Mathematical modeling is used for modeling the 
performance behavior of action states, whereas the 
performance behavior of waiting states is simulated. 
     Workload model. The workload model is specified 
graphically based on UML. 
     Machine model. The machine model for clusters of 
SMP’s is composed automatically based on the user 
specified parameters such as the number of nodes and the 
number of processors per node. 
     Model development effort. Commonly, the model is 
composed rapidly from the existing building blocks. In this 
case the model development effort is low. However, if the 
user needs to develop new building blocks, then the model 
development effort is increased significantly. Therefore, in 
the general case the model development effort is medium. 
     Model evaluation effort. The time needed for model 
evaluation is reduced, by (1) simplifying the model, and by 
(2) combining mathematical modeling and discrete event 
simulation. Therefore, the model evaluation effort is low. In 
a case study presented in [36], the model evaluation with PP 
on a single processor workstation was several thousand 

times faster than the execution time of the real program on a 
real cluster. 
     Efficiency. We consider that the efficiency of this 
approach is high, since the model development effort is 
medium but the model evaluation effort is low. 
     Accuracy. Authors of PP have assessed the accuracy of 
PP by modeling and simulating a real-world material 
science program that comprises about 15,000 lines of code 
[36]. The average prediction accuracy was about 7%. 
      
3.4 A4: PACE 
The Performance Analysis and Characterization 
Environment (PACE) [32, 34] is a tool-set for the 
performance prediction of distributed systems. 
Characterization Instrumentation for Performance Prediction 
of Parallel Systems (CHIP3S) is a language that PACE uses 
for description of the performance information of software 
and hardware components. 
     Commonly used performance evaluation techniques for 
computing systems include: measurement, analytical 
modeling (that is mathematical modeling), and simulation.  
PACE uses measurement and analytical modeling 
techniques. Analytical models usually have the form of a 
simple expression. Their advantage is the low evaluation 
cost, but they lack the structural information of the system. 
     Workload model. The source code is analyzed and 
translated into CHIP3S procedures. A compiler is used to 
translate CHIP3S into C language code. 
     Machine model. The machine configuration is specified 
in Hardware Model Configuration Language (HMCL). For 
instance, a cluster of 32 SunUltra10 nodes is specified as 
follows, 
     SunUltra10 cluster_a[32]; 
     where SunUltra10 specifies the type of the node. 
 
     Model development effort. The model development 
with PACE involves an extensive analysis of the program 
code and machine. Therefore, the model development effort 
for this approach is high. 
     Model evaluation effort. The final result of the PACE 
modeling approach is a single executable file that represents 
the whole computing system. Some model parameters can 
be set as command line options at the model execution time. 
During the model execution, a set of symbolic expressions 
that represent various components of the system is 
evaluated. Therefore, the model evaluation effort is low. 
     Efficiency. We consider that the efficiency of this 
approach is medium, since the model development effort is 
high but the model evaluation effort is low. 
     Accuracy. In [20] authors of PACE report that the 
average prediction accuracy of PACE was 5%. 
 
3.5 A5: POEMS 
The aim of Performance Oriented End-to-end Modeling 
System (POEMS) [1] project (period of performance 1997- 
2000) was to develop an environment for performance 
modeling of parallel computing systems.  
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     POEMS proposed a methodology for the evaluation of 
system model using multiple evaluation tools. The model of 
system is composed of component models. POEMS authors 
state that each component of the system model may be 
evaluated by the corresponding evaluation tool; the output 
of a tool serves as input for the subsequent tool [1]. We 
consider that in the general case the component models may 
be of different kinds and at different levels of abstraction, 
and therefore the output of an evaluation tool may not be 
interpretable for the subsequent evaluation tool. 
     Workload model. POEMS devised a graphical 
representation for parallel programs, which is based on task 
graphs. Each node of the task graph may represent a set of 
parallel tasks. Edges of the task graph may represent data 
flow or task precedence. However, POEMS does not 
provide the corresponding tool-support for graphical model 
composition. 
     Machine model. The processor and the memory 
subsystem are simulated with Simple Scalar [5], the network 
is simulated based on Parsec simulation language, and I/O 
subsystem is simulated with PIOSIM [3]. 
     Model development effort. A relevant outcome of the 
POEMS project is an automatic task graph generator for 
High Performance Fortran (HPF) programs [2]. The tool 
support is provided by an extended version of dHPF [7] 
compiler. This approach supports the automatic model 
development for HPF programs. However, the automatic 
development of the machine model is not adequately 
addressed. The claim that the machine model may be 
automatically composed from existing components is not of 
particular practical relevance, if these components are not 
already developed. 
     Model evaluation effort. It is difficult to estimate, 
because of the large spectrum of addressed abstraction 
levels and proposed model evaluation tools. For equation 
solvers the model evaluation effort is low. But, for detailed 
simulators the model evaluation effort may be very high 
both in terms of the time and computing resources needed to 
evaluate the model. 
     Efficiency. This approach aims to incorporate a large 
spectrum of the performance models from the high-level 
mathematical models to the instruction-level simulators. 
Therefore, it is hard to estimate the efficiency of this 
approach. 
     Accuracy. It may be anywhere from low to high. It 
depends on the model abstraction level, system modeling 
process, and the used model evaluation tools. 
      
