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Measurement of the Force-Velocity Relation
for Growing Microtubules

Marileen Dogterom* and Bernard Yurke

Forces generated by protein polymerization are important for various forms of cellular
motility. Assembling microtubules, for instance, are believed to exert pushing forces on
chromosomes during mitosis. The force that a single microtubule can generate was
measured by attaching microtubules to a substrate at one end and causing them to push
against a microfabricated rigid barrier at the other end. The subsequent buckling of the
microtubules was analyzed to determine both the force on each microtubule end and the
growth velocity. The growth velocity decreased from 1.2 micrometers per minute at zero
force to 0.2 micrometer per minute at forces of 3 to 4 piconewtons. The force-velocity
relation fits well to a decaying exponential, in agreement with theoretical models, but the
rate of decay is faster than predicted.

It has long been speculated that the assem-
bly and disassembly of cytoskeletal fila-
ments, such as microtubules (MTs) and ac-
tin, can generate forces that are important
for various forms of cellular motility. Exam-
ples include the motions of chromosomes

during mitosis that depend on both the
assembly and disassembly of MTs (1, 2),
actin-dependent motility such as cell crawl-
ing and the propulsion of Listeria through a
host cell (3), and possibly the MT-depen-
dent transport of intracellular membranes
(4). To understand the role of force produc-
tion by protein polymerization in vivo, it is
important to determine the maximum forc-
es that can be generated and the effect of an
opposing force on the assembly dynamics of
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a protein polymer. In the case of MTs, there
is clear experimental evidence that both
their assembly (4–6) and disassembly (7)
can generate force, but limited quantitative
data are available on the actual magnitude
of these forces. In this respect, the study of
force production by the assembly of cy-
toskeletal filaments, or by protein aggrega-
tion in general, clearly lags behind the study
of force production by motor proteins, for
which a number of quantitative in vitro
assays have been developed (8).

We created an experimental system in
which growing MTs were made to push
against an immobile barrier, and analyzed
the subsequent buckling of the MTs to
study the forces that were produced; the
force calibration was provided by a mea-
surement of the flexural rigidity of the MTs
(9). We etched arrays of long channels (30
mm wide, 1 mm deep) in glass cover slips
(10); the walls of these channels were used
as barriers. Using materials with different
etch rates, we produced walls with an “over-
hang” that prevented the MTs from sliding
upward along the wall (Fig. 1, A and B).
Short stabilized MT seeds, labeled with bio-
tin, were attached to the bottom of the
streptavidin-coated channels, and MTs were
allowed to grow from these seeds (Fig. 1A)
(11). Because the seeds were randomly posi-
tioned in the channels, the MTs approached
the walls from different angles and distances.
We scanned our samples for MTs that were
growing roughly perpendicular to the walls
and observed them as their growing ends
approached the walls (Fig. 1, C and D) (12).

In many cases, the MT end was caught
underneath the overhang on the wall, forc-
ing the MT to encounter the wall. After
encountering the wall, most MTs continued
to increase in length, indicating a continu-
ing addition of tubulin dimers at the grow-
ing MT ends. The virtually incompressible
(9) MTs were observed to bend in two
different ways to accommodate this con-
tinuing increase in length. In some cases,
the MT end moved along the side of the
wall while the MT bent roughly perpendic-
ular to its original direction [these MTs
were not followed any further (13)]. In oth-
er cases, the MT end, probably hindered by
small irregularities in the shape of the wall,
did not move along the side of the wall; this
caused the MT to buckle with its end piv-
oting around a fixed contact point with the
wall (Fig. 1, C and D). The force exerted by
these MTs on the wall was large enough to
overcome the critical buckling force (14).

