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1. Introduction

A firm link between female reproductive history and increased risk of developing cancer in
the breast and endometrium has been established from epidemiological studies (1-4). The
longer women are exposed to estrogens, either through early menarche and late menopause
and/or through estrogen replacement therapy, the higher is the risk of developing certain
hormone-dependent cancers. It used to be thought that the purported benefits of estrogen
replacement therapy, which included the relief of menopausal symptoms, decrease in coronary
heart disease, osteoporosis, stroke, and Alzheimer’s disease, justified the use of long-term
estrogen replacement therapy. However, the release of the initial results from the Women’s
Health Initiative Study in July 2002 cast serious doubt on this paradigm for the treatment of
post-menopausal women (5). The estrogen plus progestin arm was halted three years early due
to significant increases in breast cancer, coronary heart disease, stroke, and pulmonary
embolism, with more recent data suggesting an increase in vascular dementia in women over
65 on estrogen replacement therapy (6). In 2004, the estrogen arm was halted because of
increased incidence of stroke (7). A recent analysis of data from the National Cancer Institute’s
Surveillance, Epidemiology, and End Results (SEER) registries showed that age-adjusted
incidence rate of breast cancer fell sharply (6.7%) in 2003 compared to 2002, which seemed
to be related to the drop in the use of HRT (8). Finally, a reanalysis of nine prospective studies
has shown that exposure to estrogens is associated with an increase in breast cancer risk with
evidence of a dose-response relationship (9). These troubling findings highlight the urgent need
for a full understanding of all the deleterious effects of estrogens including their potential to
initiate and/or promote the carcinogenic process.

The mechanisms of estrogen carcinogenesis are not well understood. The central hypothesis
of this review is that the formation of electrophilic/redox active quinones is an important
mechanism of carcinogenesis for estrogens (Scheme 1, using the equine estrogen equilenin as
an example). o-Quinones and quinone methides are known metabolites of estrogens and they
have been shown to cause alkylation and/or oxidative damage to cellular proteins and DNA
(2,10-13). In addition, our data strongly suggests that estrogen receptors (ERS) appear to play
a major role in catechol estrogen-induced DNA damage (14,15). Binding and/or alkylation of
ERs by the o-quinones generates a highly redox active “Trojan horse” which selectively
targets estrogen sensitive genes. The long-range goal is to develop a better understanding of
these reactive intermediates in vivo which will allow the rational development of estrogen
replacement therapies that maintain the beneficial properties of estrogens without generating
genotoxic species.
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2. The risk/benefits of traditional estrogen replacement therapy

Recently, the National Toxicology Program of NIEHS declared that steroidal estrogens, both
of endogenous nature and as components of hormone replacement therapy (HRT) formulations,
are “known to be human carcinogens”, causing breast and endometrial cancers (16). In July
2002, the Data and Safety Monitoring Board prematurely terminated a major clinical Women’s
Health Initiative trial on the long-term risks and benefits of estrogen plus progestin therapy, a
form of HRT for postmenopausal women who have an intact uterus (5). This decision was
based, in part, on the significantly increased risk (24%) of invasive breast cancer, as well as a
higher incidence of heart disease and stroke in women undergoing estrogen replacement
therapy as compared to those receiving placebo. Even women without tumors were often found
to have more abnormal mammograms than those on placebo (5,17). Indeed, it has been known
for some time that estrogens and estrogens plus progestin (18) can contribute significantly to
the development of cancers (19,20), especially of the breast (21-25) and other hormone-
sensitive tissues (24) such as the ovary and uterus. These are some of the major types of cancers
that afflict women in the United States (25).

Nevertheless, there are also significant benefits since estrogen replacement therapy relieves
symptoms of menopause such as sleeplessness, hot flashes, and mood swings, provides
protection against early menopausal bone loss, and lowers the risk of colon cancer (5,17). For
these reasons, women continue to use hormone replacement formulations (26) in spite of the
well recognized risks (27). Although, the sales of standard dose Premarin prescriptions (0.625
mg/day) have decreased by 33% since July 2002 when NHLBI terminated the clinical trial on
the long term risks and benefits of estrogen plus progestin therapy, more recently the sales of
low-dose Premarin preparations (0.45 mg/day) have been rising (26).

