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Abstract

Atlas registration is a recognized paradigm for the automatic segmentation of nor-
mal MR brain images. Unfortunately, atlas-based segmentation has been of limited
use in presence of large space-occupying lesions. In fact, brain deformations in-
duced by such lesions are added to normal anatomical variability and they may
dramatically shift and deform anatomically or functionally important brain struc-
tures. In this work, we present first a brief survey of the existing methods that
have been proposed to deal with the problem of registration of MR brain images
with space-occupying lesions. This introduces the discussion about the requirements
and desirable properties that we consider necessary to be fulfilled by a registration
method in this context: to have a dense and smooth deformation field and a model
of lesion growth, to model different deformability for some structures, to introduce
more prior knowledge, and to use voxel-based features with a similarity measure
robust to intensity differences. In a second part of this work, we propose a new
approach that overcomes some of the main limitations of the existing techniques
while complying with most of the desired requirements above. Our algorithm com-
bines the mathematical framework for computing a variational flow proposed by
Hermosillo [1] with the radial lesion growth pattern presented by Bach et al. [2].
Results on patients with a meningioma are visually assessed and compared to those
obtained with the most similar method from the state-of-the-art.
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1 Introduction

Atlas-based segmentation is a widely used technique for automatic segmen-
tation of normal MR images. It relies on the existence of a reference image
volume (called atlas) in which structures of interest have been carefully seg-
mented, usually by hand. To segment a new image volume, a transformation
that registers (i.e. puts in point-to-point correspondence) the atlas to this
volume is first computed. By point-to-point correspondence we refer to a spa-
tial and not anatomical correspondence. This transformation is then used to
project labels assigned to structures from the atlas onto the image volume
to be segmented. Thus, the segmentation problem is reduced to a registra-
tion problem which tried to capture and compensate the normal anatomical
variability.

Unfortunately, atlas-based segmentation has been of limited use in presence
of large space-occupying lesions. In fact, brain deformations induced by such
lesions may dramatically shift and deform functionally important brain struc-
tures. Figure 1 shows some examples of lesions that might largely deform brain
structures. Here, the goal of the registration becomes even more complex: it
not only tries to capture the normal anatomical variability between subjects
but also the deformation induced by the pathology. Moreover, the anatomical
meaningful correspondence assumption done in the atlas-based segmentation
paradigm is usually strongly violated since voxels located inside the dam-
aged area have no correspondence to the atlas. However, precise segmentation
of functionally important brain structures would provide useful information
for therapeutic consideration of space-occupying lesions, including surgical,
radio-surgical, and radiotherapeutic planning, in order to increase treatment
efficiency and minimize neurological damage.

The scope of this work is twofold. First, we review the existing methods that
have been proposed to deal with the problem of registration of MR brain im-
ages with space-occupying tumors. This brief survey introduces the discussion
about the requirements or desirable properties that we consider necessary to
be fulfilled by a registration method in this context. Second, we propose a
new approach that overcomes some of the main limitations of the existing
techniques while complying with most of the desired requirements.
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(a) (b) (c)

Fig. 1. Some examples of brain lesions. (a) Meningioma. (b) Glioma. (c) Astrocy-
toma.

The remaining of the paper is organized as follows. First, a brief review of
the state-of-the-art methods and a discussion of their main limitations are
presented in Section 2. Then, the data set used in this work is introduced
in Section 3. The proposed method is presented and validated in Section 4.
Finally, Sections 5 and 6 conclude this work with a discussion and future
research lines.

