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Abstract

A significant amount of recent research has focused on characterizing the diversity-
multiplexing tradeoff region in multiple antenna wireless systems. In this paper we
focus on finding the point on this diversity-multiplexing region that minimizes end-
to-end distortion. Our goal is to find the optimal balance between the increased
data rate provided by multiplexing versus the error protection provided by diver-
sity. We first present analytical results for the distortion achieved by concatenating
a vector quantizer with a MIMO channel. We show that in the high SIR regime
we can find a closed form expression for the end-to-end distortion as a function of
the optimal point on the diversity-multiplexing tradeoff curve. We also show that
this framework can be used to minimize end-to-end distortion for a broad class of
source and channel codes. We demonstrate this with an example using progressive
video encoding and space-time channel codes.

1 Introduction

Multiple antennas can significantly improve performance of wireless systems. For exam-
ple, a data rate increase equal to the minimum number of transmit/receive antennas can
be obtained by multiplexing data streams across the antennas. Alternatively, transmit
or receive diversity can be utilized across multiple antennas to decrease the probability
of error. Recently Zheng and Tse [5] demonstrated that both diversity and multiplexing
can be accomplished simultaneously. However, there is a fundamental tradeoff between
the two quantities: higher spatial multiplexing gain leads to lower diversity and vice
versa. The main result in [5] is an explicit characterization of the diversity-multiplexing
tradeoff region.

Our goal in this paper is to answer the following question: “Given the diversity-
multiplexing region, where should one choose to operate?”. In order to answer this
question we require a performance metric from a higher layer. The metric of interest
in this paper will be end-to-end distortion. Specifically, our system model consists of a
source encoder concatenated with a MIMO channel encoder. Our goal is to determine
the optimal point on the diversity-multiplexing region that minimizes the distortion due
to both the source encoder and channel decoding errors.

This formulation differs from the traditional joint source-channel coding problem [1]
in many ways. The traditional formulation determines the optimal fraction of bits to
assign to the source encoder and channel encoder as the dimension of the source and
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number of channel uses tend to infinity. The traditional result is that the source should
be encoded at a rate arbitrarily close to the channel capacity. This rate can be achieved
since we may code for the channel over arbitrarily long block lengths and drive the error
probability to zero.

In this paper we consider a fundamentally different formulation. We assume that the
dimension of our source and the block lengths over which we may code are both finite.
This assumption is required for any system with delay constraints. However, as a result
we will always have some probability of error in the channel, which induces the tradeoff
between diversity and multiplexing. We determine the optimal tradeoff of diversity and
multiplexing for minimizing end-to-end distortion.

The rest of this paper is organized as follows. In the next section we present the
channel model and summarize the diversity-multiplexing tradeoff results from [5]. In
Section 3 we present our source encoding framework and develop analytical bounds on
the end-to-end distortion. Section 4 presents the optimization required to minimize end-
to-end distortion as well as closed form expressions for the optimal operating point on the
diversity-multiplexing curve. In Section 5 we present a similar formulation for optimizing
diversity and multiplexing in progressive video transmission using space-time codes. We
conclude in Section 6.

2 Channel Model

We will use the same channel model and notation from [5]. Consider a wireless link with
M transmit antennas and N receive antennas. The fading coefficients hij that model the
gain from transmit antenna i to receive antenna j are i.i.d. complex Gaussian with unit
variance. The channel gain matrix H with elements H(i, j) = (hij : i ∈ {1, . . . M}, j ∈
{1, . . . , N}) is assumed to be known at the receiver and unknown at the transmitter. We
assume that the channel remains constant over a block of T symbols, while each block is
i.i.d. Therefore, in each block we can represent the channel as

Y =

√
SNR

M
HX + W, (1)

where X ∈ CMxT and Y ∈ CNxT are the transmitted and received signals, respectively.
The additive noise vector W is i.i.d. complex Gaussian with unit variance.

We construct a family of codes for this channel {C(SNR)} of block length T for each
SNR level. Define Pe(SNR) as the average probability of error and R(SNR) as the
number of bits per symbol for the codebook. A channel code scheme {C(SNR)} is said
to achieve multiplexing gain r and diversity gain d if

lim
log SNR→∞

R(SNR)

log SNR
= r, (2)

and

lim
log SNR→∞

log Pe(SNR)

log SNR
= −d. (3)

For each r we define the optimal diversity gain d∗(r) as the supremum of the diversity
gain achieved by any scheme. The main result from [5] that we will require in the next
section is summarized in the following statement.



