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Abstract

Discovery of functional dependenciesfromrelationshas
been identified as an important database analysis tech-
nique. In this paper, we present a new approach for find-
ing functional dependencies from large databases, based
on partitioningthe set of rowswith respect totheir attribute
values. The use of partitions makes the discovery of ap-
proximate functional dependencies easy and efficient, and
the erroneous or exceptional rows can be identified eas-
ily. Experiments show that the new algorithmis efficient in
practice. For benchmark databases the running times are
improved by several orders of magnitude over previously
publishedresults. Thealgorithmisalso applicableto much
larger datasets than the previous methods.

1 Functional and approximate dependencies

Functional dependencies are relationships between at-
tributes of areation: a functiona dependency states that
the value of an attributeis uniquely determined by the val-
ues of some other attributes. The discovery of functional
dependencies from relations has received considerable in-
terest (e.g., [2,10, 17,19, 11, 1, 6, 3]). Automated database
analysis is, of course, interesting for knowledge discov-
ery and data mining (KDD) purposes, and functional de-
pendencies have applicationsin the areas of database man-
agement, reverse engineering [ 14, 20], and query optimiza-
tion [21].

Formaly, a functional dependency over a relation
schema R is an expression X — A, where X C R and
A € R. The dependency holds or is valid in a given
relation » over R if for al pairsof rowst, u € r we have:
if t{B] = u[B]fordl B € X, thent[A] = u[A] (wealso
say that ¢t and « agree on X and A). A functiona depen-
dency X — A isminimal (inr) if A isnot functionaly
dependent on any proper subset of X, i.e., if Y — A does
not holdin» forany Y C X. Thedependency X — A
istrivial if A € X. The central task we consider isthe
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following: given arelation r, find al minima non-trivia
dependenciesthat hold in r.

An approximate dependency [5] is a functional depen-
dency that almost holds. Such dependencies arise in many
databases when there is a natural dependency between at-
tributes, but some rows contain errors or represent excep-
tions to the rule. The discovery of unexpected but mean-
ingful approximate dependencies seemsto be an interesting
and redlistic god in many data mining applications.

There are many possible ways of defining the approxi-
mateness of a dependency X — A. The definition we use
isbased on the minimum number of rowsthat need to bere-
moved fromtherelation» for X — A toholdinr: theerror
g93(X — A) =1 — (max{|s| | s C rand X — A holdsin
sH/|r| [5]. The measure g3 has a natural interpretation as
the fraction of rows with exceptions or errors affecting the
dependency. Givenan error thresholde, 0 < ¢ < 1, wesay
that X — A isan approximate dependency if and only if
g3(X — A)isatmost . Inthispaper, wea so consider the
approximate dependency inferencetask: given arelation r
and athreshold ¢, find all minimal non-trivial approximate
dependencies.

We describe a new approach to the discovery of both
functional and approximate dependencies. The mgjor in-
novation is a novel way of determining whether a depen-
dency holds or not. The idea is to maintain information
about which rows agree on aset of attributes. Formally, the
approach can be described using equivalence classes and
partitions. A major advantage of the use of partitionsisthat
it allows efficient discovery of approximate dependencies.

The algorithm is based on the levelwise algorithm that
has been used in many data mining applications [12]. It
starts from dependencies with a small |eft-hand side, i.e,
from the ones that are not very likely to hold. The ago-
rithm then works towards larger and larger dependencies,
until the minimal dependencies that hold are found.

Theworst casetime complexity of thealgorithmwithre-
spect to the number of attributesis exponential, but thisis
inevitable since the number of minimal dependencies can



be exponential in the number of attributes [10, 9]. How-
ever, if the number of rows increases but the set of depen-
dencies stays the same, the time increases only linearly in
the number of rows. To our knowledge, only one previous
algorithm can claim this [18]. Other algorithms based on
sorting could perhaps be implemented in linear time, e.g.,
by using hashing, but we are not aware of such implementa-
tions. Thelinearity makesthe d gorithm especially suitable
for relations with large number of rows.

