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Abstract

In this paper, we develop a geometrically flexible technique for computational fluid–structure
interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart
valve function over the complete cardiac cycle. Due to the complex motion of the heart valve
leaflets, the fluid domain undergoes large deformations, including changes of topology. The pro-
posed method directly analyzes a NURBS surface representation of the structure by immersing it
into a non-boundary-fitted discretization of the surrounding fluid domain.

The framework starts with an augmented Lagrangian formulation for FSI that enforces kine-
matic constraints with a combination of Lagrange multipliers and penalty forces. For immersed
volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure in-
terface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on ob-
ject surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions
from opposite sides cancel due to the continuity of the background fluid solution space, leaving a
penalty method. We find this penalty method sufficient to accurately compute quantities of interest
for some problem types, but application to a bioprosthetic heart valve, where there is a large pres-
sure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep
pressure gradients through the structure without the conditioning problems that accompany strong
penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is
not tailored to the structure geometry, there is a significant error in the approximation of pressure
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discontinuities across the shell. This error becomes especially troublesome in residual-based sta-
bilized methods for incompressible flow, leading to problematic compressibility at practical levels
of refinement. We modify existing stabilized methods to improve performance.

To evaluate the accuracy of the proposed methods, we test them on benchmark problems and
compare the results with those of established boundary-fitted techniques. Finally, we simulate
the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological
conditions, demonstrating the effectiveness of the proposed techniques in practical computations.

Keywords: Fluid–structure interaction, Bioprosthetic heart valve, Variational immersed boundary
method, Isogeometric analysis, B-spline and NURBS, Nitsche’s method, Weakly enforced
boundary conditions, Penalty-based contact
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1. Introduction

Heart valves are passive structures that open and close in response to hemodynamic forces,
ensuring proper unidirectional blood flow through the heart. At least 280,000 diseased heart valves
are surgically replaced annually [1, 2]. By far the most popular surgical replacements are the bio-
prosthetic heart valves (BHV), which are fabricated from biologically derived materials, with the
design goal of mechanical similarity to native valves. Like native valves, BHVs are composed of
thin flexible leaflets that are pushed open by blood flow in one direction and closed by flow in the
other direction. BHVs have more natural hemodynamics than the older “mechanical” prostheses
designs, which are comprised of rigid leaflets and require life-long anticoagulation therapy [2].
However, the durability of a typical BHV remains limited to about 10–15 years, with failure re-
sulting from structural deterioration, mediated by fatigue and tissue mineralization [1–3]. While
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much effort has gone into developing methods to mitigate mineralization, methods to extend dura-
bility remain largely unexplored. A critical part of such efforts to improve the design of BHVs is
understanding the stresses acting on leaflets over the complete cardiac cycle.

Some previous computational studies on heart valve mechanics have used (quasi-)static [4] and
dynamic [5] structural analysis, with assumed pressure loads on the leaflets. This produces defor-
mation and stress distributions that can be used to understand the mechanical behavior of BHVs.
However, the assumed pressure load only crudely approximates the interaction between blood and
valvular structures; the results of a purely structural analysis are almost certainly inaccurate. It is
therefore important to develop a computational framework that is able to simulate the dynamics
of heart valves interacting with hemodynamics—a method for computational FSI—which consid-
ers the complete mechanical environment of the valve and applies more accurate tractions to the
leaflets during the cardiac cycle.

Many FSI methods employ boundary-fitted approaches, where the fluid problem is solved on
a mesh that deforms around a Lagrangian structure mesh, matching it at the shared interface. The
fluid problem on the deforming domain is said to be posed in an arbitrary Lagrangian–Eulerain
(ALE) coordinate system [6–8]. In the FSI literature, the term ALE is sometimes reserved for nu-
merical methods using finite elements in space and finite differences in time, distinguishing them
from methods that use space–time finite elements, such as the deforming-spatial-domain/stabilized
space–time (DSD/SST) technique [9, 10]. Boundary-fitted FSI has been applied to challenging
classes of real-world problems, including cardiovascular [11–15], parachute [16–19], and wind
turbine [20–22] applications. The history, state-of-the-art, and practical applications of ALE and
DSD/SST methods for FSI are covered thoroughly by Bazilevs et al. [23]. Boundary-fitted meth-
ods have the advantage of satisfying kinematic constraints by construction but, for scenarios that
involve large translational and/or rotational structural motions, the boundary-fitted fluid mesh can
become severely distorted, which harms both the conditioning of the discrete problem and the
accuracy of its solution.

