
ELECTRONIC PREPRINT: The final publication is available at www.springerlink.com,
AUTONOMOUS ROBOTS, Volume 32, Number 2 (2012), 149-164, DOI: 10.1007/s10514-011-9268-6

journalname manuscript No.
(will be inserted by the editor)

Automated Synthesis of Action Selection Policies for
Unmanned Vehicles Operating in Adverse Environments

Petr Svec · Satyandra K. Gupta

Received: date / Accepted: date

Abstract We address the problem of automated action

selection policy synthesis for unmanned vehicles operating

in adverse environments. We introduce a new evolutionary
computation-based approach using which an initial version

of the policy is automatically generated and then gradually

refined by detecting and fixing its shortcomings. The syn-

thesis technique consists of the automated extraction of the
vehicle’s exception states and Genetic Programming (GP)

for automated composition and optimization of corrective

sequences of commands in the form of macro-actions to be

applied locally.

The focus is specifically on automated synthesis of a

policy for Unmanned Surface Vehicle (USV) to efficiently

block the advancement of an intruder boat toward a valu-
able target. This task requires the USV to utilize reactive

planning complemented by short-term forward planning to

generate specific maneuvers for blocking. The intruder is

human-competitive and exhibits a deceptive behavior so
that the USV cannot exploit regularity in its attacking be-

havior.

Petr Svec
Simulation Based System Design Laboratory
Department of Mechanical Engineering
University of Maryland, College Park, Maryland 20742
Tel.: 301-405-5577
E-mail: petrsvec@umd.edu

Satyandra K. Gupta
Simulation Based System Design Laboratory
Maryland Robotics Center
Department of Mechanical Engineering and Institute for Systems Re-
search
University of Maryland, College Park, Maryland 20742
Tel.: 301-405-5306
Fax.: 301-314-9477
E-mail: skgupta@umd.edu

We compared the performance of a hand-coded block-

ing policy to the performance of a policy that was automat-

ically synthesized. Our results show that the performance
of the automatically generated policy exceeds the perfor-

mance of the hand-coded policy and thus demonstrates the

feasibility of the proposed approach.

Keywords Artificial Evolution · Policy Synthesis ·

Unmanned Vehicles · Unmanned Surface Vehicle (USV)

1 Introduction

Manual development of a truly robust robotic system op-
erating in an environment with an adversary exhibiting a

deceptive behavior is a challenge. This scenario is typical

for combat mission tasks where even a single mistake in

the decision of the unmanned vehicle can have fatal conse-

quences. In such scenarios, the vehicle has to be prepared
to rapidly execute specialized maneuvers in addition to its

default strategy in specific situations as defined by its con-

trol algorithm, or action selection policy to successfully

accomplish its task. The difficulty in the development of
such a policy consists in manual handling of the vehicle’s

failure states that arise in the encountered environments.

This requires intensive repeatable testing of the overall ve-

hicle’s behavior using a large suite of different test scenar-

ios, identifying the shortcomings, and implementing vari-
ous contingency-handling behaviors (Baker et al. 2008).

In this article, we introduce a new approach for auto-

mated synthesis of an action selection policy for unmanned

vehicles operating in a continuous state-action space. This
approach can be viewed as an iterative synthesis process

during which an initial version of the policy is automati-

cally generated and then gradually improved by detecting

and fixing those shortcomings that have a high potential



2

of causing various task failures. The presented technique

belongs to the class of evolutionary methods that directly
search for the policy (Whiteson 2010), as opposed to com-

puting a value function (Sutton and Barto 1998). In con-

trast to the majority of the direct policy search methods,

our technique utilizes a dedicated local search procedure
that finds specific additional macro-actions (Theocharous

and Kaelbling 2004) (in the form of action plans or maneu-

vers) allowing the vehicle to preemptively avoid the failure

states that cause substantial decrease in the total perfor-

mance of its default policy.

The iterative detection of failure states and refinement
of the policy helped us handle the large, continuous, and in

large part fragmented (Kohl and Miikkulainen 2008) state

space of the considered reinforcement learning problem.

The fracture of the state space presents a significant chal-
lenge for standard evolutionary algorithms (Floreano and

Mattiussi 2008) to evolve a well-performing policy, since

the vehicle may be required to execute very different ac-

tions as it moves from one state to another. By explicitly

detecting the failure states, we are able to identify the sub-
spaces of the state space that possess the characteristics of

high fracture that hampers the generalization of policy ac-

tions. Once the failure states are identified using multiple

evaluation runs, they are traced back in time to find excep-
tion states from which new macro-actions can be executed.

The use of macro-actions in contrast to using primitive ac-

tions simplifies and speeds up the synthesis, as there is no

need to generate primitive actions for a greater number of

states to successfully handle the failure states. The new
action plans are readily incorporated into the policy, since

they operate over a set of locally bounded and overlapping

state space regions. The technique takes advantage of the

fact that a large proportion of the state space is not en-
countered during the actual policy execution, so that the

most critical failure states are always handled first. This is

similar to the idea of the Prioritized Sweeping technique

(Andre et al. 1998), using which the computation of the

value function is focused on important states according to
some criteria. We use Genetic Programming (GP) (Koza

2003) as a discovery component of the macro-actions to be

applied locally in the exception states. During the whole

process, no external human input on how the policy should
be synthesized is therefore needed.

The policy is internally represented as a composite of

one default high-level controller and a set of specialized ac-

tion plans. The default controller is used to control the ve-

hicle’s behavior in all states except the states for which spe-
cific macro-actions in the form of action plans are needed.

The action space of the vehicle is represented by a set of

primitive commands, each having continuous parameters.

The commands are combined, parametrized, and composed

Fig. 1: Virtual environment: Unmanned Surface Vehicle
(USV) is protecting an oil tanker by blocking the advance-

ment of an intruder boat

into a structure by the synthesis process to perform the

overall task. The inherent symbolic representation of the

policy greatly simplifies the analysis of its behavior. In ad-
dition, the symbolic representation allows integrating hu-

man knowledge and the analysis of the policy can provide

the basis for improving the code.

Our approach was tested in the context of a large project

aimed at the development of a general mission planning

system (Schwartz et al. 2009; Svec et al. 2010) for auto-
mated synthesis of action selection policies for Unmanned

Surface Vehicles (USVs) (Corfield and Young 2006; Finn

and Scheding 2010). In this paper, we specifically focus on

automated synthesis of a policy used for blocking the ad-
vancement of an intruder boat toward a valuable target

(see Fig. 1). This task requires the USV to utilize reactive

planning complemented by short-term forward planning to

generate local action plans describing specific maneuvers

for the USV. The intruder is human-competitive in the
sense that its attacking efficiency approaches the attack-

ing efficiency of deceptive strategies exhibited by human

operators. Our aim is to reach the level 3 of autonomy

as defined in (Board 2005). In this level, the unmanned
vehicle automatically executes mission-related commands

when response times are too short for operator interven-

tion.

An overview of the overall approach is shown in Fig.

2. First, we developed a physics-based meta-model using a

detailed dynamics model of the USV to be able to test the
policy in a simulation environment in real-time (Thakur

and Gupta 2011). Second, we developed a mission planning

system that contains a policy synthesis module (see Section

5). The necessary system architecture of the USV including



3

the policy and state representation is described in Section

4. In order to combine the elements of the project into a
cohesive system, we designed a USV simulation environ-

ment (Svec et al. 2010). The USV simulation environment

integrates various components of the project into a com-

plete simulation system and acts as a simulation platform
for the synthesis module. One of the components of the

simulation environment is the virtual environment (VE)

based simulator (see Fig. 1) which serves as an emulator

of the real USV environment that allows human players to

play against each other or against the computer. Finally,
we present an experimental evaluation of the approach in a

challenging simulated combat-like scenario to demonstrate

the feasibility of the proposed approach (see Section 6).