Experimental resultsshow that thealgorithmiseffective
in practice, and that it makes the discovery of functiona
and approximate dependencies feasible for relations with
even hundreds of thousands of rows. Dependency discov-
ery tasks that have been reported to take minutes or even
hours are solved with the new agorithmin seconds or frac-
tions of a second on a PC.

Related work Several algorithms for the discovery of
functional dependencies have been presented [7, 2, 9, 18,
17, 11, 1]. We review these algorithms and compare them
with our method in Section 6. The complexity of discover-
ing functiona dependencies has been studied in 8, 10, 9].

Approximate functional dependencies have been con-
sidered in [5, 15, 6, 3]. Kivinen and Mannila [5] define
several measures for the error of a dependency, and derive
boundsfor discovering dependencieswith errors. Themea-
sure g3 isone of their measures.

The use of partitions to describe and define functional
and approximate dependencies has been suggested in [3]
paralld to our work. There the emphasisis on aconceptual
viewpoint, and no algorithms are given.

Extended version An extended version of this ar-
ticle, with proofs and additional details, is available
as [4]. An implementation of the algorithm can be
obtained via the WWW page at http://www.cs.helsinki.fi/
research/fdk/datamining/tane/.

2 Partitionsand dependencies

Informally, adependency X — A holdsif all rows that
agreeon X aso agreeon A. Our approach to the discovery
of dependencies is based on considering sets of rows that
agree on some set of attributes. We describe thisidea more
formally by applying equivalence classes and partitionson
relations.

Partitions Two rows ¢ and u are equivalent with respect
toagiven set X of attributesif ¢[A] = u[A]foral AinX.
Any attributeset X partitionsthe rows of the relation into
equivalence classes. We denote the equivalence class of a
row ¢ € r withrespect toagivenset X C R by [{]x, i.e,
[tlx = {u € r | t[4] = u[d]fordl A € X}. The set
7x = {[t]x | t € r} of equivalence classes is a parti-
tion of » under X. That is, 7x isa collection of digoint
sets (equivalence classes) of rows, such that each set has a

unique vaue for the attribute set X', and the union of the
sets equals therelation ». Therank |x| of a partition = is
the number of equivalence classesin .
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Figure1: An examplerdation.

Examplel Consider therelationin Figure 1. Attribute A
hasvalue 1 only onrows#, and -, so they form an equiva-
lenceclass [t1]{4) = [t2]{a} = {1, 2}. Thewholepartition
with respect to A is7y4; = {{1,2},{3,4,5},{6,7,8}}.
The partition with respect to {B,C'} is mpcy =
({1}, {2}, {3.4}, {5}, {6}, {7} {8}}. 0

Partition refinement The concept of partition refinement
gives amost directly functiona dependencies. A partition
7 isarefinement of another partition ' if every equivalence
classin 7 isasubset of some equivaence class of /. We
have the following lemma

Lemmal A functional dependency X — A holdsif and
onlyif mx refines ;.

Example2 Continuing Example 1, to find out whether the
dependency { B, ('} — A holds, we can compare the par-
titionsmyp ¢ and 7y 4 and check whether 7y p ) refines
mi4y. Intherelation of Figure 1, the dependency holds
since each equivalence classin 7y g ¢} istotally contained
by some equivaenceclassin my 3.

The dependency {A} — B does not hold in the fig-

ure: the equivalence class [t3]{4; = {3,4,5}, forin-
stance, is not contained in any equivalenceclassin gy =
{{1},{2,3,4},{5,6},{7,8}}. u

There is an even simpler test for whether X — A
holds or not. If 7x refines w4y, then adding A to X
doesnot break any equivalenceclassesof 7x ; thusmx a3
equasmy . Ontheother hand, since 7 x4} dwaysrefines
Tx, Txu{a} Cannot have the same number of equivalence
classes as mx unless x4y and mx are equa. We have
shown the following lemma.

Lemma?2 A functional dependency X — A holdsif and
onlyif [7x| = |7xuqayl-
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Figure2: The set containment latticefor { A, B, C, D}: the
search space of al possibleleft-hand sides.

