
International Journal of Computational Intelligence Research.
ISSN 0973-1873 Vol.4, No.1 (2008), pp. 17–26
© Research India Publications http://www.ijcir.info

A Survey of the State of the Art in Performance

Modeling and Prediction of Parallel and
Distributed Computing Systems

Sabri Pllana, Ivona Brandic and Siegfried Benkner

University of Vienna, Institute of Scientific Computing

Nordbergstrasse 15, 1090 Vienna, Austria
{pllana,brandic,sigi}@par.univie.ac.at

 Abstract: Performance is one of the key features of parallel
and distributed computing systems. Therefore, in the past a
significant research effort was invested in the development of
approaches for performance modeling and prediction of
parallel and distributed computing systems. In this paper we
identify the trends, contributions, and drawbacks of the state
of the art approaches. We describe a wide range of the
performance modeling approaches that spans from the high-
level mathematical modeling to the detailed instruction-level
simulation. For each approach we describe how the program
and machine are modeled and estimate the model development
and evaluation effort, the efficiency, and the accuracy.
Furthermore, we present an overall evaluation of the described
approaches.

1. Introduction

The solution of resource-demanding scientific and
engineering computational problems involves the execution
of programs on parallel and distributed computing
machines, in order to solve large problems or to reduce the
time to solution for a single problem [13]. However, the
development of this kind of computing systems is an
expensive and time-consuming endeavor. For instance, the
development cost of the Earth Simulator Center (ESC) [10]
was about US$350 million [43], and its development took
about five years. While the life of parallel and distributed
computing machines is commonly up to five years long, the
life of parallel and distributed programs is up to 30 years
[9]. Therefore, it is important to have means for the
performance evaluation of programs not only on existing
machines, but also on machines that are under development
or being planned.
 Because the performance is a key indicator of computing
systems, the performance evaluation was a preoccupation of
many computer scientists in the past [1, 35, 18, 23, 25]. The
commonly used techniques for the performance evaluation
of computing systems include: measurement, mathematical
modeling, and simulation. Each of these techniques has its
limitations. Measurement techniques require that the system

under study is available for experimentation, and their
applicability is limited to only existing systems.
Mathematical performance models usually lack the system’s
structural information, and therefore, are not suitable for the
model based performance analysis. The model-based
performance analysis involves the modification of structure
of the model to reflect system structural changes, in order to
predict what would be the performance of the system under
study if its structure is changed. Detailed simulation models
demand large computational and storage resources, and their
evaluation may be so slow that the performance assessment
of real-world programs is impractical.
 In this paper we systematically present a collection of the
state of the art approaches for performance modeling and
prediction of parallel and distributed computing systems.
The range of the approaches for performance modeling and
prediction that we cover spans from the high-level
mathematical modeling to the detailed instruction-level
simulation. For each approach we describe how the program
and machine are modeled and estimate the model
development and evaluation effort, the efficiency and the
accuracy. In addition, we evaluate the suitability of the
presented approaches for the model-based performance
analysis of parallel and distributed computing systems.
 The rest of this paper is organized as follows.
Preliminaries are described in Section 2. Section 3 describes
a collection of approaches for performance modeling and
prediction of computing systems. An evaluation of the
described approaches is presented in Section 4. Finally,
Section 5 presents some concluding remarks.

2. Preliminaries

The terms workload, machine, and system are used
frequently in the literature, but not always with the same
meaning. In the context of this paper the term workload
indicates a distributed and parallel program, whereas the
term machine indicates a distributed and parallel computing

18 Sabri Pllana et al

architecture. The term system indicates a computing system.
In our approach, the workload model and the machine
model are considered as integral parts of the computing
system model (see Figure 1).

Figure 1 : Computing system model.

 In this paper, for each performance modeling and
prediction approach, we describe how the workload and
machine are modeled. In addition, the following properties
of approaches are discussed:
 Model development effort indicates the endeavor of the
user of a specific approach for building the model.
 Model evaluation effort indicates the time and the
computing resources that are needed to evaluate the model.
 Efficiency of the approach considers the effort needed to
develop and evaluate the model. For instance, the efficiency
of an approach is high if the model development and
evaluation effort is low.
 Accuracy indicates the exactness of an approach. For
estimation of the accuracy is commonly performed a
comparison of prediction results with measurement results.

2.1 Performance-oriented program development
There is a widening gap between the maximal theoretical
performance of a computing machine and the achieved
performance when a certain program is executed [13]. This
gap may be reduced by tuning the performance of a program
for a specific computing machine. The procedure for
improvement of the program performance involves multiple
cycles of code editing, compilation, and execution (see
Figure 2(a)). For real-world programs this procedure of
code-based performance tuning is time-consuming,
expensive and error-prone. Furthermore, its applicability is
limited to the available computing machines.
 Model based performance tuning involves the model
editing, model transformation to a form that is suitable for
evaluation, and model evaluation (see Figure 2(b)). In this
manner, instead of making experiments with the real
program code on the real computing machine, we are able to
experiment with the model of the program and the model of
the computing machine. Commonly, the model-based
performance tuning is: efficient, inexpensive, and non
intrusive. Moreover, it is applicable not only to the available
computing machines but also to those that are under
development or being planned.

