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Abstract— TCP pacing promises to reduce burstiness of TCP
traffic and alleviate the impact of under-buffered routers and
switches on flow throughput. However, current research litera-
tures have not always agreed on the overall benefits of pacing.
In this paper, we re-examine the benefits and drawbacks of
TCP pacing in light of new TCP variants, new application
requirements, and trends in router technologies. We found that
pacing primarily has three effects: reduced burstiness of traffic,
increased synchronization amnog the flows and fragmented
SACK blocks in a flow. We analysis how these factors play
out for different TCP implementations (Reno, NewReno, SACK,
FACK) and new high-speed TCP protocols (BIC-TCP and FAST).
We conclude that TCP pacing brings significant benefits for
many applications, and though paced flows sometimes suffer in
performance when competing with non-paced flows, there are
enough incentives for applications to migrate from using non-
paced TCP to paced TCP.

I. INTRODUCTION

A. Motivation
TCP (Transmission Control Protocol) pacing evens out

the transmission of a window of packets over a round-trip
time (RTT), so that packets are injected into the network
at the desired rate of congestion_window_size/RTT. It was
initially suggested by Zhang el al.[26] to reduce burstiness
of TCP traffic caused by ACK compression. Motivated by
throughput improvement over simulated satellite links, the
report [17] proposes pacing over the entire lifetime of a TCP
connection. However, a more detailed simulation study in
[6] concludes that TCP pacing results in lower throughput
and higher latencies in many situations. There seems to be
no concensus in the research community on whether TCP
should pace. Yet, experiments in real high-speed WAN (wide-
area networks) showed that pacing significantly improves the
overall throughput of parallel TCP transfers [16].

In this paper, we ask the questions: 1) whether we should
pace, and if so, 2) how to migrate from the current state where
(we assume) virtually no TCP flow paces to an ideal state
where virtually all TCP flows pace. We believe TCP pacing
deserves a fresh look because:

• As link speed increases, designing routers with buffer
sizes equal to bandwidth-delay product is increasingly
difficult, as pointed out in [7]. By minimizing the bursti-
ness in traffic, TCP pacing reduces the impact of under-
buffered switches and routers on the throughput of TCP
flows.

• TCP Reno is no longer the most prevalent TCP imple-
mentation. TCP NewReno, SACK and FACK have all
been implemented in common operating systems. TCP
SACK is turned on by default in both Windows and
Linux. Yet, existing studies comparing TCP pacing and

non-pacing focused only on the TCP Reno implemen-
tation, leaving unanswered the question of how pacing
performs under other implementations.

• New TCP variants have been recently proposed to in-
crease TCP’s performance in high-speed WANs, e.g.,
[10], [25], [14]. These variants use congestion avoidance
algorithms that are more aggressive than the classic
additive-increase algorithm, potentially introducing more
bursty traffic, but also recovering from losses faster. TCP
pacing may have very different interactions with these
variants than with classic TCP Reno.

• For many important distributed applications, the perfor-
mance criteria is not the aggregate throughput of TCP
flows, but rather the throughput of the slowest flow.
Applications that perform scatter/gather type of commu-
nications, such as stripped file system (e.g. Google file
system [11]) and shared-nothing distributed databases, are
bottlenecked on the slowest flow. In high-speed LAN,
these flows last a few hundred RTTs, making the appli-
cations highly vulnerable to short-term unfairness in TCP,
an issue that TCP pacing can address.

B. Summary
Our conclusions are depicted in Figure 1, which describes

the performance (to be made precise in the following sections)
of paced flows and that of nonpaced flows when they share
the same network, as functions of the fraction π of paced
flows. 1 Our simulations examine the performance of paced
and nonpaced flows at π = 0% (no flow pace), π = 50%, and
π = 100% (all flows pace), using TCP Reno, SACK, BIC,
and FAST. Our preliminary conclusions are as follows.
Should we pace? The answer is a resounding "Yes" from
a performance perspective. The performance (of paced flows)
when all flows pace is generally much better than the perfor-
mance (of nonpaced flows) when none pace, i.e., B > A in
Figure 1.
Can we migrate? One of the main drawbacks of pacing that
is discovered in [6] is that the performance of paced flows
is often lower than that of nonpaced flows when they share
the same network, i.e., D < C in Figure 1. We make three
remarks. First, we view this as an migration issue, not one that
determines whether we should pace. If paced flows perform as
well or better than nonpaced flows when they share the same
network, then the system will naturally migrate itself from π =
0% to π = 100%. Otherwise, other mechanisms are needed
to facilitate the migration, e.g., by raising the performance
curve for paced flows or through policy. Second, while our

1The figure is not meant to be quantitatively accurate but captures the key
message we have learnt from a comprehensive set of simulation experiments.
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Fig. 1. Qualitative conclusions. B > A: we should pace. D < C:
disincentive to migrate. D > A and B > C: incentives to migrate.

results are consistent with those in [6], the performance gap
between paced and nonpaced flows is generally smaller in our
experiments that use an improved pacing algorithm, and with
new TCP variants. Finally, note that there is a critical fraction
φ above which all flows gain in performance, when some pace,
compared with when no flow paces, e.g., D > A, even though
those that remain unpaced gain more (C > D). This provides
an incentive to migrate out of π = 0% to a fraction of paced
flows that exceeds the critical fraction φ. Moreover, since B >

C, even nonpaced flows will gain in performance when all of
them pace. This provides an incentive for all to migrate to the
point π = 100%.