Approximatedependencies Recall that theerror g5(X —
A) of adependency X — A isthe minimum fraction of
rows that must be removed fromtherelationfor X — A to
hold. Theerror g3(X — A) can becomputed from the par-
titionsmx and 7xuy4) inthefollowingway. Any equiva-
lence class ¢ of 7 x isthe union of one or more equivaence
classes ¢, ¢y, ... of mxyyay, and the rowsin all but one
of the ¢;s must be removed for X — A to hold. The min-
imum number of rows to remove is thus the size of ¢ mi-
nusthe size of thelargest of the ¢;s. Summing that over all
equivalence classes ¢ of 7x givesthetotal number of lines
to remove. Thus, we have

g3(X — A) =
1- Z max{|c| | ¢ € mxupay andd Cc}/|r].
CETx

An algorithm to compute g5(X — A) given the partitions
mx and mxy a4y isdescribedin [4].

3 Search

To find al minimal non-trivial dependencies, we search
through the space of non-trivia dependencies and test the
validity and minimality of each dependency. The valid-
ity test uses partitions as described in the previous section.
In addition, we need to do the following tasks efficiently:
(1) compute partitions, and (2) test minimality.

The collection of all possible |eft-hand sides of depen-
dencies is the collection of dl attribute sets. They consti-
tute a set containment lattice such as in Figure 2. In many
data mining applications, such lattices have been searched
successfully using a levelwise algorithm [12]. The level-
wisealgorithm startsthe search from the singleton sets, and
works its way through the lattice level by level until the
minimal dependenciesthat hold are found. During thislev-
elwise search, fal se dependencies are liminated as early as

possible, in order to reduce the search space. This pruning
is described in Section 4.

We consider al possible right-hand sides with a single
breadth-first or levelwise pass through the lattice. Thereis
a one-to-one correspondence between the edges of the lat-
tice and the non-trivial dependencies; we view an edge be-
tween sets X and X U { A} as representing the non-trivia
dependency X — A.

Theefficiency of thelevelwisea gorithmisbased on re-
ducing the computation on each level by using resultsfrom
previouslevels. Intherest of thissection, we describe how
to use previouslevelsto solve efficiently the tasks of com-
puting partitionsand testing minimality.

Computingpartitions Wedo not need to computethe par-
titionsfrom scratch for every set of attributeswe consider.
Instead, when we work our way through the lattice, we can
compute a partition as a product of two earlier partitions:
the product of two partitions =’ and =", denoted =’ - 7"/, is
theleast refined partition 7 that refines both ' and #”/. We
have the following result.

Lemma3 Forall X, Y C R, nx - 7y = Txuy-

We compute the partitions 7y 4, for each A € R, di-
rectly from the database. Partitions rx, for | X| > 2, are
computed as aproduct of partitionswith respect to two sub-
setsof X. Any two different subsets of size | X| — 1 will
do, which is convenient for the levelwise algorithm since
we only need partitionsfrom the previouslevel.

Testing minimality When the algorithm is processing a
set X, it will test dependencies of the form X \ {A} —
A, where A € X. Thisalows validity testing based on
Lemma 2, since both 7x and 7x\(4; have aready been
computed. Totest theminimality of X\{4} — A, weneed
to know whether Y\ {A} — A holdsfor some proper sub-
set Y of X. Thisinformationisstoredintheset C(X\{A4})
of right-hand side candidates of X \ {A} for al A.

Moreexactly, if A € C(X) foragivenset X, then 4 has
not been found to depend on any proper subset of X, i.e,
either A € X and X \ {A} — A doesnot hold, or A €
R\ X. Formaly, the collection C( X') of rhs candidates of
ast X CRis

C(X)={AeX|X\{A} — Adoesnot hold} U R\ X.

To find minimal dependencies, it suffices to test dependen-
ciesX \ {A} — A,where A € X and A € C(X \ {B})
fordl B € X.