After the initiation of buckling, both the
magnitude and the direction of the force f
exerted by each MT on the wall (and there-
fore by the wall on the MT) were solely
determined by the elastic restoring force of
the buckled MT [initially this force should

be roughly equal to the critical buckling
force (14)]. A considerable component fp of
this force was directed parallel to the direc-
tion of elongation of the MT, thereby op-
posing its growth (Fig. 2). Assuming that a
MT behaves as a homogeneous elastic rod,
the magnitude of the critical buckling force
fc normalized by the flexural rigidity k of
the MT is given by fc/k 5 A/L2, where L is
the length of the MT. The prefactor A
depends on the quality of the clamp provid-
ed by the seed: A ' 20.19 (the maximum
value) for a perfect clamp that fixes the
initial direction of the MT exactly in the
direction of the contact point with the wall,

A 5 p2 (the minimum value) for a seed
that acts as a hinge around which the MT is
completely free to pivot. Because there was
no reason to assume that either of these
conditions would be perfectly met, we ex-
pected buckling forces somewhere between
these minimum and maximum values.

To determine the actual force acting on
each buckling MT, we obtained a sequence
of fits to the shape of an elastic rod from
video frames spaced 2 s apart (Fig. 2) (15).
When no assumptions were made about the
quality of the clamp or the magnitude of fc,
these fits produced values for f/k , fp/k , and
L as a function of time. Fig. 3A shows the
parallel component of the normalized force
and the MT length as a function of time for
five different examples, both before and
after reaching the wall. The MT length
before reaching the wall was determined by
tracking the end of the growing MT (15)

Fig. 1. In vitro assay to study the force exerted by
a single growing MT. (A) Schematic representa-
tion of the experiment (shown in perspective from
a side view; not to scale). A biotinylated MT seed
(black), attached to the streptavidin-coated bot-
tom of a channel (indicated by black dots), tem-
plates the growth of a freely suspended MT (gray).
An overhang was created on the walls of the
channel to prevent the MT ends from sliding up-
ward after encountering the wall. (B) Electron mi-
croscopy image showing a wall with overhang
(scale bar, 1 mm). (C and D) DIC images of two
buckling MTs (top view) (12). The upper panels
each show a MT [arrowhead in top left of (C)] grow-
ing from a randomly positioned seed. The lower
panels are snapshots (separated by 1 min) of each
MT after the growing end has encountered the
wall.Becauseof thecontrastproducedby theover-
hang on the walls (which vary in size between sam-
ples), the last few micrometers of the MTs cannot
be seen. The sharp changes in contrast indicate
the actual locations of the walls. Scale bar, 10 mm.

Fig. 2. Analysis of MT buckling shapes (15). Open
squares show the hand-recorded shapes of the
MT shown in Fig. 1D at 12-s intervals (shapes were
analyzed at 2-s intervals). The dashed line on the
left indicates the position of the seed (xL). The
dashed line on the right indicates the position of the
wall (xW) as judged by eye from the images (Fig.
1D). The solid lines show fits to the shape of an
elastic rod. One (at the top) is shown as an exam-
ple. We assumed that the MT was held at its seed
and that a force f was applied at the contact point
of the MT with the wall (x0,y0). This contact point
remained fixed in time and was chosen to produce
the best combined fit over the entire time sequence
(this produces a value of x0 very close to xW). We
further assumed that the MT was free to pivot
around the contact point, but we made no as-
sumptions about the quality of the clamp provided
by the seed. The fits produced the magnitude and
the direction of the force f (normalized by the flex-
ural rigidity k of the MT ) at each time point, as well
as the length of the MT given by the arc length
between x0 and xL. MT growth is opposed by fp,
the component of the force that is directed parallel
to the axis of the MT. Scale bar, 5 mm.

REPORTS
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(in each case a segment in the time se-
quence is missing, during which the end of
the MT was obscured by the presence of the
overhang on the wall). The growth velocity
varied considerably even at zero force, as
reported previously (16, 17). However, all
MTs clearly slowed as soon as a force was
applied. These curves also show that the
forces on short buckling MTs tend to be
greater than the forces on long buckling
MTs. The total normalized force (not just
the parallel component) as a function of
MT length is shown in Fig. 3B for all MT
shapes analyzed. For each MT length, the
forces vary over a certain range because of
variability in the quality of the clamp pro-
vided by the seed. The two dotted lines
indicate the theoretical limits for fc (dis-
cussed above); as expected, we found that
the restoring forces were between these lim-
its, which validated our assumption that
MTs behave as homogeneous elastic rods.