Fig. 2: Overview of the overall approach for synthesis of an

action selection policy for USVs

2 Related Work

Computational synthesis (Lipson et al. 2003) deals with
the problem of how to automatically compose and para-

metrize a set of functional building blocks into a hierarchi-

cal solution structure with the desired functionality. This is

in contrast to classical optimization, in which the number

and structure of modules and parameters being optimized
is known in advance.

Evolutionary Robotics (ER) (Floreano and Mattiussi

2008) is a methodology that uses evolutionary algorithms

to automatically synthesize controllers and body configu-
ration for autonomous robots. As opposed to the use of

standard temporal difference methods to approximate a

value function (Sutton and Barto 1998), artificial evolution

searches directly for a policy that maps states to actions.

In the literature, there are many successful applications

of evolutionary techniques to robot controller synthesis. In
many cases, the representation of the evolved controllers is

a neural network. In the domain of neuroevolution, a pop-

ular method is the Neuroevolution of Augmenting Topolo-

gies (NEAT) (Stanley and Miikkulainen 2002), which was
successfully applied to many controller synthesis problems.

The main issue with the neural network representation,

however, is the difficulty of analyzing the evolved solutions.

Besides the possibility of using methods for rules ex-

traction from the evolved neural networks (Diederich et al.
2010), controllers can also be directly synthesized in a

symbolic form. One of the techniques used to generate

symbolic controllers is Genetic Programming (GP) (Koza

2003). GP as one of the robust evolutionary techniques

has been used for automatically generating computer pro-
grams that usually have a tree structure and are gener-

ated using an algorithm similar to the traditional genetic

algorithm (GA) (Goldberg 1989). Most of the controllers

were successfully evolved for a wide variety of behaviors,
such as obstacle avoidance (Barate and Manzanera 2007;

Nehmzow 2002), wall-following (Dain 1998), line follow-

ing (Dupuis and Parizeau 2006), light seeking, robot seek-

ing (Nehmzow 2002), box pushing (Koza and Rice 1992),

vision-driven navigation (Gajda and Krawiec 2008), hom-
ing and circling (Barlow and Oh 2008), predator versus

prey strategies (Haynes and Sen 1996), co-evolution of con-

trol and bodies morphologies (Buason et al. 2005), game

playing (Jaskowski et al. 2008; Togelius et al. 2007; Do-
herty and O’Riordan 2006) or group control for survey mis-

sions (Richards et al. 2005). GP was also utilized for the

automated synthesis of human-competitive strategies for

robotic tanks run in a closed simulation area to fight other

human-designed tanks in international leagues (Shichel et al.
2005). There was also some progress on development of lim-

ited machine intelligence for classical strategic games like

backgammon or chess endgames (Sipper et al. 2007).

However, for high-level strategy problems, e.g. the keep-

away soccer (Kohl and Miikkulainen 2008), the discontin-
uous structure of the state-action space prohibits the stan-

dard evolutionary algorithms from generating good solu-

tions. The monolithicity of the evolved controllers limit

their usage for complex fractured domains (Kohl and Mi-
ikkulainen 2008), in which the best actions of the robot

can radically change as it is moving continuously from one

state to another.

In the domain of symbolic controllers, the Learning

Classifier System (LCS) (Bacardit et al. 2008, Lanzi 2008,
Urbanowicz and Moore 2009) can be considered one of the

best options to cope with the fractured state-action space

problem in robot learning. LCS represents a comprehen-

sive class of evolutionary systems that solve reinforcement



4

learning problems by evolving a set of classifiers or rules re-

sponsible for handling different local parts of input spaces
of the problems. In LCS, the genetic algorithm searches

for an adequate decomposition of the problem into a set

of sub-problems by evolving classifier conditions. This is

similar to our approach; however, we explicitly decompose
the problem by iteratively detecting states in which the

robot exhibits deficiencies in fulfilling its task. We then

find new states from which synthesized action plans can

be executed to avoid the failure states. We use GP as a

discovery component for the action part of the classifiers.

In the neuroevolution domain, there are examples of

methods used for synthesizing different behaviors for differ-

ent circumstances (so-called multi-modal behaviors (Schrum

and Miikkulainen 2009)) arising in continuous state-action

spaces. However, it is difficult to learn such behaviors re-
liably and without extensive human intervention, e.g. as

is necessary in the case of the layered evolution combined

with the subsumption architecture (van Hoorn et al. 2009).

Moreover, the number of behaviors to evolve is usually de-
termined in advance by a human designer. In most applica-

tions, the behaviors are learned and the control mechanism

is hand-coded, or the control mechanism is learned and the

behaviors are hand-coded. In some cases, both behaviors

and the control mechanism are learned, but separately and
with extensive human help.

Recently, neuroevolutionary methods have been devel-

oped that discover multi-modal behaviors automatically

and do not depend on knowledge of the task hierarchy.

For example, a special mutation operator was proposed in
(Schrum and Miikkulainen 2009) for evolving special out-

put nodes that control the mode of the behavior. However,

the potential number of modes needed to be evolved can

be very high for some tasks. Another work (Kohl and Mi-
ikkulainen 2008) extends NEAT to use radial basis func-

tion (RBF) (Buhmann 2001) nodes to evolve controllers

with better performance for complex problems. The above

mentioned neuroevolutionary approaches make localized

changes to the policy by directly modifying the structure
of a neural network. In our case, we (1) represent the policy

as a decision tree, and (2) indirectly modify the policy by

evolving additional components that are activated in ex-

plicitly detected sub-regions of the state space, as opposed
to directly modifying the structure of the tree by the use

of special mutation operators or nodes.

In summary, our work is related to the above mentioned

approaches by making localized changes to the policy us-

ing evolutionary search. However, in contrast to LCS or
evolution of multi-modal behaviors in the domain of neu-

roevolution, we have developed a dedicated technique for

incrementally finding and repairing functional shortcom-

ings in the policy. Using this technique, we can identify

critical subspaces of the state space in which the vehicle

exhibits large deficiencies in fulfilling its task. We employ
GP for evolution of the policy components represented as

macro-actions to avoid the failure states from a special set

of exception states. This allows us to overcome the inherent

fracture and magnitude of the state space of the presented
reinforcement learning problem.

3 Problem Formulation

We are interested in synthesizing action selection policies

suitable for solving sequential decision tasks that have highly

fragmented state spaces (Kohl and Miikkulainen 2008) and

require high reactivity in planning. The policies should
thus allow the unmanned vehicles to quickly respond to

the current state of the environment without any long-term

reasoning about what actions to execute. In addition, the

policies need to be represented symbolically in order to
simplify their audit.

The task for the synthesis is to find a policy π : S → A

that maps macro-actions A (also known as temporally ex-

tended actions that last for one or more time steps N)

(Sammut and Webb 2011) to states S, such that the ex-
pected total discounted reward r for the task is maximized.

The total reward r is computed as cumulative reward by

taking into account rewards rst,at
of individual macro-

actions at ∈ A taken from states st ∈ S. The policy π
consists of one default policy πD and a set {πi}

n
i=1

of n

additional specialized policy components πi : Si → A that

map macro-actions A to a specific set of overlapping re-

gions Π = {S1, S2, ..., Sn} of the state space S.

We define a failure state sF ∈ S as a state in which the
vehicle acquires a large negative reward due to violation

of one or more hard Ch or soft Cs task constraints dur-

ing the execution of a given task. The violation of even a

single hard task constraint ch ∈ Ch (e.g., hitting an obsta-
cle) guarantees that the vehicle will not be able to recover

from its failure, and thus will not successfully finish its

task. On the other hand, the violation of a soft task con-

straint Cs (e.g., losing a chance to block the intruder for

a small amount of time) also results in a negative reward
but does not terminate the task execution, since the vehicle

can compensate for this type of task constraint violation

in further planning. In both cases, the vehicle can avoid

the violation of the constraints by executing appropriate
pre-emptive macro-actions A from a special set of repre-

sentative exception states SE,REP ⊂ S.

