
Advanced Message Routing for  
Scalable Distributed Simulations

Thomas D. Gottschalk
Center of Advanced Computing Research
California Institute of Technology
Pasadena, CA 91125
tdg@cacr.caltech.edu 

Philip Amburn
SAIC, PET FMS On-Site 
Wright-Patterson AFB OH 45433
philip.amburn@wpafb.af.mil 

Dan M. Davis
Information Sciences Institute, USC
Marina del Rey, CA 90292
ddavis@isi.edu

JDMS, Volume 2, Issue 1, January 2005 Page 17–28
© 2005 The Society for Modeling and Simulation International

On large Linux clusters, scalability is the ability of the program to utilize additional processors in a way 
that provides a near-linear increase in computational capacity for each node employed. Without scalability, 
the cluster may cease to be useful after adding a very small number of nodes. The Joint Forces Command 
(JFCOM) Experimentation Directorate (J9) has recently been engaged in Joint Urban Operations (JUO) 
experiments and counter mortar analyses. Both required scalable codes to simulate over 1 million SAF clutter 
entities, using hundreds of CPUs. The JSAF application suite, utilizing the redesigned RTI-s communications 
system, provides the ability to run distributed simulations with sites located across the United States, from 
Norfolk, Virginia, to Maui, Hawaii. Interest-aware routers are essential for scalable communications in the 
large, distributed environments, and the RTI-s framework, currently in use by JFCOM, provides such routers 
connected in a basic tree topology. This approach is successful for small to medium sized simulations, but 
faces a number of constraining limitations precluding very large simulations.
 To resolve these issues, the work described herein utilizes a new software router infrastructure to accommodate 
more sophisticated, general topologies, including both the existing tree framework and a new generalization 
of the fully connected mesh topologies. The latter were first used in the SF Express ModSAF simulations 
of 100,000 fully interacting vehicles. The new software router objects incorporate an augmented set of the 
scalable features of the SF Express design, while optionally using low-level RTI-s objects to perform actual 
site-to-site communications. The limitations of the original MeshRouter formalism have been eliminated, 
allowing fully dynamic operations. The mesh topology capabilities allow aggregate bandwidth and site-to-
site latencies to match actual network performance. The heavy resource load at the root node now can be 
distributed across routers at the participating sites. Most significantly, realizable point-to-point bandwidths 
remain stable as the underlying problem size increases, sustaining scalability claims.

Keywords: Linux, cluster, scalability, JSAF, routers, communications

1. Introduction

The modeling and simulation community has just 
begun to utilize the power afforded by large-scale 
Linux clusters and other high-end computing [1]. One 
of the hindrances retarding rapid acceptance of these 
compute assets is the lack of scalability in many of the 

codes extant in the 1990s [2]. This paper describes the 
approach and the results obtained by the application of 
a novel inter-node communications architecture that has 
proven robust and has delivered near-linear scalability 
across configurations of up to 1,900 heterogeneous 
nodes [3].
 Experience has shown the need for scalability for more 
than two decades in forces modeling and simulation, as 
well as in the modeling and simulation communities that 
focus on physics, weather, climate, materials science, 



Volume 2, Number 118  JDMS

Gottschalk, Amburn, and Davis

computational fluid dynamic, structural mechanics, 
computational chemistry and biology, as well as a host 
of other simulations fields [4].
 Forces modeling and simulation (FMS) is increasingly 
important in analysis, evaluation, and training. FMS has 
been enabled and facilitated by advances in computer 
science. Increasingly, these programs are being tasked 
with larger, more complicated and higher-resolution 
missions. Just the necessary inclusion of civilian 
personnel and the ability to assess their impact on and 
vulnerability to combat conditions has increased the 
number of entities required by a couple of orders of 
magnitude. Interesting work has been done on scalability 
across smaller numbers of processors [5], but the authors 
were tasked with solving problems requiring the use of a 
much larger number of CPUs. Scalability at these levels 
is achieved by interest management of various designs, 
insuring transmissions to only relevant nodes and 
minimizing “all-to-all” communications. This paper 
examines an approach to optimizing interest-managed 
communications in a way that can be generalized.

1.1 Large-Scale Forces Modeling and Simulation

Recent experiments within the Joint Forces Command 
(JFCOM) Experimentation Directorate (J9) demonstrate 
the feasibility and utility of forces modeling and 
simulation applications in a large field of play with fine-
grained resolution. Simulating such battle spaces requires 
large computational resources, often distributed across 
multiple sites. The ongoing Joint Urban Operations 
(JUO) experiment uses the JSAF application suite and 
the Run Time Infrastructure (RTI-s) to scale to over 300 
simulation federates distributed across the continental 
United States and Hawaii [6]. The JUO exercise has 
shown the scalability of the JSAF/RTI-s infrastructure 
and of interest-based, router-managed communication. 
At the same time, the simulation has highlighted a need 
for improvements in the communication architecture.

 The current JUO network topology is a tree of 
software routers (see Figure 1 for wide-area-network 
diagram). The hub and spoke network model introduced 
by this tree infrastructure increases latency between 
distributed sites and exposes the entire network to a 
single point of failure. The tree topology also poses a 
scalability limitation within the distributed sites. It is 
our belief that an improved routing infrastructure is 
required for the continued success of large-scale entity 
level simulations, particularly as either entity counts or 
complexity/fidelity increase.
 This paper presents an improved routing architecture 
for large-scale HLA environments, using fully connected 
meshes as the basic topology. These MeshRouters 
provide a scalable solution for interest-managed 
communication, as well as a more accurate mapping 
of software routing to available network topologies. 
A desirable side-product of this design is that it is a 
naturally fault-tolerant architecture.

