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Abstract
Discovery of functional dependencies from relations has

been identified as an important database analysis tech-
nique. In this paper, we present a new approach for find-
ing functional dependencies from large databases, based
on partitioning the set of rows with respect to their attribute
values. The use of partitions makes the discovery of ap-
proximate functional dependencies easy and efficient, and
the erroneous or exceptional rows can be identified eas-
ily. Experiments show that the new algorithm is efficient in
practice. For benchmark databases the running times are
improved by several orders of magnitude over previously
published results. The algorithm is also applicable to much
larger datasets than the previous methods.

1 Functional and approximate dependencies
Functional dependencies are relationships between at-

tributes of a relation: a functional dependency states that
the value of an attribute is uniquely determined by the val-
ues of some other attributes. The discovery of functional
dependencies from relations has received considerable in-
terest (e.g., [2, 10, 17, 19, 11, 1, 6, 3]). Automated database
analysis is, of course, interesting for knowledge discov-
ery and data mining (KDD) purposes, and functional de-
pendencies have applications in the areas of database man-
agement, reverse engineering [14, 20], and query optimiza-
tion [21].

Formally, a functional dependency over a relation
schema R is an expression X ! A, where X � R andA 2 R. The dependency holds or is valid in a given
relation r over R if for all pairs of rows t; u 2 r we have:
if t[B] = u[B] for all B 2 X, then t[A] = u[A] (we also
say that t and u agree on X and A). A functional depen-
dency X ! A is minimal (in r) if A is not functionally
dependent on any proper subset of X, i.e., if Y ! A does
not hold in r for any Y � X. The dependency X ! A
is trivial if A 2 X. The central task we consider is the�Also at Rolf Nevanlinna Institute, University of Helsinki.

following: given a relation r, find all minimal non-trivial
dependencies that hold in r.

An approximate dependency [5] is a functional depen-
dency that almost holds. Such dependencies arise in many
databases when there is a natural dependency between at-
tributes, but some rows contain errors or represent excep-
tions to the rule. The discovery of unexpected but mean-
ingful approximate dependencies seems to be an interesting
and realistic goal in many data mining applications.

There are many possible ways of defining the approxi-
mateness of a dependency X ! A. The definition we use
is based on the minimum number of rows that need to be re-
moved from the relation r forX ! A to hold in r: the errorg3(X ! A) = 1 � (maxfjsj j s � r and X ! A holds insg)=jrj [5]. The measure g3 has a natural interpretation as
the fraction of rows with exceptions or errors affecting the
dependency. Given an error threshold ", 0 � " � 1, we say
that X ! A is an approximate dependency if and only ifg3(X ! A) is at most ". In this paper, we also consider the
approximate dependency inference task: given a relation r
and a threshold ", find all minimal non-trivial approximate
dependencies.

We describe a new approach to the discovery of both
functional and approximate dependencies. The major in-
novation is a novel way of determining whether a depen-
dency holds or not. The idea is to maintain information
about which rows agree on a set of attributes. Formally, the
approach can be described using equivalence classes and
partitions. A major advantage of the use of partitions is that
it allows efficient discovery of approximate dependencies.

The algorithm is based on the levelwise algorithm that
has been used in many data mining applications [12]. It
starts from dependencies with a small left-hand side, i.e.,
from the ones that are not very likely to hold. The algo-
rithm then works towards larger and larger dependencies,
until the minimal dependencies that hold are found.

The worst case time complexity of the algorithm with re-
spect to the number of attributes is exponential, but this is
inevitable since the number of minimal dependencies can



be exponential in the number of attributes [10, 9]. How-
ever, if the number of rows increases but the set of depen-
dencies stays the same, the time increases only linearly in
the number of rows. To our knowledge, only one previous
algorithm can claim this [18]. Other algorithms based on
sorting could perhaps be implemented in linear time, e.g.,
by using hashing, but we are not aware of such implementa-
tions. The linearity makes the algorithm especially suitable
for relations with large number of rows.