More formally, there exist m sequences

P = {pi|pi = (si,1, ai,1, si,2, ai,2, . . . si,l−1, ai,l−1, sF,i,l)}

of states and atomic actions (as special cases of macro-

actions with the length of one time step) representing tran-



5

sition paths in the state-action space that gradually attract

the vehicle to failure states

SF = {sF,1, sF,2, . . . , sF,m} ⊂ S

if no additional macro-actions A are executed. We define

a state of exception sE,i for a path pi as the most suitable
state from which a corrective macro-action ac ∈ A can be

executed to deviate pi from that state towards the states

that result in the highest achievable expected reward. The

state of exception sE,i can be found by searching in re-
verse from its corresponding failure state sF,i in pi, which

is equivalent to going back in time. Further, we define SE as

a set of exception states for all paths P leading to failures,

and SE,REP as a representative set of close-by exception

states from which the greatest number of failure states can
be avoided.

The above formulation presented a general policy syn-

thesis problem. Now, we will define a special case for the
blocking task. In this case, the task is to automatically

synthesize an action selection policy πU : S → AU for a

USV to block the advancement of an intruder boat toward

a particular target. The policy πU should maximize the ex-

pected total reward r expressed as the maximum pure time
delay the USV can impose on the intruder. The intruder

executes a policy πI : S → AI that exhibits a deceptive

attacking behavior. This prevents the USV from exploit-

ing regularity in the intruder’s actions. For this task, the
USV needs to utilize reactive planning to be able to imme-

diately respond to the current pose of the intruder boat by

executing appropriate blocking maneuvers. The blocking

maneuvers implement macro-actions AU as defined by our

framework. In this particular case, we define a failure state
sF as a state in which the intruder is closer to the target

than the USV. The defined failure state thus covers both

the soft and hard task constraints violations.

4 USV System Architecture

The developed policy synthesis approach is closely coupled
to the underlying system architecture of the USV. This

architecture consists of several modules that are responsi-

ble for different tasks, e.g. sensing, localization, navigation,

planning, behavior control, communication, human inter-

action, or monitoring (Corfield and Young 2006; Finn and
Scheding 2010).

The USV utilizes a reactive controller with short-term

forward planning for quick execution of maneuvers to be
able to immediately respond to the state of the environ-

ment. This is in contrast to using a purely planning con-

troller that deliberates about what sequence of actions to

execute. The reasoning process of this type of controller

would consume considerable amount of time since the plan-

ner would need to compute a number of candidate se-
quences of actions, evaluate each of them, and choose the

one with the highest utility. In this work, we use the term

short-term forward planning to emphasize the fact that

the vehicle’s action selection policy produces a sequence
of time-varying actions (i.e., in the form of macro-actions)

without any deliberation (as it is in the case of the purely

planning controller), as opposed to directly executing indi-

vidual primitive actions in each vehicle’s state. This speeds

up and simplifies the policy synthesis (see Section 5) since
there is no need to repeatedly generate multiple primi-

tive actions for a single representative exception state to

successfully handle the corresponding failure state. The

macro-actions cover a larger subset of the state-action space
and thus simplify and increase the speed of the policy syn-

thesis process.

The high simulation speed of the USV’s dynamics model

is critical for policy synthesis and therefore we use its sim-

plified version with 3 degrees of freedom. This simplified
model has been adapted from the full-blown 6 degrees of

freedom USV dynamics model as described in (Thakur and

Gupta 2011). The full-blown model considers ocean distur-

bances and is used for high-fidelity physics-based real-time
simulations inside the virtual environment.

4.1 Virtual Sensor Models

The planning system needs to utilize only relevant key sen-

sory information abstracted from the raw sensor data. This

information is represented as a vector of features of differ-

ent types (e.g., numerical or boolean) required for a suc-
cessful fulfillment of the mission task. The values of the

features are computed by a predefined set of virtual sensors

(LaValle 2009) that process raw sensory data. The features

can have one or more parameters using which their values

are computed (e.g., features of the boolean type).

The planning system uses virtual visibility, relational,

and velocity sensors. The virtual visibility sensor is a de-

tection sensor with cone-shaped detection regions (see Fig.

3a). The size of the overall sensor area is defined by its
reach and range parameters. Each region returns a boolean

value expressing the presence of other objects and a nor-

malized distance to the closest object. The relational vir-

tual sensor provides relevant information on how other ob-
jects are situated with respect to the USV or to each other.

It computes boolean values to be stored as values of the

relational features. The velocity virtual sensor returns the

velocities of other objects inside the environment.



6

Fig. 3: (a) USV visibility sensor model, (b) USV’s state in
respect to the intruder and target

4.2 Planning Architecture

4.2.1 USV State Definition

The full state of the USV (see Fig. 3b) is represented by

an 8-dimensional vector s = [α1, α2, φU , φI , v1, v2, γ, d] of

state variables that encode attributes of the environment

for the task. The angle α1 represents the angle between
the USV’s heading and the direction to the target, α2 is

the angle between the intruder’s heading and the direction

to the target, φU is the USV’s steering angle, φI is the

intruder’s steering angle, v1 is the USV’s translational ve-

locity, v2 is the intruder’s translational velocity, γ is the
angle between the USV’s heading and the direction to the

intruder, and d is the distance between the USV and the

intruder.

4.2.2 Policy Representation

The policy πU allows the USV to make a decision from a set
of allowable actions based on the observed world state. The

default policy πD is represented as a high-level controller

(see Fig. 4b left). This controller is made by a decision tree

that consists of high-level parametrized navigation com-

mands NC, conditional variables CV, standard boolean
values and operators BVO, program blocks PB, and sys-

tem commands SC (see Tab. 1). The leaves of the decision

tree can be conditional variables, boolean values, naviga-

tion commands, or system commands. The inner nodes can
be boolean operators or program blocks.

The additional policy components are represented as

action plans that are sequences of parametrized naviga-
tion NC and system SC commands, and can be grouped

into program blocks PB. The action plans are internally

represented as trees so that the same synthesis mechanism

used for generating the default controller can also be used

NC go-intruder-front (front-left, front-right, left, right)
turn-left (right)
go-straight

CV intruder-on-the-left (right, front, front-left, front-right,
at-the-back, at-the-back-left, at-the-back-right)
intruder-has-target-on-the-left (right)
usv-has-target-on-the-left (right)
usv-intruder-distance-le-than
usv-closer-to-target-than-intruder
usv-facing-intruder

BVO if, true, false, and, or, not

PB seq2, seq3

SC usv-sensor, usv-velocity, usv-match-intruder-velocity

Table 1: Policy primitives

for generating the plans. The leaves of the tree can be nav-
igation or system commands.

The navigation and system commands have parame-

ters, for example, the positional navigation commands (e.g.,
go-intruder-front) are defined using five parameters, where

the first two parameters represent the USV’s relative goal

position (in polar coordinates) around the intruder. This

effectively allows the vehicle to cover all feasible positions,

as defined by its policy in a certain area around the in-
truder. The next two parameters represent a cone-shaped

blocking area around the relative goal position. Once the

vehicle gets inside the blocking area, it starts slowing down

to limit the intruder’s movement. The last parameter rep-
resents the length of the command execution. The turning

left/right action commands have two parameters that rep-

resent the desired steering angle and the length of the com-

mand execution. The translational velocity of the vehicle

is explicitly controlled by the velocity commands, where
the usv-velocity command sets an absolute velocity given

as a parameter, whereas the command usv-match-intruder-

velocity sets a velocity given as a parameter relatively to

the current velocity of the intruder. The usv-sensor system
command changes the parameters of the virtual visibility

sensor and thus allows it to explicitly control the risk level

of the obstacle avoidance behavior (see Section 4.2.5 for

further details).

