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Abstract—In this paper a scheme for joint source-channel
coding based on LDPC codes is investigated. Two concate-
nated independent LDPC codes are used in the transmitter:
one for source and the other for channel coding, with joint
belief propagation decoder. The asymptotic behavior is analyzed
using EXtrinsic Information Transfer (EXIT) charts and thi s
approximation is corroborated with illustrative experiments. The
optimization of the degree distributions for our sparse code to
maximize the information transmission rate is also considered.

I. I NTRODUCTION

The separation principle states that there is no-loss of
optimality from disjoint design and decoding of the source
and channel codes as the block length tends to infinity [1].
Thereby, these two problems have traditionally been addressed
independently of each other. On one side, source coding relies
on the Lempel-Ziv (LZ) algorithm [2] which compresses any
stationary and ergodic source to its entropy as the number
of symbols increases. On the other, channel coding builds on
low-density parity-check (LDPC) codes [3] achieving channel
capacity as the number of coded bits tends to infinity. However,
for finite-length codes, the separation principle does not apply
and the residual redundancy left by the source code should be
employed by the channel decoder to reduce its error rate.

For finite length codes, the nature of LPDC codes and the
LZ algorithm makes impractical the use of a joint decoder.
Furthermore, for disjoint decoding, the LZ algorithm may
be problematic: unless the block length is sufficiently long
and the channel decoding error rate is extremely low [4].
Therefore, some systems, such as third-generation wireless
data transmission, do not compress the redundant source
prior to channel encoding and, consequently, there has been
several proposals [4]-[9] that exploit the source statistics at
the channel decoder. These schemes use the redundancy at the
source (uncompressed or partially compressed) to improve the
channel decoder performance.

We propose to add an additional LDPC-based source en-
coder between the uncompressed source and the LDPC chan-
nel encoder, which are decoded jointly. This approach has the
advantage of (further) compressing the source prior to adding
the redundancy bits and the joint decoder allows the channel
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decoder to exploit the redundancy left by the source encoder.
This structure was mentioned as a possible solution in [10, Sec.
2.1], but was not investigated further in favor of the LOTUS
codes. LOTUS codes use a single sparse graph for joint source-
channel coding, in a similar fashion to [4]-[9], with the code
optimized for the source statistics.

The double structure in the transmitter side is of partic-
ular interest for very low entropy sources. In this case in
fact, the overall rate of the separated source and channel
codes compresses the source, while the structures in [4]-[9]
can only add redundancy to this already highly redundant
source. Therefore, the separated structure in the transmitter
side increases the flexibility of our communication system,
allowing to compress and protect the source. For high entropy
sources, we can trade-off the redundancy left in the source by
the redundancy introduced by the channel encoder to achieve
higher information transmission rates.

The rest of the paper is organized as follows. In Section
II the structure of the proposed JSC decoder is described.
We analyze its asymptotic behavior in Section III using the
EXtrinsic Information Transfer (EXIT) chart approximation
[11], while an optimization procedure for maximizing its
transmission rate is described in Section IV. The experimental
results are reported in Section V.

II. JOINT SOURCE AND CHANNEL DECODER

The transmitter first compresses the source with an LDPC-
based code, as proposed in [12]. The compressed sequence
b = Hscs, whereHsc is a sparseℓ × n parity-check matrix
(Rsc = ℓ/n < 1). Then it protects the encoded bits with
another LPDC code (Rcc = ℓ/m < 1) and it finally transmits
the codewordx = Gccb over the channel.