Experimental results show that the algorithm is effective
in practice, and that it makes the discovery of functional
and approximate dependencies feasible for relations with
even hundreds of thousands of rows. Dependency discov-
ery tasks that have been reported to take minutes or even
hours are solved with the new algorithm in seconds or frac-
tions of a second on a PC.

Related work Several algorithms for the discovery of
functional dependencies have been presented [7, 2, 9, 18,
17, 11, 1]. We review these algorithms and compare them
with our method in Section 6. The complexity of discover-
ing functional dependencies has been studied in [8, 10, 9].

Approximate functional dependencies have been con-
sidered in [5, 15, 6, 3]. Kivinen and Mannila [5] define
several measures for the error of a dependency, and derive
bounds for discovering dependencies with errors. The mea-
sure g3 is one of their measures.

The use of partitions to describe and define functional
and approximate dependencies has been suggested in [3]
parallel to our work. There the emphasis is on a conceptual
viewpoint, and no algorithms are given.

Extended version An extended version of this ar-
ticle, with proofs and additional details, is available
as [4]. An implementation of the algorithm can be
obtained via the WWW page at http://www.cs.helsinki.fi/
research/fdk/datamining/tane/.

2 Partitions and dependencies
Informally, a dependency X ! A holds if all rows that

agree on X also agree on A. Our approach to the discovery
of dependencies is based on considering sets of rows that
agree on some set of attributes. We describe this idea more
formally by applying equivalence classes and partitions on
relations.

Partitions Two rows t and u are equivalent with respect
to a given set X of attributes if t[A] = u[A] for all A in X.
Any attribute set X partitions the rows of the relation into
equivalence classes. We denote the equivalence class of a
row t 2 r with respect to a given set X � R by [t]X, i.e.,[t]X = fu 2 r j t[A] = u[A] for all A 2 Xg: The set�X = f[t]X j t 2 rg of equivalence classes is a parti-
tion of r under X. That is, �X is a collection of disjoint
sets (equivalence classes) of rows, such that each set has a

unique value for the attribute set X, and the union of the
sets equals the relation r. The rank j�j of a partition � is
the number of equivalence classes in �.

Row Id A B C D
1 1 a $ Flower
2 1 A £ Tulip
3 2 A $ Daffodil
4 2 A $ Flower
5 2 b £ Lily
6 3 b $ Orchid
7 3 C £ Flower
8 3 C # Rose

Figure 1: An example relation.

Example 1 Consider the relation in Figure 1. Attribute A
has value 1 only on rows t1 and t2, so they form an equiva-
lence class [t1]fAg = [t2]fAg = f1; 2g. The whole partition
with respect to A is �fAg = ff1; 2g; f3; 4;5g;f6;7;8gg:
The partition with respect to fB;Cg is �fB;Cg =ff1g; f2g; f3;4g; f5g; f6g;f7g;f8gg: �
Partition refinement The concept of partition refinement
gives almost directly functional dependencies. A partition� is a refinement of another partition�0 if every equivalence
class in � is a subset of some equivalence class of �0. We
have the following lemma.

Lemma 1 A functional dependency X ! A holds if and
only if �X refines �fAg.

Example 2 Continuing Example 1, to find out whether the
dependency fB;Cg ! A holds, we can compare the par-
titions�fB;Cg and �fAg and check whether �fB;Cg refines�fAg. In the relation of Figure 1, the dependency holds
since each equivalence class in �fB;Cg is totally contained
by some equivalence class in �fAg.

The dependency fAg ! B does not hold in the fig-
ure: the equivalence class [t3]fAg = f3; 4; 5g, for in-
stance, is not contained in any equivalence class in �fBg =ff1g; f2; 3;4g;f5;6g;f7;8gg. �

There is an even simpler test for whether X ! A
holds or not. If �X refines �fAg, then adding A to X
does not break any equivalence classes of �X ; thus�X[fAg
equals�X . On the other hand, since �X[fAg always refines�X , �X[fAg cannot have the same number of equivalence
classes as �X unless �X[fAg and �X are equal. We have
shown the following lemma.