Figure 2 : Performance tuning.

3. Performance Modeling and Prediction
Approaches

In this section we present some of the most relevant
approaches for performance modeling and prediction of
parallel and distributed computing systems.

3.1 A1: PAL
This approach for the performance modeling and prediction
of distributed computing systems is commonly used by the
Performance and Architecture Laboratory (PAL) at Los
Alamos National Laboratory [24, 25].

A Survey of the State of the Art in Performance Modeling

19

 The PAL approach expresses the execution time of a
program on a machine as a parameterized mathematical
model. The model parameters characterize the problem size
S, and computational and communicational capabilities of
the machine M. The program execution time TProgExec is
estimated as follows,

 (1)

 where TComp is the computation time, TComm is the
communication time, and TMemCont is the time spent for
memory contention within a multiprocessor node. By
expressing the performance of the whole program with a
mathematical expression the structural information (for
instance the control flow) of the program is not preserved.
For this reason, this approach may not be suitable for the
model-based performance evaluation of various program
designs.
 Workload model. The development of the workload
model is based on a detailed analysis of the source code of
the program (such as counting computation and
communication operations). The modeling procedure results
with a parameterized mathematical model (see Equation 1).
 Machine model. Machine is not modeled separately.
Machine is characterized by a set of parameters such as
number of processors per node, number of nodes, number of
communication links per node, communication latency and
bandwidth, and sequential processing capacity. These
parameters serve as input for themodel that predicts the
program execution time.
 Model development effort. PAL modeling approach
requires a careful analysis of the program control flow and
data structures. Furthermore, computer measurement
techniques are used for determining the values of various
machine parameters such as communication latencies and
bandwidths, sequential processing capacity, and memory
contention. Therefore, the modeling effort for this approach
is considered to be high.
 Model evaluation effort. The modeling procedure
results with a mathematical expression, which is suitable for
fast evaluation. Therefore, the model evaluation effort for
this approach is low.
 Efficiency. We consider that the efficiency of this
approach is medium, since the model development effort is
high but the model evaluation effort is low.
 Accuracy. In [25] authors of PAL approach report
performance prediction results for various systems with
average accuracy between 5% and 11%. We should
emphasize that the performance effects of the overlapping of
computation and communication phases are not considered.
Therefore, models that are built based on PAL approach
may provide accurate results only for that class of programs
for which the overlapping of computation and
communication does not affects significantly the overall
program performance.

3.2 A2: PEVPM
Performance Evaluating Virtual Parallel Machine (PEVPM)
[14, 16] is a performance modeling system for message-
passing programs. The basic idea behind PEVPM is to use
statistical distributions to model the performance of the
message passing operations, such as send and receive. The
use of PEVPM is limited to message passing programs.
Therefore, it is not possible to use it for shared memory
programs, or mixed message passing and shared memory
programs.
 Authors of PEVPM state that, because of the network
contention, the completion of message-passing operations
varies over time. Therefore, by using statistical distributions
instead of the average completion time the effect of network
contention is captured. However, authors of PEVPM do not
provide an empirical or theoretical proof that the use of
statistical distributions instead of mean values to model the
execution time of message passing operations results with a
better estimation of the programs execution time. On the
other hand, their basic claim of prediction accuracy
improvement is not supported by fundamental probability
theorems [22].
 In order to generate statistical distributions for message
passing operations, authors of PEVPM have developed a
special-purpose benchmarking tool MPI Bench [15]. This
tool measures the performance of operations of an MPI
implementation on a particular machine, and automatically
fits the measurement data with statistical distributions. For
each MPI operation is generated one statistical distribution.
 Workload model. During the workload modeling
procedure the user manually inserts in the source code
performance directives as comments. Basically, these
directives describe all computation and communication
operations of the program. In addition, these directives
partially describe the program control flow. Since PEVPM
provides no compiler support, the user manually generates
the driving program for the simulation, by extending the
program code with directives.
 Machine model. PEVPM comprises a simple machine
model. The machine is modeled as a set of processors each
having one send queue and one receiving queue. The
memory hierarchy is not modeled. The network topology is
not modeled as well.
 Model development effort. An obstacle for the usage of
PEVPM is the difficulty of performance model description;
the user describes the model textually by manually
modifying the source code of the program that is modeled.
For real world codes that may comprise thousands of lines
of codes this approach is impractical. Furthermore, since
PEVPM workload models correspond closely (virtually to
each program statement correspond one or more directives)
to the modeled program, it is difficult to build performance
models at a higher level of abstraction.
 Model evaluation effort. Commonly the time needed to
evaluate a PEVPM model is shorter than the time needed to
execute the real program on a real machine.