C. Related work
Our initial interest in TCP pacing came from the observation

that high-speed TCP protocols sometimes have very poor
throughput due to burstiness coupled with under-buffered
routers and switches on the network path [24]. Since pacing
is a natural way to control burstiness of the flows, we be-
came interested in how pacing interacts with high-speed TCP
protocols.

The two papers most relevant to our study are [17] and [6].
In [17], the authors examined the benefits of TCP pacing
for the satellite environment, which, similar to the high-
speed WAN networks, have large bandwidth-delay products
that exceeds routers’ buffer sizes. The paper evaluated the
combination of pacing with Classic TCP, TCP Reno and TCP
FACK, and concluded that pacing can improve the throughput
of single flow and the aggregate throughput of multiple flows
by 20%. However, the paper did not study what happens when
the paced flows compete with non-paced flows, and the paper
focused on low-buffer environments only.

The study in [6] took a more comprehensive look at pacing
in TCP Reno, comparing throughput and average latencies
of paced and non-paced flows under different bandwidth-
delay products and router buffer configurations. The study
particularly looked into the relative performance of pacing and
non-pacing when paced flows and non-paced flows compete

for a bottleneck link. The study reached the conclusions that
pacing results in lower throughputs and higher latencies in
most of scenarios that the authors examined.

The two papers inspired our work, as they seem to reach
opposite conclusions about TCP pacing. We replicated many
of the scenarios in [6] and obtained the same results as reported
in [6]. However, unlike [6], which only investigated TCP Reno,
we also looked into pacing with other AIMD TCP imple-
mentations including NewReno, SACK and FACK. We found
that the impacts of pacing are more multi-faceted, that paced
flows do not inherently lose to non-paced flows. A simple
change in pacing’s behavior during slow-start eliminates its
lower performance compared to TCP non-pacing. If the SACK
block fragmentation issue does not come into play, as in the
case of TCP Reno and TCP NewReno, pacing achieve similar
performance to non-pacing in competition cases.

Our focus on “worst-flow latency” is shared by many in
the high-performance computing community. It’s well known
that, to cope with the short-term unfairness of TCP, parallel
FTPs (i.e. FTP with parallel TCP connections) should actively
move data from slow flows to fast flows. However, this is
only possible when the flows originate from the same host.
In the Data Reservior project [21], where a collection of 26
hosts in Japan are used to perform parallel iSCSI transfers to
a collection of 26 hosts in Baltimore, MD over an OC-12 link
across the Pacific Ocean, such data movement is not possible.
As a result, the authors in [15] report that the latency of the
slowest flow is three times that of the fastest flow. The surprise
in [15] is that the total transfer latency, which is bounded
by the latency of the slowest flow, is significantly improved
when the hosts use the FastEthernet NIC (100Mb/s) instead
of the GigaBitNIC (1Gb/s). In effect, the FastEthernet NIC in
that case paced the flows, albeit via an inflexibile hardware
mechanism.

The type of pacing studied in this paper is applied through-
out the lifetime of the flow. Pacing as a technique was initially
suggested by Zhang et al. [26] to reduce burstiness of TCP traf-
fic caused by ACK compression. Over the years, researchers
have also proposed using pacing in cases when TCP might
generate a burst of packets, for example, after a packet loss
in TCP NewReno [12] and TCP Forward-Acknowledgement
[19], or when a persistent HTTP connection restarts after idle
time [22]. However, these studies investigated pacing when
enacted seletively, instead of being applied at all times over
the lifetime of a connetion.

A number of commercial products explicitly tort pacing
as a mechanism to improve interactive-flow latencies and
enforce rate control. Devices from Packeteer Inc. implement
TCP pacing by pacing the delivery of acknowledgements to
senders[13]. Other commercial products enforces pacing by
explicitly buffering packet bursts.

II. PERFORMANCE OF TCP PACING

In this section, we study the performance of TCP pacing
when all the flows in the network are paced TCP flows.
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A. Performance metrics

We exam the performance of pacing with two metrics:
maximum latency and aggregate throughput.

Aggregate throughput has been heavily used in examination
of TCP performance in previous research. Maximum latency is
a new metric we introduce to analyze the performance of TCP.
It reflects the need of the distributed applications which use
multiple TCP flows in communication and are bottlenecked
by the throughput of the slowest flow.

1) Worst-flow latency: While the traditional metrics for
TCP protocol performance has been aggregate throughput
and average flow latency such as HTTP response time, we
argue that a third metric, “worst-flow latency”, should also
be considered. “Worst-flow latency” is a measure of fairness
among a set of flows that start around the same time and
have the same RTT. Simply put, a “worst-flow” latency is the
latency of the slowest flow to finish the transfer, where N

flows of the same RTT start at the same time and each have
to finish transfer of B bytes.

“Worst-flow latency” is important for an increasingly com-
mon type of distributed application platforms: clustered sys-
tems. Over the last decade, improvements in LAN and PC
technologies have resulted in a proliferation of cluster com-
puting, that is, connecting a cluster of PCs via high-speed LAN
for high-performance computing. Since an individual PC often
has limited computation and I/O power, a common way of
achieving high-throughput from the cluster is to “stripe” data
across the machines and perform computation on a data-driven
basis across multiple machines. The results are then “gathered”
back to a master node. Examples of such systems are clustered
file systems such as the Google File System [11] and the
Stanford Linear Acceleration Centerl’s xrootd system [5],
“shared-nothing” parallel database architectures such as [4]
and high-performance remote I/O architectures such as the
parallel iSCSI [21].