Applying boundary-fitted methods to complex engineered systems may therefore require spe-
cialized solution strategies to maintain fluid mesh quality. One approach is remeshing, in which all
or part of the fluid domain is automatically re-discretized in space when mesh distortion becomes
too extreme [24–27]. However, repeating this mesh regeneration process throughout the compu-
tation can be time-consuming and projection of solutions between meshes introduces additional
errors. Mesh management is complicated further if the structure moves into and out of contact
with itself, changing the topology of the fluid domain. For some applications, it may be sufficient
to use specialized contact algorithms that modify the problem to enforce a small minimum sepa-
ration between surfaces that would otherwise come into contact [28]. In our application to a heart
valve, however, the ability of the structure to close and block flow is an essential aspect of the prob-
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lem. Recent work [29] has extended boundary-fitted DSD/SST methods to include true changes
of topology, but has so far only been applied to problems in two spatial dimensions, where the
boundary motion is known beforehand and prescribed. While the rigid motions of hinged mechan-
ical prosthetic heart valves have been successfully studied with boundary-fitted methods [30, 31],
it is our opinion that maintaining mesh quality would become prohibitively difficult in a boundary-
fitted simulation of a native or bioprosthetic heart valve, where flexible leaflets deform and contact
each other in complex patterns that cannot be parameterized by a small set of variables.

For these reasons, non-boundary-fitted approaches have become a popular alternative for com-
putational FSI [32–38]. The first non-boundary-fitted approach to become widely known for
computational fluid dynamics (CFD) was Peskin’s immersed boundary method [39, 40]. In non-
boundary-fitted methods, a separate structural discretization is arbitrarily superimposed onto (or
immersed into) a background fluid mesh. Such methods are particularly attractive for applications
with complex moving boundaries, because they alleviate the difficulties of deforming the fluid
mesh. Non-boundary-fitted methods can also handle change of fluid domain topology (e.g. struc-
tural contact) without special treatment in the fluid sub-problem. Contact algorithms [41–44] de-
veloped in structural dynamics can be adopted directly for the structure sub-problem. However, the
non-boundary-fitted approach suffers from reduced accuracy of the solution near the fluid–structure
interface. Dirichlet boundary conditions cannot be imposed strongly on the discrete solution space,
because this space cannot interpolate functions given on an arbitrary immersed boundary. To apply
interface conditions, one must devise a suitable method for weak enforcement.

The association between non-boundary-fitted methods and cardiovascular applications goes
back to Peskin’s original work [45] in 1972 and has been amplified by many publications in the in-
tervening decades. Borazjani [46] compiled a current and thorough literature review and computed
one of the most sophisticated and realistic heart valve analyses to date, using the curvilinear im-
mersed boundary (CURVIB) method [47, 48]. Our work follows most directly from the fictitious
domain method devised by Baaijens [49] and applied to heart valves by de Hart [50]. Baaijens
and de Hart used Lagrange multipliers to enforce kinematic constraints between finite element
discretizations of the fluid and thin immersed structures.

Prior simulations of heart valve FSI have suffered from a number of shortcomings. de Hart’s
implementation of the fictitious domain method does not contain any contact model and, while
the author notes that the FSI kinematics alone should prevent the structure from self-intersecting,
he found that, in practical discretizations, the weak constraint enforcement afforded by Lagrange
multipliers still allowed significant penetrations. Further, de Hart’s computations relied on symme-
try assumptions that do not hold in the relevant flow regime [46]. Borazjani included contact in a
computation of a full valve, but neither author satisfactorily computed the closed state of the valve,
in which the leaflets must oppose a steep pressure gradient to enforce nearly hydrostatic flow.
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In this work, we derive several related variational formulations from an augmented Lagrangian
framework for FSI proposed by Bazilevs et al. [51]. The variational equations are the sum of fluid
and structure sub-problems, with additional terms to enforce the kinematic constraint of velocity
continuity at the fluid–structure interface. One additional term enforces the constraint through a
Lagrange multiplier defined on the interface, while another term augments this constraint enforce-
ment with a penalty to increase convexity of the formulation about the subset of the solution space
satisfying the kinematic constraint.

For immersed volumetric objects, we follow the idea given in Bazilevs et al. [51] to formally
eliminate the multiplier field, arriving at a method for weak enforcement of Dirichlet boundary
conditions. This method of weak enforcement may be viewed as an extension of Nitsche’s method
[52]. We implement this with an adaptive quadrature rule, to accurately integrate over the fluid
domain. As an added benefit, imposing the Dirichlet boundary conditions weakly in fluid dynamics
allows the flow to slip on the solid surface when the wall-normal mesh size is relatively large.
This effect mimics the thin boundary layer that would otherwise need to be resolved with spatial
refinement, allowing more accurate solutions on coarse meshes [53–57]. In a non-boundary-fitted
method, the fluid mesh is arbitrarily cut by the structural boundary, producing a boundary layer
discretization of inferior quality compared to the body-fitted case. Therefore, the weakly enforced
Dirichlet boundary conditions are crucial to obtaining more accurate fluid solutions when the non-
boundary-fitted approach is used.