4.2.3 Policy Execution

During the mission, the USV periodically senses its sur-
roundings and classifies its current state with respect to

the intruder and the target. The classification mechanism

of the policy executor decides whether the current state is

close enough to one of the states for which a corresponding
action plan exists. If such a plan exists, the policy executor

directly executes the plan, otherwise it executes the default

controller to generate a new sequence of actions. The de-

cision whether to execute a specific plan depends on the



7

(a) Overall policy that consists of one default controller and a set of

action plans. The product of the execution is a sequence of action
commands (bottom)

(b) Example of a default controller (left) and an action plan (right)

Fig. 4: Policy representation

activation distance parameter δ. This parameter defines

the minimal distance that has to be achieved between the

current USV’s state and any state in the predefined set
to activate a specific plan. The state space S = S1 ∪ S2

is thus divided into two regions where in the first region

S1 the USV generates and executes plans using the default

controller, whereas in the other region S2 the USV directly

executes previously generated or manually defined plans.
The distance between normalized states is computed using

the standard Euclidean distance metric.

The input into the policy is data from the virtual sen-

sors that compute the values of all conditional variables.
So, for example, the boolean value of the intruder-on-the-

left variable is directly provided by the virtual relation sen-

sor while the value of the intruder-velocity-le-than parametrized

variable is provided by the virtual velocity sensor.

4.2.4 Planning and Control Architecture

By acquiring and processing sensor data in short-term cy-
cles, and planning, the planning and control system (see

Fig. 5) determines an action command to be executed to

direct the vehicle inside the environment. The policy ex-

ecutor of the system takes as inputs sensor data, mission

parameters, the USV meta model, and the action selection

policy. It decides which component of the policy to execute
to generate an action plan based on the current state of the

vehicle. The plan consists of a number of action commands,

each being executed for a certain amount of time. The ul-

timate output of an activated command is a sequence of
motion goals G = {g1, . . . , gn}, gi = [x, y, θ, v, t], where

[x, y, θ] is the desired pose of the vehicle, v is the velocity,

and t is the time of arrival. The motion goals are directly

processed by the trajectory planner. The computed trajec-

tories are consequently executed by a low-level controller to
generate corresponding motor commands for device drivers

of a particular actuator.

The planning and control architecture consists of plan-

ning, behavior, trajectory planning, and low-level control

layers (see Fig. 5). The planning layer is responsible for
interpreting the stored policy, which results in a number of

commands queued for execution. The command processor

inputs a command from the queue and either activates a

corresponding behavior that interprets the command (e.g.,
in case of navigation commands), or modifies the proper-

ties of the trajectory planner (e.g., in case of system com-

mands) in order to change the velocity or sensitivity of

the obstacle avoidance mechanism of the vehicle. The com-

mands are usually planned for short-term execution, such
as planning of strategic maneuvers. The length of the ex-

ecution is defined as a parameter of the command. The

policy executor remains inactive until all the commands

from the queue are processed, in which case the command
processor requests new commands from the policy execu-

tor.

Each navigation command corresponds to the behav-

ior selected by the behavior selector in the behavior layer.

The behaviors produce sequences of motion goals when
executed by the behavior executor. In the current archi-

tecture, the behaviors are turn-left/right, go-straight, and

go-to-intruder. The trajectory planner receives a motion

goal from the behavior executor and computes a feasible

trajectory for the vehicle to reach the pose defined by the
motion goal with a predefined velocity and within the given

time.

The behavior executor is also responsible for monitor-

ing execution of the trajectory and handling exceptions. An
exception occurs if the vehicle loses its chance to success-

fully reach the motion goal as defined by the corresponding

behavior. In that case, the command queue is emptied and

new commands are supplied by executing the policy.

By default, the behaviors always choose a translational
velocity that maximizes the USV’s performance. So for

example, the go-straight behavior uses maximum transla-

tional velocity to get to the requested position in the short-

est amount of time. The policy can override this velocity



8

Fig. 5: USV planning and control architecture

by calling the usv-velocity or usv-match-intruder-velocity

system commands.

4.2.5 Obstacle Avoidance

The action plans executed by the behavior layer (that pro-

duces motion goals) and trajectory planning (that pro-
cesses the motion goals) can be always overridden by the

underlying reactive OA mechanism. The planning layer,

however, can explicitly control the balance between a safe

and risky avoidance behavior of the boat by modifying the
parameters of the OA mechanism. These parameters par-

ticularly define how much steering should be applied in a

close vicinity to an obstacle positioned at a certain distance

and angle, and what should be the velocity of the vehicle

in that situation. Hence, for our mission task, the resulting
OA mechanism can be quite different with different param-

eters essentially controlling the vehicle’s safe distance from

the adversary and blocking efficiency at the same time. In-

sufficient avoidance steering can lead to collisions. On the
other hand, too much steering will veer the vehicle away

from the adversary, leading to ineffective blocking.

The reactive OA component of the trajectory planner

uses the virtual visibility sensor (see Fig. 3a) in order to

identify the locations of detectable obstacles. It directly
produces the desired translational velocity vd and steering

angle sa,d to safely steer the vehicle away from the closest

identified obstacles. The desired steering angle increases

with the proximity to the obstacles while the translational
velocity decreases. The desired steering angle is computed

as sa,d = ksa,max, where sa,max is the maximum allow-

able steering angle for a particular steering direction and

k is a scaling factor. The scaling factor is computed as

k = 1− (d/sr,max), where d is the minimum distance to an

obstacle in a particular visibility region around the USV
and sr,max is the maximum reach of the virtual visibility

sensor. The sensitivity of the OA mechanism can thus be

indirectly modified by changing the reach and range pa-

rameters of the visibility sensor. In this way, the USV can
get closer to obstacles than it would otherwise be possible

and thus effectively define a balance between safe and ag-

gressive maneuvering. The command used for setting the

reach and range parameters of the virtual visibility sensor

cones is the usv-sensor. The reach and range parameters
can be modified by the synthesis process as described in

Section 5.2.

5 Approach

In this section, we describe our approach to policy synthe-

sis, which belongs to the class of evolutionary techniques

(Whiteson 2010) that directly search for the policy in con-

trast to computing a value function (Sutton and Barto
1998). In addition to the evolution of a default policy, the

presented iterative technique utilizes a specific local evo-

lutionary search that finds additional macro-actions using

which the vehicle can avoid frequent task execution fail-

ures.

The overall process is completely automated and starts
by the synthesis of a default version of the policy πD (see

Fig. 6). The policy is then gradually refined by detecting

failure states in which the vehicle has a high probability

of failing in its task, and generating new pre-emptive ac-
tion plans incorporated into this policy to avoid the failure

states in future planning.

The synthesis technique exploits the fact that a large

proportion of the state space is not frequently encountered

during the actual policy execution. This observation to-

gether with the use of the default policy makes it pos-
sible to partially handle the combinatorial state explosion

(Floreano and Mattiussi 2008) by evolving locally bounded

optimal actions for only specific subsets of the continuous

state space. This is further supported by generating macro-

actions of variable size (defined by the number of com-
mands and their execution time) in contrast to generating

primitive actions, which would require identification of a

substantial greater number of exception states to success-

fully handle the detected failure states. Hence, this results
in faster synthesis as there is no need to generate primitive

actions for every single state to handle the failure states.