Figure 1: The optimal diversity-multiplexing tradeoff for T ≥ M + N − 1.

Diversity-Multiplexing Tradeoff [5]: Assume the block length T ≥ M +N−1. Then
the optimal tradeoff between diversity gain and multiplexing gain is d∗(r) = (M−r)(N−
R), for 0 ≤ r ≤ min(M,N). This function d∗(r) is plotted in Figure 1.

In this framework the rate of the codebook {C(SNR)} must scale with log SNR,
otherwise the multiplexing gain will go to zero. Hence, in the following sections we will
assume, without loss of generality, that the rate of the codebook is Tr log SNR for any
choice of 0 ≤ r ≤ min(M, N) and block length T . We also assume that the codebook
achieves the optimal diversity gain d∗(r) for any choice of r.

3 End-to-End Distortion Model

This section presents our system model for the end-to-end transmission of source data.
The source coding setup and notation follow [3]. We assume the original source data u is
a random variable with probability density f(u), which has support on a closed, bounded
subset of <k with non-empty interior. A s-bit quantizer is applied to u via the following
transformation:

Q(u) =
2s∑

i=1

viIAi
, (4)

where IAi
is the standard indicator function, and {Ai}2s

i=1 is a partition of <k into disjoint
regions. Each region Ai is represented by a single codevector vi.

We assume the encoder/decoder pair achieves the high-resolution noiseless distortion
[1]

Ds(Q) = 2−ps/k+O(1), (5)

as s →∞, where

Ds(Q) =
2s∑

i=1

∫

Ai

||u− vi||f(u)du, (6)

and ||u − vi||p is the pth power of the Euclidian norm. The high-resolution asymptotic
regime is often used in source coding theory to achieve analytical results. As noted in



Section 1, in this paper we consider the high SIR regime. However, we also require the
rate of our channel codebook {C(SNR)} to scale as r log SNR. Hence, the source coder
will receive an increasing number of bits as SNR →∞, placing us in the high-resolution
regime.

Assume that the rate of the channel codebook C{SNR} is matched to the rate of
the quantizer (i.e. s = Tr log SNR). Each codevector from the quantizer v1, . . . , v2s is
mapped into a codeword from C{SNR} through a permutation mapping π. We assume
the mapping π is chosen equally likely at random from the 2s! possibilities. The codeword
π(i) is transmitted over the channel in (1) and decoded at the receiver. Let q(π(j)|π(i))
be the probability that codeword π(j) is decoded at the receiver given that π(i) was
transmitted. In general, the probability q(·|·) will depend on the SNR, the quantizer
Q, and the permutation mapping π. Hence, we can write the end-to-end distortion as
follows,

DT (Q,SNR, π) =
2s∑

i=1

2s∑

j=1

q(π(j)|π(i))
∫

Aj

||u− vj||pf(u)du. (7)

It is shown in [3] that (7) can be bounded by

DT (Q,SNR, π) ≤ Ds(Q) + O(1)
2s∑

i=1

P (Ai)Pe|π(i), (8)

where Pe|π(i) is the probability of codeword error given that codeword π(i) was trans-
mitted. One arrives at this bound by splitting (7) into two pieces; one corresponding to
correctly received codewords and the other corresponding to erroneous decoding. The
term corresponding to correct transmission is bounded by the noiseless distortion Ds(Q)
while the term corresponding to errors is bounded by a constant multiplied by the average
block error probability.

By construction, the rate of our channel codebook (and hence the source encoder) is
s = Tr log SNR, therefore

Ds(Q) = 2−ps/k+O(1) = 2−
pTr

k
log SNR+O(1), (9)

as s → ∞, or as log SNR → ∞. Moreover, from the diversity/multiplexing results
summarized in Section 1 we have the following equivalence for the probability of codeword
error

Pe = 2−d∗(r) log SNR+o(log SNR) = 2(N−r)(M−r) log SNR+o(log SNR), (10)

as log SNR →∞. We may then write the bound on total distortion as

DT (Q,SNR, π) ≤ 2−
pTr

k
log SNR+O(1) + 2(N−r)(M−r) log SNR+o(log SNR), (11)

as log SNR → ∞. The terms in (11) provide us with an explicit characterization of
the diversity-multiplexing tradeoff and its impact on end-to-end distortion. The first
term in (11), corresponding to the noiseless encoder distortion, is strictly decreasing in
the multiplexing rate r. The second term, corresponding to channel error probabilities,
is strictly increasing with r. Hence, it is clear that there will be an optimal choice of
0 ≤ r ≤ min(N,M).



