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Abstract: In this work, the optimization of a finish hard turning process for the machining
of D2 steel with ceramic tools is carried out. With the help of replicate experimental data
at 27 different cutting conditions, radial basis function neural network models are fitted
for predicting the surface roughness and tool wear as functions of cutting speed, feed, and
machining time. A novel method for neural network training is proposed. The trained neural
network models are used as a black box in the optimization routine. Two types of optim-
ization goal are considered in this work: minimization of production time and minimization
of the cost of machining. One novel feature of this work is that the surface roughness is
considered in the tool life instead of as a constraint. This is possible owing to the availability
of the relationship of surface roughness with time in the neural network model. The results of
optimization will be dependent on the tool change time and the ratio of operating cost to tool
change cost. The results have been presented for the possible ranges of these parameters.
This will help to choose the appropriate process parameters for different situations, and a
sensitivity analysis can be easily carried out.

Keywords: hard turning, ceramic tools, surface roughness, tool wear, optimization, neural
networks

1 INTRODUCTION

Hard turning is the process of turning materials with
a hardness above HRC 45. Ceramic and cubic boron
nitride (CBN) tools are widely employed for this
purpose. A number of experimental studies have
been carried out on the hard turning process using
ceramic and CBN tools [1–7]. From these studies
it is inferred that the machining performance in
hard turning is highly dependent on the process
parameters. With proper optimization of the process
parameters, hard turning can compete with the
grinding process. However, owing to the rapid devel-
opment of different tool materials and the need to
machine the newer hard materials, the task of opti-
mization becomes challenging on account of lack of

information about the cutting performance. A mix
of judicious experimental study and optimization
technique application is needed for obtaining opti-
mized values of the process parameters.

Considering the difficulties in the development of
empirical relations for each and every tool and
work–material combination, neural networks have
started to gain popularity for machining perform-
ance prediction [8–16]. Ezugwu et al. [8] used a black
oxide ceramic cutting tool for the turning of a grey
cast iron. They studied the tool life and failure
modes and trained an artificial neural network, which
could be used for predicting tool lives and failure
modes for different cutting conditions. The accuracy
of prediction by the trained network was not very
good, and the authors felt the need to carry out
more experiments for training the network. Kohli
and Dixit [11] have proposed a procedure of neural
network modelling for surface roughness predic-
tion in turning that requires less experiment data.
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This procedure is very important as the generation of
experimental data is a costly affair. Design of experi-
ments is part of the methodology, and new experi-
mental data are generated in an adaptive manner
until a neural network providing satisfactory pre-
diction is obtained. The methodology is less effect-
ive when a priori experimental data are available
with no scope to generate fresh data in an adaptive
manner. Ojha and Dixit [12] employed neural net-
works for the prediction of tool life in turning. Özel
and Karpat [13] utilized neural networks for the
prediction of tool wear and surface roughness in
hard turning with cubic boron nitride (CBN) tools
and compared their performance with multiple-
regression models. The neural networks were found
to provide better prediction than multiple-regression
models. The neural network models used in refer-
ences [8] to [13] are multilayer perceptron (MLP)
neural networks trained with a backpropagation
algorithm. These networks require a large amount
of time for training and cannot guarantee to provide
global optima in terms of training error minimiza-
tion. A relatively newer type of neural network, the
radial basis function (RBF) neural network, is much
faster to train and always provides global minima
for minimizing training error for a given architec-
ture. There have been a few applications of RBF
neural networks in the prediction of machining
performance [14–16].

Although optimization of the turning process is
one of the most widely investigated research topics
in machining [17, 18], most of the optimization
methods rely on Taylor’s tool life equation. Tool life
is often determined by measuring the flank wear.
Usually, the allowable maximum surface rough-
ness is put as a constraint either using the formula
for ideal surface roughness or some empirical expres-
sion. The recent trend is to use neural network pre-
diction models in the optimization of machining
processes [19].

In the present work, radial basis function (RBF)
neural networks are employed to predict the surface
roughness and flank wear in the finish hard turning of
AISI D2 cold-worked tool steel with a mixed ceramic
turning tool. The networks are trained on the basis
of 54 experiments over wide ranges of cutting speed
and feed at a constant depth of cut of 0.2mm.
In order to avoid the problem of overfitting, a novel
procedure of network training is used here. The fit-
ted neural network models are used as a black box
to predict the surface roughness and flank wear as
a function of cutting speed v, feed f, and cutting
time t, and are utilized in an optimization routine.
In the present work, a tool is considered as failed
when either the maximum flank wear exceeds a pre-
scribed value or the centre-line average (CLA) surface
roughness Ra of the machined surface exceeds the

design value. Trained neural networks being available
for predicting the flank wear at the nose (VC) and the
surface roughness, the tool life as a function of feed
and cutting speed can be computed. Two types of
optimization goal are considered in this work: mini-
mization of production time and minimization of
the cost of machining. The optimization is carried
out by writing a code in a MATLAB environment.
The results of optimization are dependent on tool
change time and the ratio of operating cost to tool
change cost. Hence, the results have been presented
for the possible ranges of these parameters.