To model the valve leaflets we utilize immersed shell structures. We study various interpreta-
tions of the augmented Lagrangian framework applied to vanishingly-thin structures immersed in
non-boundary-fitted fluid discretizations. We find that our extension of Nitsche’s method reduces
to a penalty method. This penalty method is sufficient to accurately compute quantities of inter-
est for some problem types, but applications (such as the BHV) with large pressure jumps across
the thin shell reveal shortcomings of the penalty approach. To counteract steep pressure gradients
through the structure without the conditioning problems that accompany strong penalty forces, we
introduce the additional unknowns to approximate the multiplier field. Further, since the fluid dis-
cretization is not tailored to the structure geometry, there is an inherent error in the approximation
of pressure discontinuities across the shell. Our fluid formulation uses residual-based stabilization
derived from a variational multiscale (VMS) analysis [58, 59]. This stabilization interacts with
the large pressure error near the shell, leading to problematic compressibility at practical levels of
refinement. To counteract this artificial compression, we weaken stabilization near the immersed
shell structure.

Our discretizations of the fluid and structure sub-problems use isogeometric analysis (IGA)
[60]; we use non-uniform rational B-spline (NURBS) basis functions to represent both geome-
try and solutions. The cited reference motivates IGA primarily as a means of simplifying mesh
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generation by directly analyzing spline-based engineering designs. Our use of IGA in the present
work is motivated instead by the desirable mathematical properties of the spline functions used in
design. NURBS function spaces can have higher continuity than the approximation spaces found
in traditional finite element analysis. For the fluid sub-problem, this continuity provides special
benefits in turbulent flow simulation [61, 62] and, for the structure sub-problem, it eliminates the
need for extra rotational degrees of freedom for thin shells [63] and better represents sliding contact
between smooth surfaces [64].

The paper is organized as follows. In Section 2, we introduce the augmented Lagrangian frame-
work for FSI and relate it to Nitsche’s method. In Section 3, we employ an adaptive quadrature
technique to implement Nitsche’s method for immersed boundaries, testing it on the benchmark
problem of 2D flow over a cylinder. Section 4 addresses the difficulties of enforcing constraints
when the structure becomes infinitesimally thin. We discuss the computational methods implied
by various interpretations of the augmented Lagrangian in this limit and present results for the
benchmark problems of 2D flow over an elastic beam and an idealization of a closed heart valve.
In Section 5, we combine our FSI technology with a penalty-based dynamic contact algorithm for
shell structures, allowing us to compute a realistic FSI simulation of a bioprosthetic heart valve.
Section 6 draws conclusions and provides a graphical representation (Figure 33) of the interrela-
tions between ideas, methods, and computations presented throughout the paper. The reader may
find this conceptual map helpful while navigating the body of the paper.

2. Augmented Lagrangian framework for FSI

Our starting point is the augmented Lagrangian framework for FSI introduced by Bazilevs
et al. [51]. We consider (Ω1)t and (Ω2)t to be regions (subsets of Rd, d ∈ {2, 3}) occupied by an
incompressible fluid and an elastic solid, respectively, at time t, with (Γ1)t and (Γ2)t to be their
corresponding boundaries. These regions meet at a shared interface, (ΓI)t. Let u1 and p denote the
fluid velocity and pressure, respectively, and u2 denote the velocity of the structure. We impose
the kinematic constraint that u1 = u2 on (ΓI)t through the addition of the following augmented
Lagrangian terms: ∫

(ΓI)t

λλλ · (u1 − u2) dΓ +
1
2

∫
(ΓI)t

β|u1 − u2|
2 dΓ , (1)

where λλλ is a Lagrange multiplier and β ≥ 0 is a penalty parameter to increase convexity around
the feasible region defined by the constraint. The variational problem is: Find u1 ∈ Su, p ∈ Sp,
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u2 ∈ Sd, and λλλ ∈ S` such that for all test functions w1 ∈ Vu, q ∈ Vp, w2 ∈ Vd, and δλλλ ∈ V`

B1({w1, q}, {u1, p}; û) − F1({w1, q}) +

∫
(ΓI)t

w1 · λλλ dΓ +

∫
(ΓI)t

w1 · β(u1 − u2) dΓ = 0 , (2)

B2(w2,u2) − F2(w2) −
∫

(ΓI)t

w2 · λλλ dΓ −

∫
(ΓI)t

w2 · β(u1 − u2) dΓ = 0 , (3)∫
(ΓI)t

δλλλ · (u1 − u2) dΓ = 0 , (4)

where Su, Sp, Sd, and S` are the function spaces for the fluid velocity, fluid pressure, structural
velocity, and Lagrange multiplier solutions, respectively, and Vu, Vp, Vd, and V` are the cor-
responding weighting function spaces. B1, B2, F1, and F2 are the semi-linear forms and linear
functionals corresponding to the fluid and structural mechanics problems, respectively, and are
given by

B1({w, q}, {u, p}; û) =

∫
(Ω1)t

w · ρ1

(
∂u
∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇u
)

dΩ

+

∫
(Ω1)t

εεε(w) : σσσ1 dΩ +

∫
(Ω1)t

q∇∇∇ · u dΩ , (5)