These parellel systems all use TCP/IP as the communication
protocol. The traditional wisdom in the systems’ community
has been that TCP is fair, and therefore data and communica-
tions should be spread as evenly among the nodes as possible.
For example, parallel file systems break file data into 64KB
chunks and put each chunk on a different node. Reading 2MB
of data from a file are accomplished by sending read requests
to 32 nodes, each sending 64KB of data to the requesting
node. From the requesting node’s perspective, the latency of
the 2MB file read is the latency it takes the slowest flow to
finish the 64KB transfer, not the average flow.

Thus, short-term fairness or the lack thereof in TCP has a
significant impact on these parallel applications, and should be
considered as a metric of the protocol as much as aggregate
throughput.

2) Aggregate throughput: Aggregate throughput is defined
as the sum of the individual throughputs among a set of
parallel flows. It reflects how TCP utilizes the bottleneck
capacity efficiently. This metric has been heavily used by the
research community. However, the aggregate throughput alone
cannot reflect the fairness among TCP flows. It cannot predict
the maximum latency of an TCP based application, either.

Besides maximum latency and aggregate throughput, there
are many other important metrics for TCP performance. For
example, queueing delay variation and loss rate are very
important for many applications. But the current literature have
reached consistent conclusions that pacing help to improve the
performance in terms of these metrics. We hence focus on
maximum latency and aggregate throughput. [6] uses average
latency among all the flows as a performance index. This is
similar to aggregate throughput of all flows.

B. Performance: worst-flow latency
In this subsection, we first show, by calculation, that TCP

may take thousands of round trips to converge to fairness and
hence the worst-flow throughput can be very low for a long
time. Pacing greatly improves the startup fairness and hence
the worst-flow throughput.

1) Convergence time of fairness: [9] proves that AIMD
congestion control algorithms converge to fairness with a
synchronization model. However, the time for the convergence
depends on several factors and can be very long.

Take Reno as an example. If Reno flows are non-paced,
some of them experience loss events earlier in the slow
start phase, and the other experience loss events later. For
simplicity, we only study the case where there are two sets of
flows. One set of the flows (denoted by F1) experiences loss
events and exit slow start one RTT earlier than the other set
of the flows (denoted by F2). We assume that all flows have
no timeout and slow start only happens in the startup period.
Currently, we also assume that the loss events are synchronized
in the congestion avoidance phase. That is, all the flows in
congestion avoidance see a packet loss event if one flow sees
a packet loss event.

Let N be the number of homogeneous Reno flows sharing a
bottleneck with capacity cN and buffer size BN . The round
trip propagation delay is d. Let the window size of the i-
th flow, at the end of the k-th congestion epoch2 to be w

(i)
k

(before halving). Let the window size at the end of slow start
to be w

(i)
0 . Because there is a packet loss event at the end of

each congestion epoch, which indicates that the buffer in the
router is full, we have:

∀k ≥ 0 :

N
∑

i=1

w
(i)
k = (cd + B) N (1)

Let r ∈ be the ratio of flows that exits slow start earlier, we
have |F1| = rN and |F2| = (1 − r) N .

Since flows in slow start double their congestion windows
every RTT, we have

∀i ∈ F1, ∀j ∈ F2 : w
(i)
0 =

1

2
w

(j)
0 (2)

Combining (2) and (1), we have w
(i)
0 = cd+B

(2−r) and w
(j)
0 =

cd+B

(1− r

2 )
.

2Congestion epoch is defined as the time between two consecutive loss
events. See [8] for details.
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Assuming all the loss events are synchronized in congestion
avoidance phase, we have w

(i)
k =

w
(i)
k−1

2 + cd+B
2 for ∀k ≥ 1.

This recursive equation can be solved into

w
(i)
k = cd + B +

1

2k

(

w
(i)
0 − cd − B

)

(3)

Now, we calculate the time it takes for the i-th flow to
converge to 95% of its fair share. Let K denote the number
of congestion epochs for the length of convergence. We have:

w
(i)
K =

19

20
(cd + B) (4)

Solving the equations (3) and (4), we have:

K =

⌈

log2

(

20 −
20

(2 − r)

)⌉

∈ [0, 4] (5)

(5) shows the number of congestion epochs that Reno takes
to converge to fairness. This is equivalent to cd+B

2 K RTTs
in time. K is independent of capacity, delay, buffer size and
number of flows and the convergence time increases linearly
as the bandwidth delay product increases.

When the bandwidth delay product is large, the convergence
time can be very long. For example, when c=100Mbps and
d=120ms, the convergence time is more than 2000 RTT if one
flow exits slow start one RTT earlier than the others.

Note that this calculation is based on the assumption that the
loss events are synchronized in congestion avoidance phase.
[20] points out that the loss event rates observed by two flows
may be different. The slower flows may observe higher loss
event rates than the faster flows do. This phenomenon only
makes the convergence time even longer.