Lemma 2 A functional dependency X ! A holds if and
only if j�X j = j�X[fAgj.
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Figure 2: The set containment lattice for fA;B;C;Dg: the
search space of all possible left-hand sides.

Approximate dependencies Recall that the error g3(X !A) of a dependency X ! A is the minimum fraction of
rows that must be removed from the relation for X ! A to
hold. The error g3(X ! A) can be computed from the par-
titions �X and �X[fAg in the following way. Any equiva-
lence class c of �X is the union of one or more equivalence
classes c01; c02; : : : of �X[fAg, and the rows in all but one
of the c0is must be removed for X ! A to hold. The min-
imum number of rows to remove is thus the size of c mi-
nus the size of the largest of the c0is. Summing that over all
equivalence classes c of �X gives the total number of lines
to remove. Thus, we haveg3(X ! A) =1� Xc2�X max�jc0j �� c0 2 �X[fAg and c0 � c	=jrj:
An algorithm to compute g3(X ! A) given the partitions�X and �X[fAg is described in [4].

3 Search
To find all minimal non-trivial dependencies, we search

through the space of non-trivial dependencies and test the
validity and minimality of each dependency. The valid-
ity test uses partitions as described in the previous section.
In addition, we need to do the following tasks efficiently:
(1) compute partitions, and (2) test minimality.

The collection of all possible left-hand sides of depen-
dencies is the collection of all attribute sets. They consti-
tute a set containment lattice such as in Figure 2. In many
data mining applications, such lattices have been searched
successfully using a levelwise algorithm [12]. The level-
wise algorithm starts the search from the singleton sets, and
works its way through the lattice level by level until the
minimal dependencies that hold are found. During this lev-
elwise search, false dependencies are eliminated as early as

possible, in order to reduce the search space. This pruning
is described in Section 4.

We consider all possible right-hand sides with a single
breadth-first or levelwise pass through the lattice. There is
a one-to-one correspondence between the edges of the lat-
tice and the non-trivial dependencies: we view an edge be-
tween sets X and X [ fAg as representing the non-trivial
dependency X ! A.

The efficiency of the levelwise algorithm is based on re-
ducing the computation on each level by using results from
previous levels. In the rest of this section, we describe how
to use previous levels to solve efficiently the tasks of com-
puting partitions and testing minimality.

Computing partitions We do not need to compute the par-
titions from scratch for every set of attributes we consider.
Instead, when we work our way through the lattice, we can
compute a partition as a product of two earlier partitions:
the product of two partitions �0 and �00, denoted �0 � �00, is
the least refined partition � that refines both �0 and �00. We
have the following result.

Lemma 3 For all X;Y � R, �X � �Y = �X[Y .

We compute the partitions �fAg, for each A 2 R, di-
rectly from the database. Partitions �X , for jXj � 2, are
computed as a product of partitionswith respect to two sub-
sets of X. Any two different subsets of size jXj � 1 will
do, which is convenient for the levelwise algorithm since
we only need partitions from the previous level.

Testing minimality When the algorithm is processing a
set X, it will test dependencies of the form X n fAg !A, where A 2 X. This allows validity testing based on
Lemma 2, since both �X and �XnfAg have already been
computed. To test the minimality ofXnfAg ! A, we need
to know whether Y nfAg ! A holds for some proper sub-
set Y ofX. This information is stored in the set C(XnfAg)
of right-hand side candidates of X n fAg for all A.

More exactly, ifA 2 C(X) for a given set X, thenA has
not been found to depend on any proper subset of X, i.e.,
either A 2 X and X n fAg ! A does not hold, or A 2R nX. Formally, the collection C(X) of rhs candidates of
a set X � R isC(X) = fA 2 X j X nfAg ! A does not holdg[RnX:
To find minimal dependencies, it suffices to test dependen-
cies X n fAg ! A, where A 2 X and A 2 C(X n fBg)
for all B 2 X.