Two sparse bipartite graphs compose the decoder, as shown
in Fig. 1, where each check node of the source code (left) is
connected to a single variable node of the channel code (right).
The joint decoder runs in parallel. First the variable nodes
inform the check nodes about their log-likelihood ratio (LLR)
and then the check nodes respond with their LLR constraints
for each variable node. Let us consider thekth iteration of the
decoder. For the sake of clarity, we describe the two decoders
with separated notation.msc,(k)

v,c andm
cc,(k)
v,c are, respectively,

the message passed from thevth variable node to thecth check
node of the source code (Csc) and channel code (Ccc). m

sc,(k)
c,v
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Fig. 1. Joint decoder scheme

andm
cc,(k)
c,v are, respectively, the message passed from thecth

check node to thevth variable node ofCsc andCcc. m
sc→cc,(k)
v

is the message passed from the check node inCsc connected to
the vth variable node inCcc, while m

cc→sc,(k)
v is the message

passed from thevth variable node inCcc connected to thecth

check node inCsc. These last two messages are indexed only
by v, because there is a single connection between every check
node inCcs with a variable node inCcc

Zsc
v and Zcc

v represent, respectively, the LLRs for the
variable nodes forv = 1, . . . , n (i.e. the variable nodes of
the source decoder) and forv = n + 1, . . . , n + m (i.e.
the variable nodes of the channel decoder). For independent
binary sources transmitted over a BIAWGN channel,Zsc

v =
log(1−pv

pv
) (wherepv = P[sv = 1]), and Zcc

v = 2rv

σ2
n

, where
rv = (1 − 2xv) + nv, andσ2

n is the channel noise variance.
The messages between variable nodes and check nodes

follow the same procedure that standard belief propagation.
First the variable nodes send their LLRs to the check nodes
and the corresponding messages are given by

msc,(k)
v,c = Zsc

v +
∑

c′ 6=c m
sc,(k−1)
c′,v , (1)

mcc,(k)
v,c = Zcc

v + m
sc→cc,(k−1)
v +

∑

c′ 6=c m
cc,(k−1)
c′,v , (2)

mcc→sc,(k)
v = Zcc

v +
∑

c′ m
cc,(k−1)
c′,v and (3)

mcc,(k)
v,c = Zcc

v +
∑

c′ 6=c m
cc,(k−1)
c′,v , (4)

where (1) runs for v = 1, . . . , n; (2) and (3) for v = n +
1, . . . , ℓ; and (4) for v = n + ℓ + 1, . . . , n + m. Notice that
m

sc,(0)
c′,v = 0, m

cc,(k−1)
c′,v = 0 andm

sc→cc,(0)
v = 0.

The messages between the check nodes and the variables
nodes are given by

tanh
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where (5) and (6) run forc = 1, . . . , ℓ, while (7) runs for
c = ℓ + 1, . . . , m. After K iterations of the decoding process,
the vth source bit is estimated by computing the LLR of the

source bitsv (i.e., ŝv = 0 if LLR(sv) ≥ 0, and ŝv = 1

otherwise, whereLLR(sv) = Zsc
v +

∑

c m
sc,(K)
c,v ).

III. A SYMPTOTIC ANALYSIS: EXIT CHARTS

The belief propagation algorithm allows analyzing finite-
length codes, but is impractical for studying the asymptotic
behavior of sparse codes. EXIT charts [11], an approximation
of density evolution (DE) [13], [14], are a simple way to
analyze this asymptotic behavior. Specifically the EXIT chart
with Gaussian approximation assumes that the belief propa-
gation messages are Gaussians having a particular symmetry
condition which imposes thatσ2 = 2µ.

Since the decoder is composed of two separated LDPC de-
coders that exchange information, it is not possible to combine
the evolution of the two decoders in a single input-output
function. Even if they run in parallel exchanging information,
we need to describe the evolution of the source and channel
decoders separately.