2 Survey of registration methods for brain MR images with tumors

Two early works related to atlas-based segmentation in presence of space-
occupying tumors were published in the late 90s. Kyriacou and Davatzikos [3]
proposed a biomechanical model of the brain using a finite-element method.
They first model soft tissue deformations induced by the tumor growth and,
then, they registered the anatomical atlas with a transformed patient image
from which the tumor was removed. On the other hand, Dawant et al. [4] relied
on a simpler approach based on optical-flow - Thirion’s demons algorithm [5]
- for both tumor growth modeling and atlas matching deformation. Their
solution was called seeded atlas deformation (SAD), as they put a seed with the
same intensity properties as the lesion in the atlas image, and then computed
the non-rigid registration. More recently, Bach et al. and Pollo et al. [2, 6],
presented an improved seeded atlas deformation algorithm: instead of applying
the nonlinear registration algorithm to the whole image, a specific model of
tumor growth (MLG) inside the tumor area was proposed, which assumed the
tumor growth radial from a single voxel seed. Demons algorithm [5] was used
outside the tumor area and the displacement vector field was regularized by
an adaptive Gaussian filter to avoid possible discontinuities. This approach
overcame some of the limitations of SAD method but other ones arisen. For
instance, the placement of the seed needed expertise and pre-segmentation of
the lesion was necessary. Also, since the demons algorithm used mean squared
difference of intensities as similarity measure, contrast agent induced some
errors in the deformation field.
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Other methods [7–9] locally adapted the elasticity of the transformation,
rather than modeling the deformation induced by the tumor, in a way that
large deformations induced by the tumor can be captured. To avoid tumor
segmentation, Duay et al. in [7] did not use a special scheme to preserve the
regularity of the transformation in the areas where the images differ topo-
logically (e.g. inside the tumor). Thus, they allowed the deformation might
contain some singularities inside the lesion. They proposed to use an elastic-
ity map related to the atlas to allow larger displacements over regions (the
inside of the lateral ventricles) that are known to be very sensitive to the
tumor deformation. On the contrary, in order to prevent bad deformations
inside the lesion area, Stefanescu proposed in [8,9] to impose more rigidity on
the tumor. This required the previous segmentation of the patient’s tumor.
Similarly, in [10], Liu and Davatzikos used a statistically-based interpolation
method to correct their deformation in the areas with low confidence (around
the tumor region).

Recently, Nowinski et al [11] proposed to use a Talairach registration followed
by a three-dimensional nonlinear tumor deformation based on a geometric as-
sumption, as in [2], that the tumor compresses its surrounding tissues radially.
A more sophisticated model of lesion growth was proposed by Mohamed and
Davatzikos in [12] based on 3D biomechanical finite element model. Then,
in [13], they combine this model (by atlas seeding) with a deformable regis-
tration based on the so-called HAMMER algorithm [14,15].

This brief survey is summarized in Table 1 under three criteria: type of reg-
istration, model of lesion and main limitations. Let us analyze here after the
state-of-the-art methods regarding each criteria.

A large variety of registration approaches are proposed for atlas-based segmen-
tation methods of pathological brain images: biomechanical models, paramet-
ric deformations with basis functions, surface to surface registration, Talairach
warping, demons algorithm, and pair-and-smooth methods. It is difficult to
determine which of them is better suited for our problem of interest. But we
agree with Stefanescu [9] that having a dense deformation field guarantees the
transformation to be represented at a maximal level of detail in the whole
image space, thus having a point-to-point spatial correspondence. Note that
by point-to-point correspondence we refer to the fact that the transformation
does not have any singularity due to the lack of anatomical correspondence
(for instance points that come from nowhere since the atlas does not have a
tumor). Of course, regularity of the deformation field should be ensured.

Most of the methods either explicitly model the lesion growth and seed the
atlas with a lesion or, on the contrary, ignore the information contained within
the lesion. On one side, a seeding strategy associated with a tumor growth
model ensures the continuity of the transformation in the tumor area and
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Author Registration Lesion Limitations