1.2 Scalable Parallel Processors

The JUO exercise requires a computational ability 
unavailable using traditional groups of workstations. 
Scalable Parallel Processors (SPPs) provide the required 
computational power, with a modest increase in 
development and execution effort [7]. An SPP is a large 
collection of processing elements (nodes) connected by 
a fast communication network. Common SPPs include 
the IBM SP, SGI Origin, Cray X1, and Linux clusters. 
Traditionally, SPPs provide services not available in a 
group of workstations: high-speed networks, massive 
disk arrays shared across the entire resource, and large 
per-CPU physical memory. In addition, SPPs generally 
have uniform environments across the entire machine 
and tools for scalable interactive control (starting 
processes across 100 nodes takes the same amount of 
time as it does across 10).
 Linux clusters  recently have become a suitable platform 
for the high performance computing community and 
are therefore readily available at Department of Defense 
High Performance Computing Modernization Offices’ 
Distributed and Major Shared Resource Centers. These 
clusters are ideal platforms for use in the JUO exercise 
because of their close heritage to the Linux workstations 
typically used in the interactive test bays. Although there 
is additional software required to tie the cluster into one 
SPP, the basic libraries, compiler, and kernel often are 
the same on a cluster as on a workstation.

1.3 RTI-s

RTI-s provides the HLA Run Time Infrastructure for the 
JUO federation. RTI-s originally was developed after 
the STOW exercises to overcome the scalability and 

Figure 1. Software tree; WAN routing topology for the 
JUO exercise



Volume 2, Number 1 JDMS  19

Advanced Message Routing for Scalable Distributed Simulations

performance limitations found in RTI implementations 
at the time. It should be noted that RTI-s is not a fully 
compliant HLA/RTI implementation {8,9}. Specifically, 
it does not implement timestamp ordered receives, 
ownership transfer, and MOM interactions. In addition, 
federates discover new objects at first update rather 
than at creation time. The JSAF applications are receive-
ordered by design and are optimized to respond best to 
delayed object discovery, so these limitations are not 
constraining in the existing environment.
 RTI-s utilizes a flexible data path framework, an 
example of which is shown in Figure 2, allowing the use 
with a number of communication infrastructures.

 Currently there is support for multicast User 
Datagram Protocol (UDP), point-to-point UDP, point-
to-point Transmission Control Protocol (TCP), and 
Message Passing Interface (MPI) — using a send/receive 
architecture. Bundling and fragmenting of messages is 
provided by components that can be reused for TCP 
and UDP communication. Kerberos authentication 
for data packets has been implemented for TCP 
communication.
 Point-to-point modes in RTI-s uses separate routing 
processes for communication. The routers provide 
data distribution and interest management for the 
federation, which would be too heavy for a simulator to 
handle. Presently, a tree topology (Figure 3) is used for 
connecting routers. A tree presents a simple structure 
for preventing message loops, as there are no potential 
loops in the system.

1.4 Synthetic Forces Express

The Synthetic Forces Express (SF Express) [10,11] 
project first demonstrated the suitability of both the SPP 
and MeshRouter concepts for discrete entity modeling. 
The SF Express project extended the ModSAF simulation 
engine [12], focusing on the communication protocols 
to extend scalability. It was driven by the announced 
needs of DARPA to support up to 50,000 vehicles on a 
battlefield.

Figure 2. RTI-s data path architecture for TCP 
communication

Figure 3. Tree topology used by RTI-s for point-to-
point message traffic

 In December 1996, the SF Express team first achieved 
a 10,000-vehicle simulation using a single 1,024-node 
Intel Paragon machine. Message routing within the SPP 
used MPI [13]. Later work allowed the code to run on 
multiple SPP installations across a variety of networks 
by introducing gateways between SPPs. Implementing a 
conceptual architecture that was similar to the internal 
inter-node architecture, these I/O nodes greatly reduced 
redundant or superfluous traffic on the net. Most of 
the runs were done without exceeding T-1 capacities. 
The gateway routers were connected using UDP. With 
these improvements, the project achieved a simulation 
of 50,000 vehicles using 1,904 processors over six SPPs. 
These were housed in 13 different machines, in nine 
locales and resident in states from Ohio to Texas, and 
from Maryland to Hawaii.
 The structure of the SF Express router network is 
shown in Figure 4. The basic building block for this 
architecture is the triad shown on the left, with a Primary 
router servicing some numbers of client simulators. Two 
additional routers (known as the PopUp and PullDown 
routers) complete the basic triad. These routers 
distribute (PopUp) and collect (PullDown) messages 
from client simulators outside the Primary’s client set. 
The SF Express architecture scales to increased problem 
size by replicating the basic triad and adding full up⇔
down communication links among the triads, as shown 
in the right-hand side of Figure 4 below.

Figure 4. Basic building block of the SF Express routing 
network (left) and an example mesh topology (right)



Volume 2, Number 120  JDMS

Gottschalk, Amburn, and Davis

 While the SF Express project was quite successful, it 
had no life beyond a number of 50,000–100,000 entity 
simulation demonstrations. This was expected for a 
number of reasons. For example, the algorithms and 
software developed for that project were not compatible 
with ongoing SAF developments (e.g., the move to RTI). 
Finally, the MPI-based communications used within the 
SPPs did not tolerate the restarts and process failures 
found during a long-running exercise. The MeshRouter 
framework described in this work provides a more 
general architecture for scalable distributed simulations 
than the original SF Express program.