F1({w, q}) =

∫
(Ω1)t

w · ρ1f1 dΩ +

∫
(Γ1h)t

w · h1 dΩ , (6)

B2(w,u) =

∫
(Ω2)t

w · ρ2
∂u
∂t

∣∣∣∣∣
X

dΩ +

∫
(Ω2)t

εεε(w) : σσσ2 dΩ , (7)

F2(w) =

∫
(Ω2)t

w · ρ2f2 dΩ +

∫
(Γ2h)t

w · h2 dΩ , (8)

where ρ1 and ρ2 are the fluid and structural densities, respectively, û is the velocity of the fluid
domain (Ω1)t, σσσ1 and σσσ2 are the fluid and structural Cauchy stresses, respectively, εεε(·) is the sym-
metric gradient operator given by εεε(w) = 1

2 (∇∇∇w +∇∇∇wT ), f1 and f2 are the applied body forces and
h1 and h2 are the applied surface tractions on the fluid and structure, respectively, (Γ1h)t and (Γ2h)t

are the boundaries where the surface tractions are specified,
∂(·)
∂t

∣∣∣∣∣
x̂

is the time derivative taken with

respect to the fixed spatial coordinate x̂ in the referential domain (which does not follow the motion

of the fluid itself), and
∂(·)
∂t

∣∣∣∣∣
X

is the time derivative holding the material coordinates X fixed. The

gradient∇∇∇ is taken with respect to the spatial coordinate x of the current configuration. We assume
that the fluid is Newtonian with dynamic viscosity µ, and Cauchy stress σσσ1 = −pI + 2µεεε(u1).

Bazilevs et al. [51] demonstrate how the multiplier, λλλ, may be formally eliminated by substi-
tuting an expression for the fluid–structure interface traction in terms of the other unknowns. This
leads to the following variational formulation for the coupled problem: find u1 ∈ Vu, p ∈ Vp, and
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u2 ∈ Vd such that for all w1 ∈ Vu, q ∈ Vp, and w2 ∈ Vd

B1({w1, q}, {u1, p}; û) − F1({w1, q}) + B2(w2,u2) − F2(w2)

−

∫
(ΓI)t

(w1 − w2) ·σσσ1(u, p) n1 dΓ

−

∫
(ΓI)t

δσσσ1(w1, q) n1 · (u1 − u2) dΓ

+

∫
(ΓI)t

(w1 − w2) · β(u1 − u2) dΓ = 0 . (9)

Further manipulations arrive at a formulation for weak imposition of Dirichlet boundary conditions
on the fluid problem,

B1({w1, q}, {u1, p}; û) − F1({w1, q}) −
∫

(ΓI)t

w1 ·σσσ1n1 dΓ

−

∫
(ΓI)t

δσσσ1n1 · (u1 − u2) dΓ

+

∫
(ΓI)t

w1 · β(u1 − u2) dΓ = 0 , (10)

and a traction boundary condition for the structure problem that is a combination of the fluid
Cauchy stress and a penalty force:

B2(w2,u2) − F2(w2) +

∫
(ΓI)t

w2 · (σσσ1n1 + β(u2 − u1)) dΓ = 0 . (11)

This approach to weak imposition of Dirichlet boundary conditions in fluid mechanics was first
proposed by Bazilevs and Hughes [53] and further refined in Bazilevs et al. [54, 55]. It may be
interpreted as an extension of Nitsche’s method [65], which is a consistent and stabilized method
for imposing constraints on the boundaries by augmenting the governing equations with additional
constraint equations. While Nitsche’s method may be motivated independently of the augmented
Lagrangian formulation, we find that some cases require us to revisit Eq. (2) and account for the
multipliers directly. The solution techniques for the fluid sub-problem (10) are discussed in Section
3, which follows.

3. Nitsche’s method for immersed boundaries

In a non-boundary-fitted method, the elements of the fluid discretization may extend into the
interior of an immersed object. Imposing Dirichlet boundary conditions is no longer straightfor-
ward given that the basis functions are non-interpolating at the object boundaries. In order to
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enforce essential boundary conditions, one can either modify the basis functions so they vanish at
the interface [66] or augment the governing equations with additional constraint equations. In this
work we choose the latter approach. We formally eliminate the Lagrange multiplier from Eq. (2),
as mentioned in Section 2 and detailed in Bazilevs et al. [51], to yield the fluid sub-problem (10),
which corresponds to an application of Nitsche’s method to the boundary condition on the fluid–
structure interface. This weak imposition of the Dirichlet boundary conditions is the starting point
of our variational immersed boundary approach.