The following notation is used in the rest of the section.
xisc

[xicc
] denotes the mutual information between a message

sent along an edge(v, c) with “left-degree” isc [icc] and the
symbol corresponding to the bitnodev for the LDPC source
[channel] decoder; andxsc [xcc] denotes the average ofxisc

[xicc
] over all edges(v, c). yjsc

[yjcc
] denotes the mutual

information between a message sent along an edge(c, v) with
“right-degree”jsc [jcc] and the symbol corresponding to the
bitnode v for the LDPC source [channel] decoder; andysc

[ycc] denotes the average ofyisc
[yicc

] over all edge(c, v).
We consider the class of EXIT functions that make use of

Gaussian approximation of the BP messages, which considers
the well-known fact that the family of Gaussian random
variables is closed under addition (i.e. the sum of Gaussian
random variables is also Gaussian, and its mean is the sum of
the means of the addends). Imposing the symmetry condition
and Gaussianity, the conditional distribution of each message
L in the directionv → c is Gaussian∼ N (µ, 2µ), for some
value µ ∈ R+. Hence, lettingV denote the corresponding
bitnode variable, we have

I(V ;L) = 1 − E
[

log2

(

1 + e−L
)] ∆

= J(µ),

whereL ∼ N (µ, 2µ). Notice that, by using the functionJ(·),
the capacity of a BIAWGN channel with noise varianceσ2

n

can be expressed asC = J(2/σ2
n).

Let us consider the “two-channel” scenario induced by
the proposed JSC scheme. Generally, an LDPC code is
defined by λ(x) =

∑

i λix
i−1 [Λ(x) =

∑

i Λix
i], and

ρ(x) =
∑

j ρjx
j−1 [P (x) =

∑

j Pjx
j ] which represent the

degree distribution of the variable nodes and the check nodes
respectively in the edge [node] perspective.

For the source decoder, the messagexsc is given by

xsc =
∑

isc

λisc
JBSC

(

(isc − 1)J−1(ysc), p
)

, (8)

where JBSC(·) is a manipulation of the functionJ(·) to
take into account that the source is binary and i.i.d. with
p = P[sv = 1], i.e. the equivalent channel is a binary
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symmetric channel (BSC) with crossover probabilityp (then
capacity 1 − H(p)). In particular, the probability density
function (pdf) of the LLR output from the equivalent channel
is given bypδ(x+L)+(1−p)δ(x−L). Therefore, the function
JBSC can be expressed by

JBSC(µ, p) = (1 − p)I(V ;L(1−p)) + pI(V ;L(p)),

whereL(1−p) ∼ N (µ + L, 2µ), andL(p) ∼ N (µ − L, 2µ).
The messageysc is given by

ysc =1−
∑

icc,jsc

Λicc
ρjsc

J
(

(jsc − 1)J−1(1 −xsc)+J−1(1−↑cicc
)
)

,

(9)
where ↑cicc

= J(iccJ
−1(ycc)) + J−1(C)) is the message

generated by a variable node of degreeicc of the channel
decoder. Notice that we average over all possible values oficc

throughΛicc
.

For the channel decoder, the messagexcc is given by

x
(k)
cc =Rcc

∑

jsc,icc

Pjsc
λicc

J
(

(icc−1)J−1(ycc)+J−1(C)+J−1(↓cjsc
)
)

+(1−Rcc)
∑

icc

λicc
J
(

(icc−1)J−1(ycc) + J−1(C)
)

, (10)

where ↓ cjsc
= 1 − J

(

jscJ
−1(1 − xsc)

)

is the message
generated by a check node of degreejsc of the source decoder.
We average over all possible values ofjsc throughPjsc

. Notice
that (10) is composed of two parts to take into account the fact
that a fraction ofRcc variable nodes of the channel decoder are
connected to the check nodes of the source decoder (i.e. they
have the extra message↓cjsc

), while the remaining1 − Rcc

are connected only to the transmission channel. Since the data
are transmitted over a BIAWGN channel, thenC = J(2/σ2

n),
thereforeJ−1(C) = 2/σ2

n.
Finally, the messageycc is given by

ycc = 1 −
∑

jcc

ρjcc
J
(

(jcc − 1)J−1(1 − xcc)
)

. (11)

After K iterations, in order to compute the bit error rate
(BER), we need to obtain the conditional pdf of the LLRs
output by the source bits (i.e. the variable nodes of the source
code). Without taking into account the message generated
by the equivalent channel, these LLRs are Gaussian, i.e.
for a variable node with degreeisc, N(µisc