3. Mechanisms of estrogen carcinogenesis

The molecular mechanisms of steroidal estrogen carcinogenesis are highly complex and
ambiguous (2,12,25,28,29). Malignant phenotypes arise as a result of a series of mutations,
most likely in genes associated with tumor suppressor, oncogene, DNA repair, or endocrine
functions (30). One major pathway considered to be important is the extensively studied
hormonal pathway, by which estrogen stimulates cell proliferation through nuclear ER-
mediated signaling pathways, thus resulting in an increased risk of genomic mutations during
DNA replication (4,30-32). A similar “non-genomic pathway”, potentially involving newly
discovered membrane associated ERs, also appears to regulate extranuclear estrogen signaling
pathways (33,34). The focus of this review will be the third pathway involving estrogen
metabolism, mediated by cytochrome P450, that generates reactive electrophilic estrogen o-
quinones and reactive oxygen species (ROS) through redox cycling of these o-quinones
(Scheme 1, 2).

Studies have shown that constitutive and TCDD-inducible P450 isozymes, PA501A1/1A2 and
P4501B1 selectively catalyze hydroxylation at the 2- and 4-positions of estrone and 17p-
estradiol, respectively (35-40) suggesting that excessive exposure to environmental pollutants
could lead to enhanced production of these metabolites. This is particularly significant since
4-hydroxyestrone/estradiol was found to be carcinogenic in the male Syrian golden hamster
kidney tumor model, whereas, 2-hydroxylated metabolites were without activity (41,42).
Similarly, Newbold and Liehr have shown that 4-hydroxyestradiol induced uterine tumors in
66% of CD-1 mice; whereas, mice treated with 2-hydroxyestradiol or 17p-estradiol had much
lower uterine tumor incidence (43). Animal studies with catechol estrogens have produced
contradictory results particularly with the ACI rat model for mammary carcinogenesis. For
example, a lack of tumorigenicity for the catechol estrogens and the quinone from 4-
hydroxyestrone was reported in female ACI rats (44,45). In contrast, DNA adducts of catechol
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estrogen quinones have been detected in the mammary glands of ACI rats treated with 4-
hydroxyestradiol or it’s quinone (46). In women, significantly higher amounts of GSH
conjugates resulting from reaction of GSH with the 4-OHE/E2-0-quinones were detected in
the non-tumor tissue from women with breast cancer compared to women without the disease
(47). In addition, estrogen 4-hydroxylase levels (P4501B1 and 1A1) had higher expression in
breast tissue of women with breast cancer, whereas expression of protective enzymes was lower
(48). Finally, epidemiology studies have suggested a link between genetic polymorphism in
estrogen 4-hydroxylases and a risk for developing breast cancer (49-51). These data suggest
that estrogen metabolites are likely contributors to the development of cancer.

Most of the epidemiology studies on hormone replacement therapy and cancer risk have
investigated the association with use of Premarin® (conjugated equine estrogens, Wyeth-
Ayerest) or Prempro® (conjugated equine estrogens plus progestin). Both Premarin® and
Prempro® are currently the most popular forms of HRT, widely prescribed in North America
(52). Since Premarin® was approved by the Food and Drug Administration in the 1940s, very
little is known about the metabolism and potential toxic metabolites that could be produced
from the various equine estrogens, which make up approximately 50% of the estrogens in
Premarin® (53-57) (Scheme 3). It is known that treating hamsters for 9 months with either
estrone, equilin + equilenin, or sulfatase-treated Premarin®, resulted in 100% kidney tumor
incidences and abundant tumor foci (54). Furthermore, in a small clinical trial of 596
postmenopausal women, a significant increase in endometrial hyperplasia was found in those
women receiving a daily dose of 0.625 mg of Premarin® (58). Finally, we have shown that a
major phase | metabolite of both equilenin and equilin (4-OHEN) can act as a complete
carcinogen and tumor promoter in vitro, whereas the endogenous catechol estrogen metabolite,
4-hydroxyestrone was much less effective (59). As a result, it is quite possible that the B-ring
unsaturated equine estrogens have very different biological properties in vivo compared to the
endogenous catechol estrogens (10,60).