Kyriacou [3] Biomechanical model Remove lesion - 2D implementation

1999 Finite elements from patient - Pre-segmentation

- Tumor segmentation

Dawant [4] Demons Seeded atlas - Mask of information

1999 deformation - Too much deformability

- Tumor segmentation

Bach [2],Pollo [6] Demons Seeded atlas - Contrast agent

2004-05 Model of lesion growth Radial growing - Tumor segmentation

One-voxel seed - Seed position

Duay [7] Parametric registration No model - Estimation of elasticity

2004 Elasticity locally adapted parameters

Stefanescu [8, 9] Pair-smooth registration No model - Prior information

2004-05 Elasticity locally adapted Interpolation - Tumor segmentation

Liu [10] Surface to surface No model - Cortical surface only

2004 Volumetric registration Interpolation - Tumor segmentation

Nowinski [11] Hybrid landmark Remove lesion - Talairach landmarks

2005 Talairach warping from patient - Brain hull

- Tumor segmentation

Mohamed [13], Biomechanical model Mass effect - Skull-stripped

Zacharaki [15] Hierarchical attribute of tumor growth - Segmented images

2005-06 registration - Parameter estimation
Table 1
State-of-the-art of atlas-based segmentation methods for pathological brain images
with large space-occupying lesions.

preserves from any irregularities that could appear in this region due to the
lack of anatomical correspondence between atlas and patient. However, this
usually involves an increment in the number of parameters to estimate, like
location and size of the seed or tumor. On the other side, the methods that do
not consider the information within the lesion locally adapt the elasticity of the
transformation in a way that large deformations induced by the tumor can be
captured even without modeling the lesion growth. Moreover, modeling areas
or structures with different deformability allow to obtain a better accuracy of
the segmented contours since real deformations are usually inhomogeneous.
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Main limitations are more specific to the registration method and similar-
ity measure. For instance, biomechanical methods or surfaced-based methods
need also the pre-segmentation of some functionally important brain structures
of the patient image. In our opinion, it is desirable to avoid pre-segmentation
since segmentation-based registration algorithms are usually very sensitive to
pre-segmentation accuracy and reproducibility. However, most of the state-
of-the-art methods need to segment at least the lesion (excepting [7]). While
this could be a limitation in some complex cases with infiltrating tumors or
presence of edema, there exist automated methods that allow an accurate seg-
mentation of a large range of lesions [16–18] (see [19] for a recent review of
brain tumor segmentation algorithms).

Voxel-based methods naturally avoid the problem of pre-segmenting function-
ally important brain structures (excepting the lesion) since they directly work
on voxel intensities. In atlas-based segmentation applications, it is worth to
use such feature because choosing the atlas the same modality as the patient
simplifies the registration problem. However, other confounding effects may
appear in a mono-modal registration. For instance, due to different acquisi-
tion parameters or acquisition devices, same structures might appear with
different intensities or a bias field might corrupt the image. Moreover, in the
case of pathological MR brain images, edema or contrast product are often
present. Thus, a similarity measure robust to intensity changes is desirable
too.

In our opinion, a significant drawback of voxel-based methods is that the re-
quirement of a smooth deformation field - necessary for preserving the topology
of the anatomical structures - limits the accuracy of the resulting segmenta-
tion. A widely used solution is to allow globally or locally more elasticity
to the deformation in order to obtain more local deformation (see for in-
stance [2,4,7,8]) with the risk of increasing the irregularity of the deformation
field and thus of the contours. Moreover, this does not ensure that the sought
level of precision will be obtained. To cope with this problem, more local
constraints have to be included in the atlas registration process. These con-
straints should permit the registration on relevant structures, to impose the
smoothness of the contours and to introduce more prior knowledge such as
the intensity distribution or the admissible shapes of the objects selected to
drive the registration.

In conclusion, we consider that the main requirements and desirable proper-
ties of a registration algorithm for atlas-based segmentation with large-space
occupying lesions are:

(1) To have a dense deformation field in the whole image.
(2) To model real deformations.
(3) To avoid tedious patient pre-segmentation.
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(4) To be robust to intensity differences (for instance due to the contrast
product).

(5) To obtain high level of structure segmentation accuracy

The solutions we suggest for each requirement above are:

(1) To include a model of lesion growth.
(2) To be able to model different deformability for some structures.
(3) To use voxel-based features.
(4) To use a similarity measure robust to intensity changes.
(5) To introduce more prior knowledge like shape or intensity distribution

information.