Example3 Assume that the algorithm is considering the
set X = {4,B,C},and that {C} — Aisavalid de
pendency. Since {C'} — A holds, we have that A ¢
CH{A,C}) = C(X \ {B}),and {B,C} — A isthusnot
minimal. d



4 Pruning

Pruning the search space means reducing the number of
dependencies we have to consider. For example, if we find
that X — A holds, thenY — A isnot minimal for any
proper superset Y of X. Thus, we can automatically dis-
card Y — A from consideration.

The levelwise algorithm has a powerful mechanism for
pruning the search space. When thealgorithmisprocessing
the level of the lattice that contains a set X', we can with
one stroke cut off all supersetsof X from thelattice simply
by deleting X [12]. If some property of X tellsusthat no
superset of X isinteresting to us, we just delete X. In our
case, empty rhs candidate set is such aproperty. That is, if
C(X) = 0,thenC(Y) = 0 for dl supersets Y of X, and no
dependency of theform Y\ {4} — A can beminimal.

We can further improve the pruning based on the prop-
erties of dependencies stated in the following lemma

Lemma4d Let B € X andlet X \ {B} — B beavalid
dependency. (1) If X — A holds, then X \ {B} — 4
holds. (2) If X isasuperkey, then X \ { B} isa superkey.

Rhscandidatepruning Thefirst part of thelemmaallows
us to remove additiond attributes from the rhs candidate
sets and, consequently, make pruning by empty rhs candi-
date set more effective. The resulting collection C*(X) of
rhst candidatesof aset X C Ris

CT(X)={AeR|fordl B e X,
X\ {4, B} — B doesnot hold}.

The following lemma shows that we can use the rhs™
candidatesto test theminimality of adependency just aswe
would use the rhs candidates.

Lemma5 Let A € X andlet X \ {A} — A beavalid
dependency. Thedependency X \ {4} — A isminimal if
and onlyif, for all B € X,wehave A € CT(X \ {B}).

Key pruning When akey is found during the search of
dependencies, additional pruning methods can be applied.
Recall that an attribute set X isa superkey if no two rows
agreeon X, and akey if it isa superkey and no proper sub-
set of it isasuperkey. Normally, adependency X — A is
tested when X U{ A} isprocessed becausewe need 7 x4}
for validity testing. However, if X isasuperkey then X' —
Alisawaysvalid and wedo not need X U {A}.

Now, consider a superkey X that is not a key. Obvi-
ously, adependency X — Aisnotminimal forany A ¢ X.
Furthermore, if A € X and X \ {A} — A holds, then, by
the second part of Lemma 4, X \ {4} isasuperkey and we
do not need 7 x for testing thevalidity of X \{A} — A. In
other words, wehavenousefor X or = x infinding minimal
dependencies. Hence, we can delete all keys and cut off all
of their supersets, i.e., the superkeys that are not keys.

5 Algorithms

To find al vaid minima non-trivial dependencies, we
search the set containment latticein alevelwise manner. A
level L, isthecollection of attribute sets of size ¢ such that
thesetsin 7, can potentially be used to construct dependen-
cies based on the considerations of the previous sections.
Westart with L, = {{A} | A € R}, and compute L, from
Ly, Ls from L+, and so on, according to theinformationwe
obtain during the a gorithm.

Algorithm TANE: levelwise search of dependencies.

Lo == {0}

Ct(®) =R

L= {{A} | A€ R}

{:=1

while L, # 0
COMPUTE-DEPENDENCIES(L;)
PRUNE(L;)
Lsq1 := GENERATE-NEXT-LEVEL (L)
=041

OO ~NOOUTD,WNPE

Generating levels The procedure GENERATE-NEXT-
LEVEL computes thelevel L,.; from L,. Theleve L,;14
will contain only those attribute sets of size ¢ + 1 which
have dl their subsets of size ¢ in L,. The pruning methods
guarantee that no dependencies are lost. The specification
of GENERATE-NEXT-LEVEL iS

Lipi ={X||X|=¢+1andforal Y
withY C X and|Y| = ¢ wehaveY € L,}.

GENERATE-NEXT-LEVEL aso computes the partition for
each new attribute set generated. Algorithms are given
in[4].