In Fig. 4 the average growth velocity ^v&
is plotted as a function of force (the force-
velocity curve) for all data combined (18).
This plot shows that the growth velocity
approaches the velocity of a freely growing
MT (;1.2 mm min–1) at low force, and
decreases to ;0.2 mm min–1 as more and
more force is applied. This implies that the
reduction in growth velocity is controlled
by the applied force and is not simply
caused by the proximity of the end of the
MT to the glass barrier. The lower x axis in
Fig. 4 is labeled with values for the normal-

ized force because this is the parameter
obtained from our fits. An independent
measure of k is needed to obtain values for
the absolute force. The flexural rigidity of
pure MTs has been measured using various
methods; the values reported range over an
order of magnitude, 4 to 40 pNzmm2 (6, 19,
20). We used an analysis of the thermal
fluctuations to measure the rigidity of our
MTs (21) and found values at the upper end
of this range: 34 6 7 pNzmm2. This means
that the largest forces in Fig. 4 are on the
order of 4 pN (the upper x axis is labeled
with absolute values of force derived from
our measurement of the flexural rigidity).

The force-velocity relation in Fig. 4 can
be compared with theoretical predictions.
In the absence of force, the growth velocity
is given by the difference in the rate of
addition and removal of subunits, v 5 d(ac
– b), where d is the added MT length per
dimer (d 5 d/13 nm for an MT with 13
protofilaments), ac is the rate of subunit
addition (the on-rate), c is the tubulin con-
centration, and b is the rate of subunit
removal (the off-rate). In principle, both a
and b may be affected by a force that op-
poses elongation of the MT ( fp in our case).
Thermodynamic arguments (22) show that
their ratio (which gives the critical tubulin
concentration ccr) must increase with force
according to

ccr(fp) 5
b(fp)
a(fp)

5
b(0)
a(0)

exp(fpd/kBT) (1)

where kB is the Boltzmann constant and T
is temperature. This leads to

v(fp) 5 d{a exp(2qfpd/kBT)c

2 b exp[(1 2 q)fpd/kBT]} (2)

where q may take any value between 0 and
1 (possibly in a force-dependent way). The
stall force fs (the force at which the velocity
becomes equal to zero) is independent of q
and is given by

fs 5
kBT
d

ln
ac
b

(3)

A similar result is obtained if the growth
process is pictured as a “Brownian ratchet”
(23). In this more mechanistic view, the
on-rate depends on the force-dependent
probability that thermal fluctuations (in the
position of the MT end in this case) allow
for a gap between the MT end and the
barrier that is large enough for a dimer to
attach to the growing MT end (under op-
timal conditions, the size of this gap along
the direction of MT growth is equal to d,
the added length per dimer). If the force is
independent of the size of the gap and the
time required to add a dimer is long relative
to the time required for the MT end to
diffuse over a distance d, then

v( fp) 5 d[a exp(2fpd/kBT)c 2 b] (4)

(23, 24). This relation assumes that the
effect of force on the off-rate can be neglect-
ed. We performed a weighted least-squares
fit of the data in Fig. 4 to both the function
v( fp) 5 A – B exp(Cfp/k) (assuming that
only the off-rate is affected or q 5 0) and the
function v(fp) 5 A exp(–Cfp/k) – B (assum-
ing that only the on-rate is affected or q 5
1), where A, B, and C are fitting parame-
ters. In the first case, the best fit (x2 5 1.5)

Fig. 3. MT length and applied force obtained from the analysis of MT buckling shapes such as shown
in Fig. 2. (A) For five different MTs, the length L as a function of time (at 2-s intervals) is shown both before
and after contact with the wall (solid symbols). A segment of time is missing in each case, during which
the end of the growing MT was obscured by the presence of the overhang on the wall. Open symbols
show the parallel component of the normalized force, fp/k . The lower left curve corresponds to the MT
shown in Figs. 1D and 2. The upper right curve corresponds to the MT shown in Fig. 1C. (B) Total
normalized force, f/k, as a function of MT length for all MT shapes analyzed (n 5 1316). Each point
corresponds to one MT shape. The dashed lines indicate the theoretical length dependence of fc in two
limiting cases: fc/k 5 20.19/L2 for a MT with a seed that acts as a perfect clamp (upper curve) and fc/k
5 p2/L2 for a MT with a seed that acts as a perfect hinge (lower curve). In the experiments, the seeds
behaved in an intermediate way and, as expected, the forces obtained from the fits fall between these
two limiting curves.