Interestingly, increasing unsaturation in the B ring leads to a change in metabolism from
predominately 2-hydroxylation for estrone to mainly 4-hydroxylation for equilin and
exclusively 4-hydroxylation for equilenin (55,56,61). Similar to what has been reported with
endogenous estrogens the 4-hydroxylation pathway is predominately catalyzed by
P4501B1/1A1 (61,62). This could be problematic since 2-hydroxylation of endogenous
estrogens is regarded as a benign metabolic pathway whereas 4-hydroxylation could lead to
carcinogenic metabolites (41-43). It can be reasonably hypothesized that metabolism of
equilenin and equilin (and their 17p-hydroxylated metabolites) to 4-OHEN and 4,173-OHEN
represents the major carcinogenic pathway for equine estrogens.

4. Oxidation of catechol estrogens to o-quinones

Once formed, the endogenous catechol estrogens can be oxidized by virtually any oxidative
enzyme or metal ion giving o-quinones (2,12). The o-quinone formed from 2-hydroxyestrone
has a half-life of 47 s, whereas the 4-hydroxyestrone-o-quinone is considerably longer lived
(t1/2 =12 min) (63). In the absence of nucleophilic trapping agents, both 0-quinones isomerize
to quinone methides (Scheme 2) although the relative importance and biological targets of
these potentially highly electrophilic intermediates has not been explored in detail (63-65). As
far as the equine catechol estrogens are concerned, both 4-OHEN and 4-OHEQ autoxidize to
o0-quinones without the need for enzymatic or metal ion catalysis (Scheme 3) (56,66). The o-
quinone formed from 4-OHEN is much more stable (t1/» = 2.3 h) than that from the endogenous
catechol estrogens (66). It appears that the adjacent aromatic ring stabilizes 4-OHEN-o-
quinone through extended n-conjugation. In support of this it has been shown that the catechol
metabolite of benzo[a]pyrene rapidly undergoes air oxidation to yield a very stable o-quinone,
benzo[a]pyrene-7,8-dione (67-70).
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4-OHEQ-o0-quinone readily isomerizes to 4-OHEN-o-quinone (Scheme 3). As a result, most
of the biological effects caused by catechol metabolites of equilin are likely due to 4-OHEN-
o0-quinone formation (56). Finally, although 2-hydroxylation does occur with equilin producing
2-hydroxyequilin that will isomerize to 2-hydroxyequilenin, the latter catechol does not
autoxidize to an o-quinone at any appreciable rate (71). This suggests that similar to what has
been observed with endogenous catechol estrogens, 2-hydroxylation is likely a benign
metabolic pathway for equilin.

5. DNA damage induced by catechol estrogen o-quinones

5.1 Oxidative damage

0-Quinones are also potent redox active compounds (72). They can undergo redox cycling with
the semiquinone radical generating superoxide radicals mediated through cytochrome P450/
P450 reductase (as shown in Scheme 1 for 4-OHEN). The reaction of superoxide anion radicals
with hydrogen peroxide, formed by the enzymatic or spontaneous dismutation of superoxide
anion radical, in the presence of trace amounts of iron or other transition metals gives hydroxyl
radicals. The hydroxyl radicals are powerful oxidizing agents that may be responsible for
damage to essential macromolecules. In support of this mechanism, various free radical
toxicities have been reported in hamsters treated with 17p-estradiol including DNA single
strand breaks (73,74), 8-o0xo-dG formation (13,75,76), and chromosomal abnormalities (29,
77,78). Recently, it has also been shown that 4-hydroxyestradiol also induces oxidative stress
and apoptosis in human mammary epithelial cells (MCF-10A), although the concentrations
used in this study (25 uM) have questionable physiological relevance (79). We have shown
that 4-OHEN is also capable of causing DNA single strand breaks and oxidative damage to
DNA bases both in vitro and in vivo (14,15,80). Using the single cell gel electrophoresis assay
(comet assay) to measure DNA damage, we found that 4-OHEN causes concentration-
dependent DNA single strand cleavage in breast cancer cell lines and this effect could be
enhanced by NADH or diethyl maleate (14,15). We have also shown that injection of 4-OHEN
into the mammary fat pads of Sprague-Dawley rats resulted in a dose-dependent increase in
single strand breaks and oxidized bases as analyzed by the comet assay (80). In addition,
extraction of mammary tissue DNA, hydrolysis to deoxynucleosides, and analysis by LC-MS-
MS showed the formation of 8-o0xo-dG as well as 8-oxo-dA. Finally, a recent study evaluated
the potential of HRT to induce DNA damage in peripheral blood leukocytes of postmenopausal
women using the comet assay (81). Significant increases in DNA damage were observed
between women receiving 0.625 mg/day conjugated equine estrogens or conjugated equine
estrogens plus medroxyprogesteron acetate as compared to the control group that had never
received HRT. Finally, the excessive production of reactive oxygen species in breast cancer
tissue has been linked to metastasis of tumors in women with breast cancer (82-84). These and
other data are evidence for a mechanism of estrogen-induced tumor initiation/promotion by
redox cycling of estrogen metabolites generating reactive oxygen species, which damage DNA.