Procedure COMPUTE-DEPENDENCIES(L,)

for each X € L, do
CHX) = Naex CHX\{4})
for each X € L, do
for each A € X NC*(X) do
if X\ {4} — Aisvalidthen
output X \ {4} — A
remove A from Ct(X)
removedl Bin R\ X fromCt(X)

O~NO U WNPR

By Lemma 5, steps 2, 4 and 5 guarantee that the procedure
outputs exactly the minimal dependencies of theform X \
{A} — A,whereX € L,and A € X. Thevdidity testing
online5isbased on Lemma 2.

COMPUTE-DEPENDENCIES(/,) aso computes the sets
Ct(X) fordl X € L,. Thefollowinglemma shows that
thisis done correctly.



Lemma6 For all Y € L,_q, let CT(Y) be cor-
rectly computed. After executing the procedure COMPUTE-
DEPENDENCIES(L; ), CT (X)) iscorrectly computed for all
Xel,.

Line 8 implements the difference between ¢+ (X) and
C(X). If that linewas removed, the algorithm would work
correctly, but pruning might be less effective.

Procedure PRUNE(Ly)

1 foreach X € I, do

2 if CT(X)=0do

3 delete X from L,

4 if X isa(super)key do

5 foreach A € C*(X)\ X do

6 if A€ Npex CHX U{A}\ {B}) then
7 output X — A

8 delete X from L,

Procedure PRUNE implements the two pruning rules de-
scribed in Section 4. By the first rule, X is deleted if
C*(X) = 0. By thesecond rule, X isdeleted if X isakey.
In the latter case, the algorithm may aso output some de-
pendencies. In[4], weshow that the pruning does not cause
the algorithm to miss any dependencies.

Approximate dependencies Algorithm TANE can be
modified so that it computes all minimal approximate de-
pendencies X — A with g3(X — A4) < ¢, for
a given threshold value . The key modification is to
change the validity test on line 5 of procedure COMPUTE-
DEPENDENCIES t0o

5 if g3(X \ {A} — A) < ¢ then

In addition, line 8 of COMPUTE-DEPENDENCIES has to be
removed or changed to

8 if X\ {4} — A holdsexactly then
9 removeal Bin R\ X fromCt(X)

Optimizations In[4], wegivetwo methodsthat reducethe
time and space requirement of the partition computations.
Thefirst onereplaces partitionswith amore compact repre-
sentation, and the second one isamethod to quickly bound
the g5 error.

6 Analyss

Worst case analysis The time and space complexities of
the TANE agorithm depend on the number of sets in the
levels L, called the size of alevel. Lét s,,,4, bethe size of
thelargest level, and s the sum of the sizes of thelevels. In
theworst case, s = O(2/fl) and s,,,0. = O(2151/\/|R]).
Another factor isthe number of keys, denoted by . Inthe
worst case, k = O(smar) = O(21E1/\/|R]).

In summary, the dagorithm has time complexity
O(s(Jr| + |RI*) + k|R|?) and space complexity
O($maz(|7| + |R])). The following theorem gives
upper boundsfor the time and space complexitiesin terms
of the size of the input.

Theorem 1 Algorithm TANE has time complex-
ity O((|r] + |R[**)2/E]) and space complexity

O((rl+ [RI)27//IR]).

Approximate vaidity testing needs O(|r|) timein con-
trast to the O(1) time of exact vaidity testing. Thus, the
time complexity of finding approximate dependencieswith
TANE isO(v|r| + s|R|* + k|R|?), where v is the number
of vaidity tests done. Intheworst case, v = s|R|/2 =
O(|R|2H), and thusthetime in terms of the size of thein-
putisO((|r[|R| + |R|*?)2!5).

Practical analysis Dueto the structure of the dependency
set and pruning, s and s,,,., can be significantly smaller
than the worst case analysis shows. The number % of keys
isalmost aways much smaller than s,,,4, -

We have implemented the attribute sets as bit vectors
of O(1) words and the random access with hashing. This
means, in practice, that set operations and random access
take constant time. To reduce the main memory require-
ment of the algorithm, the partitions can be stored on disk.