2. Designing for Scalability

As previously mentioned, the JSAF/RTI-s application 
suite currently scales to over 300 federates and over 
1 million entities (including simple clutter). However, 
current routing topologies limit the scalability of 
the overall system. In order for an interest-based 
communication infrastructure to scale, three conditions 
must hold over an arbitrary interval of simulation time:

 • A given client must generate a bounded number of 
  messages.
 • A given client must receive a bounded number of 
  messages.
 • Given that, the communication through any given 
  router also must be bounded.

 An interest management system and careful federate 
design achieve bounded client communication. Bounded 
router communication is a function of network design 
and can be achieved using a mesh topology. The focus 
of this work is significantly enhancing scalability using 
router communications that are effective for arbitrary 
schemes of interest enumeration and management. 

2.1 Interest Management Using RTI-s

The aggregate amount of data produced by the JUO 
federation is greater than any one federate is capable of 
processing. An interest management system is used to 
limit the amount of data a federate must process [14]. 
The federate declares which information it is interested 
in (e.g., red force tanks in position cell X) and the RTI is 
responsible for ensuring only this subscribed information 
is received by the federate.
 When used in a multicast environment, RTI-s utilizes 
the concept of multicast channels for filtering, with 
interest states having associated channels. The message 
is multicast to the federation’s network and filtered on 
the receiving side. The receiver filters the message at the 
kernel level, so that the application never sees messages 
for states in which it is not interested. Overhead when 
no interest states are set is relatively small, but non-

zero. Due to the limited number of available multicast 
channels, the number of interest states is limited, which 
increases the amount of traffic associated with each 
interest state.
 When running in point-to-point mode (using either 
TCP or UDP), interest management is send-side 
squelched. Software routers maintain interest state 
vectors for each connection and only send messages to 
clients that have expressed interest in a message type. 
The overhead for a federate to exist in the federation 
without any expressed interest is almost zero. Because 
interest states are not tied to hardware and operating 
system limitations, the number of available interest states 
is bounded only by how much memory can be allocated 
to interest vectors. This is an enormous improvement 
over multicast IP. It also was one of the innovations of 
SF Express.
 An interest management system provides only the 
infrastructure for bounding the data flowing out of and 
into a particular simulator. The simulator must show care 
in declared interest states to prevent subscribing to more 
data than it is capable of processing. For the purposes of 
analyzing the scalability of routing infrastructures, we 
assume that the simulator limits interest declarations to 
guarantee bounded communication. In both the earlier SF 
Express and current JUO experiments, this assumption 
appears valid. Again, the extensibility of this approach 
to other schemes of interest management should be 
straightforward using this router architecture. 

2.2 Routing Scalability

The scalability of the basic MeshRouter network is easily 
argued as follows. It is first necessary to assume that 
the underlying simulation problem itself has a scalable 
solution. This posits a bounded message rate on the 
Primary⇒PopUp and PullDown⇒Primary links within 
a basic triad, and bounded Up⇒Down message rates 
within the interconnection links of the full network. 
The impediments to complete scalability of the mesh 
architecture have to do with interest declarations among 
the upper router layers. Each PullDown must announce 
its interest to every PopUp. In principle, these interest 
broadcasts could be made scalable through an additional 
network of communication nodes (at the associated cost 
of increased latencies for interest updates). In practice, 
however, these interest updates were not frequent enough 
to cause any difficulties in SF Express simulations with 
nearly 100 triads, each supporting around 20 simulation 
nodes, in the full mesh. An experiment with a similar setup 
using the current infrastructure shows similar results. This 
formally non-scaling component is, in fact, a sufficiently 
tiny component of the overall communications load that 
implementation of the “formal” scalability cure is not 
warranted for present or near-term simulation scenarios.



Volume 2, Number 1 JDMS  21

Advanced Message Routing for Scalable Distributed Simulations

3. Routing Flexibility

The scalability issues with the TreeRouter topology of 
RTI-s have been discussed previously. The tree topologies 
also map poorly onto physical wide-area networks. 
Figure 1 shows the route taken for any message crossing 
multiple sites in the JUO exercise. The path taken for a 
message to go from Maui to San Diego is sub-optimal; the 
data must first travel to Norfolk, then back to the west 
coast. This extra transmission time increases the latency 
of the system, which lowers overall performance. Since 
wide-area links often have less bandwidth available than 
local area networks, such routing also places a burden 
on the Virginia network infrastructure, which must have 
bandwidth available for both the incoming and outgoing 
message in our Maui to San Diego example.
 The mesh routing infrastructure provides a better 
utilization of physical networks by sending directly 
from one source to destination router. The network 
infrastructure is free to route messages in the most efficient 
way available. Figure 5 shows one possible routing 
topology for the JUO exercises, using MeshRouters to 
minimize the distance messages must travel.

underlying scalability of various simulations may vary 
considerably, with most of them producing “one-to-one” 
or “one-to-many” communications, but some being 
conceptually forced to use “one-to-all” communications. 
The presented architecture enhances the former case. 