4 Minimizing Total Distortion

In order to achieve analytic results for the minimum distortion bound we consider the
asymptotic regime of log SNR →∞. In general, we minimize an exponential sum of the
form 2f(r) log SNR +2g(r) log SNR by choosing the exponents f(r) and g(r) to be within O(1)
of each other. (Note that if the exponents were not of the same order then one term in
the sum would dominate the other as log SNR →∞.) In our particular case this means
we should choose r such that

d∗(r) = (N − r)(M − r) =
pTr

k
+ o(1). (12)

Solving for r in (12) yields the optimal multiplexing rate of the codebook. Note however
that we may not always have a solution to this equation. If the block length T is
substantially larger than the dimension of the source vector k then we may not have
enough antennas to create the diversity required to solve the equation. Likewise, if k is
much larger than T then we will not have enough antennas to generate the multiplexing
rate required to match the exponents. For the case where k and T are of the same order
we have the following result.

Theorem 1: If 1
min(M,N)−1

≤ pT
k
≤ (M − 1)(N − 1), then choosing r∗ to satisfy (12) will

minimize the bound (11) on the end-to-end distortion DT (Q,SNR, π), as log SNR →∞.

If we can match the exponents in (11) we also have the following bound on the rate
at which total distortion tends to zero with SNR.

Theorem 2: If d∗(r∗) = pTr
k

then

lim
log SNR→∞

DT (Q,SNR, π)

log SNR
≤ −d∗(r∗). (13)

Proof: We have

DT (Q,SIR, π) ≤ 2−
pTr

k
log SNR+O(1) + 2(N−r)(M−r) log SIR+o(log SIR)

= 2−d∗(r∗) log SNR 2O(1)+o(log SNR).

Then as log SNR →∞

lim
log SNR→∞

log
[
2−d∗(r∗) log SNR 2O(1)+o(log SNR)

]

log SIR
= −d∗(r∗) lim

log SNR→∞

log
[
2O(1)+o(log SNR)

]

log SIR

= −d∗(r∗).

4.1 Non-asymptotic Bounds

We may also consider the behavior of our distortion bound and the corresponding choice
of r∗ for large, but finite, SNR. In this case we must solve the following convex opti-
mization to find the optimal diversity-multiplexing tradeoff.

min
r

2−
pT
k

r log SIR + 2−(M−r)(N−r) log SNR (14)

s.t. 0 ≤ r ≤ min(M, N).
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Figure 2: Total distortion vs. number of antennas assigned to multiplexing for differing
levels of SIR. T is substantially smaller than k.

Figures 2-4 contain plots that compare the total end-to-end distortion versus the num-
ber of antennas assigned to multiplexing. Each plot contains four curves that represent
different SNR levels. The difference between the three plots is the ratio of the block
length T to source vector dimension k. Notice that for T much smaller than k we will
use almost all of our antennas for multiplexing. For k much smaller than T we will use
nearly all of our antennas for diversity. For k of the same order as T we will choose an
intermediate number of antennas for multiplexing and diversity.

It is interesting to note that we will never choose full multiplexing or full diversity
for any SNR in this optimization since either choice would cause a term in (14) to go
to one. This result runs contrary to intuition and requires careful interpretation. In the
diversity and multiplexing gain definitions in Section 1, a selected diversity gain of 0 does
not necessarily correspond to a probability of error equal to 1. Rather, d∗(r) = 0 tells
us that the probability of error is O(1) and does not tend to zero as SNR →∞. Hence,
if we examine the bound in (11) and choose d∗(r) = 0; then in the high-SNR regime
we will have the first term tend to zero with the second term remaining strictly greater
than zero. Clearly this will result in sub-optimal end-to-end distortion at high SNR,
and therefore we will always choose to have at least some diversity in our system. A
similar converse argument can be made to show that we will always choose to have some
multiplexing gain in the system as well.

5 Progressive Video Encoding

While the results in the previous section lead to an interesting analytical result, they only
apply to a very narrow class of source/channel encoders and distortion metrics. However,
the basic optimization problem (14) can be applied to a broad class of encoders and
distortion measures. Furthermore, this optimization can be applied in non-asymptotic
settings, thereby allowing us to study the diversity-multiplexing tradeoff in current and
future operational wireless systems. In this section we present an example of end-to-
end distortion optimization, via the diversity-multiplexing tradeoff, for source/channel
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Figure 3: Total distortion vs. number of antennas assigned to multiplexing for differing
levels of SIR. T is on the same order as k.
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Figure 4: Total distortion vs. number of antennas assigned to multiplexing for differing
levels of SIR. T is substantially larger than k.