The properties of the algorithm after the above modifi-
cations are summarized bel ow.

e CPUtime: O(s(|r| + |R|) + k|R|?)

e disk accesses: O(s) accesses of size O(|r|)

e main memory requirement: O(|r||R|+ smaz)
o disk space requirement: O(s,az|7|)

In the approximate dependency version of TANE, valid-
ity testing takes more time and partitions are needed more
often. Because of the latter, we only consider the case
where partitions are not stored on disk. The approximate
dependency algorithmworksin O(v|r|+s| R|+k|R|?) time
and O(smae|r|) Space. However, because there are more
approximately valid dependencies, pruning can be much
more effective reducing s, smaz, and v.

Comparisonto other algorithms Oneof the main advan-
tages of the new agorithmisthelinear dependency on the
number of rows in the relation (for a fixed set of depen-
dencies). To our knowledge, the only previously published
practical algorithmachieving thisisby Schlimmer [18, 19],
who uses decision trees for validity tests. The decision tree
approach isroughly equivalent to computing each partition
from partitionswith respect to singletons. It isslower by a
factor O(| R|) thanusing partitionstheway wedo. All other



Table 1: Performance of the algorithmson real life databases.

Database Time (s)

Name | Irl [IRI] N | TANE | TANE/MEM | FDEP
Lymphography 148 19 | 2730 || 68.2 24.0 88.0
Hepatitis 155 20 | 8250 || 29.6 141 663
Wisconsin breast cancer 699 11 | 46 0.76 0.25 15.0
Wisconsin breast cancer x 64 44736 | 11 | 46 80.5 23.0 17521
Wisconsin breast cancer x 128 | 89472 | 11 | 46 173 247 *
Wisconsin breast cancer x 512 | 357888 | 11 | 46 884 * *
Adult 48842 | 15 | 85 1451 * *
Chess 28056 | 7 1 3.63 2.03 6685

agorithms that we know of have Q(|r|?) or Q(|r|log|r|)
dependency on the number of rows. Many of these could
actualy be implemented to run in linear time as well, if
sorting is not realized by using comparisons but by using
other mechanisms instead, e.g., hashing. However, we are
not aware of such implementations.

Schlimmer aso used the levelwise search strategy, as
did Bell and Brockhausen [1]. Both uselesseffective prun-
ing criteria than we do, i.e, their algorithms may end up
computing larger part of thelattice.

Thereare also a gorithmsthat search thelatticeinamore
depth-first like manner [11, 9]. Such a search alows cri-
teria for the pruning of the search space that are differ-
ent from the breath-first search of the levelwise algorithm.
A comparison of the effectiveness of pruning in the two
approaches is difficult. However, validity and minimality
testing, and the mechanisms of pruning are less efficient in
the depth-first algorithms.

Still another approach isto first compute all maximal in-
valid dependencies by a pairwise comparison of all rows,
and then computethe minimal valid dependenciesfromthe
maximal invalid dependencies[7, 2,9, 17]. Thefirst part of
such agorithms requires Q(|r|?) time with respect to the
number of rows but is polynomial both in the number of
rows and the number of attributes, whilethe second part re-
quires exponentia timein the number of attributes but has
no dependency on the number of rows. The agorithm by
Savnik and Flach [17] implements the second part with a
depth-first search. During the search, the maximal invalid
dependencies are used both for testing validity of depen-
dencies and for pruning the search space. In Section 7, we
present results of an experimental comparison between our
algorithm and the algorithm of Savnik and Flach.

7 Performance

We have implemented the TANE agorithm described
in this paper and experimented with it to find out how

it performs in practice. We have two implementations
of the agorithm. The first, scalable version, denoted
simply as TANE, keeps most of the partitions on disk as
described in Section 6. The other version, TANE/MEM,
works completely in main memory. Both are avail-
able via the WWW page a http://www.cs.helsinki fi/
research/fdk/datamining/tane/.

To provide perspective, we performed the same exper-
iments with the FDEP program of Savnik and Flach. The
FDEP implementation is based on the algorithm described
in[17] and isavailable at [16].