2 NEURAL NETWORK MODELLING
PROCEDURE

In finish hard turning, the depth of cut is kept very
small and chosen according to the required final
dimension of the job. The cutting speed and feed
are two independent variables on which the machin-
ing performance depends. The machining perform-
ance will also be a function of the cutting time.
Therefore, three input neurons of a neural network
are cutting speed v, feed f, and cutting time t. Two
commonly employed neural networks are the multi-
layer perceptron (MLP) network and the radial
basis function (RBF) network [20]. The RBF network
requires less time in training, is not dependent on
the initial guess for the network weights, and always
provides global minima when the minimization of
error is carried out using network weights as the
design variables. Therefore, this type of network was
employed in the present work. An RBF neural net-
work consists of three layers: an input layer, a hidden
layer of RBF processing neurons, and an output layer
consisting of pure linear processing neurons. The
architecture of a typical neural network is shown
in Fig. 1. Only one output neuron is shown in the
output layer. It is possible to design network architec-
ture with a greater number of neurons in the output
layer. However, in this work, two different networks

Fig. 1 Typical RBF neural network architecture
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with one neuron in the output layer are fitted for
predicting output variables VC and Ra. This offers
the flexibility to have different types of radial basis
processing function in the hidden layer for different
networks.

In the present work, the form of the RBF was
chosen as Gaussian with the expression

�ðxÞ ¼ exp
�x2

s2

� �
ð1Þ

where parameter s controls the zone of influence of
the RBF and is commonly referred to as the spread
parameter. The output o of a network consisting of N
neurons in the hidden layer is calculated according to

o ¼
XN
i¼1

wi�i x � cik k2
� � ð2Þ

where x¼ {v, f, t}T is the input vector of process
variables, fi (·) represents the processing functions
of the ith neuron in the hidden layer, wi is the
corresponding weight, ci is the corresponding RBF
centre chosen from the input vector space, and ·k k2
denotes the Euclidean norm. After fixing the spread
parameter and centres for P number of input–
output training pairs, the following linear system of
equations is obtained

op ¼
XN
i¼1

wi�i xp � ci
�� ��

2

� �
, p ¼ 1, 2, : : : , P ð3Þ

The above system of equation can be solved by
the least-squares method, which in essence is the
following optimization problem with weights as the
design variables

Minimize E ¼
XP
p¼1

op �
XN
i¼1

wi�i xp � ci
�� ��

2

� �" #2

ð4Þ

In this problem, the objective function is convex and
therefore the solution is always a global minimum.

Usually, the RBF neural network requires a large
number of training pairs. However, often a limited
number of training data are available. In this work,
the experimental data are taken from the paper by
Davim and Figueira [7] for the turning of high-
chromium cold-worked tool steel D2 (AISI) with
mixed alumina ceramic inserts. The workpiece had
the following chemical composition (wt %): 1.55C–
0.30Si–0.40Mn–11.80Cr–0.80Mo–0.80V. The hardness
of the workpiece was about HRC 60. Only 27 experi-
mental data replicated once were available, as shown
in Table 1. Training with these limited data may
result in a non-smooth and physically unrealistic
function. To alleviate this problem, the ranges of
cutting speed, feed, and cutting time were divided
into two parts. Thus, the entire domain was sub-
divided into eight cubic cells of equal sizes, as shown

in Fig. 2. For each cubic cell, the data at eight corners
were available. Then, an interval regression model
[21] was fitted for each cell, based on the corner
data. The input vector x¼ {v, f, t}T is mapped to the
lower estimate Yl(x) and upper estimate Yu(x) of a
dependent variable according to

Y lðxÞ ¼ Al
0 þ Al

1v þ Al
2f þ Al

3t þ Al
4vf

þ Al
5ft þ Al

6tv þ Al
7vft

ð5Þ

and

Y uðxÞ ¼Au
0 þ Au

1v þ Au
2 f þ Au

3t þ Au
4vf

þ Au
5 ft þ Au

6 tv þ Au
7vft

ð6Þ

where Al
i are the coefficients for predicting the lower

estimate and Au
i are the coefficients for predicting the

upper estimate of the dependent variable Y. For each
cell at each corner, two replicates were available.
Thus, a total of 16 data were used for fitting of
the interval regression model. The coefficients in
equations (5) and (6) can be obtained by solving the
following linear programming (LP) problem

Minimize
X16
p¼1

Au
0 � Al

0

� �þ Au
1 � Al

1

� �
vp þ Au

2 � Al
2

� �
fp

þ Au
3 � Al

3

� �
tp þ Au

4 � Al
4

� �
vp fp þ Au

5 � Al
5

� �
fp tp

þ Au
6 � Al

6

� �
tp vp þ Au

7 � Al
7

� �
vp fp tp

ð7Þ
subject to

Al
0þAl

1 vpþAl
2 fpþAl

3 tpþAl
4 vp fp

þAl
5 fp tpþAl

6 tp vpþAl
7 vp fp tp 6 Yp

Au
0 þAu

1 vpþAu
2 fpþAu

3 tpþAu
4 vp fp

þAu
5 fp tpþAu

6 tp vpþAu
7 vp fp tp >Yp

9>>>=
>>>;
, p¼ 1, 2, : : : , 16

ð8Þ
The objective of equation (7) is to minimize the
widths of the interval outputs. The constraint
condition (equation (8)) means that the interval
output must include the given output.