20 Sabri Pllana et al

 Efficiency. We consider that the efficiency of this
approach is medium, since the model development effort is
high but the model evaluation effort is low.
 Accuracy. The prediction accuracy of PEVPM is
illustrated for small programs such as Jacobi iteration. Since
PEVPM workload model is based on platform-dependent
performance models of communication/computation
operations and because of the workload model matches
closely the program code the expected prediction accuracy
is relatively high. The authors of PEVPM report that
commonly the prediction error is within 5%. The machine
model of PEVPM does not consider the memory hierarchy
and the network topology. Therefore, in the case that the
program performance is influenced by these subsystems the
prediction accuracy may be substantially lower.

3.3 A3: PP
Performance Prophet (PP) [36] is a tool for performance
modeling and prediction of parallel and distributed
computing systems. This tool provides a graphical user
interface, which alleviates the problem of specification and
modification of the performance model. The user specifies
graphically the performance model using the Unified
Modeling Language (UML) [35, 33]. Afterwards, PP
automatically transforms the performance model from UML
to C++ and evaluates it by simulation.
 PP is suitable for exploring a large set of possible
program’s versions, because of its efficiency of model
building and evaluation. The rapid performance model
evaluation capability of PP is due to a methodology that
involves model simplification, and the combination of
mathematical modeling with discrete event simulation. The
aim is to combine the model evaluation efficiency of
mathematical performance models with the structure
awareness of simulation models. The behavior of the whole
computing system is split-up into action states and waiting
states. Mathematical modeling is used for modeling the
performance behavior of action states, whereas the
performance behavior of waiting states is simulated.
 Workload model. The workload model is specified
graphically based on UML.
 Machine model. The machine model for clusters of
SMP’s is composed automatically based on the user
specified parameters such as the number of nodes and the
number of processors per node.
 Model development effort. Commonly, the model is
composed rapidly from the existing building blocks. In this
case the model development effort is low. However, if the
user needs to develop new building blocks, then the model
development effort is increased significantly. Therefore, in
the general case the model development effort is medium.
 Model evaluation effort. The time needed for model
evaluation is reduced, by (1) simplifying the model, and by
(2) combining mathematical modeling and discrete event
simulation. Therefore, the model evaluation effort is low. In
a case study presented in [36], the model evaluation with PP
on a single processor workstation was several thousand

times faster than the execution time of the real program on a
real cluster.
 Efficiency. We consider that the efficiency of this
approach is high, since the model development effort is
medium but the model evaluation effort is low.
 Accuracy. Authors of PP have assessed the accuracy of
PP by modeling and simulating a real-world material
science program that comprises about 15,000 lines of code
[36]. The average prediction accuracy was about 7%.

3.4 A4: PACE
The Performance Analysis and Characterization
Environment (PACE) [32, 34] is a tool-set for the
performance prediction of distributed systems.
Characterization Instrumentation for Performance Prediction
of Parallel Systems (CHIP3S) is a language that PACE uses
for description of the performance information of software
and hardware components.
 Commonly used performance evaluation techniques for
computing systems include: measurement, analytical
modeling (that is mathematical modeling), and simulation.
PACE uses measurement and analytical modeling
techniques. Analytical models usually have the form of a
simple expression. Their advantage is the low evaluation
cost, but they lack the structural information of the system.
 Workload model. The source code is analyzed and
translated into CHIP3S procedures. A compiler is used to
translate CHIP3S into C language code.
 Machine model. The machine configuration is specified
in Hardware Model Configuration Language (HMCL). For
instance, a cluster of 32 SunUltra10 nodes is specified as
follows,
 SunUltra10 cluster_a[32];
 where SunUltra10 specifies the type of the node.

 Model development effort. The model development
with PACE involves an extensive analysis of the program
code and machine. Therefore, the model development effort
for this approach is high.
 Model evaluation effort. The final result of the PACE
modeling approach is a single executable file that represents
the whole computing system. Some model parameters can
be set as command line options at the model execution time.
During the model execution, a set of symbolic expressions
that represent various components of the system is
evaluated. Therefore, the model evaluation effort is low.
 Efficiency. We consider that the efficiency of this
approach is medium, since the model development effort is
high but the model evaluation effort is low.
 Accuracy. In [20] authors of PACE report that the
average prediction accuracy of PACE was 5%.

3.5 A5: POEMS
The aim of Performance Oriented End-to-end Modeling
System (POEMS) [1] project (period of performance 1997-
2000) was to develop an environment for performance
modeling of parallel computing systems.