Example 3 Assume that the algorithm is considering the
set X = fA;B;Cg, and that fCg ! A is a valid de-
pendency. Since fCg ! A holds, we have that A 62C(fA;Cg) = C(X n fBg), and fB;Cg ! A is thus not
minimal. �



4 Pruning
Pruning the search space means reducing the number of

dependencies we have to consider. For example, if we find
that X ! A holds, then Y ! A is not minimal for any
proper superset Y of X. Thus, we can automatically dis-
card Y ! A from consideration.

The levelwise algorithm has a powerful mechanism for
pruning the search space. When the algorithmis processing
the level of the lattice that contains a set X, we can with
one stroke cut off all supersets of X from the lattice simply
by deleting X [12]. If some property of X tells us that no
superset of X is interesting to us, we just delete X. In our
case, empty rhs candidate set is such a property. That is, ifC(X) = ;, then C(Y ) = ; for all supersets Y of X, and no
dependency of the form Y n fAg ! A can be minimal.

We can further improve the pruning based on the prop-
erties of dependencies stated in the following lemma.

Lemma 4 Let B 2 X and let X n fBg ! B be a valid
dependency. (1) If X ! A holds, then X n fBg ! A
holds. (2) If X is a superkey, then X n fBg is a superkey.

Rhs candidate pruning The first part of the lemma allows
us to remove additional attributes from the rhs candidate
sets and, consequently, make pruning by empty rhs candi-
date set more effective. The resulting collection C+(X) of
rhs+ candidates of a set X � R isC+(X) = fA 2 R j for all B 2 X,X n fA;Bg ! B does not holdg:

The following lemma shows that we can use the rhs+
candidates to test the minimality of a dependency just as we
would use the rhs candidates.

Lemma 5 Let A 2 X and let X n fAg ! A be a valid
dependency. The dependency X n fAg ! A is minimal if
and only if, for all B 2 X, we have A 2 C+(X n fBg).
Key pruning When a key is found during the search of
dependencies, additional pruning methods can be applied.
Recall that an attribute set X is a superkey if no two rows
agree on X, and a key if it is a superkey and no proper sub-
set of it is a superkey. Normally, a dependency X ! A is
tested whenX[fAg is processed because we need �X[fAg
for validity testing. However, if X is a superkey then X !A is always valid and we do not need X [ fAg.

Now, consider a superkey X that is not a key. Obvi-
ously, a dependencyX ! A is not minimal for anyA 62 X.
Furthermore, if A 2 X and X n fAg ! A holds, then, by
the second part of Lemma 4, X nfAg is a superkey and we
do not need �X for testing the validity of X nfAg ! A. In
other words, we have no use forX or�X in finding minimal
dependencies. Hence, we can delete all keys and cut off all
of their supersets, i.e., the superkeys that are not keys.

5 Algorithms
To find all valid minimal non-trivial dependencies, we

search the set containment lattice in a levelwise manner. A
level L` is the collection of attribute sets of size ` such that
the sets inL` can potentially be used to construct dependen-
cies based on the considerations of the previous sections.
We start with L1 = ffAg j A 2 Rg, and compute L2 fromL1,L3 fromL2, and so on, according to the information we
obtain during the algorithm.

Algorithm TANE: levelwise search of dependencies.

1 L0 := f;g
2 C+(;) := R
3 L1 := ffAg j A 2 Rg
4 ` := 1
5 while L` 6= ;
6 COMPUTE-DEPENDENCIES(L` )
7 PRUNE(L`)
8 L`+1 := GENERATE-NEXT-LEVEL(L`)
9 ` := `+ 1
Generating levels The procedure GENERATE-NEXT-
LEVEL computes the level L`+1 from L`. The level L`+1
will contain only those attribute sets of size ` + 1 which
have all their subsets of size ` in L`. The pruning methods
guarantee that no dependencies are lost. The specification
of GENERATE-NEXT-LEVEL isL`+1 = fX j jXj = `+ 1 and for all Y

with Y � X and jY j = ` we have Y 2 L`g:
GENERATE-NEXT-LEVEL also computes the partition for
each new attribute set generated. Algorithms are given
in [4].