For example, consider the cell with the ranges of
cutting speed 80–150m/min, feed 0.1–0.15mm/rev,
and cutting time 5–10min. Corresponding to this
cell, eight different cutting conditions are obtained
from the experimental data. Output variable Ra is
selected for creating the model. As each cutting condi-
tion has two replicates of output variables, 16 sets of
input–output datasets can be obtained from Table 1.
Thus, for the above LP problem, 16 patterns of input
variables {vp, fp, tp} and output variable Yp are
obtained. Solving the above problem yields the coeffi-
cients of the equations (5) and (6) corresponding to
the particular cell and output variable. This procedure
is repeated for each of the eight cells and for each of
the output variables. Thus, separate linear regression
models are obtained for each cell and each output.
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The piecewise linear regression equations for flank
wear and surface roughness are provided in Tables 2
and 3 respectively. A subroutine has been written to
predict the upper and lower estimates of each of the
output variables throughout the domain (i.e. the total
range of the process parameters) by unifying all the
interval regression models.

The RBF neural network as shown in Fig. 1 is
trained with the help of 125 uniformly distributed
cutting conditions throughout the range of process
parameters. These 125 data points are obtained by
choosing five uniformly distributed data points along
the range of each process parameter. The interval
regression models are used to predict the lower and
upper estimates of the dependent variables corres-
ponding to these 125 data points. The mean value
of these lower and upper estimates along with the
corresponding process parameter values forms the
training set for the RBF neural network.

Each of the output variables was predicted though
a separate network. Therefore, two neural networks
were fitted to predict the two output variables, i.e.
surface roughness and flank wear. Apart from being
trained by a training dataset, the neural network
also requires an appropriate spread parameter to
have a proper generalization of the neural model
in predicting the values throughout the range. An
inappropriate spread parameter may lead to a non-
smooth function. For example, Fig. 3 shows the varia-
tions in surface roughness Ra with cutting speed for a
constant feed of 0.1mm/rev and a cutting time of
10min. The three curves correspond to three net-
works trained with different spread parameters. It is
seen that in the speed range 80–220m/min the
spread parameter 1.92 provides a unimodal curve,

Table 1 Comparison of CLA surface roughness and flank wear predictions by neural networks with the experimental data
obtained from reference [7]

Cutting parameters Flank wear values VC (mm) Surface roughness values Ra (mm)

v (m/min) f (mm/rev) t (min) Replicate 1 Replicate 2
NN predicted
values Replicate 1 Replicate 2

NN predicted
values

80 0.05 5 0.05 0.06 0.05 0.45 0.40 0.42
80 0.05 10 0.08 0.08 0.08 0.52 0.47 0.51
80 0.05 15 0.11 0.10 0.11 0.57 0.55 0.55
80 0.1 5 0.05 0.05 0.06 0.82 0.62 0.70
80 0.1 10 0.08 0.08 0.08 1.02 0.92 0.91
80 0.1 15 0.09 0.09 0.09 1.14 0.95 1.01
80 0.15 5 0.04 0.03 0.04 0.54 0.55 0.52
80 0.15 10 0.08 0.08 0.08 0.60 0.80 0.71
80 0.15 15 0.10 0.09 0.10 0.74 0.90 0.81

150 0.05 5 0.09 0.11 0.12 0.41 0.36 0.39
150 0.05 10 0.14 0.14 0.17 0.58 0.42 0.50
150 0.05 15 0.16 0.15 0.18 0.62 0.58 0.66
150 0.1 5 0.09 0.08 0.09 0.77 0.80 0.74
150 0.1 10 0.15 0.13 0.15 0.87 0.91 0.91
150 0.1 15 0.26 0.24 0.23 1.15 0.95 1.06
150 0.15 5 0.10 0.09 0.09 0.79 0.75 0.78
150 0.15 10 0.17 0.18 0.16 1.06 1.07 1.04
150 0.15 15 0.24 0.25 0.26 1.27 1.37 1.31
220 0.05 5 0.34 0.33 0.33 0.25 0.26 0.27
220 0.05 10 0.60 0.59 0.58 0.45 0.46 0.52
220 0.05 15 0.65 0.64 0.64 1.31 1.49 1.40
220 0.1 5 0.19 0.21 0.22 0.62 0.55 0.60
220 0.1 10 0.29 0.31 0.31 1.09 0.86 0.97
220 0.1 15 0.31 0.33 0.36 1.33 1.42 1.41
220 0.15 5 0.18 0.20 0.19 0.91 0.85 0.87
220 0.15 10 0.28 0.31 0.33 1.35 1.26 1.29
220 0.15 15 0.75 0.80 0.79 1.46 1.49 1.46

Fig. 2 Division of the input domain into eight cubic cells
for fitting of linear regression models
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whereas other spread parameters provide multi-
modal curves, which seems to be physically unrea-
listic. The neural network is seen to overestimate
surface roughness at low spread parameters and
underestimate the surface roughness at high spread
parameters. Therefore, a proper spread parameter
should be chosen to have the best-fit neural network
providing the least r.m.s. percentage error for the
testing and training data. A total of uniformly distri-
buted 316 data points were chosen as the testing
data. The MATLAB function NEWRB was used for
training of the network. The function uses an algo-
rithm that starts with zero neurons in the hidden
layer and keeps on adding the input vector with the
greatest error as the centre in successive runs until
the error goal is achieved. The following modifica-
tions were carried out to this function. First, the
maximum number of neurons in the hidden layer
was limited to 32 in order to limit the number of

computations and the memory requirement for the
fitted function. Second, the architecture providing
the minimum effective r.m.s. percentage error (the
minimum training and testing error) was chosen
among 32 different architectures corresponding to
1–32 centres (neurons in the hidden layer), instead
of prescribing any error goal.