, 2µisc
), where

µisc
= iscJ

−1(ysc). Since the equivalent channel is modeled
as a BSC, the pdf of the overall message is a Gaussian mixture
weighted by the value ofp, i.e. pN(µisc

− L, 2µisc
) + (1 −

p)N(µisc
+ L, 2µisc

). Averaging over all possible values we
have that the bit error rate BER is equal to

Pe =
∑

isc

λisc

[

pQ(xp
isc

) + (1 − p)Q(x1−p
isc

)
]

, (12)

where Q(·) is the Gaussian tail function and wherexp
isc

=
√

µisc
/2 − L/

√
2µisc

, andx1−p
isc

=
√

µisc
/2 + L/

√
2µisc

.
As described in Section II, in the finite length simulations

the two decoders run in parallel. On the contrary, in the infinite
length case we adopt a conceptually easier schedule: for each

iteration of the LDPC source decoder, a large number of
iterations on the channel decoder are performed, in order to
reach the fixed point equilibrium; the generated messages are
incorporated as “additive messages” to the check nodes of
the source LDPC decoder; all the check nodes of the channel
LDPC code are activated. This provides a complete cycle
of scheduling, which is repeated an arbitrarily large number
of times. The reason for adopting this scheduling instead of
the practical one is related to the fact that the EXIT charts
can be seen as a multidimensional dynamical system with
state variables. Since we are interested in studying the fixed
points and the trajectories of this system, we need to reduce
the problem to an input-output function and then reduce the
number of variables.

IV. JSC CODE OPTIMIZATION

In this section we present an optimization procedure for
maximizing the transmission rate of the proposed JSC code.
We suggest a suboptimal procedure that gives optimal codes
when the source and channel rates tend, respectively, to the
entropy of the source and the capacity of the channel. First,
we compute the optimal channel code assuming the input
bits are i.i.d. and equally likely (worse case). This is the
standard LPDC optimization for channel coding [3], [15].
Given the optimized channel code, we compute optimal degree
distributions for the variables and check nodes in the source
code.

Substituting (9) into (8), we can express the input-output
function of the source code as

x
(k)
sc = Fsc(x

(k−1)
sc , p, fcc(x

(k−1)
sc , C)), (13)

wherefcc(x
(k−1)
sc , C) is the input-output function related to

the channel code and is derived by substituting (11) into (10).
In a density evolution analysis, the convergence is guaran-

teed if Fsc(xsc, p, fsc(xsc, σ
2)) > xsc for xsc ∈ [0, 1], which

ensures convergence at the fixed pointxsc = 1.
Given (λcc(x), ρcc(x)) (i.e. fixing the channel code) and

ρsc(x)1, Eq. (13) is linear with respect to the coefficients of
λsc(x), and thus the optimization problem can be written as

max
∑

isc≥2
λisc

isc
(14)

subject to
∑

isc
λisc≥2 = 1, 0 ≥ λisc

≤ 1 (15)

Fsc(xsc, p, fcc(xsc, C)) > xsc (16)

λ2 < 1

2
√

p(1−p)
· 1

P

jsc
ρjsc (j−1) , (17)

where (17) represents the stability condition [16].
The optimization procedure sketched above, is based on

the optimization procedure proposed in [16]. In contrast to
[16], we deal with two codes that iterate in parallel and then
we add the input-output function of the channel code (i.e.
fcc(x

(k−1)
sc , C)) to the optimization.