The actual algorithm iteratively computes a station-

ary policy πU : S → AU that attempts to maximize the

expected accumulated reward. The main steps of the al-



9

Fig. 6: Policy synthesis overview

gorithm are as follows (for a diagram depicting the whole

process see Fig. 6):

1. Employ GP to evolve an initial version πD of the policy

πU . The initial version may consists of a hand-coded
portion to speed up the synthesis process.

2. Evaluate πU inside the simulator using m distinct eval-

uation test cases T . The evaluation returns a set of

failure states SF = {sF,1, sF,2..., sF,n}, n ≤ m in which
the vehicle fails its mission task. Each test case t ∈ T

defines the initial states of the vehicles and determines

the maximum number of time steps N for evaluation

of the policy.

3. Given SF , find a corresponding set of exception states
SE = {sE,1, sE,2..., sE,n} in whose proximity (given by

the activation distance parameter δ) the vehicle has the

potential to avoid the failure states SF if it executes

appropriate action plans.
4. Extract a representative set of exception states

SE,REP ⊆ SE , as described in detail in Section 5.1, in

which the vehicle has the potential to avoid the largest

number of the detected failure states. In this way, the

focus is always restricted to the most critical failure
states first while leaving the rest for possible later pro-

cessing.

5. Generate a set of local test cases Ti to be used dur-

ing the evolution of a new action plan πi as described
in the next step. Each test case t ∈ Ti encapsulates a

corresponding exception state and determines the max-

imum number of time steps Ni ≤ N for evaluation of

the plan.

6. Employ GP to evolve a new action plan πi : Si → A for

the representative set of exception states SE,REP . This
prevents the over-specialization of the plan by evaluat-

ing its performance using a sample of states from this

set (presented as the test cases in Ti).

7. Optimize the new plan πi and integrate it into the pol-
icy πU . If the termination condition is not satisfied,

continue to step 2. The distance between the normal-

ized states is computed using the Euclidean distance

metric.

5.1 Extraction of a representative set of exception states

A diagram that describes the extraction process of repre-
sentative exception states is shown in Fig. 7. First, the al-

gorithm finds corresponding exception states SE for given

failure states SF by reverting back in time for a predefined

number of time steps Nτ .

Second, given SE , the algorithm iterates over all ex-

ception states sE ∈ SE and for each of them finds its
neighboring states SE,δ within the activation distance δ.

Then, for sE and the states from its immediate neigh-

borhood SE,δ, the algorithm finds corresponding failure

states SF,E together with all their neighbors SF,E,δ within
the distance δ. The algorithm terminates by returning the

representative set of exception states SE,REP that is as-

sociated with the largest number of corresponding failure

states SF,E ∪ SF,E,δ. The set SE,REP consists of a repre-

sentative exception state sE,REP and its immediate neigh-
boring states SE,REP,δ within the distance δ.

Fig. 8 shows an example of a detected representative set

of exception states SE,REP (marked by the indicated set

of circles) and their corresponding failure states (marked

as crosses) connected by relational links. The states are
projected to 2D plane by multidimensional scaling that

uses the Kruskal’s normalized stress criterion (Cox and Cox

2008).

In the context of our mission task, a failure state sF
defines a situation in which the intruder is closer to the

target than the USV. Its corresponding exception state sE
is found by reverting back in time for a predefined num-

ber of time steps Nτ to record a state from which a new

specific action plan can be executed to prevent a possi-

ble future failure. The simple way of determining sE can
be further improved by developing a special task-related

heuristic that precisely determines a state from which the

vehicle will have the highest chance of successfully avoiding

the largest number of possible failure states.



10

Fig. 7: Extraction of a representative set of exception states

SE,REP

Fig. 8: Representative set of exception states. The failure

states (marked as crosses) and exception states (marked

as circles) are projected to 2D plane using multidimen-
sional scaling with the Kruskal’s normalized stress crite-

rion. The links between each pair of states express the

failure-exception state bindings.

5.2 Evolution

The evolution searches through the space of possible plan

configurations to find the best possible action plan for a

particular state. Both the default policy πD (represented as

a controller) and specialized action plans {πi}
n
i=1

as com-

ponents of the policy are automatically generated using
separate evolutionary processes. The specific evolutionary

method we used is the strongly-typed Genetic Program-

ming imposing type constraints on the generated Lisp trees

(Poli et al. 2008). This is a robust stochastic optimization
method that searches a large space of candidate program

trees while looking for the one with the best performance

(so-called the fitness value).

The evolutionary process starts by randomly generating

an initial population of individuals represented as GP trees

using the Ramped half-and-half method (Poli et al. 2008).

The initial values of parameters of all action commands
and conditionals are either seeded or randomly generated.

The default controller πD of the policy πU is generated us-

ing a human-written template for which GP supplies basic

blocking logic. The first portion of the template encodes

a maneuver using which the vehicle effectively approaches
the intruder at the beginning of the run, as there is no need

for it to be explicitly evolved.

The terminal and function sets T and F consist of ac-
tion commands, system commands, conditional variables,

boolean values and operators, and program blocks as de-

fined in section 4.2.2. The sets are defined as

Tdefault−controller = Tplan =NC ∪ SC

Fdefault−controller =CV ∪ BVO ∪ PB ;Fplan =PB

Within the population, each individual has a different struc-

ture responsible for different ways of responding to its envi-
ronment. The individual plans are evaluated in the context

of the whole policy inside the simulator. The sensory-motor

coupling of the individual influences the vehicle’s behavior,

resulting in a specific fitness value that represents how well
the USV blocks the intruder.

We favor individuals which can rapidly establish basic

blocking capabilities and optimize them to push the in-
truder away from the target over the entire trial duration.

To do so, the fitness f is defined as the sum of normalized

squared distances of the USV from the target over all time

steps. If a collision occurs, either caused by the USV or
the intruder, the zero fitness value is assigned to the in-

dividual, and the selection pressure eliminates the policy

component with low-safety guarantee. The fitness function

is as follows:



11

f =
1

N

N
∑

t=1

(

di
d0

)2

(1)

where N is the total number of time steps, di is the

distance of the intruder from the target at time step t, and

d0 is the initial distance of the intruder from the target
in a particular test scenario. The total fitness value of the

individual is maximized and computed as an average of the

fitness values resulting from all scenarios.

The default controller πD is evaluated using a hand-
coded human-competitive intruder in 8 different scenarios.

In each scenario, the intruder has a different initial orien-

tation, and the USV always starts from an initial position

closer to the target. The evaluation lasts for a maximum

number of time steps equal to 300 seconds in real time.
The maximum speed of the USV is set to be 10% higher

than the speed of the intruder, but other properties of the

vehicles are the same. The action plan is evaluated using

a sample of states from SE,REP found within the activa-
tion distance δ of its corresponding sE,REP . The evaluation

lasts for a maximum number of time steps equal to 10 sec-

onds in real time.

The individuals in the initial population mostly exhibit

a random behavior. By selecting and further refining the
individuals with high fitness, their quality gradually im-

proves in subsequent generations. During this process, the

individuals are randomly recombined, mutated, or directly

propagated to the next generation. These operations are
applied with the predefined probabilities (see Table 2). The

following evolutionary operators are used:

1. Reproduction – copies one individual directly to the

next generation without any modification. We use a

strong elitism to propagate the best individual directly
into the next generation. This makes sure that the best

individual is not lost during the evolutionary process

as a consequence of recombination.

2. Mutation – we use three types of mutation operators:
structural mutation of a randomly selected sub-tree,

preventing bloat (Poli et al. 2008) by shrinking a ran-

domly chosen sub-tree to a single node, and Gaussian

mutation of chosen parameters.

3. Crossover – randomly selects sub-trees from two input
trees and swaps them.

During the policy synthesis, the USV learns the balance

between safe and dangerous maneuvering by mutating the

reach and range parameters of its virtual visibility sensor.
The policy is thus co-evolved with the sensor parameters of

the vehicle to control the obstacle avoidance mechanism.