3.6 A6: PMaC 
In this section we describe the Performance Modeling and 
Characterization (PMaC) [37, 41] framework for 
performance prediction of message passing programs. 
PMaC approach involves the determination of the machine 
profile and the program signature. A machine profile 
comprises the information on how fast the machine can 
perform basic operations (for instance memory store and 
load). A program signature comprises the information on the 

quantity and the type of basic program operations. Basically, 
the machine profile determines the machine computational 
capacity, whereas the program signature determines the 
program computational requirements. The execution time of 
a program is estimated as follows, 
 

 
 
     where Ti is the execution time of operation Oi. 
 
     Tools that are used within PMaC framework include 
Machine Access Pattern Signature (MAPS) [29], MetaSim 
[30], Pallas MPI Benchmark (PMB) [38], MPIDtrace [31], 
and Dimemas [8, 12]. MAPS is used for evaluation of the 
performance of memory hierarchy. MetaSim tracer is used 
for collection of the information on store/load and floating 
point operations of a program. PMB is used for performance 
evaluation of MPI communication operations. MPIDtrace is 
used for collection of the information on communication 
operations of a program. Dimemas is a simulator for 
message passing programs. 
     Authors of PMaC framework propose a technique for 
model simplification that is based on program trace 
sampling [6]. This means that for each interval i of the 
program trace only a sample of the first s elements is 
considered. For instance, for a trace that comprises 1000000 
elements, with i = 100000 and s = 1000, only these elements 
are considered {[1, 1000], [100001, 101000], [200001, 
201000] ,..., [900001 : 901000]}. This technique may have 
been inspired from signal sampling in electrical engineering. 
But, we consider that this technique may not be suitable for 
modeling computer programs, because a critical 
performance information that may strongly influence the 
performance of the whole program may be left out by just 
sampling periodically the program trace. 
     Workload model. The program is represented as a trace 
of computation and communication operations. 
     Machine model. The machine is characterized by 
measuring the capacity of performing the basic computation 
and communication operations. 
     Model development effort. It involves the program 
instrumentation, program execution, and execution of 
benchmarks for the performance evaluation of memory 
hierarchy and the interconnection network of machine. 
Therefore, the model development effort for this approach is 
medium. 
     Model evaluation effort. The model evaluation involves 
the simulation of the interconnection network with 
Dimemas. Therefore, the model evaluation effort for this 
approach is medium. 
     Efficiency. We consider that the efficiency of this 
approach is medium, since the effort for the model 
development and evaluation is medium. 
     Accuracy. Authors of PMaC approach report that even 
for small programs, such as matrix-vector multiply, the 
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prediction error is up to 25%. Relatively high prediction 
errors may be due to the use of platform-independent 
models. 
 
3.7 A7: CLUE 
Cluster Evaluator (CLUE) [26, 17] is an execution-driven 
simulator that is used for performance evaluation of 
message passing programs on cluster computer 
architectures. 
     CLUE is based on Machine Independent Simulation 
System for PVM (MISS-PVM) [27]. Parallel Virtual 
Machine (PVM) is a software system that supports the 
message passing programming paradigm [44]. 
     CLUE is used for performance evaluation of message 
passing programs that are developed based on PVM. The 
simulation is driven by the executing the slightly modified 
program, whose performance is analyzed. In order to 
simulate the performance of a program with CLUE, the kind 
of the header files is changed in the program source code 
and the program is linked with CLUE libraries. During the 
program execution PVM calls are redirected to CLUE. 
CLUE simulates the performance behavior of the call, and 
then passes the call to PVM. During the simulation CLUE 
generates a trace of communication events, which may be 
used for postmortem performance analysis. 
     Workload model. The program whose performance is 
analyzed acts as a workload for CLUE. 
     Machine model. Machine is characterized by a set of 
parameters that are stored in a configuration file. These 
parameters determine the communication and computation 
properties of the machine. The effects of the network 
contention are not considered. 
     Model development effort. The development of the 
workload model is strait forward. It involves only the 
modification of the program header. The development of the 
machine model involves the determination of the parameters 
that affect the performance of the machine. 
     Model evaluation effort. One of the drawbacks of 
execution driven-simulation is that the time needed for 
model evaluation strongly depends on the execution time of 
the real program. For instance, if the execution time of a real 
world program is several weeks, then the time needed for 
model evaluation is several weeks as well. Furthermore, 
real-world programs may have high memory requirements. 
This means that a large amount of memory may be required 
for the model evaluation. 
     Efficiency. We consider that the efficiency of this 
approach is medium, since the model development effort is 
low but the model evaluation effort is high.  
     Accuracy. CLUE is validated for ScaLAPACK [4, 40] 
routines such as matrix multiplication. Authors of CLUE 
state that the average prediction accuracy of CLUE was 10% 
(see [28]). 
      