We propose in what follows an algorithm for dense deformation field estimation
for pathological MR brain images registration. It combines the mathematical
framework for computing a variational flow (here, from Mutual Information
similarity metric) proposed by Hermosillo [1] with the pattern presented by
Bach et al. [2] where an atlas is seeded with a tumor seed and its growth is
assumed to be radial to the lesion contour. Thus, our approach fulfills require-
ments 1 and 3. An adaptive Gaussian filter is used for regularization. This
partially fulfills requirement 2 since different deformability is allowed not for
different anatomical structures but for 3 regions of the image (inside the lesion
area, close to the lesion and the rest of the brain). Currently, requirement 4
is not included in the algorithm but we discuss its possible implementation in
Section 5.

3 Data set

The patient images used in this study have been retrieved from the Surgical
Planning Laboratory (SPL) of the Harvard Medical School & NSG Brain
Tumor Database [20]. They consist of 3 SPGR T1-weighted volumes of 124
coronal slices of 256 x 256 pixels and 0.9375 x 0.9375 x 1.5 mm3 of voxel size.
All of them present a meningioma of similar size: 43 × 50 × 37 mm3, 41 ×
42 × 52 mm3, and 36 × 37 × 40 mm3. Only patients with meningiomas are
presented here. In fact, considering all the possible space-occupying lesions in
a unified framework is almost impossible. We selected meningiomas because
they are treated with radiosurgery or stereotactic radiotherapy, where an atlas-
based segmentation of sensitive structures of the brain is of importance. This
kind of tumor is usually benign and its extracerebral growth usually induce
a pure shift and deformation of the underlying brain structures (see patient
MR images on Fig. 2). Moreover, no brain edema was observed on the data
set. Notice that all patient images have been acquired using a contrast agent
(gadolinium).

7



Fig. 2. SPGR T1-weighted patients with meningioma. Contrast agent is gadolinium.
Location and size is (from left to right): left frontal of 43 × 50 × 37 mm3, left
parsellar of 41 × 42 × 52 mm3, and right parietal of 36 × 37 × 40 mm3.

The digital atlas used in this work comes from the SPL [21]. It is composed of
two images: a MRI and a label image. The MRI has been made of MR data
from a single normal subject scanned with high resolution 256 × 256 × 160
volume data set in coronal orientation with 0.9375× 0.9375× 1.5 mm3 voxel
size (Fig. 3 left)). The label atlas image contains anatomical and functional
structures that have been manually segmented (Fig. 3 center).

4 Mutual Information Flow Registration

The approach proposed in this work is a non-rigid registration method that
combines a mutual information flow and a radial lesion growth model [22].
This approach is in fact based on the works of [2] and [1].

4.1 Introduction

Optical flow has been widely used in the context of atlas-based segmenta-
tion [2, 4, 5]. The classical optical flow formulation relies on the assumption
that the intensity distributions are identical in the fixed and moving images.
Even if both images are from the same modality (MR in our case), a contrast
product is often used in clinical practice to better appreciate the anatomical
limits of tumors. In these cases, methods that rely on similarity measures based
on intensity differences would fail because large deformations will be computed
in areas where the contrast product is present. Here, instead of using the least
squares minimization criteria, a Mutual Information (MI) flow method that
maximizes the mutual information is proposed to overcome this limitation.
That makes the deformation more robust in regions where a contrast product
is present.

Our registration method follows the theory presented by Hermosillo [1] where
a mathematical framework for computing a variational flow from various sim-
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ilarity metrics (mean square error, mutual information, correlation ratio) was
introduced. The flow computed from global similarity measures (as shown in
the next section for the case of mutual information) incorporates local infor-
mation (moving image gradient at this point) as well as global information
(marginal and joint probability distributions of signal intensities).