The new variants of loss-based TCP congestion control
algorithms introduce more frequent congestion loss than Reno.
Their loss epoch is hence much shorter than Reno. This is good
for convergence. However, most of these new protocols take
much more number of loss epochs to converge to fairness. The
unfairness introduced by slow start still have a long-lasting
effect, as pointed out by [18].3

With TCP pacing, the loss events in slow start are very likely
synchronized within one RTT and the flows with the same
RTT have similar initial congestion window size when they
enter congestion avoidance. This greatly helps the fairness in
the first several congestion epochs. If we take the throughput
of the slowest flow as our performance index, paced TCP is
better than non-paced TCP, although the aggregate throughput
of paced TCP may be smaller than non-paced TCP, due to
synchronization effects.

[6] has observed that pacing can synchronize packet loss
events among flows in slow start. In the rest of this section, we
give three examples to show that pacing leads to better fairness
and smaller latency for the slowest flows. To eliminate pacing’s
advantage in sub-RTT level control, we set the bottleneck
buffer size to be equal or more than bandwidth delay product
in the first two simulations. And we examine how the results
vary with buffer size in the third simulation.

3For delay-based protocols like Vegas and FAST, they do not depend on loss
event to converge to fair share. However, pacing still improves their fairness
slightly due to pacing’s effect of reducing queue variation.
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Fig. 2. [Scenario 1] The latency of 16 parallel SACK flows in LAN. Each
flow sends 1MB data.

2) Scenario 1: SACK flows in LAN: In this scenario, we
have 16 Reno (with SACK) flows sharing 1Gbps bottleneck
link with 3ms buffer. The RTT is 2.5ms. The access links
are all 1Gbps with infinite buffer. The flows’ starting time
is uniformly distributed in (0, 0.5ms). We also introduce
exponential on-off traffic with a rate of 1% of the capacity.
We ran the simulations three times and take the Such scenario
is very typical in distributed computation, where a set of
homogeneous flows are running in a LAN to exchange the
computation results in the distributed system. The flows start
almost at the same time and there is a small amount of noise
as cross traffic.

First, we measure the latency for each flow to transmit its
first 1 megabytes of data (725 standard packets). Figure 2
is the latency for each flow.4 From this figure, we can see
that although almost half of the non-paced TCP flows have
smaller latency than the fastest paced TCP flows, the slowest
non-paced flow has a latency equal to two times of the paced
flow’s latency. So, in terms of the slowest flow’s throughput,
paced TCP has much better performance.

We run the same simulation for 10 seconds. The throughput
of the fastest flow and the throughput of the slowest flow are
shown in Figure 3. We can see that such advantage of paced
flows lasts for the first 4 seconds of the simulation. This is
equivalent to 2800 RTTs. Note that all flows in this simulation
exit slow start in the first 0.1 seconds. But the unfairness
introduced by slow start lasts much longer and has significant
impact on the latency of the slowest flow.

3) Scenario 2: BIC-TCP and FAST in WAN: In this sce-
nario, we simulate TCP flows running over long distance
network. The scenario has 16 flows sharing a bottleneck with
capacity of 1Gbps and a buffer equal to bandwidth delay
product. The round trip propagation delay is 120ms. The
flows’ starting time is uniformly distributed in (0, 120ms). We
also introduce exponential on-off traffic with a rate of 10% of
the capacity.

This scenario is similar to the high energy physics network
([2]) which is running between Chicago and Geneva.

4We run the simulation three times with different random seeds. The result
shown in the figures are the average over multiple runs.
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Fig. 3. [Scenario 1] The throughput of the fastest flow and the slowest flow
among 16 parallel SACK flows in LAN.
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Fig. 4. [Scenario 2] The throughput of the slowest flow and the fastest flow
among the 16 BIC-TCP flows in WAN.

We run the simulation with a loss-based high speed TCP
variant (BIC-TCP [25]) and a delay-based high speed variant
(FAST [14]). The NS codes for BIC-TCP and FAST are from
[1] and [3] correspondingly. All the protocol parameters are
set to default values.

Figure 4 shows the throughput of the slowest BIC-TCP
flow and fastest BIC-TCP flow over time. The slowest BIC-
TCP flow without pacing is about half of the throughput of
the slowest paced flow. This means that non-paced BIC’s
maximum latency is about two times of the paced BIC’s
maximum latency.

The simulation runs for 200 seconds and the gap still exists.
This agrees with the observation in [18]. Although the BIC-
TCP has much shorter congestion epochs than Reno, it still
takes a long time to converge to the fairness point if the flows
are very unfair when they exist slow start.

Figure 5 shows the throughput of the fastest flow and
the slowest flow of FAST. As an equation-based protocol
with delay signal, FAST converges much faster to fairness.
However, we observe a constant small gap between the fastest
flow and the slowest flow in non-paced case. The reason
behind this gap is that some of the flows send a window of
packets in several large bursts and some of the flows send the
packets in smaller bursts. Those who send packets in large
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among the 16 FAST flows in WAN.
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burst will see a larger average queueing delay5, due to the
excessive queueing delay introduced by burstiness. This result
is consistent with the experimental result reported in [14].

With pacing, such effect is eliminated and the fastest paced
flow and slowest paced flow have the same throughput.

4) Scenario 3: worst-flow throughput with different buffer
sizes.: In this scenario, we vary the buffer size in the bottle-
neck router and see how the protocols’ worst-flow throughput
change in longer flows.

We use the same scenario as in Scenario 2, with the change
of bottleneck buffer sizes. The RTT of Reno is scaled down
12ms since Reno cannot finish one congestion epoch in 200
seconds if the RTT is 120ms.