Fig. 4. Average MT growth velocity as a function
of force. Velocity and force were obtained from
combining data such as shown in Fig. 3A (18). The
lower x axis gives the value of the normalized
force, fp/k. The upper x axis gives the absolute
value of the force, based on our measurement of
the flexural rigidity. The solid line gives the best fit
of the data to an exponential decay.
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produced extremely large values for the pa-
rameters A and B, and a value for C nearly
equal to zero (corresponding to almost a
straight line). Experimental results show,
however, that B is very small in the absence
of force (25). Fixing the maximum value of
B at 0.5 mm min–1 produced a fit that was
much worse (x2 5 2.5), and smaller values
of B produced fits that were even worse.
Consequently, it is unlikely that the only
effect of force is an increase in the off-rate.
In the second case, a more reasonable result
(indicated by the solid line in Fig. 4) was
obtained: x2 5 0.43 with A 5 1.13 6 0.11
mm min–1, B 5 –0.08 6 0.12 mm min–1, and
C 5 18 6 4 mm2. This indicates the possi-
bility that the only effect of force is a de-
crease in the on-rate (26). Although B is
expected to be small, its true value should be
greater than zero. Because of the uncertainty
in B, it is impossible to extract a good esti-
mate of fs from this fit.

The value predicted for the parameter
C is equal to kd /kBT, which, given our
measured value for k, corresponds to 5 6 1
mm2. This is smaller than the value ob-
tained from the fit for q 5 1, 18 6 4 mm2,
which implies that the growth velocity
decreases faster with force than would be
expected from theoretical arguments [this
discrepancy becomes even larger if we as-
sume a smaller value for q (26)]. The
theoretical rate corresponds to an opti-
mum situation in which the free energy
available from the assembly of all 13 pro-
tofilaments is converted into mechanical
work. Despite the relatively large experi-
mental error bars, our data indicate that
this is not the case under our conditions.
It may be that, if the end of a growing MT
is not blunt but pointed, only a few proto-
filaments are supporting the load. If this is
pictured as a ratchet, gaps closer to the size
of a full dimer may be required to squeeze in
the next subunit, which would increase the
predicted value for C. Also, growth may
occur through the closure of a sheet of pro-
tofilaments (17), which could make the gap
size needed for this process even larger than
the size of a dimer.

We have presented a quantitative meth-
od for studying the force that can be pro-
duced by a single growing MT in interac-
tion with a nonspecific glass barrier. Con-
sidering that under these conditions less
force is produced than is theoretically pos-
sible, a logical next step would be to study
whether the interaction of the growing MT
end with a specific attachment site modifies
this result. In principle it should be possible
to coat the walls [or simply a pattern of lines
(27)] with isolated chromosomes (7) or ki-
netochore constructs (28) and repeat the
same experiment. This system can also be
used to study the effect of force on the

catastrophe frequency of MTs (the proba-
bility of switching from the growing to the
shrinking state). In our experiments, growth
often persisted after the initiation of buck-
ling, which implies that an opposing force
does not markedly increase the catastrophe
frequency. Quantitatively verifying this pos-
sibility would require the observation of
many catastrophe events both before and
during the application of force.
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IKK-1 And IKK-2: Cytokine-Activated IkB
Kinases Essential for NF-kB Activation

Frank Mercurio,* Hengyi Zhu, Brion W. Murray,
Andrej Shevchenko, Brydon L. Bennett, Jian wu Li,
David B. Young, Miguel Barbosa, Matthias Mann,