3.8 A8: POSE 
Parallel Object-oriented Simulation Environment (POSE) 
[46] is a parallel discrete event simulator [11]. POSE is used 

for simulation of the performance behavior of programs that 
are executed on large-scale machines such as IBM Blue 
Gene [47, 19]. The Blue Gene/L [19], which is listed as 
number one in the list of 500 hundred most powerful 
computers in the world (TOP500 [45], November 2006), 
contains 131,072 processors. A detailed simulation of such 
large machines may require processing and memory 
resources that are not available on a singe processor 
machine. Therefore, such simulations are executed on 
multiprocessor machines. 
     POSE is implemented based on Charm++ [21], which is 
a parallel C++ library. The simulation entities of POSE are 
represented as Charm++ objects. Each object has a data 
member for tracking the simulation time and a set of 
methods for event handling. Based on POSE and the 
Charm++ runtime environment a specific simulator that 
simulates the Blue Gene/L machine was developed [47]. 
The rest of this section provides a discussion of properties of 
the Blue-Gene/L simulator. 
     Workload model. The Blue Gene/L simulator is an 
execution-driven simulator. It supports the simulation of 
programs that are written based on Charm++ or MPI. 
     Machine model. Machine is modeled as a set of 
interconnected nodes. Each node may have a set of 
processors. 
     Model development effort. Charm++ or MPI programs 
may be used as input for the simulator. In this case the 
workload modeling effort is low. However, in order to 
evaluate different program versions the user has to 
restructure the source of the program. This process may be 
time consuming for the real-world programs. The effort for 
the development of a detailed machine model that supports 
execution-driven simulation is high. 
     Model evaluation effort. Commonly sequential discrete 
event simulators are about 10 times faster than parallel 
discrete event simulators if a single-processor machine is 
used for model evaluation. This is due to the 
synchronization and communication overhead of parallel 
discrete event simulators. If a machine with more than 10 
processors is available for model evaluation, then parallel 
simulators outperform sequential simulators (see [46]). 
     Efficiency. We consider that the efficiency of this 
approach is low, since the effort for the model development 
and evaluation is high. 
     Accuracy. We were unable to find a comparison of 
prediction results of Blue Gene/L simulator with 
measurement results on the real Blue Gene/L machine. The 
prediction accuracy of this approach may be anywhere from 
low to high, depending on the fidelity of the machine model. 
 
3.9 A9: RSIM 
Rice Simulator for ILP Multiprocessors (RSIM) is a 
simulator of cache-coherent non-uniform memory access 
(CCNUMA) shared-memory machines [39, 18]. A 
distinguishing feature of RSIM is the ability to simulate 
processors that use instruction-level parallelism (ILP). ILP 
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processors are capable of executing multiple instructions in 
parallel. 
     RSIM supports SPARC processors [42]. As input for 
RSIM simulator may serve programs that are compiled and 
linked (that is executables) on SPARC/Solaris systems. 
During the program simulation, RSIM interprets the 
executable of the program. The output of RSIM includes the 
number of executed cycles, and statistics on the utilization 
of components of the machine. 
     RSIM comprises a detailed (that is a cycle-level) 
machine model that allows the analysis of the performance 
effects of architectural parameters. Therefore, it is suitable 
to evaluate various designs of CC-NUMA shared-memory 
machines. However, because the simulation of the program 
execution with RSIM is very slow (several thousands times 
slower than the program execution on the real machine), it is 
not suitable for evaluation of various designs of real-world 
programs. 
     Work load model. The executable of the program serves 
as a workload. The RSIM simulator takes as input the 
programs that are compiled and linked on SPARC/Solaris 
systems. 
     Machine model. The main components of the machine 
model include processors, the memory hierarchy (that is L1 
cache, L2 cache, local and remote memory), and the 
interconnection network. 
     Model development effort. The development of the 
workload model is strait forward. Basically, it involves 
program compiling and linking. But, the effort for 
development of the cycle-level machine model is high. 
     Model evaluation effort. Authors of RSIM report that 
several thousands times more time was needed to simulate a 
program with RSIM, than to execute the program on a real 
machine. For instance, for a program that performs LU 
matrix decomposition the RSIM simulation was 7100 times 
slower than the program execution on the real machine. 
Therefore, the model evaluation effort for this approach is 
high. 
     Efficiency. We consider that the efficiency of this 
approach is low, since the effort for the model development 
and evaluation is high. 
     Accuracy. The model of the computer architecture that is 
used by RSIM does not match exactly the architecture of 
any existing machine. This makes difficult the task of 
estimation of the prediction accuracy of RSIM, since it is 
not possible to compare simulation results with results that 
are obtained from the real computing system. 
      