Figure 5: PSNR vs. Rate for different encoding options of the source encoder presented
in [2]. We use the topmost curve corresponding to β = .01.

distortion models that are fitted to real video streams and wireless channels.
We use the progressive video encoder model developed in [2]. The overall mean-square

distortion is evaluated as
DT = De + Dc, (15)

where De is the distortion induced by the source encoder and Dc is the distortion created
by errors in the channel. Although the total distortion is represented by two separate
components, each component shares some common terms so we will still have a tradeoff
between diversity and multiplexing.

The model for De consists of a six parameter analytic formula that is fitted to a
particular traffic stream. Due to space constraints we will not present the full model
here. Figure 5 contains a plot of the PSNR vs. rate for this source encoder. Each curve
in Figure 5 represents a different encoding method parameterized by a scalar β. We will
use the topmost curve (β = .01) for our example as it provides the best PSNR for any
given rate. This source encoder setting also provides the highest sensitivity to channel
errors, which allows us to highlight the tradeoff between multiplexing and diversity in
our optimization.

The model for the channel distortion Dc is fitted to the following equation,

Dc = σ2Pe(Nu)

[
γ + β

γ
ln

(
1 +

γ

β

)
− 1

γ
+

1

2

]
, (16)

where the parameters σ2, γ, and β must be estimated for a particular source encoder and
traffic stream. Nu is the number of antennas utilized for multiplexing and Pe(Nu) is the
probability of codeword error as a function of Nu.

Our channel transmission scheme follows the setup in [4]. We utilize 8 transmit and
8 receive antennas with a set of linear space-time codes that can trade off multiplexing
for diversity. The plot in Figure 6 shows the probability of error for these codes as a
function of Eb/N0. The curve corresponding to Nu = 8 shows the error probability of
the full multiplexing scheme (i.e. the highest error probability). The curves for Nu = 4,
Nu = 2, and Nu = 1 show the decrease in error probability as fewer antennas are assigned
to multiplexing and utilized to increase diversity.



Figure 6: Probability of error vs. Eb/N0 for the set of linear space-time codes used in
our example. The parameter Nu is the number of antennas assigned to multiplexing.
The error performance of BLAST and the full diversity AWGN channel are provided for
comparison.

Since this channel coding scheme does not permit us to assign fractions of antennas
we must solve the following integer program for the optimal distortion and number of
multiplexing antennas (rather than a convex program),

min
Nu

De + Dc (17)

s.t. Nu ∈ {1, 2, 4, 8}.

Figure 7 contains a set of curves that show the total distortion achieved as a function
of the number of antennas assigned to multiplexing. The uppermost curve corresponds
to the lowest SNR and the bottom curve corresponds to the highest SNR. We can see
that we have an explicit tradeoff here that depends on SNR. At low SNR the total
distortion is minimized by assigning few antennas to multiplexing in order to improve
error performance. As SNR increases we assign more antennas to multiplexing to take
advantage of the improved channel. One significant difference between this plot and the
asymptotic results in Section 3 is that here we do assign our antennas to full multiplexing
as the SNR becomes large. The reason we observe this behavior is that the rate of our
codebook in this example does not scale with SNR. We have a finite number of space-
time coding schemes and as the SNR becomes large we eventually reach a point where
we would prefer to move to a higher rate code that is not available. Hence, the optimal
choice in this case is to eventually move to full multiplexing. The implication of this
result is that in order to fully take advantage of a MIMO system we require a sufficiently
robust collection of channel codes that take advantage of all available SNRs.



Figure 7: Total distortion vs. number of antennas assigned to multiplexing for differing
levels of SIR.

6 Conclusion

We investigate the optimal diversity-multiplexing tradeoff in terms of minimizing end-
to-end distortion. We derive an analytical formula that gives the optimal multiplexing
for this minimization. We also show the exponential rate of decrease for the distortion is
bounded by the diversity gain associated with the optimal multiplexing rate. We show
that the framework is applicable to a broad class of source and channel codes. We apply
the framework to progressive video encoding with space-time codes and obtain numerical
results indicating end-to-end distortion and the optimal use of antennas for diversity and
multiplexing.
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