1According to [16], we consider a concentrated right degree distribution of
the formρ(x) = ρxk−1 + (1 − ρ)xk for somek ≥ 2 and0 ≤ ρ ≤ 1.
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V. EXPERIMENTAL RESULTS

In this section, we illustrate the advantages of using two
concatenated LPDC codes for joint source-channel coding in-
stead of one structure as proposed in [10]. We have performed
three sets of experiments with regular LDPC codes with three
ones per column and an overall coding rate of 2. In the first,
we illustrate the advantage of using two concatenated LDPC
codes, one for source coding and the other for channel coding,
instead of a single sparse code. In the second experiment, we
show why joint decoding is better than cascade decoding: a
channel decoder followed by an independent source decoder.
In the final experiment, we explore the use of optimized
irregular LDPC codes instead of regular ones. For all the
experiments, we use additive white Gaussian noise channels
and the sources are assumed to be i.i.d. withP[sv = 1] = p.

For the first experiment we have used three codes. The first
scheme, denoted as LDPC-8-2-4, consists of two concatenated
LPDC codes with ratesRsc = 2/8 andRcc = 2/4 for source
and channel coding respectively. The second scheme, LDPC-
8-3-4, consists of two concatenated LPDC codes with rates
Rsc = 3/8 and Rcc = 3/4. The last scheme, LDPC-8-4,
consists of a single LDPC code whose compression rate is
Rsc = 4/8. This code only compresses the source and does
not add any redundancy to the transmitted bits.

In Fig. 2, we show the bit error rate (BER) as a function of
the Eb/N0 for i.i.d. input bits withp = 0.02. For each code
there is a set of three plots: the BER predicted by the EXIT
chart (dash-dotted line), the BER for codewords with 3200
bits (solid lines) and the BER for codewords with 1600 bits
(dashed lines). The three leftmost plots are for LDPC-8-2-4
(◦), the three middle plots are for LDPC-8-3-4 (×) and the
rightmost plots for LDPC-8-4 (�).
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Fig. 2. BER versusEb/N0 for LDPC-8-2-4, LDPC-8-3-4 and LDPC-8-4.

In Fig. 2 we observe the standard behavior of the joint
decoder for two concatenated LDPC codes, one for channel
coding and the other for source coding. AsEb/N0 increases
there is a sharp decline in the BER due to the channel code
operating below capacity and, as expected, this transitionis
sharper as the code length increases. There is a residual BER
at highEb/N0, only observable for LDPC-8-2-4 in Fig. 2, due
to the source decoder not being able to correctly detect all the
compressed words for finite-length codes. This residual BER
tends to zero as the codeword length increases, becauseRsc

is above the entropy of the source. The residual BER does not

show for LDPC-8-3-4, because itsRsc is higher.
In the plots we observe about1dB gain when we com-

pare LDPC-8-2-4 with LDPC-8-3-4 for BER larger than the
residual BER. This gain is due to the additional redundancy
in LDPC-8-2-4. The price we pay for this gain is a higher
residual BER. We can trade off the expected gain and the
residual BER by parameterizing the sourceRsc = ℓ/8 and
channelRcc = ℓ/4 code rates withℓ. The value ofℓ ∈ (0, 4]
is inversely proportional to the gain and to the residual BER.
We can also decrease the residual BER by increasing the code
length, as illustrated in Fig. 2.

For LPDC8-4, the BER does not improve as we increase
the code length (the three lines superimpose). A single sparse
graph for source and channel coding withn > m does not pos-
sess error correcting capabilities, because equally likely inputs
present outputs whose distance is constant and independentof
the code length. Thereby, there cannot be a gain as we increase
the code length.

In the second experiment, we decode the LPDC-8-2-4
scheme with a cascade decoder and compare it with the joint
scheme proposed in this paper. The cascade decoder first
decodes the channel code assuming the compressed bits are
equally likely i.i.d. bits and then it decodes the source bits
using the LLRs output by the channel decoder.

In Fig. 3, we plot the BER for both decoders as a function of
theEb/N0 for i.i.d. input bits withp = 0.02. For each decoder
there are two plots: the BER estimated by the EXIT chart
(dash-dotted line) and the BER for codewords with 3200 bits
(solid line). The two leftmost plots are for the joint decoding
(◦) and the rightmost plots for the cascade decoding (×).
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Fig. 3. BER versusEb/N0 for the joint and cascade decoder for LDPC-8-2-4.