Procedure COMPUTE-DEPENDENCIES(L` )

1 for each X 2 L` do
2 C+(X) := TA2X C+(X n fAg)
3 for each X 2 L` do
4 for each A 2 X \ C+(X) do
5 if X n fAg ! A is valid then
6 output X n fAg ! A
7 remove A from C+(X)
8 remove all B in R nX from C+(X)
By Lemma 5, steps 2, 4 and 5 guarantee that the procedure
outputs exactly the minimal dependencies of the form X nfAg ! A, where X 2 L` andA 2 X. The validity testing
on line 5 is based on Lemma 2.

COMPUTE-DEPENDENCIES(L` ) also computes the setsC+(X) for all X 2 L`. The following lemma shows that
this is done correctly.



Lemma 6 For all Y 2 L`�1, let C+(Y ) be cor-
rectly computed. After executing the procedure COMPUTE-
DEPENDENCIES(L` ), C+(X) is correctly computed for allX 2 L`.

Line 8 implements the difference between C+(X) andC(X). If that line was removed, the algorithm would work
correctly, but pruning might be less effective.

Procedure PRUNE(L`)
1 for each X 2 L` do
2 if C+(X) = ; do
3 delete X from L`
4 if X is a (super)key do
5 for each A 2 C+(X) nX do
6 if A 2 TB2X C+(X [ fAg n fBg) then
7 output X ! A
8 delete X from L`
Procedure PRUNE implements the two pruning rules de-
scribed in Section 4. By the first rule, X is deleted ifC+(X) = ;. By the second rule, X is deleted ifX is a key.
In the latter case, the algorithm may also output some de-
pendencies. In [4], we show that the pruning does not cause
the algorithm to miss any dependencies.

Approximate dependencies Algorithm TANE can be
modified so that it computes all minimal approximate de-
pendencies X ! A with g3(X ! A) � ", for
a given threshold value ". The key modification is to
change the validity test on line 5 of procedure COMPUTE-
DEPENDENCIES to

5’ if g3(X n fAg ! A) � " then

In addition, line 8 of COMPUTE-DEPENDENCIES has to be
removed or changed to

8’ if X n fAg ! A holds exactly then
9’ remove all B in R nX from C+(X)
Optimizations In [4], we give two methods that reduce the
time and space requirement of the partition computations.
The first one replaces partitionswith a more compact repre-
sentation, and the second one is a method to quickly bound
the g3 error.

6 Analysis
Worst case analysis The time and space complexities of
the TANE algorithm depend on the number of sets in the
levels L`, called the size of a level. Let smax be the size of
the largest level, and s the sum of the sizes of the levels. In
the worst case, s = O(2jRj) and smax = O(2jRj=pjRj).
Another factor is the number of keys, denoted by k. In the
worst case, k = O(smax) = O(2jRj=pjRj).

In summary, the algorithm has time complexityO(s(jrj + jRj2) + kjRj3) and space complexityO(smax(jrj + jRj)). The following theorem gives
upper bounds for the time and space complexities in terms
of the size of the input.

Theorem 1 Algorithm TANE has time complex-
ity O�(jrj + jRj2:5)2jRj� and space complexityO�(jrj+ jRj)2jRj=pjRj�.

Approximate validity testing needs O(jrj) time in con-
trast to the O(1) time of exact validity testing. Thus, the
time complexity of finding approximate dependencies with
TANE is O(vjrj + sjRj2 + kjRj3), where v is the number
of validity tests done. In the worst case, v = sjRj=2 =O(jRj2jRj), and thus the time in terms of the size of the in-
put is O�(jrjjRj+ jRj2:5)2jRj�.
Practical analysis Due to the structure of the dependency
set and pruning, s and smax can be significantly smaller
than the worst case analysis shows. The number k of keys
is almost always much smaller than smax.

We have implemented the attribute sets as bit vectors
of O(1) words and the random access with hashing. This
means, in practice, that set operations and random access
take constant time. To reduce the main memory require-
ment of the algorithm, the partitions can be stored on disk.