The appropriate spread parameter was found
for each of the networks (corresponding to each
output variable) by minimizing the effective error
(the maximum of training and testing error) subject
to the constraint that all the predictions lie within
the lower and upper estimates of the regression
model. For each prediction lying outside the upper
and lower bound, a penalty (a high value, 10 in this
case) is added to the effective error. The sum of
penalties and effective error is referred to as the
penalized effective error e in subsequent discus-
sion. The penalized effective error is minimized by

Table 2 Regression equations for the eight cubic cells for the prediction of flank wear

Cell Equation for lower and upper estimates of VC (mm)

v ¼ 80–150m/min, f ¼ 0.05–0.1mm/rev,
t ¼ 5–10min

VCl ¼ �0:014þ 0:094v þ 0:034f þ 0:021t � 0:094fv þ 0:189vt
VCu ¼ �0:02þ 0:22v þ 0:043f þ 0:064t � 0:283fv � 0:116ft � 0:094vt þ 0:566vft

v ¼ 80–150m/min, f ¼ 0.05–0.1mm/rev,
t ¼ 10–15 min

VCl ¼ �0:334þ 0:974v þ 0:849f þ 0:501t � 2:169fv � 1:221ft � 1:131vt þ 3:111vft
VCu ¼ �0:351þ 0:911v þ 0:84f þ 0:561t � 1:98fv � 1:311ft � 1:131vt þ 3:111vft

v ¼ 80–150m/min, f ¼ 0.1–0.15mm/rev,
t ¼ 5–10 min

VCl ¼ 0:134� 0:094v � 0:189 f � 0:03 t þ 0:189fv þ 0:077ft þ 0:283vft
VCu ¼ 0:071� 0:031v � 0:094 f � 0:004 t þ 0:094fv � 0:013ft þ 0:094vt þ 0:283vft

v ¼ 80–150m/min, f ¼ 0.1–0.15mm/rev,
t ¼ 10–15 min

VCl ¼ 0:505� 1:226v � 0:411f � 0:587t þ 1:131fv þ 0:411ft þ 1:697vt � 1:131vft
VCu ¼ 0:546� 1:226v � 0:505f � 0:715t þ 1:226fv þ 0:604ft þ 1:886vt � 1:414vft

v ¼ 150–220m/min, f ¼ 0.05–0.1mm/rev,
t ¼ 5–10 min

VCl ¼ 0:05� 0:223f � 2:229t þ 0:283fv þ 3:086ft þ 3:489vt � 4:526vft
VCu ¼ 0:301� 0:251v � 0:664f � 2:7t þ 0:754fv þ 3:934ft þ 3:96vt � 5:374vft

v ¼ 150–220m/min, f ¼ 0.05–0.1mm/rev,
t ¼ 10–15 min

VCl ¼ �0:527þ 1:257v � 0:437f � 1:363t � 0:283fv þ 3:407ft þ 1:603vt � 3:677vft
VCu ¼ �0:716þ 1:446v � 0:124 f � 1:174 t � 0:566fv þ 3:407ft þ 1:603vt � 3:677vft

v ¼ 150–220m/min, f ¼ 0.1–0.15mm/rev,
t ¼ 5–10 min

VCl ¼ �0:016þ 0:126v � 0:124f � 0:737t þ 0:094fv þ 0:849ft þ 1:037vt � 0:849vft
VCu ¼ �0:164þ 0:314v þ 0:034f � 0:326t � 0:094fv þ 0:373ft þ 0:566vt � 0:283vft

v ¼ 150–220m/min, f ¼ 0.1–0.15mm/rev,
t ¼ 10–15 min

VCl ¼ �5:473þ 7:543v þ 6:981f þ 7:449t � 9:711fv � 9:81ft � 10:089vt þ 13:86vft
VCu ¼ �5:519þ 7:669v þ 7:08f þ 7:706t � 9:9fv � 10:196ft � 10:466vt þ 14:426vft

Table 3 Regression equations for the eight cubic cells for the prediction of CLA surface roughness

Cell Equation for lower and upper estimates of Ra (mm)

v ¼ 80–150m/min, f ¼ 0.05–0.1mm/rev,
t ¼ 5–10 min

Rl
a ¼ 0:809� 1:288v � 1:332f � 1:097t þ 3:582fv þ 4:024ft þ 1:697vt � 5:374vft

Ru
a ¼ 0:54� 1:1v � 1:174t þ 1:98fv þ 3:124ft þ 2:734vt � 5:374vft

v ¼ 80–150m/min, f ¼ 0.05–0.1mm/rev,
t ¼ 10–15 min

Rl
a ¼ 0:069� 0:849v þ 1:444f þ 0:013t þ 0:566fv � 0:141ft þ 1:037vt � 0:849vft

Ru
a ¼ �0:523þ 1:603v þ 2:554f þ 0:42t � 4:054fv � 0:707ft � 1:32vt þ 3:677vft

v ¼ 80–150m/min, f ¼ 0.1–0.15mm/rev,
t ¼ 5–10 min

Rl
a ¼ �1:291þ 3:551v þ 1:817f þ 6:111t � 3:677fv � 6:789ft � 10:371vt þ 12:728vft