5.2 Formation of estrogen DNA adducts

Estrogen quinoids can directly damage cellular DNA leading to genotoxic effects (11,12,46,
60,85-87). Cavalieri’s group has shown that the major DNA adducts produced from 4-
hydroxyestradiol-o-quinone are depurinating N7-guanine and N3-adenine adducts resulting
from 1,4-Michael addition both in vitro and in vivo (12,13,46,65,88,89). Interestingly, they
have recently concluded that only the N3-adenine adduct is likely to induce mutations since
this adduct depurinates instantaneously whereas the N7-guanine adduct takes hours to
hydrolyze (89,90). In contrast, the considerably more rapid isomerization of the 2-
hydroxyestradiol-o-quinone to the corresponding quinone methides results in 1,6-Michael
addition products with the exocyclic amino groups of adenine and guanine (65,91). In contrast
to the N3 and N7 purine DNA adducts, these adducts are stable which may alter their rate of
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repair and relative mutagenicity in vivo. A depurinating N3-adenine adduct of 2-
hydroxyestradiol quinone methide has recently been reported in reactions with adenine and
DNA (89). The levels of this adduct were considerably lower than corresponding depurinating
adducts observed with similar experiments with 4-hydroxyestradiol-o-quinone which may
explain why 2-hydroxylation is considered a benign metabolic pathway whereas 4-
hydroxylation results in carcinogenesis. Finally, this same study (89) suggested that
depurinating DNA adducts of estrogen quinoids were formed in much greater abundance
compared to stable bulky adducts implying a causal role for these adducts in estrogen
carcinogenesis; however, the depurinating adducts were analyzed by different methods (HPLC
with electrochemical detection) as compared to the stable adducts (32P-postlabeling/TLC)
making direct quantitative comparisons problematic. The mutagenic properties of 2-
hydroxyestrogen quinone methide derived stable DNA adducts have been evaluated using
oligonucleotides containing site specific adducts transfected into simian kidney (COS-7) cells
where G -> T and A -> T mutations were observed (92). It is important to mention that stable
DNA adducts have been detected by 32P-postlabeling in Syrian hamster embryo cells treated
with estradiol and it’s catechol metabolites (93). The rank order of DNA adduct formation
which correlated with cellular transformation was 4-OHE, > 2-OHE, > E,. Finally, stable
bulky adducts of 4-OHE1 and 4-OHE2 corresponding to alkylation of guanine have been
detected in human breast tumor tissue (94). These data suggest that the relative importance of
depurinating adducts versus stable DNA adducts in catechol estrogen carcinogenesis remains
unclear.