3.1 Flow Control

Flow control is a technique that was necessary to 
ensure adequate communications performance when 
using Message Passing Interface (MPI) instructions to 
establish communications. While not directly leading 
to scalability, it is described briefly here to show the 
general applicability of standard methods within this 
architecture. A tight flow control with Request to Send/
Clear to Send (RTS/CTS) behavior was used in the SF 
Express design. SF Express used the MeshRouters only 
within a single SPP, where latency was extremely low and 
available bandwidth greatly exceeded expected message 
transfer rates. The overhead of sending the RTS and CTS 
messages would not negatively impact the performance 
or scalability of the system. The communication medium 
of choice (MPI) requires pre-posted receive buffers of a 
known size, requiring an RTS/CTS protocol for sending 
large messages. However, recent trends have shown CPU 
power improvements far outpacing network latency 
and bandwidth improvements. On modern networks, 
an RTS/CTS protocol poses a significant performance 
burden. Therefore, the MeshRouter architecture now 
utilizes an eager send protocol with messages dropped 
by priority when queues overflow.

   3.1.1 Application-Independent Message and 
Interest Objects

The MeshRouter software is object-oriented (C++), 
with a limited number of standard interfaces to user 
message and interest base classes. For present purposes, 
the implications of this factorization are:

 • The MeshRouter system is designed to be  
  compatible with ongoing changes and evolution  
  within the RTI-s system, requiring little more than a  
  re-compile and re-link.
 • The MeshRouter system can support applications  
  other than SAF/RTI, given appropriate different  
  instances of the message and interest objects.

3.2 Simplified, General-Purpose Router Objects

The many distinct router varieties (Primary, PopUp, 
PullDown, Gateway) of the SF Express router network 
have been replaced by a single router object, as indicated 
by the schematic in Figure 6. Routers simply manage 
interest-limited message exchange among a collection 
of associated clients. The distinctions that had been 

Figure 5. Advanced routing topology for JUO runs

 The MeshRouters developed for RTI-s adopted many 
of the design decisions made in the SF Express project. 
The router triad concept is perhaps the most obvious of 
the design decisions adopted from SF Express, providing 
an elegant method of avoiding “message looping” in the 
mesh, while allowing an arbitrary number of routing 
decisions to be made when transferring messages. 
However, significant design changes have produced 
a radically more advanced and flexible infrastructure 
that is discussed below. The details focus on the overall 
MeshRouter framework’s applicability and utility for 
large simulations requiring hundreds of CPUs, more 
than the scalability of any particular simulation. The 



Volume 2, Number 122  JDMS

Gottschalk, Amburn, and Davis

hardwired into the various router types of SF Express 
are now summarized by sets of flags associated with 
the clients. The flags (simple Boolean variables) specify 
whether the:

 • client is a source of data messages
 • client is a sink of data messages
 • client is persistent (non-persistent clients are  
  destroyed if the communications link fails)
 • client is upper or lower (this simple hierarchy 
  provides the mechanism to prevent message cycles)

 • removal of clients that have stopped 
  communicating;
 • initiation of communications links, as needed, to 
  specified (persistent) clients; and
 • client additions, in response to requests from  
  external processes.

 Client objects: Managers of the interest declarations 
and pending message queues on external client process.
 Pipe objects: The interface between the Message/
MessageList formalism of the MeshRouter software 
and the real world bits on the wire communications to 
the actual external processes. The pipe object base class 
provides the last essential factorization of application 
specific details from the overall, general MeshRouter 
framework.
 The communication factorization within the pipe 
class is essential to the general applicability and ease 
of use of the MeshRouter system. A number of specific 
pipe classes have been implemented to date, with the 
most important being:

 • RTIsPipe: Message exchange using the RTI-s 
  framework. (This object has been built entirely from 
  objects and methods in the RTI-s library)
 • MemoryPipe: Message “exchange” within a single  
  process on a single CPU. This is used when two or  
  more router processes in the sense of Figure 6 and  
  Figure 7 are instanced as distinct objects within a  
  single management process on a single CPU

 The factorization of application-specific mechanisms 
is, in fact, slightly more complicated than that. The pipe 
object has sufficient virtual interfaces for data exchange 
between a router and a general client. An additional 
virtual object/interface (the Connection-Manager) is 
needed to support dynamic addition and deletion of 
clients during router operations.

3.4 Router Configurations/Specifics

The numerical experiments described in this work 
explore two different overall communications topologies 
built from basic MeshRouter objects: the tree and mesh 
topologies shown in Figure 8.

Figure 8. Tree and mesh topologies used for studies 

Figure 6. Schematic of a router process (left) and the 
interest declaration/data flow of a typical router/client 
connection (right)

 These four flags are sufficient to reproduce the specific 
communications model of Figure 4 and a number of 
other networks, such as the TreeRouter model available 
in the JSAF/RTI-s library.

3.3 Factorized Communications Primitives

The MeshRouter object design relies on a very careful 
isolation/factorization of the underlying message 
exchange protocol from the rest of the software. The 
essential object design is indicated in Figure 7 and has 
three layers.