Figure 6, and Figure 7 show the throughput of the fastest
flows and the throughput of the slowest flows with Reno

5FAST uses the average queueing delay over one window as the congestion
signal.
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and BIC-TCP.6 Each point in the figure corresponds to the
throughput measured at 200 second in a simulation.

We can see that Reno converges to fairness after 200
seconds, except when the buffer size is extremely small.

BIC-TCP does not converge to fairness even after 200
seconds. And the unfairness persists with different bottleneck
buffer sizes. With pacing, BIC-TCP can double its worst-flow
throughput in most cases.

Hence, in terms of maximum latency or worst-flow through-
put, pacing can greatly improve the performance of BIC-TCP
in both short term and long term.

C. Performance: Aggregate Throughput
A very important observation in [6] is that the aggregate

throughput of paced TCP may be higher or lower than the
non-paced TCP due to synchronization effects. In this section,
we calculate an upper bound of throughput loss due to syn-
chronization. Our upper bound shows that the synchronization
effect becomes less significant to the aggregate throughput as
the new TCP congestion control algorithms are applied.

1) Loss of aggregate throughput due to synchronization:
Our calculation is inspired by the analysis in [8]. [8] points
out that synchronization has a negative effect on aggregate
throughput of TCP. The worst case happens when all the
flows are synchronized. A direct application of equation (7)
in [8] shows that Reno’s throughput in the worst case (fully
synchronized flows sharing a bottleneck with infinitely small
buffer) is 75% of the capacity.7 Hence, the throughput loss
due to synchronization is 25%. This gives an upper bound of
throughput loss due to synchronization for Reno with infinitely
small buffer.

We give a simple estimation method for different TCP
congestion control algorithm.

Given N homogeneous sources with round trip propagation
delay of d sharing a single bottleneck with buffers size of
B ∗N and capacity of c ∗N . In the worst case, all the flows
are synchronized. Each flow’s behavior is equivalent to a single
TCP flow using a bottleneck with capacity of c and buffer size
of B. Hence we can estimate the aggregate throughput of N

synchronized flows by the throughput of a single TCP flow.
We use T to denote the number of round trip for a flow to

finish a congestion epoch.
In one congestion epoch, we use T1 to denote the number of

round trip for a flow to recover to full bandwidth utilization.
We use P1 to denote the number of packets transmitted in
this period of time and P2 to denote the number of packets
transmitted in the rest of the congestion epoch.

The number of packets transmitted in one congestion epoch
is P1 + P2.

In the first T1 RTTs, the flow under-utilizes the bottleneck
capacity. Hence, the number of packets can be sent in one
congestion epoch, with full bottleneck utilization, is cdT1+P2.

The throughput loss is 1 − P1+P2

cdT1+P2
.

6FAST has almost the same worst-flow throughput with all the buffer sizes.
7Let p = 1 in (7) of [8], we have E

`

X(i)
´

=
C

2N
. This is the throughput

after rate halving. Hence the average throughput over the whole congestion

epoch is
E

“

X
(i)

”

+ C

N

2
=

3
4

C

N
.
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Take Reno as an example. Let the maximum window size
for a flow to be wmax where wmax = B + cd. After one loss
event, the congestion window is reduced to 1

2wmax. It takes
1
2wmax RTT to recover to wmax and generate another loss.
Hence the length of congestion epoch is T = 1

2wmax RTT.
The flow fully utilizes the link after the window size reaches

cd. Hence

T1 = cd −
1

2
wmax =

1

2
(cd − B)

and

P1 =
1
2wmax + cd

2
T1 =

1

8
B2 +

3

8
(cd)

2
−

1

4
cdB

and

P2 =
cd + wmax

2
(T − T1) = cdB +

1

2
B2

Hence the throughput loss due to synchronization is
1
4

(cd)2+cdB−B2

(cd)2+cdB+B2 . When B = 0, we get the result of 25% as
we get from [8].

Similarly, we can calculate the throughput loss due to syn-
chronization for other congestion algorithms such as Scalable
TCP, BIC-TCP and FAST. Figure 8 is the calculation result for
these congestion control algorithms, with different buffer size,
under 1Gbps link, 120ms round trip propagation delay and
standard packet size (MTU=1500). We can see that all the new
congestion control algorithms have much smaller throughput
loss when the loss signals are synchronized.8 Working with
these new congestion control algorithms, the synchronization
of pacing will be much less significant.

We simulate scenarios with capacity of 1Gbps, different
TCP variants and different buffer sizes. Our results show
that paced TCP flows has better performance than non-paced
flows when buffer size is very small, due to its advantages
in lower level control. When buffer size is moderate and

8Note that FAST has zero throughput loss except a point where buffer is
extremely small. When buffer size is very small, the multiplicative increment
scheme in FAST is dominant and FAST works as an MIMD algorithm. When
buffer size is large enough to hold the target number of packets, FAST does
not depend on packet loss events and its throughput does not suffer from
synchronization. Actually, the design of FAST is based on synchronization
assumption (See [23]).
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Fig. 9. [Scenario 4] The aggregate throughput of 5 Reno flows in WAN.
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Fig. 10. [Scenario 4] The aggregate throughput of 5 BIC-TCP flows in WAN.

large, pacing has similar throughput to non-paced flows since
pacing’s synchronization effect has less significant impact on
the aggregate throughput.