Ru
a ¼ 1:5� 0:66v � 1:44f þ 1:431t þ 1:32fv � 0:784ft � 3:111vt þ 3:394vft

v ¼ 80–150m/min, f ¼ 0.1–0.15mm/rev,
t ¼ 10–15 min

Rl
a ¼ 3:186� 3:426v � 3:231f � 0:604t þ 4:431fv þ 0:784ft þ 0:094vt þ 0:566vft

Ru
a ¼ 2:043� 2:483v � 1:294f þ 0:617t þ 2:074fv � 1:003ft � 0:377vt þ 2:263vft

v ¼ 150–220m/min, f ¼ 0.05–0.1mm/rev,
t ¼ 5–10 min

Rl
a ¼ 0:08� 0:22v þ 2:267f � 0:39t � 1:697fv � 0:99ft þ 0:66vt þ 1:98vft

Ru
a ¼ �0:596þ 0:566v þ 3:664f þ 2:619t � 3:394fv � 6:904ft � 2:829vt þ 9:334vft

v ¼ 150–220m/min, f ¼ 0.05–0.1mm/rev,
t ¼ 10–15 min

Rl
a ¼ 3:669� 6:129v � 1:899f � 5:773t þ 5:469fv þ 5:259ft þ 9:523vt � 8:769vft

Ru
a ¼ 9:57� 13:2v � 13:71f � 12:63t þ 19:8fv þ 19:157ft þ 17:82vt � 25:457vft

v ¼ 150–220m/min, f ¼ 0.1–0.15mm/rev,
t ¼ 5–10 min

Rl
a ¼ 3:894� 4:054v � 3:454f � 3:724t þ 4:054fv þ 4:011ft þ 4:054vt � 3:111vft

Ru
a ¼ 4:35� 4:84v � 3:754f � 5:575t þ 4:714fv þ 5:387ft þ 7:166vt � 5:657vft

v ¼ 150–220m/min, f ¼ 0.1–0.15mm/rev,
t ¼ 10–15 min

Rl
a ¼ 6:871� 8:831v � 6:703f � 8:19t þ 9:523fv þ 8:884ft þ 11:22vt � 11:314vft

Ru
a ¼ 2:921� 3:771v � 3:737f � 3:433t þ 5:657fv þ 5:361ft þ 5:563vt � 7:071vft
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optimizing the spread parameter. One-dimensional
optimization for the spread parameter was carried
out using a one-dimensional search algorithm called
the golden section search [22]. The algorithm works
as follows.

Step 1. Obtain the penalized effective errors for the
networks trained with the spread parameters
s1¼ 0.01 and s2¼ 5. Denote the respective pena-
lized effective errors as e1 and e2. The values of s1

and s2 are chosen on the basis that the spread
parameter providing the minimum effective error
lies in between these values.

Step 2. Obtain s3¼ ts1þ (1�t)s2 and s4¼ ts2þ
(1�t)s1, where t is called the golden number and
is equal to 0.618. Obtain the penalized effective
errors e3 and e4 corresponding to these parameters.
In the first iteration, both e3 and e4 are to be com-
puted. In the subsequent iterations, one value will
always be available and only one value needs to
be computed.

Step 3. If e3< e4, then s1¼s4 and e1¼ e4. Else if
e4<e3, then s2¼s3 and e2¼ e3.
Else if e3¼ e4, then s1¼s4, e1¼ e4, s2¼s3, and
e2¼ e3.

Step 4. Is s1�s2j j< 0.005? If no, go to step 2. Else stop
the program and take the optimum spread para-
meter as (s1þs2)/2.

In this algorithm the interval s1�s2j j is reduced
(0.618)n�1 times after training the networks with n
different spread parameters. Thus, the convergence is
achieved in 24 iterations for one network architecture
specified by the number of neurons in the hidden
layer. The total CPU time required for the network
training in a Pentium IV computer equipped with
MATLAB is about 400 s. The results of the neural net-
work modelling are discussed in the next section.

3 RESULTS OF NEURAL NETWORK
MODELLING

The optimum architecture of the neural networks for
the prediction of surface roughness and tool wear has
29 neurons. The optimum spread parameter for the
network predicting the flank wear is 1.46, and for
the network predicting the surface roughness it is
1.92. The r.m.s. percentage error for the 125 training
data is 15.18 and 6.63 per cent for the prediction
of flank wear and surface roughness respectively.
The corresponding errors for 316 testing data are
15.38 and 6.31 per cent respectively. These errors
are calculated on the basis of the mean values of the
experimental results as well as the piecewise linear
regression model. The experimental results have
scatter. Therefore, these errors are reasonable.

An overall regression model was fitted on the
complete domain of process parameters, based on
the experimental results, using the following set of
equations

VC ¼ C1v
a1 f b1 td1 ð9Þ

Ra ¼ C2v
a2 f b2 td2 ð10Þ

These equations can be transformed into the
following linear form

lnVC ¼ lnC1 þ a1ln v þ b1ln f þ d1 ln t ð11Þ

ln Ra ¼ ln C2 þ a2 ln v þ b2 ln f þ d2 ln t ð12Þ
A total of 27 sets of experimental data were available.
The mean of two experimental replicates was
employed for finding the unknowns in equations
(11) and (12) using a multiple linear regression
model, which yielded the following equations