For the major equine estrogens (equilin and equilenin and 17B-ol derivatives) the data strongly
suggests that the majority of DNA damage results from reactions of 4-OHEN-o0-quinone
through a combination of oxidative damage (i.e., single strand cleavage and oxidation of DNA
bases) and through generation of apurinic sites as well as stable bulky cyclic adducts (Schemes
1, 4) (95). For example, a depurinating guanine adduct was detected in in vivo experiments
with rats treated with 4-OHEN, following LC-MS-MS analysis of extracted mammary tissue
(80). However, isolation of mammary tissue DNA, hydrolysis to deoxynucleosides, and
analysis by LC-MS-MS also showed the formation of stable cyclic deoxyguanosine and
deoxyadenosine adducts (Figure 1) as well as the above mentioned oxidized bases and single
strand breaks. Interestingly, the ratio of the diasteriomeric adducts detected in vivo differs from
invitro experiments suggesting that there are differences in the response of these stereoisomeric
lesions to DNA replication and repair enzymes (96-99). Finally, in a recent report, highly
sensitive nano LC/MS-MS techniques were used to analyze the DNA in five human breast
tumor and five adjacent tissue samples, including samples from donors with a known history
of Premarin-based HRT (94). While the sample size is small, and the history of the patients is
not fully known, cyclic 4-OHEN-dC, -dG, and -dA stable adducts were detected for the first
time in four out of the ten samples. These results suggest that 4-OHEN has the potential to be
carcinogenic through the formation of a variety of DNA lesions in vivo.

6. Protein targets of catechol estrogen o-quinones

6.1 Redox sensitive enzymes

Other potential targets for the estrogen metabolites include redox sensitive enzymes, including
GST P1-1 (100,101), quinone reductase (QR, NAD(P)H dependent quinone oxidoreductase,
NQO1) (102), and thioredoxin reductase (103). Protein-modifying stresses elicit characteristic
changes in gene expression that reflect responses to stress or injury (104,105). A number of
studies have characterized gene expression changes in response to oxidizing and/or alkylating
agents (106,107); however, the mechanisms by which these protein damaging agents cause
modulation of gene expression are largely unknown. Several studies have suggested that some
proteins have two probably inter-related functions; as sensors for alkylating and oxidizing
agents as well as regulators of specific kinases or transcription factors involved in stress
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signaling (106-108). GST P1-1 and QR are both involved in protein sensor-trigger systems
and they have been implicated in genetic polymorphisms associated with increased breast
cancer risk (109). Inaddition, estradiol and catechol estrogens can induce elevation of the levels
of QR and GST, both in cell culture, as well as in vivo (110,111). It has also been shown that
thioredoxin-1, a target for estrogen quinones, regulates the constitutive and inducible
expression of P4501B1 and 1A1, the enzymes responsible for formation of catechol estrogens,
in breast cancer cells (112). Finally, we have determined that 4-OHEN at higher concentrations
is an irreversible inactivator of these redox sensitive enzymes through mechanisms involving
both alkylation and oxidation (100,113). The effects on signaling mechanisms controlled by
these enzymes could have major consequences on physiological levels as well as potential
targets of estrogen o-quinones in vivo.

6.2 Estrogen receptors

Itis quite likely that targets for catechol estrogen o-quinones could be crucial cellular proteins,
particularly ERs and proteins associated with ERs (ER coregulators). The potential for 4-
OHEN to covalently alkylate the ligand binding domain of ERa and ERf was investigated
using ESI-MS analysis (Figure 2, unpublished results). ERa showed more sensitivity to 4-
OHEN-o0-quinone-mediated modification compared to ERp as determined by the number of
covalently modified protein species. We also demonstrated that 4-OHEN caused oxidative
damage to both ERs as bands related to disulfide bonded proteins appeared on non-reducing
SDS-PAGE (unpublished results). These data show that 4-OHEN can oxidize and alkylate ERs
although sites of alkylation are unknown at present.

Given that the ERs contain zinc finger structures rich in cysteine residues in the DNA binding
domain, several laboratories have recently been investigating the reactivity of these cysteines
to various electrophiles (114-116). It has been proposed that chemical modification of ER zinc
fingers may inhibit the growth of some ER expressing cancers by preventing ER transcription
of estrogen sensitive genes (115); however, if modified ER is translocated to the nucleus this
could lead to local generation of ROS through redox cycling of catechol estrogen modified ER
cysteine sulfhydryl groups near estrogen sensitive genes resulting in genotoxicity (see Section
7). Recently, Baldwin’s group has shown, through several elegant proteomics experiments,
that the quinone, menadione, preferentially alkylates cysteine 240, which is located in the
second zinc finger of the DNA binding domain of ERa (117). Although these experiments
were carried out using the purified protein, their studies do show that quinones alkylate ERSs.
Due to the high affinity of catechol metabolites for ERs, we predict that estrogen catechols/o-
quinones will selectivity target these proteins making them much more likely targets for
estrogen o-quinones in vivo compared to non-estrogenic quinones like menadione.