The optimization of the generated default controller

πD removes all branches of the code that have not been

Population size / 500 / 100 (controller)
number of generations 50 / 30 (plan)

Tournament size 2

Elite set size 1

Min. and max. initial 3 and 6 (controller)
GP tree depth 2 and 4 (plan)

Maximum 30 (controller)
GP tree depth 10 (plan)

Reproduction prob. 0.1

Crossover prob. 0.84

Structure mutation prob. 0.05

Shrink structure mutation
prob.

0.01

Mutation prob. of parame-
ters of action commands

0.5

Table 2: GP parameters

executed during evaluation scenarios. Moreover, each gen-
erated action plan πi is truncated to contain only the ac-

tion commands that do not exceed the maximum execution

time of the plan.

A detailed description of the functionality of all the

operators used can be found in (Koza 2003). The control
parameters of the evolutionary process used for evolution

of the default controller and plans are summarized in Table

2.

6 Computational Experiments

6.1 General Setup

We tested the developed approach in the context of a com-

bat mission task during which the USV protects a valuable

target against an intruder boat. In this task, the intruder

boat has to reach the target as quickly as possible while

the USV has to block and delay the intruder for as long a
time as possible. We set up an experiment to compare the

performance of the automatically generated USV’s policy

to the USV’s policy coded by hand. We compare the per-

formance in terms of pure time delay imposed by the USV
on the intruder. To get a fair assessment of the USV perfor-

mance, the time values being compared must be normal-

ized by a 40-second baseline. This baseline represents the

amount of time needed to reach the target if the intruder is

completely unobstructed. Any additional time above this
baseline thus represents the effective delay time of the in-

truder when being blocked by the USV.

The policy of the USV is evaluated in 800 runs to ac-

count for the intruder’s nondeterministic behavior. Each
evaluation run lasts for a maximum number of time steps

equal to 300 seconds in real time. The dimension of the

scene is 800× 800 m with the target positioned in the cen-

ter. At the beginning of each run, the USV and the intruder



12

are oriented toward each other with a random deviation of

up to 10 degrees and the USV is positioned on a straight
line between the intruder and the target. The initial dis-

tance of the USV from the target is approximately 240 m

while the intruder’s initial distance is 360 m. The USV’s

maximum velocity is 10 m/s while the intruder’s maximum
velocity is 9 m/s.

6.2 Experimental Protocol

First, we manually implemented an initial version of the in-

truder’s attacking policy and tested it against human play-
ers to evaluate its performance in the virtual environment.

The policy was further improved in multiple iterations over

a period of 6 weeks. Its overall size reached 485 lines of Lisp

code. The outline of the policy functionality is described in
the next section. We evaluated the performance of the pol-

icy by pitting human players against it playing as USVs.

The human players achieved 90 seconds of pure time delay

on average imposed on the intruder. This shows that the

intruder’s attacking policy is quite sophisticated as it ex-
hibits a deceptive behavior. If the intruder’s behavior was

not deceptive, the human players would have been able to

quickly find a motion pattern in the behavior that could

be exploited for “indefinite” blocking, and thus not useful
for the synthesis.

Second, we implemented the USV’s blocking policy against

the hand-coded intruder. The policy was improved itera-

tively over a period of 3 weeks. Its overall size reached 500
lines of Lisp code. The main difficulty when implement-

ing the policy by hand was the manual identification of

the most critical cases (or exceptions) in which the policy

had a low performance. This is generally non-trivial and

requires substantial human effort.

Third, we used the mission planning system to auto-

matically generate the USV’s blocking policy using the

hand-coded intruder as the competitor. The activation dis-
tance parameter δ was set to 0.2 for all action plans. In the

current version of the approach, a failure state is deter-

mined to be the state in which the intruder is closer to the

target than the USV. An exception state is computed by

going back in time for 150 time steps from a given failure
state.

Finally, we compared the performance of the automat-

ically synthesized USV’s policy to the hand-coded one.

6.3 Intruder’s Policy

The design of the intruder’s attacking policy was a crucial

step during the initial stages of the experimental setup.

The level of aggressiveness of the intruder’s attacking be-

havior is defined such that the intruder presents a high
challenge for human players playing as USVs but at the

same time executes relatively safe obstacle avoidance.

The evaluation scenario is nondeterministic, i.e., the in-

truder may execute different actions in the same state that
may lead to different outcomes. The nondeterminism of ac-

tions the intruder can execute thus allows it to repeatedly

deceive the USV during the combat so that the USV is not

able to find a motion pattern in the intruder’s behavior

that can be easily exploited for blocking (as would be the
case of deterministic intruder’s policy).

The nondeterminism of the intruder’s behavior poses

a great challenge to the synthesis of local USV policies

since the same policies may acquire different fitness values

when evaluated in the same test scenario. Thus, for the
purpose of fair evaluation, we use one specific type of the

intruder’s policy for computing the fitness values of all USV

individuals (represented as local policies) from one specific

population. The behavior expressed by the intruder is in-
fluenced by a set of randomized action commands that are

parts of its policy. The randomized commands take a ran-

dom number as one of their inputs, based on which they

produce an action. The random number is generated by a

random number generator that is initiated by an explicitly
provided random seed. The random seed thus indirectly de-

fines a particular type of the intruder’s policy and is kept

the same during evaluation of individuals within the same

population.

The hand-coded intruder’s policy is represented as a

single decision tree that contains standard action com-

mands as well as their randomized versions. The intruder’s

policy is divided into five main sections. Each of these sec-

tions handles a different group of situations that can arise
during the combat. The first section handles situations in

which the distance of the intruder from the target is greater

than 130 m and the angle between its translation direction

and the target is more than 80 degrees. In these situations,
the intruder attempts to rapidly change its direction of

movement toward the target by aggressively turning left

or right, depending on the relative position of the USV.

The second section handles situations in which the USV

is very close to the intruder, positioned relatively to its
front left, and the target is on the intruder’s left side (see

Fig. 9a left). In this case, the intruder has two options.

Either it executes a random turn with probability 0.9 or it

proceeds with a complete turn. In both cases, the intruder
can slow down rapidly with probability 0.3 to further con-

fuse the adversary. This section also handles a symmetric

type of situations when the USV is on the front right of

the intruder and the target is on the right.



13

The logic of the third section is very similar to the logic

of the second section with the exception that it handles
the situations when the USV is directly on the left or right

side of the intruder (see Fig. 9a right). In these cases, the

intruder deceives the USV by randomly slowing down to

get an advantageous position, proceeding with a complete
turn, or executing a partial turn. The probability of the

complete turn is 0.1 and the probability of slowing down

is 0.2.

The fourth section deals with situations in which the

intruder is positioned behind the USV inside the rear grey

area as shown in Fig. 9b left. The greater distance of the
intruder from the USV gives it opportunity to exploit the

USV’s tendency to overshoot a little in the process of block-

ing. In this case, if the USV has high velocity, the intruder

slows down and turns toward the stern of the blocking

USV, passing the USV from behind. Otherwise, the in-
truder randomly turns with probability 0.7 or it proceeds

with a complete turn (see Fig. 9b right). Again, the in-

truder can rapidly slow down with probability 0.3.

Finally, if the intruder is not in close proximity to the

USV, it computes the best sequence of actions in order to

get to the target as quickly as possible.

The intruder’s policy modifies the reach and range pa-
rameters of its virtual visibility sensor to indirectly con-

trol the balance between a safe and aggressive obstacle

avoidance mechanism. For example, if the intruder wants

to make an aggressive turn in close proximity to the USV,
it has to take risk by decreasing the reach of the sensor to

be able to quickly proceed with the turn. In this case, the

sensitivity of the obstacle avoidance behavior is reduced

for a short period of time so that the intruder can easily

pass the USV from behind. If the intruder always aimed to
safely avoid the adversary, it would not get any chance to

get to the target, especially if it competes against a human

player.