4.2 Mutual Information flow registration for normal subjects

For compensating inter-subject deformations, a variational expression of mu-
tual information has been introduced by Hermosillo [1]. If pf,m denotes the
joint probability density between the fixed and the moving image and pf (pm)
denotes the marginal density of the fixed (moving) image signal intensities (f
and m denote the signal intensity functions of the fixed and the moving image
respectively), mutual information is computed for a displacement field u(x)
following

MIu = H(F ) + Hu(M)−Hu(F,M)

=−∑

i1

pf (i1) log(pf (i1))−
∑

i2

pm
u (i2) log(pm

u (i2))

+
∑

i1,i2

pf,m
u (i1, i2) log(pf,m

u (i1, i2)),

(1)

where H(F ) designate the fixed image signal intensity entropy, Hu(M) the
moving image signal intensity entropy and Hu(F,M) the joint entropy between
fixed and moving images signal intensities. The displacement field u is defined
from the fixed to the moving image domain and influences the moving and joint
image intensities distributions. The dynamic range of the fixed and moving
image intensities is divided into bins of constant sizes. In Eq. 1, i1 and i2 stand
for the intensities bin indexes in the fixed (i1 index) and the moving (i2 index)
images.

A variational flow of this metric is obtained by a first order perturbation
analysis. If h(x) is defined as a continuous perturbation function 1 multiplied
by a scalar factor ε, the optimal displacement field u(x) is defined as the
function vanishing the first variation of the similarity metric regarding ε

∂MIuopt+εh

∂ε

∣∣∣∣∣∣
ε=0

= 0. (2)

In the mutual information case, the left member of (2) can be expressed as
(see Thevenaz et al [23] for details about the computation of this criterion’s

1 for detailed conditions on this perturbation function, see [1]
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derivative)

∂MIu+εh

∂ε

∣∣∣∣∣∣
ε=0

=


∑

i1,i2

∂pf,m
u+εh(i1, i2)

∂ε
· log

(
pf,m

u+εh(i1, i2)

pm
u+εh(i2)

)


ε=0

. (3)

In our implementation, the joint probability distribution is estimated as sug-
gested by Mattes [24] using a two dimensional B-Spline kernel. A 3rd order
B-Spline in the moving image dimension ensures a well defined derivative re-
garding ε

pf,m
u (i1, i2) =

1

|Ω|
∫

Ω
β1(f(x)− i1)β

3(m(x + u)− i2)dx, (4)

where βj designates a 1D B-Spline function of order j.

Injecting the definition of pfm (Eq.4) in Eq.3 yields

∂MIu+εh

∂ε

∣∣∣∣∣∣
ε=0

=
∫

Ω
κf,m

u (x)∇m(x + u)h(x)dx
def
=< ∇uMI, h(x) >, (5)

where κf,m
u is defined by

κf,m
u (x) =

1

|Ω|
∑

i1,i2

log

(
pf,m

u (i1, i2)

pm
u (i2)

)
β1(f(x)− i1)β

3′(m(x + u)− i2). (6)

Equation 5 shows that the derivative regarding the ε parameter in Equation (2)
is the scalar product between two functions : h(x) (the perturbation function)
and the MI metric flow defined by

∇uMI = κf,m
u (x)∇m(x + u). (7)

This means that for vanishing the first moment of the metric (left member in
Equation (2)) for any choice of perturbation h, the metric flow has to tend to
a zero vector field for the optimal displacement field u. A conventional way of
reaching this objective is to iteratively update the current displacement field
by a term proportional to the metric flow defined in Equation (7). The optimal
displacement field u in the sense of a first order variational analysis will be
reached once the update tends to zero.

4.3 Atlas to pathological brain non-rigid registration

Our approach to brain atlas deformation in the presence of space occupying
tumors follows the same steps as proposed by Bach et al [2] but differs from the

10



fact that a flow optimizing mutual information is used instead of the demons
algorithm [5]. The overall process can be summarized as follows:

(1) An affine transformation [25] is applied to the atlas image in order to
globally match the patient.

(2) The lesion is segmented using the Adaptive Template Moderated Spa-
tially Varying Statistical Classification (ATM SVC) algorithm [16].