4. Evaluation 
 
In this section we evaluate the suitability of the approaches, 
which we described in Section 3, for the model-based 
performance analysis of parallel and distributed computing 
systems. The time spent for the model development and 
evaluation should be short, in order to explore a large set of 
design alternatives within a reasonable time. The approaches 

should provide performance prediction results with an 
accuracy that makes possible the comparison of various 
design alternatives. We evaluate the approaches based on 
the following properties: (1) model development effort, (2) 
model evaluation effort, (3) efficiency, and (4) accuracy. 
The efficiency of an approach is deduced based on the 
model development and evaluation effort. 
     Table 1 shows an estimation of values of the properties 
of approaches. The values of properties are obtained from 
our reasoning about each approach in Section 3. Approaches 
are arranged in the table in the order of their appearance in 
Section 3. 
 
Table 1: A summary of the properties of approaches for the 
performance modeling and prediction of parallel and 
distributed computing systems. 
 
ID  Mod. Eval.  Mod. Dev. Efficiency  Accuracy 
A1  Low  High  Medium  Medium 
A2  Low  High  Medium  Medium 
A3  Low  Medium  High  Medium 
A4  Low  High  Medium  Medium 
A5  Medium  Medium  Medium  Medium 
A6  Medium  Medium  Medium  Low 
A7  High  Low  Medium  Medium 
A8  High  High  Low  Medium 
A9  High  High  Low  High 
 
     Figure 3 depicts the assessment results of approaches 
based on the values of their properties (see Table 1).  
     Figure 3(a) provides an assessment of approaches by 
considering the model development and evaluation effort. 
Approaches A8 and A9 received the grade poor; A1, A2, 
A4, A5, A6 and A7 received the grade good; and A3 
received the grade very good. 
     Figure 3(b) provides an assessment of approaches by 
considering the accuracy and efficiency. A6 and A8 
received the grade sufficient; A1, A2, A4, A5, A7 and A9 
received the grade good; and A3 received the grade very 
good. 
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Figure 3 : The assessment of approaches based on 
(a) model development effort and model 
evaluation effort, (b) accuracy and efficiency. 
 
5. Conclusions 
 
Performance is a key indicator of parallel and distributed 
computing systems. Therefore, the performance evaluation 
of computing systems was a preoccupation of many 
computer scientists in the past. In this paper we have 
systematically presented the state of the art approaches for 
performance modeling and prediction of parallel and 
distributed computing systems. We have discussed the 
contributions and drawbacks of each approach. In what 
follows we summarize some of the issues that we have 
identified. 
     Most of approaches for the performance modeling of 
parallel and distributed programs are of limited use to 
support performance-oriented software engineering because 
of the following reasons: (1) the use of a notation that is not 
based on widely accepted standards, and (2) the requirement 
that the software engineer has a thorough understanding of 
the underlying performance modeling technique. Some 
approaches aim to bridge this gap between the performance 
modeling and the software engineering by incorporating 
UML. 
     Most of approaches are able to cope only with small 
programs such as matrix-vector multiplication. There are 
several reasons for the lack of scalability: (1) a very 
complex code analysis is used during the workload 
modeling that does not scale up to the size and complexity 
of the real world programs, (2) a detailed machine model is 
used that is so slow that makes impractical the simulation of 
real-world programs, or (3) for the model evaluation are 
required very large resources (processors and memory) that 
may not be available. Some approaches have addressed this 
issue by using model simplification techniques, combination 

of mathematical modeling with discrete event simulation, 
and by using a simple machine simulation model. 
     Performance models that represent the whole program 
and machine as a symbolic expression lack the structural 
information. Consequently, it is difficult to identify the part 
of system that is responsible for the sub optimal 
performance. Some approaches support the development of 
performance models at various levels of abstraction. For 
instance, for workload modeling are used UML activity 
diagrams. An activity may represent a single instruction, or 
larger blocks of the program (for instance a loop), or the 
whole program. Furthermore, some approaches use discrete-
event simulation to describe the structure of system and the 
interaction among its components. 
     In future we plan to supplement our survey by including 
other approaches for performance modeling and prediction 
of parallel and distributed computing systems. 
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