All agorithms, including FDEP, are written in C and
were compiled with GNU C compiler with full optimiza
tions. All experimentswere run on the same 233 MHz Pen-
tium PC with 64 MB of memory running Linux operating
system. The times below are real times elapsed in the ex-
periments as reported by Unix t i me command. We report
“wall clock” timesrather than CPU timesin order to make
the cost of 1/0 processing better visible and to give a fair
account of the cost of swapping of TANE/MEM with large
databases.

Weran thealgorithmson anumber of real lifedatabases.
The databases and their descriptions are available on the
UCI Machine Learning Repository [13]. The number of
rows, columns, and minimal dependencies found (V) in
each database are shown in Table 1. The datasets labeled
“Wisconsin breast cancer x n” are concatenations of n
copies of the Wisconsin breast cancer data. The set of de-
pendencies is the same in al of them. To avoid duplicate
rows, all valuesin each copy were appended with a unique
string specific to that copy.

The top three rows of Table 1 show the performance of
the algorithms on three small databases. Our agorithms
perform competitively inall cases. The Lymphography and
Hepatitis databases are apparently very similar. However,
our algorithms are much faster on Hepatitis than on Lym-
phography while FDEP is an order of magnitude faster on



Table 2: Performance of TANE/MEM on approximate dependency discovery.

e=20.0 ¢ =0.01 e=0.05 e=10.25 e=0.5
Database N Time(® | N Tme(| N Tme(s| N Time(s) | N Time(s)
Lymphography 2730 89.1 3388 222 7031 4.89 578 0.32 21 0.01
Hepatitis 8250 16.6 9666 14.6 6617 9.27 350 0.06 160 0.01
W. breast cancer 46 0.28 113 0.27 126 0.23 181 0.12 18 0.02
W. breast cancer x 64 | 46 255 113 26.7 126 20.3 181 126 18 3.89
Chess 1 1.99 1 255 1 3.10 2 40 17 359

Table 3: Previously reported performance results and new results (running times in seconds). Numbers taken from other
articles are marked with a“dag” (1); the source is given at the top of the column.

Database Bell Bitton | FDEP | Schlimmer | TANE
Name | 7| | |R| | | X| | N egd[l] |ed][2 [17] [19]
Lymphography* 150 [ 19| 7 | 641 || >33hf - 540 sf - -
Lymphography 148 19 | 19 | 2730 - - 88s - 68.2s
Rd1l 7 7 7 8 - 0.02sf - - -
Rel6 236 60 | 60 56 - 994 sf - - -
W. breast cancer 699 | 11 | 4 35 259 st - 15s 4440st | 0.34s
W. breast cancer 699 11| 11 46 533 - 15s - 0.76 s
W. breast cancer x 128 | 89472 | 11 | 11 46 - - * - 173s
Books 9931 9 9 25 17040 sf - - - -

Lymphography than on Hepatitis. Thisis a good demon-
stration of how different approaches to pruning the search
space have different effects.

The bottom part of Table 1 reports the performance of
TANE on five large databases. For TANE/MEM and FDEP,
some experiments are marked with (*) as infeasible; for
TANE/MEM because of the lack of main memory, and for
FDEePif it did not finishwithin 5 hours. TANE, on the other
hand, found the dependencies in minutes and was never in
danger of running out of memory.

Table 2 shows performance results for TANE/MEM in
the approximate dependency discovery task, for different
thresholds €. Results for the Hepatitis, Wisconsin breast
cancer, and Chess datasets are al so presented graphicaly in
Figure3: N, /N, standsfor the number of approximate de-
pendencies found relative to the case for functional depen-
dencies; similarly, Time. /Time, denotes the relative dis-
covery time.

Overall, approximate dependencies are found ef-
ficiently. The number of dependencies found varies
differently for each data set. Within a reasonable range
0 < ¢ < 0.1, the time either increases dlightly (Chess
data set), decreases dightly (Wisconsin breast cancer), or
drops significantly (Hepatitis). The drop is even stronger

with the Lymphography data set (shown only in the table).
Approximate dependencies could not be discovered in the
Adult data set with TANE/MEM due to the lack of main
memory.