Figure 7. Schematic design of the MeshRouter

 Router objects: These are little more that smart lists of 
objects associated with the clients in Figure 7. In normal 
operations, routers simply execute the fundamental 
message and interest manipulation methods for the 
associated clients. Routers also are responsible for 
management of the overall client list, including:



Volume 2, Number 1 JDMS  23

Advanced Message Routing for Scalable Distributed Simulations

 In the tree topology, there is an entire CPU allocated 
to each router. All connections (simulator to router or 
router to router) use the full RTIsPipe instance. The 
persistent router clients in the sense of Section 2 are the 
upper router clients (if any) for each component router. All 
other communications links are generated dynamically. 
The tree topology used in the work discussed below is 
functionally identical to that used with JUO/RTI-s.
 For the mesh topology simulations, all three routers 
within the basic triad of Figure 4 are instanced as 
distinct objects on a single CPU, while MemoryPipe 
connections are used for the Primary⇔PopUp and 
Primary⇔PullDown links within a single triad. All other 
links in Figure 8 use the RTIsPipe, with the cross-triad 
PullDown⇒Primary links persistent.
 As noted, the current RTIsPipe implementation is 
based entirely on objects and method calls within the 
current RTI-s library. This is important for demonstrating 
ease of insertion of the MeshRouter formalism into 
the RTI-s libraries, but it does result in a few minor 
inefficiencies. These include one extra memory copy 
per message and duplicate interpretations of incoming 
interest declaration messages. These inefficiencies can 
be removed in future, more finely tuned pipe instances. 
Indeed, the careful communications factorization within 
the MeshRouter package supports mixed pipe instances 
tailored to communications specifics for any of the 
individual links in Figure 8. In particular, the optimal 
pipe instances for WAN and LAN links may be quite 
different. Though supported by the overall design, these 
refinements are beyond the scope here.

4. Results

The Koa cluster at the Maui High Performance Computing 
Center was utilized for the first round of testing of the 
MeshRouters. Koa is a 128-node Linux cluster with 
two 3.06 GHz Intel Xeon processors and 4 gigabytes of 
memory per node. Nodes are inter-connected via gigabit 
ethernet. All routing topologies were generated using 
the standards for the JUO experiment: 5 federates per 
router and 4 routers per router (the second only applies 
to TreeRouters). The default configuration parameters 
were used for both RTI-s and the MeshRouter. Since 
the MeshRouter utilizes the RTI-s communication 
infrastructure, we believe that any parameter tuning 
done to one system would apply equally well to the 
other system. To highlight the importance of topology 
in routing infrastructure, we show the MeshRouters 
running in a tree configuration as well as the standard 
RTI-s tree.
 A number of tests ensured the MeshRouters 
performed as required in JSAF experiments. They were 
of a size where the TreeRouters architecture still scaled 
well. The mesh infrastructure was used for an extended 

simulation using the JSAF suite. As expected for a small-
scale simulation, the MeshRouter and RTI-s TreeRouter 
looked comparable to the JSAF operator.
 Latency measurements were taken on the Koa cluster. 
The MeshRouter performed slightly better in mesh 
configuration than in either tree configuration, but were 
within the measured error. Koa’s low latency network 
combined with a short tree (only 3 levels deep) account 
for this measurement.
 The authors developed a test federate that used pair-
wise communications. This enabled them to assess the 
communications typically found on an RTI-s platforms 
where interest management was reasonably effective 
(i.e. one-to-all communications were minimized). 
They assert that this would similarly be applicable 
to other simulations capable of reasonable interest 
management. This use of a tool allows easy control of 
the communications load and testing at the extreme 
end of that load. Anecdotal evidence from the JSAF 
experience substantiates the validity of this approach. 
This simplified case is suitable for demonstrations and 
the scalability is similar to that seen in the SF Express 
project. 

4.1 System Throughput

For testing the maximum throughput of the routing 
infrastructures, pair-wise communication was used. 
Attribute updates were sent between process pairs as 
fast as possible, with loose synchronization to ensure 
multiple pairs were always communicating. The 
average per-pair throughput, specified in number of 
reflectAttributeValues() calls per second for a 
given message size, is shown in Figure 9. For the test, 
50 pairs were utilized, with 28 TreeRouters or 20 
MeshRouters creating the router infrastructure.

Figure 9. Log/log graph of bandwidth of mesh (solid 
line) and tree (dashed lines) routers



Volume 2, Number 124  JDMS

Gottschalk, Amburn, and Davis

 As expected, Figure 9 shows that the maximum 
number of updates per second goes down as message 
size increases. The MeshRouter in a mesh configuration 
is able to move more traffic, and thereby cause more 
(~ one half order of magnitude) updates than either the 
RTI-s tree infrastructure or the MeshRouters mapped 
into a tree topology. The RTI-s and MeshRouter tree 
configurations both would slow down at the root 
node of the tree, causing both lower realized aggregate 
bandwidth and an increase in dropped messages as 
message queues increased in length.
 In a tree configuration, the RTI-s TreeRouter module 
performed better than the MeshRouter. This is not 
unexpected, as RTI-s has been finely tuned to reduce 
memory copying and contention. The MeshRouter 
lower level has only started to be tuned for optimal 
performance on a Linux system. We see no detail of 
implementation that would prevent the MeshRouter 
from matching the performance of the TreeRouters and 
believe that further tuning will increase the performance 
of the MeshRouter in any configuration.

4.2 Large-Scale Performance Testing

After the early indications of the success of the scalability 
reported above, a new set of performance runs were 
accomplished in the first quarter of calendar 2005. 
These runs were conducted at the ASC-MSRC and 
were supported by the staff there as well as the HPCMP 
PET organization. The cluster there (Glenn) is the same 
configuration as Koa at MHPCC; but in this case, there 
are 60GB hard disks on each local node (a configuration 
subsequently installed on Koa).
 The underlying simulation for the Glenn performance 
studies, using the test program “rtiperf,” again involved 
timed message exchanges between pairs of simple 
federates, as indicated in the schematic of Figure 10.

communicating through the router networks. The 
TreeRouter network is shown in Figure 11.