The properties of the algorithm after the above modifi-
cations are summarized below.� CPU time: O(s(jrj+ jRj) + kjRj2)� disk accesses: O(s) accesses of size O(jrj)� main memory requirement: O(jrjjRj+ smax)� disk space requirement: O(smaxjrj)

In the approximate dependency version of TANE, valid-
ity testing takes more time and partitions are needed more
often. Because of the latter, we only consider the case
where partitions are not stored on disk. The approximate
dependency algorithm works inO(vjrj+sjRj+kjRj2) time
and O(smaxjrj) space. However, because there are more
approximately valid dependencies, pruning can be much
more effective reducing s, smax, and v.

Comparison to other algorithms One of the main advan-
tages of the new algorithm is the linear dependency on the
number of rows in the relation (for a fixed set of depen-
dencies). To our knowledge, the only previously published
practical algorithm achieving this is by Schlimmer [18, 19],
who uses decision trees for validity tests. The decision tree
approach is roughly equivalent to computing each partition
from partitions with respect to singletons. It is slower by a
factorO(jRj) than using partitions the way we do. All other



Table 1: Performance of the algorithms on real life databases.

Database Time (s)
Name jrj jRj N TANE TANE/MEM FDEP

Lymphography 148 19 2730 68.2 24.0 88.0
Hepatitis 155 20 8250 29.6 14.1 663
Wisconsin breast cancer 699 11 46 0.76 0.25 15.0
Wisconsin breast cancer � 64 44736 11 46 80.5 23.0 17521
Wisconsin breast cancer � 128 89472 11 46 173 247 *
Wisconsin breast cancer � 512 357888 11 46 884 * *
Adult 48842 15 85 1451 * *
Chess 28056 7 1 3.63 2.03 6685

algorithms that we know of have 
(jrj2) or 
(jrj log jrj)
dependency on the number of rows. Many of these could
actually be implemented to run in linear time as well, if
sorting is not realized by using comparisons but by using
other mechanisms instead, e.g., hashing. However, we are
not aware of such implementations.

Schlimmer also used the levelwise search strategy, as
did Bell and Brockhausen [1]. Both use less effective prun-
ing criteria than we do, i.e., their algorithms may end up
computing larger part of the lattice.

There are also algorithms that search the lattice in a more
depth-first like manner [11, 9]. Such a search allows cri-
teria for the pruning of the search space that are differ-
ent from the breath-first search of the levelwise algorithm.
A comparison of the effectiveness of pruning in the two
approaches is difficult. However, validity and minimality
testing, and the mechanisms of pruning are less efficient in
the depth-first algorithms.

Still another approach is to first compute all maximal in-
valid dependencies by a pairwise comparison of all rows,
and then compute the minimal valid dependencies from the
maximal invalid dependencies [7, 2, 9, 17]. The first part of
such algorithms requires 
(jrj2) time with respect to the
number of rows but is polynomial both in the number of
rows and the number of attributes, while the second part re-
quires exponential time in the number of attributes but has
no dependency on the number of rows. The algorithm by
Savnik and Flach [17] implements the second part with a
depth-first search. During the search, the maximal invalid
dependencies are used both for testing validity of depen-
dencies and for pruning the search space. In Section 7, we
present results of an experimental comparison between our
algorithm and the algorithm of Savnik and Flach.

7 Performance
We have implemented the TANE algorithm described

in this paper and experimented with it to find out how

it performs in practice. We have two implementations
of the algorithm. The first, scalable version, denoted
simply as TANE, keeps most of the partitions on disk as
described in Section 6. The other version, TANE/MEM,
works completely in main memory. Both are avail-
able via the WWW page at http://www.cs.helsinki.fi/
research/fdk/datamining/tane/.

To provide perspective, we performed the same exper-
iments with the FDEP program of Savnik and Flach. The
FDEP implementation is based on the algorithm described
in [17] and is available at [16].