2) Scenario 4: Aggregate throughput of different TCP vari-
ants: In this scenario, we run five TCP flows sharing a bottle-
neck with 1Gbps and varies the buffer size in the bottleneck.
The access link has a capacity of 1Gbps and enough buffer for
bandwidth delay product packets. The delay of the flows are
120ms (with Reno’s RTT downscale to 12ms). We compare
the aggregate throughput when the TCP algorithm is Reno,
BIC-TCP or FAST.

Figure 9, Figure 10 and Figure 11 shows the aggregate
throughput of Reno, BIC-TCP and FAST correspondingly.
From Reno to BIC-TCP to FAST, the throughput of paced TCP
becomes better and better, as predicted by our calculation.

Although paced Reno slightly loses to non-paced Reno due
to synchronization, the performance loss is within the upper
bound of 25% in our prediction.

One interesting phenomenon is that pacing can improve the
performance of BIC-TCP even when the buffer size is equal to
bandwidth delay product. This is different from the common

103 104
0

1

2

3

4

5

6

7

x 104

buffer size (packets)

th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

ec
)

FAST

aggregate throughput of paced flows
aggregate throughput of non−paced flows

3ms 1/10 BDP 1/4 BDP 1/2 BDP BDP 2BDP

Fig. 11. [Scenario 4] The aggregate throughput of 5 FAST flows in WAN.
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Fig. 12. [Scenario 4] The aggregate window of 5 BIC-TCP flows.

observation on Reno (e.g. in [6]). We varied the number of
flows from 2 to 16 and got the same observation. We zoom
in this case and Figure 12 shows the aggregate congestion
window of the non-paced flows. From this figure, we can see
there are several huge drops of congestion window in non-
paced flows. These correspond to the moments when some
BIC-TCP flows enter BIC slow start where their congestion
windows are increased exponentially. If there are multiple
BIC-TCP flows enter BIC slow start in the same RTT, they
generate very bursty traffic and multiple packet loss events,
which force several BIC-TCP flows eventually timeout. This
phenomenon is not only associated with BIC. We have similar
observation on HS-TCP, Scalable TCP and FAST. These high
speed TCP variants increase their congestion windows more
aggressively and hence generate more bursty traffic in long
run. With these TCP variants, pacing’s advantage in sub-RTT
level is important not only in startup phase but also in the
whole life of a flow.

We run the same scenarios with heterogeneous sources
(flows with different propagation round trip time). We get
similar conclusions as in the scenarios with homogeneous
sources.

III. MIGRATION FROM NON-PACED WORLD TO PACED
WORLD

In this section, we study the performance of paced and
nonpaced flows when they share the same network, and discuss
its implications on migration from a nonpaced world to a paced
world.

A. Improving the performance of pacing for mixed environ-
ment

[6] observed that paced Reno flows lose out to non-paced
Reno flows in competition. The common explanation for the
competition results is that non-paced flows transmit in bursts
and have a smaller probability of experiencing a drop as
opposed to paced flows which spread their packets uniformly
in the whole RTT. This implies that non-paced flows should
see a smaller loss event rate than paced flows and hence have
higher throughput.
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Our results, however, show that non-paced flows experience
more loss events than paced flows, in most of the scenarios,
while they still win over the paced flows. Instead of the
difference in loss event rates, a straight-forward implemen-
tation of pacing, which paces out the packets at intervals of

RTT
congestion window, contributes largely to the performance
degradation. 9

Most of the TCP implementations (e.g. Linux, NS-2 and
etc) rely on the acknowledgment arrival events. The congestion
window is increased by either 1 (in slow start phase) or by

1

congestion window (in congestion avoidance phase) when an
acknowledgment is received. Hence, the congestion window is
changing within one RTT. If pacing simply paces packets at
intervals of RTT

congestion window and if the congestion window
is increasing, the number of packets transmitted in one RTT is
smaller than the congestion window size at the end of the RTT.
That is, fewer packets are sent out in one RTT than expected.
In return, less acknowledgments will come back in the next
RTT and the congestion window is growing slower.

To illustrate this effect, we give an example as below.
Assume one flow is in its slow start phase. Its congestion
window is 4 at the beginning of an RTT and the congestion
window is increased to 8 at the end of that RTT. 8 packets
should be sent out in this RTT. We label them p1, p2 · · · p8

and their transmission times t1, t2, · · · t8 where we let t1 = 0.
If we pace the packets with interval of RTT

congestion window,
the first two packets are sent out with a congestion window
of 5. They have an interval of 1

5RTT. That is t2 = 1
5 RTT.

Similarly, the interval between p2 and p3 is 1
6RTT, as the

interval between p3 and p4. Hence we have t3 = t2 + 1
6RTT

and t4 = t3 + 1
6RTT. With the same calculation, we can get

t5 = t4 + 1
7RTT, t6 = t5 + 1

7RTT, t7 = t6 + 1
8 RTT, and

t8 = t7 + 1
8RTT.

That is,

t8 = 2
i=8
∑

i=5

1

i
RTT = 1.3RTT (6)

That means, p8 is sent in the next RTT while the correct time
of sending p8 should be the end of this RTT.

This problem contributes significantly to the case where
paced Reno loses to non-paced Reno since the congestion
windows of the paced flows grow much slower than the
congestion windows of the non-paced flows do.