3.1. Semi-discrete fluid formulation with weak boundary conditions

Consider a collection of disjoint elements {Ωe}, ∪eΩ
e ⊂ Rd, with closures covering the fluid

domain: Ω1 ⊂ ∪eΩe. Note that Ωe is not necessarily a subset of Ω1. {Ωe}, Ω1, and ΓI remain
time-dependent, but we drop the subscript t for notational convenience. The mesh defined by {Ωe}

deforms with a velocity field ûh and the boundary ΓI moves with velocity u2. We consider discrete
velocity and pressure spaces Vh

u and Vh
p of functions supported on these elements and pose the

semi-discrete problem of finding uh
1 ∈ V

h
u and ph ∈ Vh

p such that for all wh
1 ∈ V

h
u and qh ∈ Vh

p

BVMS
1

(
{wh

1, q
h}, {uh

1, ph}; ûh
)
− FVMS

1

(
{wh

1, q
h}
)

−

∫
ΓI

wh
1 ·

(
−phn1 + 2µεεε(uh

1)n1

)
dΓ

−

∫
ΓI

(
2µεεε(wh

1)n1 + qhn1

)
·
(
uh

1 − u2

)
dΓ

−

∫
(ΓI)−

wh
1 · ρ1

((
uh

1 − ûh
)
· n1

) (
uh

1 − u2

)
dΓ

+

∫
ΓI

τB
TAN

(
wh

1 −
(
wh

1 · n1

)
n1

)
·
((

uh
1 − u2

)
−

((
uh

1 − u2

)
· n1

)
n1

)
dΓ

+

∫
ΓI

τB
NOR

(
wh

1 · n1

) ((
uh

1 − u2

)
· n1

)
dΓ = 0 , (12)

where (ΓI)− is the “inflow” part of ΓI, on which (uh
1 − ûh) · n1 < 0. Note that ΓI may cut through

element interiors. The constants τB
TAN and τB

NOR correspond to a splitting of the penalty, β, into the
tangential and normal directions, respectively. The forms BVMS

1 and FVMS
1 are the VMS discretiza-
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tions of B1 and F1, respectively, given by

BVMS
1 ({w, q}, {u, p}; û) =

∫
(Ω1)t

w · ρ1

(
∂u
∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇u
)

dΩ

+

∫
(Ω1)t

εεε(w) : σσσ1 dΩ +

∫
(Ω1)t

q∇∇∇ · u dΩ

+
∑

e

∫
Ωe∩Ω1

(
(u − û) · ∇∇∇w +

∇∇∇q
ρ1

)
· u′ dΩ

+
∑

e

∫
Ωe∩Ω1

∇∇∇ · wρ1τC∇∇∇ · u dΩ

−
∑

e

∫
Ωe∩Ω1

w · (u′ · ∇∇∇u) dΩ

−
∑

e

∫
Ωe∩Ω1

∇∇∇w
ρ1

:
(
u′ ⊗ u′

)
dΩ

+
∑

e

∫
Ωe∩Ω1

(
u′ · ∇∇∇w

)
τ ·

(
u′ · ∇∇∇u

)
dΩ , (13)

and

FVMS
1 ({w, q}) = F1({w, q}) , (14)

where

u′ = τM

(
ρ1

(
∂u
∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇u − f
)
−∇∇∇ ·σσσ1

)
. (15)

Equations (13)–(15) correspond to the ALE–VMS formulation of the Navier–Stokes equations of
incompressible flows [67]. The additional terms may be interpreted both as stabilization and as a
turbulence model [62, 68–73]. The specific form of VMS stabilization that we use was presented
and applied to FSI problems by Bazilevs et al. [74]. The stabilization parameters are

τM =

 Ct

∆t2 + (u − û) ·G(u − û) + CI

(
µ

ρ1

)2

G : G
−1/2

, (16)

τC = (τMtrG)−1 , (17)

τ =
(
u′ ·Gu′

)−1/2 , (18)

where CI is a positive constant derived from an appropriate element-wise inverse estimate [75–78],
G generalizes the notion of element size to physical elements mapped from a parametric parent
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element by x(ξ):

Gi j =

d∑
k=1

∂ξk

∂xi

∂ξk

∂x j
(19)

and the parameter Ct is typically equal to 4 [62, 70]. Note that we have modified the usual formula-
tion, so that integrals are taken only over intersections of elements with Ω1. Accurate evaluation of
such integrals for general immersed geometries is the primary practical challenge associated with
this formulation. Our approach to computing these integrals is discussed in detail in Section 3.2.

Remark 1. The fluid mesh motion given by ûh may at first appear superfluous in the context of non-
boundary-fitted methods. However, a single computation might gainfully combine a boundary-
fitted, deforming-mesh treatment of some structures with a non-boundary-fitted treatment of oth-
ers. Several such computations are performed by Wick [79]. An example relevant to our ap-
plication would be immersion of non-boundary-fitted heart valve leaflets into a boundary-fitted
discretization of the interior of a flexible artery. In computations with a fixed background fluid
mesh, one can simply set ûh = 0 in the above formulations. A similar computation is performed
with prescribed arterial movement by de Hart [50].