(3) The atlas is manually seeded by an expert with a single-voxel placed on
the estimated origin of the patient’s lesion.

(4) The non-linear registration based on a mutual information flow and a
MLG tumor growth model is performed in order to deform the seeded
atlas on the target patient.

The non-rigid deformation method we propose distinguishes between those
two areas fixed from the lesion segmentation. Outside the lesion, the MI flow
force as defined in Eq. 7 is applied. Inside the lesion, the tumor growth model
assumes a radial growth of the tumor from the tumor seed. The displacement
vector computed at every voxel using either the MI flow force or the tumor
growth model is regularized by an adaptive Gaussian filter to avoid disconti-
nuities around the lesion borders. Three areas are considered in the smoothing
process: inside the lesion area, close to the lesion (within 10 mm of the tumor)
where large deformations occur, and the rest of the brain. Smoothing is not
necessary inside the lesion because the vector field induced by the model of
lesion growth is highly regular and the continuity is ensured. Different amount
of elasticity is denoted by the standard deviation of the Gaussian filter σ. So,
σ = 0 inside the lesion area. In the region close to the tumor (including the
tumor contour) there are large deformations due to the tumor growth. Then,
it is necessary to allow large elasticity, i.e. σ should have a small value, typi-
cally 0.5 mm. In the rest of the brain, deformations are smaller, due primarily
to inter-patient anatomical variability. So, a larger σ proves to be better, as
it simulates a more rigid transformation (σ = 1) .

4.4 Results

The SPL digital atlas MR image has been deformed on 3 patients of the data
set using the algorithm described above. At each iteration, the joint histogram
is estimated by random sampling through the image domain. The mutual in-
formation flow is then computed at each voxel using Eq.7. The number of it-
erations is fixed and remains a parameter of the algorithm to be chosen by the
user. The implementation of the mutual information flow has been integrated
in the Insight Toolkit [26] as a subclass of the PDEDeformableRegistrationFunction
class. This implementation of MI flow is publically made available in [27].
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Fig. 3. Digitezed atlas. Left and central panel respectively are T1-weighted MR
and labels from the Surgical Panning Laboratory (SPL) of the Harvard Medical
School [21]. Right panel shows the deformed atlas (MR and labels) after MI flow.

Figure 3 shows the atlas MR and labels before and after the MI flow defor-
mation for patient 2. Figure 4 shows the atlas contours of the ventricles, the
central nuclei, the thalamus and the tumor projected after transformation on
all patients (dark blue, light blue, green and red respectively). A 3D render-
ing of these segmentations is shown in Figure 5. Visually assessment does not
show any significant difference between optical and mutual information flow.
However, the two flows behave differently in the presence of different contrasts
in both images. For instance, around the mid-sagittal plane, the classical opti-
cal flow is disturbed by a high difference in signal intensities (the mid-sagittal
plane is bright in the patient image and dark in the atlas). This is illustrated
on Figure 6: Fig.6(a) shows a coronal slice of the target patient image, the
deformed atlas image is shown in (b) using optical flow and in (c) using MI
flow. The dotted line shows that an important distortion appears around the
mid-sagittal plane when using the optical flow deformation. This illustrates a
main limitation of OF (and of methods that use the SSD as similarity mea-
sure) since the assumption of intensity correspondence between anatomical
structures is violated because of the contrast product. On the contrary, the
MI flow proves to be robust to these intensity changes and the deformation at
the mid sagittal plane is not misguided. This is because MI captures the best
alignment by attempting to reduce the entropy in the joint space of fixed and
moving image intensities. This joint entropy can be interpreted as a measure
of the dispersion in the joint histogram. Even if a structure has a different in-
tensity in the two modalities, bringing this structure into alignment will create
a cluster in the joint histogram and will reduce entropy.