6.4 Results and Discussion

The experimental run that generated the blocking policy

with the highest performance is shown in Fig. 10. The hor-

izontal axis of the graph shows different versions of the pol-

icy consisting of a gradually increasing number of action
plans. The vertical axis shows the blocking performance in

terms of the intruder’s pure time delay for each version of

the USV’s policy. The best performance is reached by ver-

sion 249 of the policy and amounts to 65 seconds of pure
time delay on average and a median of 53 seconds. This

can be compared to the pure time delay of 53 seconds on

average and a median of 46 seconds imposed by the hand-

coded USV on the same intruder. This result thus shows

(a)

(b)

Fig. 9: Representative portions of intruder’s policy

that the best performance of the automatically generated

policy exceeds the blocking performance of the hand-coded

policy.

The automated generation of the policy took approx-

imately 1 day to generate the default controller and ap-
proximately 23 days on average to generate action plans

for 300 automatically defined exception states on a ma-

chine with configuration Intel(R) Core(TM)2 Quad CPU,

2.83 GHz. From the set of 10 experimental runs, only 2
were able to find a policy with similar performance to the

best one. The remaining 8 runs prematurely stagnated due

to over-specialization of some of the evolved action plans

and imprecise extraction of exception states. Even a single

defective action plan synthesized for one of the key situ-
ations can significantly influence the performance of the

whole policy. This shows that the synthesis of a policy for

the USV to block the intruder utilizing a nondeterministic

attacking policy is a challenging task.

The results show that the performance of the first few

versions of the policy is low as they contain only a few
action plans describing specialized maneuvers for a small

number of key situations. However, as the synthesis pro-

cess progresses, more action plans handling new situations

are added and the overall performance gradually improves.



14

Fig. 10: Evaluation of the USV’s blocking performance.

The performance is expressed as a pure time delay im-
posed on the intruder. Each version of the USV’s policy

was evaluated in 800 runs.

This way the initial policy becomes sophisticated due to
newly evolved action plans. The synthesis process contin-

ues until version 249 of the policy after which the per-

formance stagnates. This can be attributed to difficulty

in solving new complex situations in which problems with

the generalization of action plans and correct detection of
exception states arise.

The graph in Fig. 11 illustrates the average distance of
failure states from the target during the synthesis process.

It is shown that at the beginning of the synthesis (up to

the version 47 of the policy), the failure states occur farther

from the target, while most of them appear closer to the
target at an average distance of 75 meters, where most

intense combats happen.

Evolution of a single policy against an adversary ex-

hibiting a nondeterministic behavior thus generates a highly

suboptimal solution. To further improve the performance

of the policy, distinctive states are automatically isolated

for which short-term action plans are generated. As a result
of that, the final policy demonstrates a clear performance

advantage over the policy without the high performing sub-

stitutes.

An example of a run in which the USV reached 45 sec-

onds of pure time delay imposed on the intruder is shown

in Fig. 12. The USV starts at the location 1.1 while the
intruder starts at the location 2.1. The first situation in

which the USV executes a specific maneuver is marked as

1.2. In this situation, the USV steers sharply to the left

in an attempt to intercept the intruder. The run continues

Fig. 11: The average distance of failure states from the
target during the synthesis of the USV’s policy.

Fig. 12: Example of a run in which the USV managed to

block the intruder for additional 45 seconds. The start po-

sition of the USV is marked as 1.1 while the start position

of the intruder is marked as 2.1.

until 1.3 where the USV attempts to deflect the intruder’s

heading by first carefully turning to the left and then ag-

gressively blocking from the side. The intruder, however,

instantly responds by executing a sharp left turn, which

makes the USV attempt again to intercept him in the situ-
ation 1.4. Yet the USV overshoots in the process of block-

ing. The run continues for the next 23 seconds all the way

up to the target. In the situation 1.5, the intruder executes

a random sequence of two sharp turns to deceive the USV
and thus to increase its chances for the attack. The USV,

however, successfully follows and makes another attempt

to intercept the intruder but overshoots in 1.6, and the

intruder finally reaches its goal 1.7.



15

7 Conclusions and Future Work

We have introduced a new approach for automated action

selection policy synthesis for unmanned vehicles operating
in adverse environments. The main idea behind this ap-

proach is to generate an initial version of the policy first

and then gradually improve its performance by evolving

additional policy components. These components are in
the form of macro-actions that allow the vehicle to pre-

emptively avoid frequent task execution failures. The com-

bination of (1) explicitly detecting subspaces of the state

space that lead to frequent failure states, (2) discovering

macro-actions as variable sequences of primitive actions
for avoiding these failure states, and (3) having elaborated

control and planning mechanisms, allowed us to success-

fully solve a non-trivial reinforcement learning problem.

Our particular focus was on the synthesis of a symbolic
policy for an autonomous USV operating in a continuous

state-action space with a deceptive adversary. We have de-

veloped a mission planning system to automatically gen-

erate a policy for the USV to block the advancement of

an intruder boat toward a valuable target. The intruder
is human-competitive and exhibits a deceptive behavior so

that the USV cannot exploit regularity in its attacking ac-

tion rules for blocking. The USV’s policy consists of a high-

level controller and multiple specialized action plans that
allow the vehicle to rapidly execute sequences of high-level

commands in the form of maneuvers in specific situations.

In our experiments, we have compared the performance

of a hand-coded USV’s blocking policy to the performance

of the policy that was automatically generated. The results
show that the performance of the synthesized policy (65

seconds of pure delay on average, a median of 53 seconds)

exceeds the performance of the hand-coded policy (53 sec-

onds on average, a median of 46 seconds). Hence, the ap-
proach described in this paper is viable for automatically

synthesizing a symbolic policy to be used by autonomous

unmanned vehicles for various tasks.

We have validated the presented approach on a specific
task; however, it can be applied to a broad range of other

tasks as well. The type of tasks for which the presented ap-

proach is applicable is described in Section 3. Examples of

other application domains include variations on the pursuit

and evasion task during which a robotic vehicle attempts
to keep track of another moving object operating in a cer-

tain area (Gerkey et al. 2006), and robotic soccer (Kohl

and Miikkulainen 2008).

Besides deploying the presented approach to other ap-
plication domains, we would like to exploit the regularity

(e.g., repetitiveness, symmetry, and symmetry with modi-

fications) (Lipson 2007) of the tasks in other to effectively

reuse already evolved macro-actions with possible modifi-

cations for similar states. This will increase the speed of

the synthesis process. Other ways of increasing the speed
of the synthesis are the physics-based model simplification

that allows fast simulations while trying to preserve the

underlying physics of the vehicle-terrain simulated inter-

actions (Thakur and Gupta 2011), and utilization of dis-
tributed and parallel computing on dedicated computer

clusters (e.g., using Berkeley Open Infrastructure for Net-

work Computing) (Anderson 2004). Moreover, the sub-

regions of the state space with associated macro-actions

currently have a fixed size. It would be beneficial, however,
if these regions could be of different shapes with a variable

size. This would allow the evolution of macro-actions of

greater complexity for better generalization of the policy.

Finally, an interesting possibility for further research would
be the development of a general methodology for efficient

detection of failure states and computation of adequate ex-

ception states by exploiting the structure of a given task.

Acknowledgements This research has been supported by Office of
Naval Research N00014-10-1-0585. Opinions expressed in this paper
are those of the authors and do not necessarily reflect opinions of the
sponsors.