The terms from the second to the last line of Eq. (12) are responsible for the weak enforcement
of kinematic and traction constraints at the immersed boundaries. It was shown in earlier work [53–
57] that imposing the Dirichlet boundary conditions weakly in fluid dynamics allows the flow to
slip on the solid surface when the wall-normal mesh size is relatively large. This effect mimics
the thin boundary layer that would otherwise need to be resolved with spatial refinement, allowing
more accurate solutions on coarse meshes. In the immersed boundary method, the fluid mesh is
arbitrarily cut by the structural boundary, leaving a boundary layer discretization of inferior quality
compared to the body-fitted case. Therefore, in addition to imposing the constraints easily in the
context of non-boundary-fitted approach, we may obtain more accurate fluid solutions as an added
benefit of using the weak boundary condition formulation (12).

Remark 2. Equation (12) includes an “inflow” stabilization term that is not associated with Nitsche’s
approach. This term is added to better satisfy the inflow boundary condition and to enhance the
stability of the formulation, without affecting consistency or adjoint consistency. See Bazilevs
et al. [53] for details. To ensure balanced interface tractions between the fluid and structure, we
append the corresponding reaction force term∫

(ΓI)−
w2 · ρ1

((
uh

1 − ûh
)
· n1

) (
uh

1 − u2

)
dΓ (20)

to the left-hand side of structure sub-problem, Eq. (11).
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In Eq. (12), the parameters τB
TAN and τB

NOR must be sufficiently large to stabilize the formula-
tion, but not so large as to degenerate Nitsche’s method into a pure penalty method, which entails
the disadvantages of losing variational consistency and having an ill-conditioned stiffness matrix.
Based on previous studies of weakly-enforced Dirichlet boundary conditions in fluid mechanics
[53–55], we expect these parameters to scale as

τB
(·) =

CB
I µ

h
(21)

where h is a measure of the element size at the boundary and CB
I is a dimensionless constant. How-

ever, in the case of an immersed boundary, neither the appropriate definition of h nor the principle
for deriving CB

I is straightforward. In subsequent sections, we investigate different penalty values
through numerical experiments.

Remark 3. A more sophisticated approach to determine the values of the stabilization parameters
for Nitsche’s method is to solve local eigenvalue problems. See Hughes and Harari [80], Embar et
al. [81], and Ruess et al. [82, 83] for more details.

3.1.1. Backflow stabilization

Unsteady CFD computations may sometimes diverge due to flow reversal on outflow bound-
aries. This is known as backflow divergence and is frequently encountered in cardiovascular sim-
ulations. In some problems studied in this paper, we encounter this backflow divergence and an
outflow stabilization method originally proposed in Bazilevs et al. [84] is applied to compensate
for it. The backflow stabilization method was further studied and found to be the least intrusive
and computationally expensive of all the techniques examined in Esmaily-Moghadam et al. [85].
The method adds the following term to the left-hand side of Eq. (12):

nout∑
a=1

−γ∫
Γa

1

wh
1 · ρ1

{(
uh

1 − ûh
)
· n1

}
−

uh
1 dΓ

 (22)

where {Γa
1}

nout
a=1 are the outflow portions of the fluid domain boundary, γ is a dimensionless non-

negative scalar controlling the strength of the stabilization, and

{(
uh

1 − ûh
)
· n1

}
−

=
1
2

((
uh

1 − ûh
)
· n1 −

∣∣∣∣(uh
1 − ûh

)
· n1

∣∣∣∣) (23)

is the component of velocity pointing opposite the outward-facing normal of the fluid domain.

3.2. The finite cell method and adaptive quadrature

A similar idea of using Nitsche’s method for immersed boundary FSI has been studied by Benk
et al. [86], who assume that the immersed boundary is a triangulated surface and use methods from
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computational geometry to decompose the exterior parts of cut fluid elements into polyhedrons
with known quadrature rules. We apply instead an adaptive quadrature rule from the finite cell
method [87–89] that relies only on a test to determine whether or not an arbitrary point lies inside
of an immersed object. This relaxes Benk et al.’s assumption that the immersed boundaries are
triangulated.

Figure 2: The functions P1(d) and F(d) for k1 = 2 and h = 1.

��

��

Figure 3: Symmetrical geometry results in asymmetrical contact forces.

Ωfict

Γ

Ωphys

Ω=Ωphys+Ωfict α = 0.0

α = 1.0

Figure 4: The fictitious domain approach: the physical domain ⌦phys is extended by the fictitious domain ⌦fict into
an embedding domain ⌦ to allow easy meshing of complex geometries. The influence of ⌦fict is penalized by ↵.

14

Figure 1: The physical domain of interest Ωphys is extended by the fictitious domain Ωfict into an embedding domain Ω

to allow easy meshing of complex geometries. The influence of Ωfict is penalized by α.