To find out how the number of rows affects the algo-
rithms, weran aseries of experimentswithincreasing num-
ber of rows. The relations were formed by concatenating
multiple copies of the Wisconsin breast cancer data as de-
scribed earlier. Theresultsareillustratedin Figure4. FDEP
performs almost quadratically in the number of rowswhile
our agorithms are very near linear. The sharp turnin the
curveof TANE/MEM iscaused by thea gorithm running out
of main memory and starting to use swap space. With the
largest relation (357888 rows, 512 times Wisconsin breast
cancer), TANE used about 22 MB of main memory and
about 235 MB of temporary disk space.

The current implementationsof our algorithms have not
been optimized for memory and disk space consumption.
With some form of data compression, the feasible range of
our algorithms can be extended further. Even in their cur-
rent form our algorithms can handle much larger databases
than FDEP. Previoudy reported results are even worse
[2,17,19, 1], see Table 3.

Thetable contains results publishedin previousarticles,
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Figure 3: Performance of TANE/MEM for approximate de-
pendencies in the Hepatitis (top), Wisconsin breast cancer
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al marked with ("), and results we obtained using TANE
and the publicly available version of FDEP. Many of the
databases used in previous articles are not publicly avail-
able, so results are missing altogether; these are marked
with (-). Sincethetests have been runin different environ-
ments direct comparisons are not possible. Theresults are,
however, trend-setting.

Few notesarein order. First, | X'| denotes an upper limit
for the number of attributes in the left-hand side of a de-
pendency. Limiting the maximum size makes thetask eas-
ier. NV stands for the size of the results, i.e., the number of
dependencies output. The outputs are, however, different:
some algorithms only output a (minimal) cover of the de-
pendencies that hold.

Second, the Lymphography data set marked with (*),
used by Bell and Brockhausen [1] aswell as by Savnik and
Flach [17], isdifferent from the one availablefrom the UCI
repository.

Third, it should be noted that Bell and Brockhausen [1]
are the only onesto report results obtained on top of acom-
mercia rdbms, whereas dl others useflat files and special -
ized access methods.

For an overview, consider the Wisconsin breast cancer
data set with the left-hand side limit | X| = 4. Although
small and restricted, it is the only case for which there are
results for four algorithms. TANE discovers dependencies
in 0.34 seconds, FDEP in 15 s (larger by a factor ¢ =
44), Bell and Brockhausen [1] in 259 s (¢ = 760), and
Shclimmer [19] in 4440 s (¢ = 130000).

8 Concludingremarks

We have given a new algorithm for the discovery of
functional and approximate dependencies from relations.
The approach is based on considering partitions of the re-
lation, and deriving vaid dependencies from the partitions.
The algorithm searches for dependenciesin a breadth-first
or levelwise manner. We showed how the search space can
be pruned effectively, and how the partitionsand dependen-
cies can be computed efficiently. Experimental results and
comparisons demonstrate that the algorithmisfast in prac-
tice, and that its scale-up properties are superior to previ-
ous methods. The method works well with relations of up
to hundreds of thousands of rows.

The method is at itsbest when the dependencies are rel-
atively small. When the size of the (minimal) dependencies
isroughly one half of the number of attributes, the number
of dependencies isexponentia in the number of attributes,
and the situation is more or less equally bad for any ago-
rithm. When the dependencies are larger than that, the lev-
elwise method that starts the search from small dependen-
cies obvioudly is further from the optimum. The levelwise
search can, in principle, be altered to start from the large
dependencies. Then, however, the partitions could not be

computed as efficiently.

There are al so other interesting datamining applications
for partitions. Association rules between attribute-value
pairs can be computed with a small modification of the
present agorithm. An equivalence class corresponds then
to a particular value combination of the attribute set. By
comparing equivalence classesinstead of full partitions, we
can find association rules. A possiblefutureresearch direc-
tionisto usethe unified view that partitionsprovidetofunc-
tiona dependencies and association rules, independently
observed also in [3], to find an apt generaization of both
and to develop an agorithm for discovering such rules.
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