All algorithms, including FDEP, are written in C and
were compiled with GNU C compiler with full optimiza-
tions. All experiments were run on the same 233 MHz Pen-
tium PC with 64 MB of memory running Linux operating
system. The times below are real times elapsed in the ex-
periments as reported by Unix time command. We report
“wall clock” times rather than CPU times in order to make
the cost of I/O processing better visible and to give a fair
account of the cost of swapping of TANE/MEM with large
databases.

We ran the algorithms on a number of real life databases.
The databases and their descriptions are available on the
UCI Machine Learning Repository [13]. The number of
rows, columns, and minimal dependencies found (N ) in
each database are shown in Table 1. The datasets labeled
“Wisconsin breast cancer � n” are concatenations of n
copies of the Wisconsin breast cancer data. The set of de-
pendencies is the same in all of them. To avoid duplicate
rows, all values in each copy were appended with a unique
string specific to that copy.

The top three rows of Table 1 show the performance of
the algorithms on three small databases. Our algorithms
perform competitively in all cases. The Lymphography and
Hepatitis databases are apparently very similar. However,
our algorithms are much faster on Hepatitis than on Lym-
phography while FDEP is an order of magnitude faster on



Table 2: Performance of TANE/MEM on approximate dependency discovery." = 0:0 " = 0:01 " = 0:05 " = 0:25 " = 0:5
Database N Time (s) N Time (s) N Time (s) N Time (s) N Time (s)

Lymphography 2730 89.1 3388 22.2 7031 4.89 578 0.32 21 0.01
Hepatitis 8250 16.6 9666 14.6 6617 9.27 350 0.06 160 0.01
W. breast cancer 46 0.28 113 0.27 126 0.23 181 0.12 18 0.02
W. breast cancer � 64 46 25.5 113 26.7 126 20.3 181 12.6 18 3.89
Chess 1 1.99 1 2.55 1 3.10 2 4.0 17 3.59

Table 3: Previously reported performance results and new results (running times in seconds). Numbers taken from other
articles are marked with a “dag” (y); the source is given at the top of the column.

Database Bell Bitton FDEP Schlimmer TANE

Name jrj jRj jXj N et al [1] et al [2] [17] [19]

Lymphography� 150 19 7 641 > 33 hy - 540 sy - -
Lymphography 148 19 19 2730 - - 88 s - 68.2 s
Rel1 7 7 7 8 - 0.02 sy - - -
Rel6 236 60 60 56 - 994 sy - - -
W. breast cancer 699 11 4 35 259 sy - 15 s 4440 sy 0.34 s
W. breast cancer 699 11 11 46 533 sy - 15 s - 0.76 s
W. breast cancer � 128 89472 11 11 46 - - * - 173 s
Books 9931 9 9 25 17040 sy - - - -

Lymphography than on Hepatitis. This is a good demon-
stration of how different approaches to pruning the search
space have different effects.

The bottom part of Table 1 reports the performance of
TANE on five large databases. For TANE/MEM and FDEP,
some experiments are marked with (*) as infeasible; for
TANE/MEM because of the lack of main memory, and for
FDEP if it did not finish within 5 hours. TANE, on the other
hand, found the dependencies in minutes and was never in
danger of running out of memory.

Table 2 shows performance results for TANE/MEM in
the approximate dependency discovery task, for different
thresholds ". Results for the Hepatitis, Wisconsin breast
cancer, and Chess data sets are also presented graphically in
Figure 3: N"=N0 stands for the number of approximate de-
pendencies found relative to the case for functional depen-
dencies; similarly, Time"=Time0 denotes the relative dis-
covery time.

Overall, approximate dependencies are found ef-
ficiently. The number of dependencies found varies
differently for each data set. Within a reasonable range0 � " � 0:1, the time either increases slightly (Chess
data set), decreases slightly (Wisconsin breast cancer), or
drops significantly (Hepatitis). The drop is even stronger

with the Lymphography data set (shown only in the table).
Approximate dependencies could not be discovered in the
Adult data set with TANE/MEM due to the lack of main
memory.