The finite cell method, introduced by Parvizian et al. [90] and illustrated in Figure 1, is a
technique for solving partial differential equations posed on complex geometries by extending the
computational domain to a more tractable shape, such as a rectangular prism bounding the original
domain. The finite cell method discretizes this extended domain into elements and penalizes the
effects of the fictitious extension by modifying the problem’s coefficients to have extreme values
outside the domain of interest. This introduces discontinuities in coefficients along the boundary
of the original domain. Because the extended domain is discretized without respect to the origi-
nal geometry, these discontinuities may occur within elements. The standard Gaussian quadrature
rules typically applied to finite elements [91] assume that a polynomial can accurately approximate
the integrand, but this assumption is not true if the integrand is discontinuous. Düster et al. [87]
describe a method of automatically generating more accurate quadrature rules for finite cell com-
putations by dividing cut elements into sub-cells and applying standard quadrature rules within the
sub-cells. We apply the same method to the integrals over fluid portions of cut elements in Eq. (13).
For completeness, we restate this adaptive quadrature technique, specializing it to the context of
immersed boundary FSI. For a summary of recent developments in the finite cell method, we refer
the interested reader to Schillinger and Ruess [89].

The quadrature scheme assumes that elements have d-dimensional rectangular parameteriza-
tions. The parameter space for each element may be partitioned into 2d equal sub-cells. Each
sub-cell may be likewise divided, as may its children, and so on, yielding a hierarchical 2d-tree. A
sub-cell at any level of this tree has an associated Gaussian quadrature rule. We may construct a
quadrature rule for the entire element by summing quadrature rules from disjoint sub-cells covering
the element. Not all sub-cells used for this rule need to be from the same level of the tree. Ideally,
we would use sub-cells from more refined levels of the hierarchy near the immersed boundary
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while using larger cells away from the boundary, to reduce the computational cost due to inte-
gration. Such an adaptive quadrature rule may be generated by applying the following recursive
algorithm, with input 0 ≤ l ∈ Z, to a sub-cell covering the entire element:

1. Propose a set of Gaussian quadrature points and weights associated with the current sub-cell.

2. Count the numbers Nin and Nout of the corners of the sub-cell falling inside and outside of
the immersed structure.

3. If Nin = 0, Nout = 0, or l = 0, add the proposed quadrature points falling in the fluid domain
to the quadrature rule.

4. Otherwise, if Nin > 0, Nout > 0, and l > 0, discard the proposed points, divide the sub-cell
into 2d children, and apply this algorithm to each child, with input l − 1.

Figure 2 illustrates the terminal sub-cells and the adaptive quadrature points that result from ap-
plying this algorithm to a 2D circular boundary, with l = 3 levels of recursion. The adaptive
quadrature points outside the cylinder belong to the fluid domain and are used in the numerical
integration. The quadrature points inside the cylinder belong to the fictitious domain extension and
are discarded.

Figure 2: The sub-cells (blue lines) used to generate an adaptive quadrature rule for a circular boundary, with l = 3
levels of recursion. The adaptive quadrature points outside the cylinder (marked in pink) belong to the physical domain
of interest and are used in the numerical integration. The quadrature points inside the cylinder (marked in green) belong
to the fictitious domain extension and are discarded.

Remark 4. In the above algorithm, the geometry of the immersed structure is abstracted behind
an inside/outside test that maps spatial positions to truth values. The efficient implementation
of this mapping for general geometries is outside the scope of this paper, as we only consider
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benchmark problems for which it is trivial. A more general implementation could cast rays from
a point and count intersections with the closed immersed surface geometry. The operation of ray-
surface intersection has been thoroughly optimized within the computer graphics community and
was applied to real-time rendering of NURBS surfaces as early as the 1980s [92].

3.2.1. Surface integrals

The surface integrals of Eq. (12) also require special treatment. We employ a variant of the
approach used by Düster et al. [87] to integrate immersed boundary traction in finite cell solutions
of solid mechanics problems. We define a Gaussian quadrature rule with respect to a parame-
terization of the immersed boundary. This parameterization need not be informed by the fluid
discretization, but we recommend ensuring that the physical space density of surface quadrature
points is reasonably high with respect to the fluid element size. The relevant integrals involve
traces of functions defined on the fluid domain. To evaluate these traces, we must be able to locate
the quadrature points of the surface in the parameter space of the background mesh. The physical
location, xg ∈ R

d, of an integration point can be obtained by evaluating the surface parameteriza-
tion. Finding the point ξg ∈ R

d that the fluid mesh parameterization maps to xg requires solving
a system of d equations to invert the mapping from the fluid mesh parameter space to physical
space. If the fluid is represented on a rectangular grid, this inversion is trivial. For more general
fluid discretizations, one may apply Newton iteration within parametric elements. It is usually not
necessary to attempt this iteration in every fluid element for each quadrature point. The search-
ing process can be streamlined by using element bounding boxes and assuming that each surface
quadrature point will most likely remain in the same background element or move to a neighboring
element between time steps in an unsteady calculation with moving boundaries.