4.5 Validation using a Synthetic Patient

In this section, performances of the mutual information and optical flows are
compared quantitatively. For this purpose, a synthetic healthy patient (as pro-
posed in [2]) was created. The basis of this idea is to avoid as much as possible
the inter-subject variability, thus, the algorithm should ideally be applied to
the patient before the growth of the lesion but of course this information is
not available. Then, a good estimation of how the patient brain was before the
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Case 1 Case1

Case 2 Case2

Case 3 Case3

Fig. 4. Segmentation results obtained after alignment of the atlas on 3 patients
with large tumors. Contours of the tumor, ventricles, thalamus and central nuclei
are overlayed on the patient image. A radial tumor growth deformation model is
used inside the lesion. Outside the lesion, a mutual information variational flow is
used to compensate inter-subject variations.

appearance of the tumor is needed. We know that the brain has approximately
symmetrical structures. Therefore, the damaged hemisphere was almost like
the healthy one before the tumor growth. Once the symmetry plane is found,
a simple mirroring of the healthy side is done to generate a new synthetic
healthy patient-atlas. Note that, with this new atlas, the most similar brain a
posteriori to the healthy brain of the patient is obtained.

The algorithm described in Section 4 is then run to match this synthetic
healthy patient-atlas on the real patient. This has been done for Patient 1.
Results are then compared to those obtained with an optical flow force like
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Case 1 Case 2 Case 3

Fig. 5. 3D rendering of tumor (in green), ventricles (in mauve), thalamus (in beige),
and central nuclei (in blue) from the images in Figure 4.

(a) Patient image (b) Optical flow (Demons ) (c) Mutual information flow

Fig. 6. Robustness of the MI flow to intensity differences along the midsagital plane
(dotted line). The patient target image is shown in (a). Sub-figure (b) and (c) show
registration results using optical (b) and MI(c) flows.

described in [2]. For doing this, the STAPLE [28] algorithm is run on both MI
and OF segmentation results for mutual comparison. This way, an estimate
of a common truth segmentation is obtained and it is used as a ground truth
reference for quantification. Note that, in this context, the use of the STAPLE
does not assess how good a method is since no manual segmentations are
available but it quantifies how similar both OF and MI flows are.

The performance matrix (its diagonal corresponds to the specificity and sensi-
tivity parameters) with respect to the estimated truth is given in Table 2. No
significant difference can be observed between the performances of MI and
optical flows. The diagonal coefficients (giving the probability of true posi-
tive decisions for each label) show that the segmentation of the thalamus has
better performances with the MI flow while optical flow has a slightly better
accuracy on the central nuclei segmentation.
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Truth Optical flow MI flow

BCKG CN Ventr. Thal. BCKG CN Ventr. Thal.

BCKG 0.9997 0.0899 0.0607 0.0527 0.9997 0.0981 0.0605 0.0316

CN 0.00012 0.9001 0.0098 0.0019 0.0001 0.8850 0.0031 0.0

Ventr. 0.00011 0.00999 0.92432 0.0180 0.0001 0.0151 0.9253 0.0116

Thal. 0.00003 0.0 0.00523 0.9274 0.0001 0.0018 0.0111 0.9568
Table 2
STAPLE performance matrix for automatic atlas-base segmentations using optical
flow and mutual information flow with respect to the estimated reference segmen-
tation. Diagonal coefficients are the probability of true positive decisions for each
label. BCKG is background, CN is Central Nuclei, Ventr is Ventricles and Thal is
Thalamus.

5 Discussion

In this paper we have presented a MI flow algorithm combined with a radial
growth model that allow us to estimate a dense deformation field in the whole
image. This approach is in fact very similar to the one presented in [2] but
it solves one of its major limitations. This has been shown in Fig. 6 where
the contrast product present in the midsagittal plane induced non-realistic
deformations in [2] while here, as expected, the MI flow algorithm has proven
to be robust to intensity differences. Regarding the segmentation accuracy of
key structures, no other significant differences have been observed between
MI flow and optical flow algorithm (see Table 2). These results are very
encouraging but not yet sufficiently since contours lack of precision in some
places (see segmented ventricles of case 3 in Figure 4).