7. Estrogen receptor as a “Trojan horse”

It is well known that ERs play a major role in the mechanism of estrogen-induced
carcinogenesis (30,118). Binding of estrogens to the ERs leads to an increase in cell
proliferation in hormone-sensitive target tissues such as the breast and endometrium. In these
rapidly dividing cells, the chances for mutations to occur increases dramatically leading to
initiation/promotion of the carcinogenic process. We have hypothesized that ERs could also
play a role in catechol estrogen/o-quinone-induced carcinogenesis through the “Trojan horse”
mechanism (Scheme 1). It is quite possible that the catechol estrogen and/or o-quinone bind
to the estrogen receptor, which carries it directly to estrogen sensitive genes, where DNA
damage occurs resulting in mutations.

We have preliminary data that this mechanism may play a role in catechol estrogen-induced
DNA damage (14,15). We have examined the effect of ER status on the relative ability of 4-
OHEN and 4,17B-OHEN to induce DNA damage in ER negative cells (MDA-MB-231),
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ERa positive cells (S30), and ERp positive cells (B41). The data showed that both 4-OHEN
and 4,17B-OHEN induced concentration dependent DNA single strand cleavage in all three
cell lines. However, cells containing ERs had significantly higher DNA damage. Finally, the
endogenous catechol estrogen metabolite 4-hydroxyestrone was considerably less effective at
inducing DNA damage in breast cancer cell lines as compared to 4-OHEN (14). Our data
suggest that the genotoxic effects of 4-OHEN could be related to its ability to induce DNA
damage in hormone sensitive cells in vivo, and these effects may be potentiated by the ER.

Essigmann’s group has reported on estradiol linked to a nitrogen mustard as a very effective
chemotherapeutic agent with selective toxicity for ERa. positive cells (Figure 3) (119,120). It
is proposed that the estradiol portion of the molecule binds to the ER, which then travels to the
nucleus, binds to ERE, where the nitrogen mustard forms DNA adducts. Consistent with the
ER playing a role in increasing toxicity and DNA damage in ERa positive cells, was the
observation that the ER-independent nitrogen mustard, chlorambucil, was equally toxic in both
ER positive and negative cells. These data are remarkably similar to observations of 4-OHEN-
induced DNA damage in ER+ versus ER- cells and are consistent with the “Trojan Horse”
hypothesis.

8. Neoplastic transformation of non-tumorigenic breast epithelial cells

Treatment of MCF-10F cells, which are ER-negative immortalized human breast epithelial
cells, with E,, 4-OHE,, or 2-OHE, induced their neoplastic transformation in vitro (121,
122). The transformed cells exhibited specific mutations in several genes. Poorly differentiated
adenocarcinomas develop when aggressively transformed MCF-10F cells were selected and
injected into severe combined immune depressed (SCID) mice. Similar studies in our
laboratory using ER negative MCF-10A cells treated with 4-OHEN showed a concentration
dependent increase in colony formation using an anchorage-independent growth assay (123).
Analysis of differentially expressed genes in these transformed cells showed modulation of
several genes involved in cell transformation and oxidative stress, strengthening the hypothesis
that this mechanism plays a considerable role in 4-OHEN-induced carcinogenesis. Whether
the presence of ERs can enhance cellular transformation compared to ER negative cells is as
yet unknown.

9. Summary

Recent data suggest that metabolism of estrogens to their catechols/o-quinones is a major
mechanism of estrogen carcinogenesis. Oxidative enzymes, metal ions, and in some cases
molecular oxygen can catalyze o-quinone formation, so that these electrophilic/redox active
quinones can cause damage within cells by alkylation of cellular nucleophiles (proteins, DNA)
to a significant extent in many tissues. In addition, the formation of reactive oxygen species
especially through redox cycling between the quinones and semiquinone radicals, can cause
oxidation of DNA and protein damage. DNA damage is significantly increased in cells
containing ERs leading us to hypothesize a mechanism involving ER binding/alkylation of
catechol/quinone resulting in a “Trojan horse”. The “Trojan horse” carries the highly redox
active catechol to estrogen sensitive genes, where high amounts of ROS are generated causing
selective DNA damage. Our data further suggests that other key protein targets for estrogen
o-quinones could be redox sensitive enzymes including GST P1-1, QR, and thioredoxin
reductase. These proteins are involved in stress response cascades that are known to contribute
to regulation of cell proliferation and apoptosis. Finally, we and others have shown that catechol
estrogens can transform breast epithelial cells into a tumorigenic phenotype and that these
transformed cells had differential gene expression of several genes involved in oxidative stress.
Given the direct link between excessive exposure to estrogens, metabolism of estrogens, and
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increased risk of breast cancer, it is crucial that factors that affect the formation, reactivity, and
cellular targets of estrogen quinoids be thoroughly explored.
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Abbreviations