Anthony Manning, Anjana Rao

Activation of the transcription factor nuclear factor kappa B (NF-kB) is controlled by
sequential phosphorylation, ubiquitination, and degradation of its inhibitory subunit IkB.
A large multiprotein complex, the IkB kinase (IKK) signalsome, was purified from HeLa
cells and found to contain a cytokine-inducible IkB kinase activity that phosphorylates
IkB-a and IkB-b. Two components of the IKK signalsome, IKK-1 and IKK-2, were
identified as closely related protein serine kinases containing leucine zipper and helix-
loop-helix protein interaction motifs. Mutant versions of IKK-2 had pronounced effects
on RelA nuclear translocation and NF-kB–dependent reporter activity, consistent with
a critical role for the IKK kinases in the NF-kB signaling pathway.

Transcription factors of the NF-kB Rel
family are critical regulators of genes that
function in inflammation, cell proliferation,
and apoptosis (1). The prototype member of
the family, NF-kB, is composed of a dimer
of p50 (NF-kB1) and p65 (RelA) (2). NF-
kB exists in the cytoplasm of resting cells
but enters the nucleus in response to vari-
ous stimuli, including viral infection, ultra-
violet irradiation, and proinflammatory cy-
tokines such as tumor necrosis factor a
(TNF-a) and interleukin-1 (IL-1) (1, 3).

Activation of NF-kB is controlled by an
inhibitory subunit, IkB, which retains NF-
kB in the cytoplasm (4). NF-kB activation
requires sequential phosphorylation, ubiq-
uitination, and degradation of IkB as well as
consequent exposure of a nuclear localiza-
tion signal on NF-kB (5). Ser32 and Ser36 of
IkB-a, and the corresponding Ser19 and
Ser23 of IkB-b, represent critical phospho-
rylated residues (6). The IkB kinase shows a
high degree of specificity for these residues,
because an IkB-a variant in which Ser32

and Ser36 were substituted by Thr (S32T,
S36T) showed much reduced phosphoryl-
ation and degradation in stimulated cells
and interfered with endogenous NF-kB ac-
tivation (6).

To identify the IkB kinase responsible
for the initial critical step of NF-kB activa-

tion, we fractionated whole-cell extracts
(WCEs) from TNF-a–stimulated HeLa
cells by standard chromatographic methods
(7). We assayed IkB kinase activity in each
fraction by phosphorylating glutathione-S-
transferase (GST)–IkB-a (1–54) or GST–
IkB-b (1–44) (8). Kinase specificity was
established by using (S32T, S36T) mutant
GST–IkB-a (1–54) [GST–IkB-a (1–54;
S32T, S36T)], and GST–IkB-b (1–44), in
which Ser19 and Ser23 were mutated to Ala
[GST–IkB-b (1–44; S19A, S23A)] (8). IkB
kinase activity was not observed in un-
stimulated cell extracts but was strong in
cells stimulated for 5 to 7 min with TNF-a
(9). Gel-filtration chromatography resolved
this IkB kinase activity in a broad peak of
500 to 700 kD (Fig. 1A). In contrast to the
600-kD IkB kinase complex that was ob-
served after treatment of cell extracts with
either okadaic acid or ubiquitin-conjugat-
ing enzymes (10), the IkB kinase activity
described here displayed no requirement for
ubiquitination (9). We refer to the protein
complex that contains the inducible IkB
kinase activity as the IKK signalsome.

NF-kB activation occurs under condi-
tions that also stimulate mitogen-activated
protein kinase (MAP kinase) pathways
(11). We tested preparations containing
the IKK signalsome for the presence of
proteins associated with MAP kinase and
phosphatase cascades (Fig. 1B). The MAP
kinase kinase–1 (MEKK-1) and two Tyr-
phosphorylated proteins of ;55 and ;40
kD copurified with IkB kinase activity
(Fig. 1B). A protein of ;50 kD that re-
acted with an antibody to MAP kinase
phosphatase–1 (anti–MKP-1) also copuri-
fied with the IkB kinase through several
purification steps.
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