The main hypotheses of the lesion growth model used here are that the lesion
expands radially and that there is no infiltration and no edema. Therefore, only
meningiomas have been considered. The simplicity of this model is both its
weakness and strength. Other - potentially more complex - models of growth
and infiltration should obviously be considered for other types of tumors and
lesions, but this is beyond the scope of this paper.

Another limitation of this approach is shared by all voxel-based methods since
they often lead to a compromise between the accuracy of the resulting seg-
mentation and the smoothness of the transformation. Here, the regularization
of the deformation field is done by an adaptive Gaussian filtering similarly
to the one proposed in [2]. Three different elasticities (see Section 4.3) are al-
lowed according to the distance to the tumor: inside the tumor the radial force
ensures the regularity, near the tumor large deformability is allowed and far
from the lesion elasticity modeling normal anatomy deformations is applied.
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A more realistic model of deformability would be to consider not only the
distance to the tumor but also the implicit elasticity of some structures such
the ventricles, midsagittal plane or skull. This could be included as proposed
by Duay et al. [7] by considering that different anatomical structures in the
atlas have different elasticity parameters σ (the estimation and adjustment
for each patient of this elasticity parameters remaining a difficult task). How-
ever, even if a better deformability is modeled, in certain places, contours will
not be placed accurately enough when using a voxel-based method due to the
regularization step.

To cope with this problem, more local constraints have to be included in the
atlas registration process (see Section 2, requirement 4). For instance by in-
corporating local statistical measures in the registration process as proposed
recently by Commowick et al. in [34]. In our opinion, among the different
techniques proposed so far for image analysis, the active contour framework is
particularly well suited to define and implement local constraints but it was
designed for image segmentation only. Recently, Duay et al [29, 30] presented
an active contour framework for both segmentation and registration. In there,
a local-non rigid registration in a level-set framework is presented along with
some preliminary but promising results on pathological brain image registra-
tion. Such a framework allows not only to easily include local constraints but
also to select different elasticities for different structures in the atlas and it does
not need from pre-segmentation of the tumor. Like the biomechanical meth-
ods, this algorithm can also be seen as a surface-based registration method.
Its first difference is that it computes the deformation based on the image and
not on mechanical or biological laws. This implies that its accuracy does not
depend on a good physical modeling of the tissues. Above all, its main ad-
vantage is that it does not need a pre segmentation of the patient image. The
contours defined in the atlas evolve following an energy functional specially
defined to be minimal when they have reached the desired object contours, as
in active contour-based segmentation framework [31]. Unfortunately, the main
limitation of the surface to surface registration algorithm remains. As the de-
formation is only based on contours of interest, the probability of registration
errors increases more we are far from these contours. As far as we know, most
of the existing methods for registration of images with space-occupying tumors
are either surface-based [10,12,15,32] or voxel-based [2,4,6–8,33] approaches.
However, in our opinion it is worth to study how to combine the advantages
of both approaches.

In a future work, we would be interested to study a two steps approach by
combining the MI flow segmentation results as initial step of an active con-
tour segmentation-registration approach [30]. Moreover, the method should be
tested on more data sets containing different kind and size of lesions in order
to better validate. Also, it would be important to study a case where the lesion
evolution is known to see if the model of lesion growth we have proposed is
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near or far from the reality.

6 Conclusion

In this paper we studied the application related to atlas-based segmentation
in presence of space-occupying lesions. In a first part of this document we re-
viewed the existing methods that has been proposed to deal with this problem
and we defined the requirements that we consider necessary to be fulfilled by
a registration method in this context. In our opinion, we require four main
characteristics: having a dense and smooth deformation field to ensure a point-
to-point correspondence, to be able to model different deformability for some
structures, to be robust to intensity differences and to be able to include lo-
cal prior knowledge. The final contribution of this work is a new algorithm
based on a MI flow associated a model of lesion growth. This algorithm over-
comes the main limitations of existing methods while fulfilling most of the
requirements defined above.
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