VC ¼ 0:4340v1:5668f �0:1226t0:7307 ð13Þ

Ra ¼ 1:4816v0:2275f 0:5922t0:5377 ð14Þ
The results of the predictions made by the overall
regression model and neural network model are
shown in Figs 4 and 5 for flank wear (VC) and sur-
face roughness, Ra, respectively, for 27 experimental
data. Figure 4 shows the lower and upper experi-
mental values of flank wear, flank wear predicted
by the overall regression model, and neural network
predicted flank wear for 27 experimental data. In
most of the cases, the neural network values lie
within the lower and upper experimental values.
The lower and upper experimental values of surface
roughness, surface roughness predicted by the over-
all regression model, and neural network predicted
surface roughness are shown in Fig. 5. In this case
also, most of the predictions by neural network lie
in between the two replicate values of the experi-
mental data. The neural network predictions are

Fig. 3 Effect of the spread parameter on the model

992 S Basak, U S Dixit, and J P Davim

Proc. IMechE Vol. 221 Part B: J. Engineering Manufacture JEM737 � IMechE 2007

 at PENNSYLVANIA STATE UNIV on September 21, 2016pib.sagepub.comDownloaded from 

http://pib.sagepub.com/


seen to have smaller deviation outside the lower and
upper experimental values compared with the overall
regression model.

The r.m.s. percentage errors from the mean of
experimental replicates have been calculated. The
r.m.s. percentage errors for the neural network
predicted flank wear and surface roughness from
the mean of experimental values are 9.3 and 4.21
per cent respectively. The same errors for the predic-
tions by the overall regression model for flank wear
and surface roughness are 26.48 and 23.66 per cent
respectively. The deviation of the neural network
predicted flank wear values outside the lower and
upper experimental values is 7.23 per cent, and the
same deviation for surface roughness is 3.01 per
cent. The deviations for predictions by the overall
regression model outside the lower and upper experi-
mental values are 23.93 per cent for flank wear and
19.85 per cent for surface roughness. The coefficients
of determination for flank wear and surface rough-
ness predicted by the overall regression model are

73.63 and 70.81 per cent respectively, while for the
predictions by the neural network model the coeffi-
cients of determination are 99.28 and 99.35 per cent
for flank wear and surface roughness respectively.

With this discussion, it is clear that the neural net-
work predictive model has smaller deviation from
experimental values in comparison with the overall
regression model. Although piecewise regression
models in combination provide similar results, they
do not yield a continuous function and require more
memory and computation time for the prediction
compared with the neural network model. Therefore,
the neural network model is used as a black box
for optimization in this work. Contours of different
outputs with varying cutting speed and feed in the
experimental range at a particular cutting time are
studied with the help of fitted neural network
predictive models.

Figure 6 shows the contours of flank wear after
cutting times of 5, 10, and 15min. It is observed
that at high speed, after a cutting time of 5 and
10min, the wear is greater with a lower feed than
with a higher feed. The reason for this is that, at
lower feed, chips do not form properly and the cut-
ting action is mainly rubbing. Once the tool has
been sufficiently worn, the excessive heat generation
at a combination of high feed and high speed domi-
nates, leading to high wear at higher feeds. This is
clearly seen from the contour after a cutting time of
15min.

The contours of surface roughness after different
cutting times are shown in Fig. 7. It can be seen
that the surface roughness increases with time. In
the beginning, the surface roughness is lowest in
the low-feed and high-speed zone. However, after
a sufficient cutting time has elapsed, the lowest sur-
face roughness is obtained in the low-feed and
moderate-speed zone. This is due to a low wear
rate in the moderate speed range.

4 OPTIMIZATION PROCEDURE

In this work, two objectives are considered: mini-
mization of the production time and minimization
of cost. In finish turning, the time of producing a
workpiece is given by

Tp ¼ pLD

fv
1þ tc

T

� �
ð15Þ

where L is the machining length, D is the diameter of
the job, tc is the tool change time, and T is the tool
life. The cost of machining a job is given by

C ¼ C0
pLD

fv
1þ tc

T

� �
þ Ct

pLD

fvT
ð16Þ

Fig. 4 Comparison of neural network and overall regres-
sion model predicted values for the tool flank
wear with the experimental values

Fig. 5 Comparison of neural network and overall regres-
sion model predicted values for the surface rough-
ness with the experimental values
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where C0 is the operating cost in $/min and Ct is the
tool change cost in $.

Equation (16) can be written as

C ¼ C0
pLD

fv
1þ tc þ Ct=C0

T

� �
ð17Þ

The optimization problem can be the minimization
of either Tp or C. As C0, L, and D are constants, the

objective function for both optimization problems
can be expressed as [23]

Minimize F ¼ 1

fv
1þ t�c

T

� �
ð18Þ

where

t�c ¼
tc forminimumproduction time
tcþCt=C0 forminimumcost of machining

�
ð19Þ

Fig. 6 Contours of tool flank wear after a machining time
of (a) 5min, (b) 10min, and (c) 15min

Fig. 7 Contours of surface roughness after a machining
time of (a) 5min, (b) 10min, and (c) 15min
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Both optimization problems are subjected to the
constraints of cutting forces and cutting power.
However, considering that the machine is rigid
enough to withstand the forces and power in finish
turning, these constraints are not considered here.
Only the bounds on f and v are considered.
Equation (18) contains the addition of two terms
1/(fv) and t�c=ðfvT Þ. In both terms, increasing fv
reduces the objective function value. At a particular
value of fv, tool life is dependent on the value of
f or v. Therefore, the maximum possible tool life is
obtained by golden section search [22], the algo-
rithm for which is the same as that discussed in
section 2. It is generally seen that an increase in fv
reduces the maximum possible tool life T at that fv.
If, as a result of an increase in fv, the term fvT
increases, then the objective function will decrease
irrespective of t�c . However, if an increase in fv
decreases fvT, then the objective function may
increase or decrease depending on the value of t�c .