A Survey of the State of the Art in Performance Modeling

21

 POEMS proposed a methodology for the evaluation of
system model using multiple evaluation tools. The model of
system is composed of component models. POEMS authors
state that each component of the system model may be
evaluated by the corresponding evaluation tool; the output
of a tool serves as input for the subsequent tool [1]. We
consider that in the general case the component models may
be of different kinds and at different levels of abstraction,
and therefore the output of an evaluation tool may not be
interpretable for the subsequent evaluation tool.
 Workload model. POEMS devised a graphical
representation for parallel programs, which is based on task
graphs. Each node of the task graph may represent a set of
parallel tasks. Edges of the task graph may represent data
flow or task precedence. However, POEMS does not
provide the corresponding tool-support for graphical model
composition.
 Machine model. The processor and the memory
subsystem are simulated with Simple Scalar [5], the network
is simulated based on Parsec simulation language, and I/O
subsystem is simulated with PIOSIM [3].
 Model development effort. A relevant outcome of the
POEMS project is an automatic task graph generator for
High Performance Fortran (HPF) programs [2]. The tool
support is provided by an extended version of dHPF [7]
compiler. This approach supports the automatic model
development for HPF programs. However, the automatic
development of the machine model is not adequately
addressed. The claim that the machine model may be
automatically composed from existing components is not of
particular practical relevance, if these components are not
already developed.
 Model evaluation effort. It is difficult to estimate,
because of the large spectrum of addressed abstraction
levels and proposed model evaluation tools. For equation
solvers the model evaluation effort is low. But, for detailed
simulators the model evaluation effort may be very high
both in terms of the time and computing resources needed to
evaluate the model.
 Efficiency. This approach aims to incorporate a large
spectrum of the performance models from the high-level
mathematical models to the instruction-level simulators.
Therefore, it is hard to estimate the efficiency of this
approach.
 Accuracy. It may be anywhere from low to high. It
depends on the model abstraction level, system modeling
process, and the used model evaluation tools.

3.6 A6: PMaC
In this section we describe the Performance Modeling and
Characterization (PMaC) [37, 41] framework for
performance prediction of message passing programs.
PMaC approach involves the determination of the machine
profile and the program signature. A machine profile
comprises the information on how fast the machine can
perform basic operations (for instance memory store and
load). A program signature comprises the information on the

quantity and the type of basic program operations. Basically,
the machine profile determines the machine computational
capacity, whereas the program signature determines the
program computational requirements. The execution time of
a program is estimated as follows,

 where Ti is the execution time of operation Oi.

 Tools that are used within PMaC framework include
Machine Access Pattern Signature (MAPS) [29], MetaSim
[30], Pallas MPI Benchmark (PMB) [38], MPIDtrace [31],
and Dimemas [8, 12]. MAPS is used for evaluation of the
performance of memory hierarchy. MetaSim tracer is used
for collection of the information on store/load and floating
point operations of a program. PMB is used for performance
evaluation of MPI communication operations. MPIDtrace is
used for collection of the information on communication
operations of a program. Dimemas is a simulator for
message passing programs.
 Authors of PMaC framework propose a technique for
model simplification that is based on program trace
sampling [6]. This means that for each interval i of the
program trace only a sample of the first s elements is
considered. For instance, for a trace that comprises 1000000
elements, with i = 100000 and s = 1000, only these elements
are considered {[1, 1000], [100001, 101000], [200001,
201000] ,..., [900001 : 901000]}. This technique may have
been inspired from signal sampling in electrical engineering.
But, we consider that this technique may not be suitable for
modeling computer programs, because a critical
performance information that may strongly influence the
performance of the whole program may be left out by just
sampling periodically the program trace.
 Workload model. The program is represented as a trace
of computation and communication operations.
 Machine model. The machine is characterized by
measuring the capacity of performing the basic computation
and communication operations.
 Model development effort. It involves the program
instrumentation, program execution, and execution of
benchmarks for the performance evaluation of memory
hierarchy and the interconnection network of machine.
Therefore, the model development effort for this approach is
medium.
 Model evaluation effort. The model evaluation involves
the simulation of the interconnection network with
Dimemas. Therefore, the model evaluation effort for this
approach is medium.
 Efficiency. We consider that the efficiency of this
approach is medium, since the effort for the model
development and evaluation is medium.
 Accuracy. Authors of PMaC approach report that even
for small programs, such as matrix-vector multiply, the

22 Sabri Pllana et al

prediction error is up to 25%. Relatively high prediction
errors may be due to the use of platform-independent
models.