For lowEb/N0 neither decoding procedure is able to decode
the transmitted word and they provide chance level perfor-
mance, BER= p. The signal to noise ratio is below capacity
and the redundancy is not high enough to decode correctly the
transmitted words. For highEb/N0 both decoding procedures
return the same residual BER. There are no errors due to the
channel decoder and the residual BER is solely due to the
source decoder failing to return the correct word. There is a
range inEb/N0 between 0 and1dB, in which the joint decoder
returns the residual BER (low BER) and the cascade decoder
returns chance level performance (high BER).

That the channel and source decoders work together to
return the correct word explains the difference in performance
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in this Eb/N0 range. The redundancy not removed by the
source encoder gives additional information to the channel
decoder to return the correct word. This information is not
present in the cascade decoder and therefore the channel
decoder is unable to decode the correct word. The joint
decoder provides in this particular example a1dB gain with
respect to the cascade decoder. This gain remains unchanged
in the EXIT charts. This gain disappears only if the rates of the
source and channel encoders tend to the entropy and capacity,
respectively, as the codeword length increases. But for finite-
length codes, the rate of the source cannot approach capacity
and we obtain a gain from a joint source-channel decoder.

Finally, we present the performance of irregular optimized
LDPC codes obtained by using the method described in
Section IV. For the channel code, we adopt the first LDPC
code withRcc = 1/2 in [15].

For the source code, we fixp = 0.03 and the degree
distribution of the check nodes toρ(x) = 0.5x21 +0.5x22 and
using the optimization procedure described in Section IV, we
obtain the degree distribution for the variable nodes:λ(x) =
0.098x+0.274x3+0.025x7+0.292x9+0.075x33+0.234x34.

The rate of the source code isRsc ≈ 0.24 and the overall
coding rate is around2.08. We denote this scheme as LDPCi-
8-2-4 and we compare it with LPDC-8-2-4, as their rates are
similar. In Fig. 4, we plot the BER for the two codes as a
function of theEb/N0 for i.i.d. bits with p = 0.03. For each
code there is a set of three plots: the BER for codewords with
3200 bits (solid lines), the BER for codewords with 6400 bits
(dash-dotted lines) and the BER for codewords with 12800
bits (dashed lines). The three top plots are for LDPC-8-2-4
(◦), the three bottom plots are for LDPCi-8-2-4 (×).
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Fig. 4. BER versusEb/N0 for the codes LDPC-8-2-4 and LDPCi-8-2-4.

In Fig. 4 we observe that for the regular code as the
codeword length increases the residual BER remains constant,
while the irregular code is able to reduce its residual BER
gradually with the code length. This result is similar to the
typical results for LPDC codes for channel coding. Regular
codes cannot approach capacity and need a margin in their
rate to be able to reduce the BER towards zero, while irregular
LDPC can achieve capacity as the code length increases.
Therefore, if the source code rate approaches the entropy ofthe
source, we need optimized irregular codes in order to reduce
the BER with the code length.

We have also verified our double LDPC transmitter with
high redundancy sources using a rate 1/2 source encoder and

a rate 1/4 channel encoder and we have compare it with a
rate 1/2 channel encoder with a joint decoder that knows the
source statistics. The results were similar to the shown results
in the first experiment. Moreover, we have also considered
Markovian correlated sources and achieved gains holds. These
results have not been reported here for lack of space.

VI. CONCLUSIONS

We have proposed a new procedure for joint source-channel
coding, using two concatenated LDPC codes. We have studied
these codes using EXIT charts and our simulations results
confirm the agreement between the EXIT chart predictions and
the performance of these finite-length codes. Finally, we have
suggested a procedure for optimizing the degree distribution
of our code with EXIT charts that achieves good performance
whenRsc tends to the entropy andRcc to capacity.
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