To find out how the number of rows affects the algo-
rithms, we ran a series of experiments with increasing num-
ber of rows. The relations were formed by concatenating
multiple copies of the Wisconsin breast cancer data as de-
scribed earlier. The results are illustrated in Figure 4. F DEP

performs almost quadratically in the number of rows while
our algorithms are very near linear. The sharp turn in the
curve of TANE/MEM is caused by the algorithm running out
of main memory and starting to use swap space. With the
largest relation (357888 rows, 512 times Wisconsin breast
cancer), TANE used about 22 MB of main memory and
about 235 MB of temporary disk space.

The current implementations of our algorithms have not
been optimized for memory and disk space consumption.
With some form of data compression, the feasible range of
our algorithms can be extended further. Even in their cur-
rent form our algorithms can handle much larger databases
than FDEP. Previously reported results are even worse
[2, 17, 19, 1], see Table 3.

The table contains results published in previous articles,
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Figure 3: Performance of TANE/MEM for approximate de-
pendencies in the Hepatitis (top), Wisconsin breast cancer
(middle), and Chess (bottom) data sets.
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Figure 4: Performance of the algorithms when the number
of rows increases. The three graphs show the same data on
different scales.



all marked with (y), and results we obtained using TANE

and the publicly available version of FDEP. Many of the
databases used in previous articles are not publicly avail-
able, so results are missing altogether; these are marked
with (-). Since the tests have been run in different environ-
ments direct comparisons are not possible. The results are,
however, trend-setting.

Few notes are in order. First, jXj denotes an upper limit
for the number of attributes in the left-hand side of a de-
pendency. Limiting the maximum size makes the task eas-
ier. N stands for the size of the results, i.e., the number of
dependencies output. The outputs are, however, different:
some algorithms only output a (minimal) cover of the de-
pendencies that hold.

Second, the Lymphography data set marked with (�),
used by Bell and Brockhausen [1] as well as by Savnik and
Flach [17], is different from the one available from the UCI
repository.

Third, it should be noted that Bell and Brockhausen [1]
are the only ones to report results obtained on top of a com-
mercial rdbms, whereas all others use flat files and special-
ized access methods.

For an overview, consider the Wisconsin breast cancer
data set with the left-hand side limit jXj = 4. Although
small and restricted, it is the only case for which there are
results for four algorithms. TANE discovers dependencies
in 0.34 seconds, FDEP in 15 s (larger by a factor c =44), Bell and Brockhausen [1] in 259 s (c = 760), and
Shclimmer [19] in 4440 s (c = 130000).

8 Concluding remarks
We have given a new algorithm for the discovery of

functional and approximate dependencies from relations.
The approach is based on considering partitions of the re-
lation, and deriving valid dependencies from the partitions.
The algorithm searches for dependencies in a breadth-first
or levelwise manner. We showed how the search space can
be pruned effectively, and how the partitionsand dependen-
cies can be computed efficiently. Experimental results and
comparisons demonstrate that the algorithm is fast in prac-
tice, and that its scale-up properties are superior to previ-
ous methods. The method works well with relations of up
to hundreds of thousands of rows.

The method is at its best when the dependencies are rel-
atively small. When the size of the (minimal) dependencies
is roughly one half of the number of attributes, the number
of dependencies is exponential in the number of attributes,
and the situation is more or less equally bad for any algo-
rithm. When the dependencies are larger than that, the lev-
elwise method that starts the search from small dependen-
cies obviously is further from the optimum. The levelwise
search can, in principle, be altered to start from the large
dependencies. Then, however, the partitions could not be

computed as efficiently.
There are also other interesting data mining applications

for partitions. Association rules between attribute–value
pairs can be computed with a small modification of the
present algorithm. An equivalence class corresponds then
to a particular value combination of the attribute set. By
comparing equivalence classes instead of full partitions, we
can find association rules. A possible future research direc-
tion is to use the unified view that partitionsprovide to func-
tional dependencies and association rules, independently
observed also in [3], to find an apt generalization of both
and to develop an algorithm for discovering such rules.
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