Figure 11. Connectivity for TreeRouter tests

Figure 10. Schematic for a pair-wise message 
exchange

 One processor within each pair initiates a sequence of 
50 fixed-size message exchanges with its partner, adding 
the times for each there-and-back message exchange. The 
process is repeated for a number of different message 
sizes. The primary output for each master-slave pair is 
simply a list of average exchange times versus message 
size.
 The results presented in this section involve 96 
total rtiperf federates (48 master-slave pairs) that are 

 The rtiperf applications are associated with specific 
lowest-level routers in groups of six. Three layers of 
higher-level routers provide connectivity throughout the 
system.

Figure 12. Connectivity for MeshRouter tests

 The corresponding connectivity/network for the 
MeshRouter is shown in Figure 12. The ovals in this 
figure represent a full Primary-PopUp-PullDown router 
triad in the sense of the dashed box in the right hand 
side of Figure 8. The entire triad is instanced on a single 
CPU, with software pipes (MemoryPipes) connecting 
Primary⇔Popup and Primary⇔PullDown within an 
individual triad. The shaded band in Figure 12 represents 
the standard, full mesh connectivity among triads, as 
discussed above.
 The timing results presented next are based on 
three sets of runs for different separations of the 
Master-Slave rtiperf federates of Figure 10. The three 
configurations are labeled 0-Hop, 2-Hop, and 3-Hop 
(1-Hop configurations were not measured), according 
to the distance between the groups of simulator nodes, 
hence the depth of the tree-router communications path 
(ignoring the lowest-lying leaf routers). Representative 
Master-Slave pairings for the three configurations are 
shown in Figures 11 and 12.
 The n-Hop label was retained to indicate the relative 
dispersion of the compute notes even in the MeshRouters 
where hops are not relevant. This is convenient, but 
perhaps a bit misleading. Table 1 lists the number of 
distinct inter-processor (network) communications 
lengths for the actual message paths in the router 
networks of Figures 11 and 12.



Volume 2, Number 1 JDMS  25

Advanced Message Routing for Scalable Distributed Simulations

 Note that the TreeRouter generally involves much 
longer communications paths than the MeshRouter. 
Before proceeding to measurement results, two remarks 
are in order:

 1. The pipe objects (in the sense of Section 3.3) for  
  Figure 12 are RtisPipes, built entirely from  
  standard RTI-s library objects.
 2. The standard message bundling mechanisms within  
  RTI-s have been disabled for the comparison  
  studies.

 The first point is important. It means that the on-the-
wire communications for Figures 11 and 12 are essentially 
identical, and the performance differences noted below 
are dominated by architectural differences.

  statistical means and standard deviations derived  
  from the retained 46-value samples.

Table 1. Number of network links for n-Hop message 
exchanges in the networks of Figures 11 and 12

Network 0-Hop 1-Hop 2-Hop 3-Hop

TreeRouter 2 4 6 8

MeshRouter 2 3 3 3

Message Size Versus Times, Tree

Figure 13. Mean task times versus message size 
(log/log) for the TreeRouter configuration

 The basic data for the performance timing runs of 
TreeRouter configurations are shown in Figure 13, and 
the corresponding timing results for the MeshRouter 
configuration are shown in Figure 14. The individual 
data points and error bars in these plots are evaluated 
for each message size/hop count as follows:

 1. The mean task times for the 48 contributing rtiperf  
  pairs Figure 10 are sorted.
 2. To minimize outlier-induced fluctuation, the two  
  largest time values of each set are discarded.
 3. The data/error values included in the plots are the  

Message Time Versus Size, Mesh

Figure 14. Mean task times versus message size 
(log/log) for the MeshRouter configuration

 There are several general features to be noted from 
the results in Figures 13 and 14:

 1. The six distinct curves approach a common curve  
  for very large messages. This is reasonable, as large  
  message rates are bandwidth limited.
 2. The 0-Hop, 2-Hop, and 3-Hop results for the  
  MeshRouter are remarkably similar. Similarity of  
  the 2-Hop and 3-Hop results is reasonable given  
  the identical number of associated network  
  messages from Table 1.
 3. Except at the bandwidth-limited, large message tails  
  of the curves, the TreeRouter results show  
  significant performance degradations (i.e., larger  
  mean message times) for 2- and 3-Hops.

Throughput Enhancement: Mesh Versus Tree

Figure 15. Mesh versus tree performance ratio (log/
log) during 0-, 2-, and 3-Hop configurations



Volume 2, Number 126  JDMS

Gottschalk, Amburn, and Davis

 A more direct comparison of the Mesh⇔Tree 
performance is shown in Figure 15, where the ratios,

R = [Mean Tree Time]/[Mean Mesh Time],

are plotted versus message size.
  Note that the 0-Hop ratio is essentially one 
throughout the entire range of message sizes. This is 
reasonable, as 0-Hop messages never move beyond the 
lowest or Primary routers in Figures 11 and 12. The 
fact that this (empirical) ratio is consistent with unity 
is evidence that the MeshRouter formalism introduces 
no additional significant inefficiencies due to the high-
level objects of Section 3. The 0-Hop times are, for both 
MeshRouter and TreeRouter, dominated by performance 
of the standard RTI-s TCP/IP connection.
 However, for message sizes below the bandwidth-
dominated, large-message end, the performance of the 
MeshRouters is significantly better than that of the 
TreeRouter. This is, in fact, an expected result, given the 
larger number of distinct physical communications for 
the TreeRouter, as noted in Table 1.