This problem can be fixed by using the congestion win-
dow for the next RTT in pacing. In congestion avoidance
phase, this means cwnd + 1. In slow start phase, this means
min {2 ∗ cwnd , SSthreshold}. Hence, instead of using RTT

cwnd
to pace packets in pacing, we should use the expected con-
gestion window in next RTT to pace the packets, which is

RTT
max {cwnd + 1, min {2 ∗ cwnd , SSthreshold}} (7)

9This problem also hurts the performance of pacing in non-competition
situations. But in non-competition cases, its effect only appears in the form
of slightly larger loss of aggregate throughput due to synchronization. In the
competition cases, its effect let non-paced flows to have larger congestion
windows than paced flows. The difference in congestion windows result in
persistent and significant performance difference.
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Fig. 13. [Scenario 5] paced flows vs non-paced flows, when Reno is used

paced non-paced
per-packet loss rate 0.6469% 0.8663%

loss event rate 6.75% 8.75%

TABLE I
LOSS RATES OF ORIGINAL PACED RENO AND NON-PACED RENO IN

COMPETITION

With this improvement, paced Reno no longer loses to non-
paced Reno. In the later part of the paper, we use “modified
pacing” to refer the pacing algorithm with this improvement
and “original pacing” to refer the pacing algorithm without
this improvement.

The following scenario shows the effectiveness of this
imrpovement.

B. Scenario 5: Improvement of pacing for mixed environment
In this scenario, 20 paced flows and 20 non-paced flows are

sharing a bottleneck of 57Mbps, with a round trip propagation
delay of 100 ms. This is similar to the scenarios in [6]. We
show the aggregate rate over all the paced flows and the
aggregate rate over all the non-paced flows in the life of the
simulation.

If we use the original pacing in Reno, we observe the same
phenomenon that paced flows loss out to non-paced flows,
as shown by the blue curves in Figure 13. We measure the
average per-packet loss rate and average loss event rate10of
the flows in Table I. The loss event rate of non-paced flows
are higher than the paced flows, which means that loss event
rate is not the source of paced flows’ performance problem.

With the modified pacing algorithm, paced flows have the
same aggregate throughput as the non-paced flows, as shown
by the red curves in Figure 13.

Simulations with New-Reno show the same conclusion.
However, when working with SACK, the modified paced

flows still lose out to non-paced flows, though the difference
is much smaller than the one with the original pacing. Figure
14 shows shows the results with TCP SACK, with the same
scenario. In other protocols that utilize SACK in loss recovery
(e.g. FACK, BIC-TCP and etc), paced flows lose out to non-
paced flows.

10Loss event rate is calculated as the number of RTTs experiencing loss
over the number of RTTs in the life of a flow. The average is taken over all
the paced flows or non-paced flows
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Fig. 14. [Scenario 5] paced flows vs non-paced flows, when Reno is used
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Fig. 15. [Scenario 6] Paced flows in mixed environment, worst-flow
throughput of Reno

It is not clear why paced flows with SACK lose out to
non-paced SACK flows. One potential problem is that SACK
favors the loss patterns of non-paced flows. When there are
lost packets in one window, non-paced flows lose their packets
in bursts and paced flows’ lost packets scatter within the whole
window. Recovering a burst of packets only needs one SACK
block, no matter how large the burst is. So non-paced senders
can quickly exit loss recovery state while paced senders have
to wait for more SACKs before they can exit loss recovery
state and grow their windows.

In the following two subsections, we re-exam the worst-
flow throughput and aggregate throughput of the paced flows,
in an environment where 50% of the flows are paced (with
the modified pacing algorithm) and 50% of the flows are non-
paced. We compare the results with the performance in isolated
environment. In most of our simulation results, paced TCP in
mixed environment still has better performance than non-paced
TCP in isolation, though paced TCP works better in isolation
environment.

C. Scenario 6: Worst-flow throughput in mixed environment
In this subsection, we study worst-flow throughput of pac-

ing, in mixed environment.
We repeat the same scenario as in Scenario 3 of Section II-

B except that we have 50% paced flows and 50% non-paced
flows.

Figure 15 and 16 show the worst-flow throughput of Reno
and BIC. 11

When the buffer size is small, paced flows perform worse
than they do in the isolated environment, since the paced

11Again, FAST has very similar worst-flow throughput when it is paced or
non-paced.
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Fig. 16. [Scenario 6] Paced flows in mixed environment, worst-flow
throughput of BIC
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Fig. 17. [Scenario 7] Paced flows in mixed environment, aggregate through-
put of Reno

flows in mixed environment also observe the queueing delay
and packet loss events introduced by non-paced flows. As the
buffer size becomes large, the performance of paced flows in
mixed environment is similar to their performance in isolated
environment. In these cases, there are much less loss events
and the effect of SACK is not significant. Other advantages
of paced flows dominate.

In most of the cases, paced flows in mixed environment
are still performing better than non-paced flows in isolation.
Hence, if only a subset of the flows adapt pacing, they still
have better performance than if they do not pace.

D. Scenario 7: Aggregate throughput in mixed environment
In this subsection, we exam the aggregate throughput. We

repeat the same scenario as in Scenario 4 of Section II-C.2
except that we have 50% paced flows and 50% non-paced
flows.