Let the highest possible fv be denoted by x1, and
the corresponding maximum possible tool life be
denoted by T1. If any other fv is denoted by x2,
and the maximum possible tool life is denoted by
T2, then this condition will yield a smaller value of
the objective function F than that at the highest fv
provided that

1

x2
1þ t�c

T2

� �
<

1

x1
1þ t�c

T1

� �
ð20Þ

This gives

t�c >
T1T2ðx1 � x2Þ
T2x2 � T1x1

ð21Þ

The meaning of the above inequality is that, as long
as the value of t�c is greater than the right-hand side
term, reducing fv will reduce the production time.
When this expression equals t�c , reduction of fv
should be stopped. Therefore, for different fv, an
expression can be calculated that can be considered
to be the value of t�c for which this fv is optimum.

Following this procedure, a curve can be drawn
between t�c and the optimum fv. At a fixed fv there
will be one optimum value of v, and thus another
curve can be plotted between fv and the optimum v.
The first curve can be used to obtain the optimum
fv for a given t�c , and the second can be used to obtain
the corresponding v (and f ).

In this work, the tool life is the minimum of two
machining times, one producing a flank wear of
0.4mm and the other a surface roughness greater
than a prescribed value. The fitted neural network
model can predict the machining time to cause a
specified wear or surface roughness. However, neural
networks are not good at extrapolation. Therefore, for
a machining time shorter than 15min the prediction
was carried out by the trained neural network, and

for a machining time longer than 15min a linear
extrapolation was used.

Figure 8 shows the plots of fv and maximum pos-
sible tool life T for surface roughness values Ra of
0.8 and 1.4mm respectively. It can be seen that in
general the tool life decreases with increasing fv.
Tool life will be shorter when the surface finish
requirement is stringent. However, the difference in
tool lives for the two surface roughness requirements
decreases with increasing fv, because at high fv
the failure due to flank wear becomes the deciding
factor.

Figure 9 shows the optimum fv versus the specified
t�c for two different desired surface roughness values.
For Ra 6 0:8mm, the optimum fv continuously
decreases with increasing t�c . As the value of t�c
increases, the sensitivity of the solution with t�c
decreases. This also implies that the solution for
maximum production rate and minimum cost will
not differ much at high t�c . The curve is discontinuous
for Ra 6 1:4mm. In this case, for low t�c , fv is equal to
33 000mm2/min and for high t�c it is 26 200mm2/
min. For low as well as high t�c , the results are not
sensitive to t�c . This is because at fv¼ 33 000mm2/
min, both f and v reach their respective upper limits
of 0.15mm/rev and 220m/min and cannot be
increased further with decreasing t�c . Similarly, for
fv¼ 26 200mm2/min, the optimum feed reaches the
upper limit of 0.15mm/rev.

For Ra 6 0:8mm, the fv can be selected that cor-
responds to t�c ¼ tc for minimum production time.
Let this fv be called (fv)1. If Ct=C0 is relatively small
in comparison with tool change time tc, then
t�c ¼ tc þ Ct=C0 � tc. Thus, the production cost is
also minimum at (fv)1. If Ct=C0 is comparable with
tc, then minimum production time corresponding to
t�c ¼ tc is obtained at (fv)1, but minimum production
cost corresponding to t�c ¼ tcþCt/C0 is obtained at a
different fv. Let this fv be denoted by (fv)2. Thus,

Fig. 8 Variation in tool life with fv

Application of radial basis function neural networks 995

JEM737 � IMechE 2007 Proc. IMechE Vol. 221 Part B: J. Engineering Manufacture

 at PENNSYLVANIA STATE UNIV on September 21, 2016pib.sagepub.comDownloaded from 

http://pib.sagepub.com/


while moving from (fv)1 to (fv)2, the production time
increases from its minimum and the production cost
decreases to its minimum. All the optimum solutions
lying on the curve shown in Fig. 9 between (fv)1 and
(fv)2 are Pareto optimal solutions, which form the
set of non-dominated solutions [22]. Two solutions
are called non-dominating or Pareto optimal if any
one solution is not better than the other solution if
all the optimization goals are considered. Here,
between the solutions for minimum production
time and minimum production cost, many solutions
are obtained that are better than the other solutions
from the point of view either of production time
or of production cost. A higher level of decision
is required to choose among these solutions. No
such Pareto optimal solutions are obtained for
Ra 6 1:4mm.

Figure 10 shows the optimum cutting speed for
each fv. Knowing v, it is possible to calculate f
from this figure as well. For Ra 6 0:8mm, the cutting
speed is constant at 220m/min, the highest pos-
sible in the range of experimental study. Depending
on t�c , the optimum f is adjusted between 0.11 and
0.15mm/rev. However, for Ra 6 1:4mm, the reverse
is the case. Here, the optimum f remains constant
at 0.15mm/rev, and the optimum cutting speed is
adjusted between 167 and 220m/min. It can be
seen that in this problem the upper limits on feed
and velocity become the deciding factor. Similar
observations were made by Ojha and Dixit [24] in
finish turning optimization using a genetic algo-
rithm and a surface roughness prediction model,
although the tool life aspect was not considered in
their work.