3.7 A7: CLUE
Cluster Evaluator (CLUE) [26, 17] is an execution-driven
simulator that is used for performance evaluation of
message passing programs on cluster computer
architectures.
 CLUE is based on Machine Independent Simulation
System for PVM (MISS-PVM) [27]. Parallel Virtual
Machine (PVM) is a software system that supports the
message passing programming paradigm [44].
 CLUE is used for performance evaluation of message
passing programs that are developed based on PVM. The
simulation is driven by the executing the slightly modified
program, whose performance is analyzed. In order to
simulate the performance of a program with CLUE, the kind
of the header files is changed in the program source code
and the program is linked with CLUE libraries. During the
program execution PVM calls are redirected to CLUE.
CLUE simulates the performance behavior of the call, and
then passes the call to PVM. During the simulation CLUE
generates a trace of communication events, which may be
used for postmortem performance analysis.
 Workload model. The program whose performance is
analyzed acts as a workload for CLUE.
 Machine model. Machine is characterized by a set of
parameters that are stored in a configuration file. These
parameters determine the communication and computation
properties of the machine. The effects of the network
contention are not considered.
 Model development effort. The development of the
workload model is strait forward. It involves only the
modification of the program header. The development of the
machine model involves the determination of the parameters
that affect the performance of the machine.
 Model evaluation effort. One of the drawbacks of
execution driven-simulation is that the time needed for
model evaluation strongly depends on the execution time of
the real program. For instance, if the execution time of a real
world program is several weeks, then the time needed for
model evaluation is several weeks as well. Furthermore,
real-world programs may have high memory requirements.
This means that a large amount of memory may be required
for the model evaluation.
 Efficiency. We consider that the efficiency of this
approach is medium, since the model development effort is
low but the model evaluation effort is high.
 Accuracy. CLUE is validated for ScaLAPACK [4, 40]
routines such as matrix multiplication. Authors of CLUE
state that the average prediction accuracy of CLUE was 10%
(see [28]).

3.8 A8: POSE
Parallel Object-oriented Simulation Environment (POSE)
[46] is a parallel discrete event simulator [11]. POSE is used

for simulation of the performance behavior of programs that
are executed on large-scale machines such as IBM Blue
Gene [47, 19]. The Blue Gene/L [19], which is listed as
number one in the list of 500 hundred most powerful
computers in the world (TOP500 [45], November 2006),
contains 131,072 processors. A detailed simulation of such
large machines may require processing and memory
resources that are not available on a singe processor
machine. Therefore, such simulations are executed on
multiprocessor machines.
 POSE is implemented based on Charm++ [21], which is
a parallel C++ library. The simulation entities of POSE are
represented as Charm++ objects. Each object has a data
member for tracking the simulation time and a set of
methods for event handling. Based on POSE and the
Charm++ runtime environment a specific simulator that
simulates the Blue Gene/L machine was developed [47].
The rest of this section provides a discussion of properties of
the Blue-Gene/L simulator.
 Workload model. The Blue Gene/L simulator is an
execution-driven simulator. It supports the simulation of
programs that are written based on Charm++ or MPI.
 Machine model. Machine is modeled as a set of
interconnected nodes. Each node may have a set of
processors.
 Model development effort. Charm++ or MPI programs
may be used as input for the simulator. In this case the
workload modeling effort is low. However, in order to
evaluate different program versions the user has to
restructure the source of the program. This process may be
time consuming for the real-world programs. The effort for
the development of a detailed machine model that supports
execution-driven simulation is high.
 Model evaluation effort. Commonly sequential discrete
event simulators are about 10 times faster than parallel
discrete event simulators if a single-processor machine is
used for model evaluation. This is due to the
synchronization and communication overhead of parallel
discrete event simulators. If a machine with more than 10
processors is available for model evaluation, then parallel
simulators outperform sequential simulators (see [46]).
 Efficiency. We consider that the efficiency of this
approach is low, since the effort for the model development
and evaluation is high.
 Accuracy. We were unable to find a comparison of
prediction results of Blue Gene/L simulator with
measurement results on the real Blue Gene/L machine. The
prediction accuracy of this approach may be anywhere from
low to high, depending on the fidelity of the machine model.

3.9 A9: RSIM
Rice Simulator for ILP Multiprocessors (RSIM) is a
simulator of cache-coherent non-uniform memory access
(CCNUMA) shared-memory machines [39, 18]. A
distinguishing feature of RSIM is the ability to simulate
processors that use instruction-level parallelism (ILP). ILP