Figure 17 , Figure 18 and Figure 19
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Fig. 18. [Scenario 7] Paced flows in mixed environment, aggregate through-
put of BIC
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Fig. 19. [Scenario 7] Paced flows in mixed environment, aggregate through-
put of FAST

show the aggregate throughput of Reno, BIC-TCP and
FAST.

In terms of aggregate throughput, we see the same trend
that paced flows perform better when buffer size is large. We
believe that SACK effect is again dominant in the cases with
small buffers.

When the buffer size is large enough to hold FAST’s α

packets, FAST flows have higher aggregate throughput than
what they have in isolated environment. With pacing, a FAST
flow experiences less noise in queueing delay introduced by
its own burstiness. It sees a smaller average queueing delay
than a non-paced flow sees, and grabs some bandwidth from
the non-paced flows in competition.

From Figure 15 and Figure 17, we see no clear advantage
for paced flows in mixed environments. Hence, Reno users
may not have the motivation to adapt pacing.

Figure 18 shows that BIC-TCP loses some aggregate band-
width in certain cases when it changes from non-pacing to
pacing in mixed environment. This tells that a BIC-TCP user
may not want to adapt pacing if (s)he tries to optimize the
aggregate throughput.

On the other hand, Figure 16 shows that BIC-TCP users
have a strong motivation to adapt pacing if worst-flow through-
put is their major concerns. And Figure 19 shows that FAST
users should always use pacing.

Hence, the motivation of using pacing depends on the TCP
variants and the performance metrics an application cares. As
we are moving towards the high speed TCP protocols, the
motivation gets stronger.

E. Mechanisms related to the performance of pacing
In this subsection, we summarize the TCP mechanisms that

affect the performance of pacing. There are at least three
factors that have significant effects on performance of pacing:

1) Smoothness of packet transmission in sub-RTT level
control: This is the original motivation of pacing. Pacing
can help to reduce excessive loss or delay introduced by
ack-clocking. Also, by smoothening the packet transmission,
pacing is robust to the ack-compression and stretch-ack.

This has positive effect on pacing with all the TCP imple-
mentations, from original Reno to new variants such as the
loss-based BIC-TCP and delay-based FAST.

2) Synchronization in congestion signals: As pointed out
by [6], synchronization has two effects on performance of

TCP: it degrades the aggregate throughput but improves the
fairness. Pacing’s synchronization in slow start phase has a
negative effect on its aggregate throughput and a positive effect
on its fairness.

The effect of synchronization on aggregate throughput be-
comes less and less significant as the TCP congestion control
evolves from Reno to BIC-TCP and FAST. The single flow
performance of the new TCP variants are all much better
than Reno. Even all flows are synchronize and the aggregate
behavior is equivalent to a single flow, the loss of aggregate
throughput is insignificant.

However, the effect of synchronization on fairness is still
important for all the loss-based congestion control algorithms.
Most of the loss-based congestion control algorithms take
many RTTs to converge to fairness, especially in high speed
long distance network. Synchronization can help to improve
the fairness in startup phase and greatly shorten the conver-
gence time.

3) Loss recovery: Finally, the loss recovery mechanisms
have an impact on the performance of pacing. For example,
SACK favors non-paced flows since a single SACK can
recover a burst of packets but not several packets scattering
within a window. With SACK, the performance of non-paced
flows is greatly improved but the the paced flows get less
benefit. This is a relatively negative effect for paced flows in
mixed environment.

All the loss-based congestion control algorithms are still
heavily rely on SACK.

We listed in these factors in Table II and see how their
significance changes as TCP variants evolves.

The first two rows are the factors that have positive effect on
pacing’s performance. They still have significant importance
as TCP evolves from Reno to SACK to BIC-TCP to FAST
(except fairness of FAST).

The last two rows are the factors that have negative effect on
on pacing’s performance. Synchronization effect on aggregate
throughput becomes less significant, while SACK effect re-
mains significant for loss-based congestion control algorithms.

In the future, if the loss recovery mechanism is more
powerful to recover lost packets in multiple locations, there
will be a stronger motivation for adapting pacing universally.

IV. CONCLUSION AND OPEN PROBLEMS

TCP Pacing has a multi-facet impact on flow performance.
Pacing clearly improves performance in terms of “worst-flow
latency”, when the routers are under-buffered, and when new
high-speed TCP variants are used. However, it fragments the
packet losses, leads to more SACK blocks needed to convey
loss information, and does not obtain its fair share of the
bandwidth when competing with non-paced flows. However,
in many cases, pacing improved both the throughput of paced
flows and that of non-paced flows, offering an incentive for
applications to use pacing.

In short, for the application programmers, we would like
to send the message that pacing is good, particularly if the
application uses multiple concurrent TCP flows to accomplish
a task. For the high-performance computing community, we
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Reno SACK BIC-TCP FAST
Smoothness of packet transmission Important Important Important Important
Synchronization in congestion signal on fairness Important Important Important Not Important
Synchronization in congestion signal on aggregate
throughput

Important Important Not Important Not Important

Loss recovery n/a Important Important Not Important

TABLE II
THE EFFECT OF DIFFERENT TCP MECHANISMS ON DIFFERENT TCP VARIANTS

also want to encourage the use of pacing, as it improves the
performance of new high-speed TCP protocols in the presence
of under-buffered routers and switches. To the networking re-
search community, our message is that the interaction between
pacing, packet loss patterns and TCP protocol mechanisms
such as SACK is a rich area that deserves more exploration.
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