References

Anderson D (2004) Boinc: A system for public-resource

computing and storage. In: proceedings of the 5th

IEEE/ACM International Workshop on Grid Comput-
ing, IEEE Computer Society, pp 4–10

Andre D, Friedman N, Parr R (1998) Generalized priori-

tized sweeping. Advances in Neural Information Process-

ing Systems pp 1001–1007

Bacardit J, Bernadó-Mansilla E, Butz M (2008) Learning
Classifier Systems: Looking Back and Glimpsing Ahead.

Learning Classifier Systems pp 1–21

Baker C, Ferguson D, Dolan J (2008) Robust Mission Ex-

ecution for Autonomous Urban Driving. Intelligent Au-
tonomous Systems 10: IAS-10 p 155

Barate R, Manzanera A (2007) Automatic design of

vision-based obstacle avoidance controllers using genetic

programming. In: Proceedings of the Evolution artifi-

cielle, 8th international conference on Artificial evolu-
tion, Springer-Verlag, pp 25–36

Barlow G, Oh C (2008) Evolved Navigation Control for

Unmanned Aerial Vehicles. Frontiers in Evolutionary

Robotics pp 596–621
Board N (2005) Autonomous vehicles in support of naval

operations. National Research Council, Washington DC

Buason G, Bergfeldt N, Ziemke T (2005) Brains, bod-

ies, and beyond: Competitive co-evolution of robot con-



16

trollers, morphologies and environments. Genetic Pro-

gramming and Evolvable Machines 6(1):25–51
Buhmann M (2001) Radial basis functions. Acta numerica

9:1–38

Corfield S, Young J (2006) Unmanned surface vehicles–

game changing technology for naval operations. Ad-
vances in unmanned marine vehicles pp 311–328

Cox M, Cox T (2008) Multidimensional scaling. Handbook

of data visualization pp 315–347

Dain R (1998) Developing mobile robot wall-following algo-

rithms using genetic programming. Applied Intelligence
8(1):33–41

Diederich J, Tickle A, Geva S (2010) Quo Vadis? Reliable

and Practical Rule Extraction from Neural Networks.

Advances in Machine Learning I pp 479–490
Doherty D, O’Riordan C (2006) Evolving agent-based

team tactics for combative computer games. In: AICS

2006 17th Irish Artificial Intelligence and Cognitive Sci-

ence Conference

Dupuis J, Parizeau M (2006) Evolving a Vision-Based
Line-Following Robot Controller. In: IEEE Proceedings,

Citeseer

Finn A, Scheding S (2010) Developments and Challenges

for Autonomous Unmanned Vehicles: A Compendium.
Springer

Floreano D, Mattiussi C (2008) Bio-inspired artificial in-

telligence: theories, methods, and technologies

Gajda P, Krawiec K (2008) Evolving a vision-driven robot

controller for real-world indoor navigation. In: Proceed-
ings of the 2008 conference on Applications of evolution-

ary computing, Springer-Verlag, pp 184–193

Gerkey B, Thrun S, Gordon G (2006) Visibility-based

pursuit-evasion with limited field of view. The Interna-
tional Journal of Robotics Research 25(4):299

Goldberg D (1989) Genetic Algorithms in Search and Op-

timization

Haynes T, Sen S (1996) Evolving behavioral strategies in

predators and prey. Adaption and Learning in Multi-
Agent Systems pp 113–126

van Hoorn N, Togelius J, Schmidhuber J (2009) Hierarchi-

cal controller learning in a first-person shooter. In: IEEE

Symposium on Computational Intelligence and Games
(CIG 2009), pp 294–301

Jaskowski W, Krawiec K, Wieloch B (2008) Winning

ant wars: Evolving a human-competitive game strat-

egy using fitnessless selection. In: Genetic programming:

11th European Conference, EuroGP 2008, Naples, Italy,
March 26-28, 2008: proceedings, Springer-Verlag New

York Inc, p 13

Kohl N, Miikkulainen R (2008) Evolving neural networks

for fractured domains. In: Proceedings of the 10th an-
nual conference on Genetic and evolutionary computa-

tion, ACM, pp 1405–1412

Koza J (2003) Genetic programming IV: Routine human-
competitive machine intelligence. Kluwer Academic Pub

Koza J, Rice J (1992) Automatic programming of robots

using genetic programming. In: Proceedings of the na-

tional conference on artificial intelligence, Citeseer, pp
194–194

Lanzi P (2008) Learning classifier systems: then and now.

Evolutionary Intelligence 1(1):63–82

LaValle S (2009) Filtering and planning in information

spaces. IROS tutorial notes
Lipson H (2007) Principles of modularity, regularity, and

hierarchy for scalable systems. Journal of Biological

Physics and Chemistry 7(4):125

Lipson H, Antonsson E, Koza J, Bentley P, Michod R
(2003) Computational synthesis: from basic building

blocks to high level functionality. In: Proc. Assoc. Adv.

Artif. Intell. Symp, pp 24–31

Nehmzow U (2002) Physically embedded genetic algorithm

learning in multi-robot scenarios: The PEGA algorithm.
In: 2nd International Workshop on Epigenetic Robotics:

Modelling Cognitive Development in Robotic Systems,

Citeseer

Poli R, Langdon W, McPhee N (2008) A field guide to
genetic programming. Lulu Enterprises Uk Ltd

Richards M, Whitley D, Beveridge J, Mytkowicz T,

Nguyen D, Rome D (2005) Evolving cooperative strate-

gies for UAV teams. In: Proceedings of the 2005 confer-

ence on Genetic and evolutionary computation, ACM, p
1728

Sammut C, Webb G (2011) Encyclopedia of machine learn-

ing. Springer-Verlag New York Inc

Schrum J, Miikkulainen R (2009) Evolving multi-modal
behavior in NPCs. In: Proceedings of the 5th inter-

national conference on Computational Intelligence and

Games, IEEE Press, pp 325–332

Schwartz M, Svec P, Thakur A, Gupta SK (2009) Eval-

uation of Automatically Generated Reactive Planning
Logic for Unmanned Surface Vehicles. In: Performance

Metrics for Intelligent Systems Workshop (PERMIS’09)

Shichel Y, Ziserman E, Sipper M (2005) GP-robocode: Us-

ing genetic programming to evolve robocode players. Ge-
netic Programming pp 143–154

Sipper M, Azaria Y, Hauptman A, Shichel Y (2007) De-

signing an evolutionary strategizing machine for game

playing and beyond. IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Re-
views 37(4):583–593

Stanley K, Miikkulainen R (2002) Evolving neural net-

works through augmenting topologies. Evolutionary

Computation 10(2):99–127



17

Sutton R, Barto A (1998) Reinforcement learning: an in-

troduction. Adaptive computation and machine learn-
ing, MIT Press

Svec P, Schwartz M, Thakur A, Anand DK, Gupta

SK (2010) A simulation based framework for discover-

ing planning logic for Unmanned Surface Vehicles. In:
ASME Engineering Systems Design and Analysis Con-

ference, Istanbul, Turkey

Thakur A, Gupta S (2011) Real-time dynamics simula-

tion of unmanned sea surface vehicle for virtual environ-

ments. Journal of Computing and Information Science
in Engineering 11:031,005

Theocharous G, Kaelbling L (2004) Approximate planning

in pomdps with macro-actions. Advances in Neural In-

formation Processing Systems 16
Togelius J, Burrow P, Lucas S (2007) Multi-population

competitive co-evolution of car racing controllers. In:

Evolutionary Computation, 2007. CEC 2007. IEEE

Congress on, IEEE, pp 4043–4050

Urbanowicz R, Moore J (2009) Learning classifier systems:
a complete introduction, review, and roadmap. Journal

of Artificial Evolution and Applications 2009:1

Whiteson S (2010) Adaptive representations for reinforce-

ment learning, vol 291. Springer Verlag