A Survey of the State of the Art in Performance Modeling

23

processors are capable of executing multiple instructions in
parallel.
 RSIM supports SPARC processors [42]. As input for
RSIM simulator may serve programs that are compiled and
linked (that is executables) on SPARC/Solaris systems.
During the program simulation, RSIM interprets the
executable of the program. The output of RSIM includes the
number of executed cycles, and statistics on the utilization
of components of the machine.
 RSIM comprises a detailed (that is a cycle-level)
machine model that allows the analysis of the performance
effects of architectural parameters. Therefore, it is suitable
to evaluate various designs of CC-NUMA shared-memory
machines. However, because the simulation of the program
execution with RSIM is very slow (several thousands times
slower than the program execution on the real machine), it is
not suitable for evaluation of various designs of real-world
programs.
 Work load model. The executable of the program serves
as a workload. The RSIM simulator takes as input the
programs that are compiled and linked on SPARC/Solaris
systems.
 Machine model. The main components of the machine
model include processors, the memory hierarchy (that is L1
cache, L2 cache, local and remote memory), and the
interconnection network.
 Model development effort. The development of the
workload model is strait forward. Basically, it involves
program compiling and linking. But, the effort for
development of the cycle-level machine model is high.
 Model evaluation effort. Authors of RSIM report that
several thousands times more time was needed to simulate a
program with RSIM, than to execute the program on a real
machine. For instance, for a program that performs LU
matrix decomposition the RSIM simulation was 7100 times
slower than the program execution on the real machine.
Therefore, the model evaluation effort for this approach is
high.
 Efficiency. We consider that the efficiency of this
approach is low, since the effort for the model development
and evaluation is high.
 Accuracy. The model of the computer architecture that is
used by RSIM does not match exactly the architecture of
any existing machine. This makes difficult the task of
estimation of the prediction accuracy of RSIM, since it is
not possible to compare simulation results with results that
are obtained from the real computing system.

4. Evaluation

In this section we evaluate the suitability of the approaches,
which we described in Section 3, for the model-based
performance analysis of parallel and distributed computing
systems. The time spent for the model development and
evaluation should be short, in order to explore a large set of
design alternatives within a reasonable time. The approaches

should provide performance prediction results with an
accuracy that makes possible the comparison of various
design alternatives. We evaluate the approaches based on
the following properties: (1) model development effort, (2)
model evaluation effort, (3) efficiency, and (4) accuracy.
The efficiency of an approach is deduced based on the
model development and evaluation effort.
 Table 1 shows an estimation of values of the properties
of approaches. The values of properties are obtained from
our reasoning about each approach in Section 3. Approaches
are arranged in the table in the order of their appearance in
Section 3.

Table 1: A summary of the properties of approaches for the
performance modeling and prediction of parallel and
distributed computing systems.

ID Mod. Eval. Mod. Dev. Efficiency Accuracy
A1 Low High Medium Medium
A2 Low High Medium Medium
A3 Low Medium High Medium
A4 Low High Medium Medium
A5 Medium Medium Medium Medium
A6 Medium Medium Medium Low
A7 High Low Medium Medium
A8 High High Low Medium
A9 High High Low High

 Figure 3 depicts the assessment results of approaches
based on the values of their properties (see Table 1).
 Figure 3(a) provides an assessment of approaches by
considering the model development and evaluation effort.
Approaches A8 and A9 received the grade poor; A1, A2,
A4, A5, A6 and A7 received the grade good; and A3
received the grade very good.
 Figure 3(b) provides an assessment of approaches by
considering the accuracy and efficiency. A6 and A8
received the grade sufficient; A1, A2, A4, A5, A7 and A9
received the grade good; and A3 received the grade very
good.

24 Sabri Pllana et al

Figure 3 : The assessment of approaches based on
(a) model development effort and model
evaluation effort, (b) accuracy and efficiency.

5. Conclusions

Performance is a key indicator of parallel and distributed
computing systems. Therefore, the performance evaluation
of computing systems was a preoccupation of many
computer scientists in the past. In this paper we have
systematically presented the state of the art approaches for
performance modeling and prediction of parallel and
distributed computing systems. We have discussed the
contributions and drawbacks of each approach. In what
follows we summarize some of the issues that we have
identified.
 Most of approaches for the performance modeling of
parallel and distributed programs are of limited use to
support performance-oriented software engineering because
of the following reasons: (1) the use of a notation that is not
based on widely accepted standards, and (2) the requirement
that the software engineer has a thorough understanding of
the underlying performance modeling technique. Some
approaches aim to bridge this gap between the performance
modeling and the software engineering by incorporating
UML.
 Most of approaches are able to cope only with small
programs such as matrix-vector multiplication. There are
several reasons for the lack of scalability: (1) a very
complex code analysis is used during the workload
modeling that does not scale up to the size and complexity
of the real world programs, (2) a detailed machine model is
used that is so slow that makes impractical the simulation of
real-world programs, or (3) for the model evaluation are
required very large resources (processors and memory) that
may not be available. Some approaches have addressed this
issue by using model simplification techniques, combination

of mathematical modeling with discrete event simulation,
and by using a simple machine simulation model.
 Performance models that represent the whole program
and machine as a symbolic expression lack the structural
information. Consequently, it is difficult to identify the part
of system that is responsible for the sub optimal
performance. Some approaches support the development of
performance models at various levels of abstraction. For
instance, for workload modeling are used UML activity
diagrams. An activity may represent a single instruction, or
larger blocks of the program (for instance a loop), or the
whole program. Furthermore, some approaches use discrete-
event simulation to describe the structure of system and the
interaction among its components.
 In future we plan to supplement our survey by including
other approaches for performance modeling and prediction
of parallel and distributed computing systems.