E,, 17B-estradiol

ER, estrogen receptor

ERE, estrogen response element

ESI, electrospray ionization

GST, glutathione-S-transferase

hGST PI-1, human glutathione-S-transferase

LBD, ligand binding domain

ROS, reactive oxygen species

2-OHE, 2-hydroxyestrone, 2,3-dihydroxy-1,3,5(10)-estratrien-17-one
4-OHE, 4-hydroxyestrone, 3,4-dihydroxy-1,3,5(10)-estratrien-17-one
estrone, 3-hydroxy-1,2,5-(10)-estratrien-17-one

4-OHEN, 4-hydroxyequilenin, 3,4-dihydroxy-1,3,5(10),6,8-estrapentaen-17-one
equilenin, 1,3,5(10),6,8-estrapentaen-3-ol-17-one

equilin, 1,3,5(10), 7-estratetraen-3-0l-17-one

9(11)-dehydro-4-OHE, 9(11)-dehydro-4-hydroxyestrone, 3,4-dihydroxy-1,3,5(10),9(11)-
estratetraen-17-one)

9(11)-dehydro-2-OHE, 9(11)-dehydro-2-hydroxyestrone, 2,3-dihydroxy-1,3,5(10),9(11)-
estratetraen-17-one)

2-OHE-QM1, 3-hydroxy-1(10),3(4),5(6)-estratrien-2,17-dione
2-OHE-QM2, 2-hydroxy-1(2),4(5),9(10)-estratrien-3,17-dione
4-OHE-QM2, 4-hydroxy-1(2),4(5),9(10)-estratrien-3,17-dione
4-OHE-QML1, 3-hydroxy-1(10),2(3),5(6)-estratrien-4,17-dione

P450, cytochrome P450

QM, quinone methide, 4-alkyl-2,5-cyclohexadien-1-one

0-quinone, 3,5-cyclohexadien-1,2-dione

LC-MS, liquid chromatography mass spectrometry

electrospray-MS, electrospray mass spectrometry

dN, 2’-deoxynucleoside

dG, 2'-deoxyguanosine

dA, 2'-deoxyadenosine

dC, 2'-deoxycytosine

8-OHdG, 8-hydroxydeoxyguanosine

8-OHdA, 8-hydroxydeoxyadenosine

2-OHdA, 2-hydroxydeoxyadenosine

8-OHG, 8-hydroxyguanine
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Scheme 1. Bioactivation of equilenin (EN) to redox active/electrophilic quinoids

Interaction with estrogen receptors (ERs) and ER associated nuclear proteins, DNA, and
cytosolic proteins which represent potential cellular targets of estrogen quinoids which could
contribute to estrogen carcinogenesis.
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Scheme 2. Metabolism of estradiol to quinoids
Circled quinoids represent the major isomers that react with DNA. Estrone is also metabolized

to the corresponding catechols/quinoids.
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Figure 1. DNA adducts formed from estrogen quinoids
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Figure 2. ESI mass spectra of the His6-hERa and B ligand binding domains alkylated by 4-OHEN

ERs (20 uM) were incubated with 4-OHEN (75 puM) for 15 min (pH 7.4, 37°C) and analyzed
by ESI-MS (unpublished data).

Chem Res Toxicol. Author manuscript; available in PMC 2009 January 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bolton and Thatcher

OH HCl
H\/\/©/N\/\CI
HO "'/N\/\N/\/O\"/N
ESTRADIOL ; 0 NITROGEN
MUSTARD

Figure 3. Essigmann’s ER “Trojan horse”
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