 In order to explore causes for the Mesh⇔Tree 
differences seen in Figures 13–16, it is useful to 
look at the actual distributions in task times for the 
contributing rtiperf pairs. To set notation, Figure 17 
compares the usual probability distribution function 
(the bell curve) and cumulative probability function (the 
curve asymptoting near one) for a standard Gaussian 
distribution. The value of the blue curve at any point 
X simply is the probability that the unit Gaussian 
distribution will yield a value at or below X. 
 The first panel of Figure 18 presents approximate 
cumulative probability distributions for message times 
for 8,000 messages using the MeshRouter. The three 
curves are nearly coincident, and, in the sense of Figure 
17, indicate a rather narrow empirical distribution of 
message delivery times for the 48 contributing rtiperf 
pairs.

Figure 16. Linear scale plot of mesh versus tree 
performance ratios for 0-, 2-, and 3-Hop runs

 Figure 16 presents the same information as in Figures 
15 using a linear vertical scale. The MeshRouter 2-
Hop and 3-Hop message delivery times typically are 
2 to 4 times faster in the 1,000 byte to 10,000 Kbyte 
message range — a range including most messages 
in typical JSAF applications. It should be noted that 
these already significant performance enhancements 
largely are consequences of the fundamental topology 
differences noted in Table 1. As such, the MeshRouter 
performance increases will become even more dramatic 
as the underlying problem size increases beyond the 
simple 96-federate test case of Figures 11 and 12.

Throughput Enhancement: Mesh Versus Tree

Typical Example of Gaussian Cumulative Probability

Figure 17. Portrayl of relationship of typical 
distribustion to cumulative probability

Distribution: 8Kbyte Message Delivery Time

Figure 18. Performance of MeshRouters (left) is 
consistent; TreeRouters (right) degrade

 The observed message delivery time distributions 
for the TreeRouter are qualitatively different in two 
important senses.



Volume 2, Number 1 JDMS  27

Advanced Message Routing for Scalable Distributed Simulations

 1. The fastest-time edges of the 2-Hop and 3-Hop  
  distributions are significantly longer that the 0-Hop  
  results. This is a direct consequence of the increased  
  number of communication links in Table 1.
 2. The plateaus in the 2-Hop and 3-Hop, up to 10  
  times longer, indicate a distinctly bi-modal nature  
  in the distribution of message times, with about  
  80% of the rtiperf pairs completing the task in ~  
  0.006 Sec., while the remaining 20% take much  
  longer, ~ 0.05 Sec.

 The bi-modal timing distribution indicates significant 
contention, as the individual messages are all pushed 
through a limited number of high-level routers. Put 
differently, 20% of the communications pairs are left 
waiting while the first arrivals get out of the way.

 A final, useful representation of the basic performance 
results is shown in Figure 19, where the (un-normalized) 
bandwidths,

B = [Message Size]/[Average Task Time],

are compared. These reinforce the same conclusions:

 1. MeshRouter performance measures are remarkably 
  insensitive to the Master/Slave separations.
 2. TreeRouter performance degrades substantially as  
  the underlying physical message path increases.

 The MeshRouter scales, with point-to-point 
performance that is largely insensitive to the overall 
problem size. The TreeRouter performance degrades 
noticeably.
 It should be added that the networks in Figures 11 
and 12 actually are on the small side for networks of 
interest in current JSAF applications and in the near 
term. As the depth of the TreeRouter network in Figure 
11 increases, the performance differences will increase 
even more, e.g., as seen in Figure 19.

Average Point-to-Point Bandwidths

Figure 19. Log/log mesh and tree performance

5. Future Work

The MeshRouters currently provide a scalable solution 
for message routing in an RTI-s based federation. Future 
work will focus on fault tolerance, performance tuning, 
and investigation of supporting a fully compliant RTI 
implementation.
 We have taken care to design a system that should 
allow plug-in adaptation to any RTI with a point-to-
point communication infrastructure. Provided the client 
bounding assumptions are followed, the scalability 
shown for RTI-s should also apply to other RTI 
implementations. It is important to note, however, that 
a federation relying on timestamp message ordering 
will not see increased scalability with the MeshRouter 
architecture. Timestamp ordering requires all-to-
all communication, placing enormous stress on the 
communication fabric. Previous experiments have shown 
abysmal scalability and the authors see no reason to 
expect any improvement using a mesh topology [15].
 As the size of a simulation increases, the chance of 
failure in the network or hardware increases. With the 
ever-increasing size of simulations, the ability of the 
routing infrastructure to handle failures is becoming 
critical. The routers handle very little state, so the data 
loss when a router fails is not critical. However, until 
the router is restored, messages will not be delivered 
properly. If the lost router is the connection point for 
a site, a large portion of the simulation suddenly is not 
available. One potential solution is to allow loops in the 
mesh topology. This provides N + 1 redundancy for the 
connections, as there can be multiple paths between sites. 
If one path fails, the system will adjust and use the other 
available paths. The long-term solution is to provide an 
adaptive, dynamically configuring topology that adjusts 
to failures and new resources. The basic MeshRouter 
objects could accommodate these generalizations.
 There are some common communication patterns 
for which the fully connected mesh is not well-suited 
(e.g., broadcast, which requires the router triad for the 
sending federate to contact every other router in its 
mesh). The solution is to use a hypercube or similar 
topology, which provides scalable broadcast capabilities 
while maintaining bisectional bandwidth. The work 
required to develop such topologies should be minimal, 
with most of the effort spent on reducing the work 
required to specify the topology.