Acknowledgments

The work described in this paper was partially supported by
the Austrian Science Fund (FWF) under the project
AURORA.

Bibliography

[1] V. Adve, R. Bagrodia, J. Browne, E. Deelman, A.
Dube, E. Houstis, J. Rice, R. Sakellariou, D.
Sundaram-Stukel, P. Teller, and M. Vernon.
POEMS: End-to-End Performance Design of Large
Parallel Adaptive Computational Systems. IEEE
Transactions on Software Engineering, 26:1027–
1048, November 2000.

[2] V. Adve, R. Bagrodia, E. Deelman, T. Phan, and R.
Sakellariou. Compiler-Supported Simulation of
Highly Scalable Parallel Applications. In
Proceedings of SC99, Portland, Oregon, USA,
1999. ACM Press.

[3] R. Bagrodia, S. Docy, and A. Kahn. Parallel
Simulation of Parallel File Systems and I/O
Programs. In SC97 (SuperComputing 97), San Jose,
CA, 1997. ACM.

[4] L. Blackford, J. Choi, A. Cleary, E. Azevedo, J.
Demmel, I. Dhillon, J. Dongarra amd S.
Hammarling, G. Henry, A. Petitet, K. Stanley, D.
Walker, and R. Whaley. ScaLAPACK: A Linear
Algebra Library for Message-Passing Computers.
In The Eighth SIAM Conference on Parallel
Processing for Scientific Computing (PPSC 1997),
Minneapolis, Minnesota, USA, 1997. SIAM.

[5] D. Burger and T. Austin. The SimpleScalar Tool
Set, Version 2.0. Technical Report CS-TR-1997-
1342, Computer Sciences Department, University
of Wisconsin-Madison, 1997.

[6] L. Carrington, A. Snavely, X. Gao, and N. Wolter.
A Performance Prediction Framework for

A Survey of the State of the Art in Performance Modeling

25

Scientific Applications. In International
Conference on Computational Science (ICCS
2003), Melbourne, Australia, June 2003. Springer.

[7] dHPF Compiler. Department of Computer Science,
Rice University, http://www.cs.rice.edu/
dsystem/dhpf/.

[8] Dimemas. http://www.cepba.upc.edu/dimemas/.
[9] J. Dongarra. An Overview of High-Performance

Computing and Challenges for the Future.
http://www.netlib.org/utk/people/JackDongarra/tal
ks.htm, May 9 2006.

[10] The Earth Simulator Center.
http://www.es.jamstec.go.jp/esc/eng/.

[11] R. Fujimoto. Parallel and Distributed Simulation
Systems. John Willey, 2000.

[12] S. Girona, J. Labarta, and R. Badia. Validation of
Dimemas Communication Model for MPI
Collective Operations. In 7th European PVM/MPI,
volume 1908 of Lecture Notes in Computer
Science, Balatonf¨ured, Hungary, September 2000.
Springer-Verlag.

[13] S. Graham, M. Snir, and C. Patterson. Getting Up
to Speed: The Future of Supercomputing. The
National Academies Press, 2004.

[14] D. Grove. Performance Modelling of Message-
Passing Parallel Programs. PhD thesis,
Department of Computer Science, University of
Adelaide, Australia, 2003. PhD Thesis.

[15] D. Grove and P. Coddington. Precise MPI
Performance Measurement Using MPIBench. In
HPC Asia, pages 24–28, Gold Coast, Australia,
September 2001.

[16] D. Grove and P. Coddington. Performance
Modeling and Evaluation of High-Performance
Parallel and Distributed Systems. Performance
Evaluation, 60(1–4):165–187,May 2005.

[17] H. Hlavacs, D. Kvasnicka, and C. Ueberhuber.
CLUE - A tool for Cluster Evaluation, Distributed
and Parallel Systems. In DAPSYS 2000, pages 61–
64, Balatonfuered, Lake Balaton, Hungary,
September 2000. Kluwer Academic Publishers.

[18] C. Hughes, V. Pai, P. Ranganathan, and S. Adve.
RSIM: Simulating Shared-Memory
Multiprocessors with ILP Processors. IEEE
Computer, 35(2):40–49, February 2002.

[19] IBM Research: Blue Gene Project.
http://www.research.ibm.com/bluegene/.

[20] S. Jarvis, D. Spooner, H. Keung, J. Cao, S. Saini,
and G. Nudd. Performance Prediction and its use in
Parallel and Distributed Computing Systems. In
IEEE/ACM International Workshop on
Performance Modelling, Evaluation and
Optimization of Parallel and Distributed Systems
held as part of the 17th IEEE International Parallel
and Distributed Processing Symposium 2003
(IPDPS03), Nice, France, April 2003. IEEE
Computer Society.

[21] L. Kale and S. Krishnan. Parallel Programming
using C++, chapter Charm++: Parallel
Programming with Message-Driven Objects. MIT
Press, 1996.