Finally, it should be mentioned that, barring a few
exceptions, such as reference [24], in most of the
papers on optimization of the turning process, only
a hypothetical example has been chosen for testing
of the optimization algorithm. Also, the surface rough-
ness has been incorporated as a time-independent
constraint using the highly idealized formula

Ra ¼ f 2

32R
ð22Þ

where R is the nose radius of the tool. In the present
work, the effect of time on surface roughness has
been considered on the basis of shop-floor experi-
ments. Moreover, the solutions are presented gra-
phically for a range of t�c , by using which the user
can obtain the appropriate solution for minimum
production time as well as cost by supplying the
data on tool change time and manufacturing costs.

5 CONCLUSIONS

In the present work, RBF neural network models have
been fitted for machining performance prediction.
A novel method for training the neural networks has
been introduced. The trained neural networks are
used to optimize the process parameters. The optimi-
zation problem has been discussed in a general way
for any general tool change time and cost data. The
results of the optimization have been presented
graphically.

The optimization results show that, in order to
obtain a surface roughness value of less than 0.8mm,
the machining has to be carried out at 220m/min.
The feed can range from 0.11 to 0.15mm/min,
depending on the tool change time for obtaining the
maximum production rate. For obtaining the mini-
mum cost of machining, the feed has to be adjusted
depending on the sum of the ratio of operating cost

Fig. 10 fv versus cutting speed

Fig. 9 fv versus t�c
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to tool change cost, Ct/C0, and tool change time tc.
If Ct/C0 is small in comparison with tc, it is possible
to optimize for maximum production rate alone.
However, if this is not the case, then the solutions
lying between tc and tcþCt/C0 form the Pareto optimal
solutions and a higher-level decision is needed to
choose one among these solutions.

For a surface roughness value of less than 1.4mm,
the optimum feed is 0.15mm/rev and the speed is
220m/min for low t�c and 167m/min for high t�c . In
this case, few Pareto-optimal solutions are obtained.
Thus, except near the transition t�c from low to
high (at about 12–13min), the solution is not sensi-
tive to t�c .

Knowing the zone of optimized solutions, a more
refined model can be developed by concentrating
on this zone. A greater number of experiments in
this zone will yield a more accurate model. Thus, the
procedure helps in achieving the goal of economic
production.
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13 Özel, T. and Karpat, Y. Predictive modeling of surface
roughness and tool wear in hard turning using regres-
sion and neural networks. Int. J. Mach. Tools and Mf.,
2005, 45, 467–479.

14 Briceno, J. F., El-Mounayri, H., and Mukhopadhyay, S.
Selecting an artificial neural network for efficient
modeling and accurate simulation of the milling
process. Int. J. Mach. Tools and Mf., 2002, 42,
663–674.

15 Lin, J. T., Bhattacharyya, D., and Kecman, V. Multiple
regression and neural network analyses in composite
machining. Composite Sci. and Technol., 2003, 63,
539–548.

16 Sonar, D. K., Dixit, U. S., and Ojha, D. K. The applica-
tion of radial basis function neural network for predict-
ing the surface roughness in a turning process. Int. J.
Advd Mfg Technol., 2006, 27, 661–666.

17 Satishumar, S., Asokan, P., and Kumanan, S. Optimi-
zation of depth of cut in multipass turning using non-
traditional optimization techniques. Int. J. Advd Mfg
Technol., 2006, 29, 230–238.

18 Abburi, N. R. and Dixit, U. S. Multi-objective optimiza-
tion of multipass turning processes. Int. J. Advd Mfg
Technol., 2007, 32, 902–910.

19 Ozcelik, B., Oktem, H., and Kurtaran, H. Optimum
surface roughness in end milling Inconel 718 by
coupling neural network model and genetic algorithm.
Int. J. Advd Mfg Technol., 2005, 27, 234–241.

20 Ham, F. M. and Kostanic, I. Principles of neurocomput-
ing for science and engineering, 2001 (McGraw-Hill,
New York).

21 Tanaka, H. Fuzzy data analysis by possibilistic linear
models. Fuzzy Sets Syst., 1987, 24, 363–375.

22 Rao, S. S. Engineering optimization – theory and prac-
tice, 1996 (Wiley and New Age International (P), New
Delhi).
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APPENDIX

Notation

a1, b1, d1 exponents of cutting speed, feed, and
cutting time in the overall regression
model predicting flank wear

a2, b2, d2 exponents of cutting speed, feed, and
cutting time in the overall regression
model predicting surface roughness

Al
i constants for predicting the lower

estimate of a dependent variable
Au
i constants for predicting the upper

estimate of a dependent variable
ci RBF centre associated with the ith

neuron
C total cost of finish turning of the work-

piece ($)
Co operating cost of finish turning ($/min)
Ct tool cost ($)
C1 constant in the overall regression model

predicting flank wear

C2 constant in the overall regression model
predicting surface roughness

D diameter of the workpiece (mm)
e penalized effective error
f feed per revolution (mm/rev)
L length of the workpiece (mm)
N number of hidden neurons
o output of the neural network
P number of input–output training pairs
R tool nose radius (mm)
Ra centre–line average surface roughness

(mm)
t cutting time (min)
tc tool change time (min)
t�c effective tool change time in equa-

tion (19)
T tool life for finish turning (min)
Tp time of finish turning of each workpiece

(min)
v cutting speed (m/min)
VC tool flank wear (mm)
wi weights associated with the ith neuron
x input vector of process variables
Y output variable
Yl lower estimate of the output variable
Yu upper estimate of the output variable

s spread parameter
t golden number
f(�) processing function in equation (1)
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