6. Conclusion

The MeshRouter infrastructure presents a scalable 
routing infrastructure for both local and wide-area 
communication. The routers are capable of being 
organized into a number of topologies, and should 
be easily extensible into new routing topologies. For 



Volume 2, Number 128  JDMS

Gottschalk, Amburn, and Davis

8. References

[1] Davis, D., G. Baer, T. Gottschalk. 2004. 21st Century Simulation: 
Exploiting High Performance Parallel Computing and Advanced 
Data Analysis. Proceedings of the Interservice/Industry Training, 
Simulation and Education Conference.

[2] Brunett, S., T. Gottschalk, T. 1998. A Large-scale Metacomputing 
Framework for the ModSAF Real-time Simulation, Parallel 
Computing 24.

[3] Messina, P., S. Brunett, D. Davis, T. Gottschalk. 1998. Distributed 
Interactive Simulation for Synthetic Forces. Proceedings of 
the International Parallel Processing Symposium. Geneva, 
Switzerland.

[4] Kaufman, W., L. Smarr. 1993. Supercomputing and the Transformation 
of Science. New York: Scientific American Library.

[5] Funkhouser, T.A. 1996. Network Topologies for Scalable Multi-User 
Virtual Environments. Proceedings of the 1996 Virtual Reality 
Annual International Symposium (VRAIS 96). Washington, D.C.

[6] Ceranowicz, A., M. Torpey, W. Hellfinstine, J. Evans, J. Hines. 
2002. Reflections on Building the Joint Experimental Federation. 
Proceedings of the 2002 I/ITSEC Conference. Orlando, FL.

[7] Lucas, R., D. Davis. 2003. Joint Experimentation on Scalable Parallel 
Processors. Proceedings of Interservice/Industry Training, 
Simulation, and Education Conference. Orlando, FL.

[8] Defense Modeling and Simulation Office. 1998. High Level 
Architecture Interface Specification, v1.3. Washington, D.C.

[9] Dahmann, J., J. Olszewski, R. Briggs, R. Weatherly. 1997. High Level 
Architecture (HLA) Performance Framework. Fall 1997 Simulation 
Interoperability Workshop, Orlando, FL.

[10] Messina, P., Davis, et al. 1997. Synthetic Forces Express: A New 
Initiative in Scalable Computing for Military Simulations. 
Proceedings of the Distributed Interactive Simulation Conference. 
Orlando, FL.

[11] Brunett, S., D. Davis, T. Gottschalk, P. Messina, C. Kesselman. 
1998. Implementing Distributed Synthetic Forces Simulations in 
Metacomputing Environments. Proceedings of the Heterogeneous 
Computing Workshop. IEEE Computer Society Press, 29–42.

[12] Calder, R.B., J.E. Smith, A.J. Courtemanche, J.M.F. Mar, A.Z. 
Ceranowicz. 1993. ModSAF behavior simulation and control. 
Proceedings of the Third Conference on Computer Generated 
Forces and Behavioral Representation. Orlando, FL: Institute for 
Simulation and Training, University of Central Florida.

[13] MPI Forum. 1993. MPI: A Message Passing Interface. Proceedings of 

1993 Supercomputing Conference. Portland, OR.
[14] Rak, S., M. Salisbury, R. MacDonald. 1997. HLA/RTI Data 

Distribution Management in the Synthetic Theater of War. 
Proceedings of the Fall 1997 DIS Workshop on Simulation 
Standards.

[15} Fujimoto, R. P. Hoare. 1998. HLA RTI Performance in High 
Speed LAN Environments. Proceedings of the Fall Simulation 
Interoperability Workshop.

wide-area networks, the flexible routing topologies 
allow communication over all available network links, 
without the hub and spoke problem of the TreeRouters. 
MeshRouters provide a scalable communication 
architecture capable of supporting hundreds of federates 
within a local area network.
 Perhaps more important than the demonstrated 
efficacy in this project, JUO, and on JSAF, is the ability 
to provide scalability to an existing 2,000,000-line 
program and to enhance scalability that approaches 
linearity. These dramatic increases in computing power 
as additional nodes are added present both a promise and 
a challenge to the modeling and simulation community. 
The promise is that of adequate compute power when 
needed; the challenge is to be open to a new understanding 
of where we are currently being artificially limited. While 
this paper has concentrated on the number of entities, 
the linearity of the scaling described also would enable 
advances along other dimension (e.g., size of simulated 
terrain, sophistication of entity behaviors, complexity of 
environmental phenomena, and the resolution of both 
entities and terrain).

7. Acknowledgements

We would like to thank the Joint Forces Command, 
especially the Joint Experimentation Directorate 
professionals for their support and encouragement. This 
work could not have been done without the unstinting 
backing and hard work of the teams at the Aeronautical 
Systems Center Major Shared Resource Center and the 
Maui High Performance Computing Center, the authors 
are indebted to the High Performance Computing 
Modernization Program for the use of computer 
resources for performance measurement. We also would 
like to thank Bill Helfenstein for advice on integrating 
the MeshRouter code with the RTI-s code base. Much of 
the performance testing was done with the indispensable 
assistance of Tammy Brown of the ASC MSRC staff.