[22] O. Kallenberg. Foundations of Modern Probability.
Springer-Verlag, 1997.

[23] H. Karatza. Applied System Simulation:
Methodologies and Applications, chapter
Simulation of Parallel and Distributed Systems
Scheduling, Concepts, Issues and Approaches.
Springer, 2003.

[24] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H.
Wasserman, and M. Gittings. Predictive
Performance and Scalability Modeling of a Large-
scale Application. In ACM/IEEE conference on
Supercomputing (SC 2001), Denver, CO, USA,
November 2001. ACM.

[25] D. Kerbyson, A. Hoisie, and H. Wasserman. Use of
Predictive Performance Modeling During Large-
Scale System Installation. Parallel Processing
Letters, 15(4), December 2005.

[26] D. Kvasnicka, H. Hlavacs, and C. Ueberhuber.
Simulating Parallel Program Performance with
CLUE. In International Symposium on
Performance Evaluation of Computer and
Telecommunication Systems (SPECTS), pages 140–
149, Orlando, Florida, USA, July 2001. The
Society for Modeling and Simulation International.

[27] D. Kvasnicka and C. Ueberhuber. Developing
Architecture Adaptive Algorithms Using
Simulation with MISS-PVM for Performance
Prediction. In International Conference on
Supercomputing (ICS’97), Vienna, Austria, 1997.
ACM.

[28] D. Kvasnicka and C. Ueberhuber. Simulating
Architecture Adaptive Algorithms with MISS-
PVM. AURORA TR-1997-06, University of
Vienna, VCPC, June 1997.

[29] Machine Access Pattern Signature (MAPS).
http://www.sdsc.edu/PMaC/MAPs/maps.html.

[30] MetaSim.
http://www.sdsc.edu/PMaC/MetaSim/metasim.html

[31] MPIDtrace. http://www.cepba.upc.edu/.
[32] G. Nudd, D. Kerbyson, E. Papaefstathiou, S. Perry,

J. Harper, and D. Wilcox. PACE - A Toolset for
the Performance Prediction of Parallel and
Distributed Systems. International Journal of High
Performance Computing Applications, 14(3):228–
251, 2000.

[33] Object Management Group (OMG). UML 2.0
Superstructure Specification. http://www.omg.org,
August 2005.

[34] Performance Analysis and Characterisation
Environment (PACE).
http://www.dcs.warwick.ac.uk/research/hpsg/pace/
paceintroduction.html.

26 Sabri Pllana et al

[35] S. Pllana and T. Fahringer. UML Based Modeling
of Performance Oriented Parallel and Distributed
Applications. In Proceedings of the 2002 Winter
Simulation Conference, San Diego, California,
USA, December 2002. IEEE.

[36] S. Pllana and T. Fahringer. PerformanceProphet: A
Performance Modeling and Prediction Tool for
Parallel and Distributed Programs. In The 2005
International Conference on Parallel Processing
(ICPP- 05). Performance Evaluation of Networks
for Parallel, Cluster and Grid Computing Systems.,
Oslo, Norway, June 2005. IEEE Computer Society.

[37] Performance Modeling and Characterization
(PMAC). http://www.sdsc.edu/PMaC/.

[38] Pallas MPI Benchmarks (PMB).
http://www.pallas.com/e/products/pmb/.

[39] Rice Simulator for ILP Multiprocessors (RSIM).
http://rsim.cs.uiuc.edu/rsim/.

[40] The ScaLAPACK Project.
http://www.netlib.org/scalapack/.

[41] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R.
Badia, and A. Purkayastha. A Framework for
Performance Modeling and Prediction. In The 2002
ACM/IEEE conference on Supercomputing,
Baltimore, Maryland, USA, November 2002.
ACM.\

[42] SPARC International. http://www.sparc.org/.
[43] Simulating the Planet Earth.

http://www.nec.com/global/features/index9/index.h
tml.

[44] V. Sunderam, A. Geist, J. Dongarra, and R.
Manchek. The PVM Concurrent Computing
System: Evolution, Experiences, and Trends.
Parallel Computing, 20(4):531–545, 1994.

[45] TOP500 Supercomputer Sites.
http://www.top500.org/.

[46] T.Wilmarth, G. Zheng, E. Bohm, Y.Mehta, N.
Choudhury, P. Jagadishprasad, and L. Kale.
Performance Prediction using Simulation of Large-
scale Interconnection Networks in POSE. In 2005
Workshop on Principles of Advanced and
Disctributed Simulation (PADS),Monterey,
California, June 2005. IEEE Computer Society.

[47] G. Zheng, G. Kakulapati, and L. Kale. BigSim: A
Parallel Simulator for Performance Prediction of
Extremely Large Parallel Machines. In 18th
International Parallel and Distributed Processing
Symposium (IPDPS 2004), Santa Fe, New Mexico,
USA, April 2004. IEEE Computer Society.