3.3. Time integration of the fluid sub-problem

We complete the discretization of the fluid sub-problem by applying a time integration scheme
to Eq. (12). Our scheme falls within the family of generalized-α integrators, introduced by Chung
and Hulbert [93]. The generalized-α framework was first used for the unsteady Navier-Stokes
problem by Jansen et al. [94]. The particular integration scheme that we use in the current work is
detailed and applied to FSI problems in Bazilevs et al. [74]. The subset of generalized-α methods
used in Bazilevs et al. [74] is parameterized by a single number, ρ∞, where 0 ≤ ρ∞ ≤ 1. In
agreement with Bazilevs et al. [62], we find no significant differences between admissible choices
of ρ∞, and use ρ∞ = 0.5 as a default value. The generalized-α time integration is an implicit scheme
and requires solution of a nonlinear algebraic problem at each time step. For situations in which
only the fluid sub-problem is nontrivial (such as the CFD benchmark problem studied in Section
3.4), we directly apply Newton iteration (with an approximate tangent) to converge the residual
of this algebraic problem. For coupled FSI, we apply the same time integration scheme, but use
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more complicated solution strategies for the resulting nonlinear problem. We defer presenting the
details of these solution strategies until Section 4.5.

3.4. Flow around an immersed cylinder

In this section, we apply our Nitsche-based variational implementation of the immersed bound-
ary method with adaptive quadrature to the classic benchmark problem of 2D flow past a circular
cylinder. The problem setup and computational domain are shown in Figure 3. The data given
in the diagram is non-dimensional. We use a unit density and define the viscosity in terms of the
Reynolds number, µ = Re−1. We strongly enforce the inflow and slip boundary conditions stated
in Figure 3. For the no-slip, no-penetration condition u1 = 0 on the surface of the circular cylinder,
we compare the results of weak enforcement, using our variational immersed boundary method,
with results of strong enforcement, using a body-fitted mesh.

hx = 0, uy = 0 

hx = 0, uy = 0 

hx = 0 
hy = 0 

ux = 1 
uy = 0 

10 

10 

10 30 

d = 1 

Figure 3: The domain and boundary conditions for the benchmark problem of 2D flow past a circular cylinder.

We expect that, for low Reynolds numbers, this problem will reach a stable steady state and,
for moderate Reynolds numbers, it will develop a time-periodic solution. These expectations are
characterized more precisely alongside our computed results in Section 6.

3.4.1. Immersed discretizations

We test the Nitsche-based variational immersed boundary method on two discretizations of the
fluid domain. Both meshes use quadratic B-spline elements. The first mesh, abbreviated herein as
“M1”, contains 12240 elements, with refinement focused around the cylinder as shown in Figure 4.
The element size near the cylinder is 0.079. The second mesh, M2, is a uniform h-refinement of
M1. The inside/outside test required to adaptively generate quadrature rules for the exterior por-
tions of cut cells is, in this case, a trivial distance check from the cylinder’s center. The parametric
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surface used to obtain a quadrature rule for surface integrals over ΓI, the surface of the cylinder,
is a quadratic NURBS circle divided into 256 knot spans in the circumferential direction, with 3-
point Gaussian quadrature rules defined on each span. The circumference of this circle is π, giving
elements of arc length π/256 ≈ 0.012, which is significantly smaller than the element size in either
M1 or M2. For the non-boundary-fitted computations, we consistently use a time step of ∆t = 0.1
when steady solutions are anticipated and ∆t = 0.05 when we expect periodicity. This ensures
that there will be at least 100 time steps per period in all periodic solutions. The computations
are initialized by linearly increasing the inflow velocity from zero to one over some time interval.
Details of the initialization procedure should not affect the steady or time-periodic solutions that
the system approaches.

Figure 4: The immersed boundary mesh M1.

Remark 5. We partition the fluid domain into sub-domains, for efficient parallel computation on
distributed-memory supercomputers. M1 is decomposed into 12 sub-domains, and M2 into 48. A
detailed technical explanation and scalability study of our parallelization strategy may be found
in Hsu et al. [95]. In the present computations, we have reduced continuity of the approximation
space to C0 at boundaries between sub-domains. While this is not technically necessary, it min-
imizes communication bandwidth while maintaining the benefits of higher continuity throughout
most of the domain. We find that the impact on quantities of interest is negligible, especially at
low Reynolds numbers.

3.4.2. Body-fitted reference mesh

The problem at hand has been studied extensively by the CFD community (see, e.g. [96–103]),
but, to control for any discrepancies introduced by differences in fluid formulations or turbulence
models, we apply the same VMS formulation (13) to a body-fitted discretization of the problem,
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with a strongly-enforced boundary condition on the surface of the cylinder. The body-fitted mesh
is shown in Figure 5. It contains 11376 quadratic NURBS elements and the wall-normal element
size near the cylinder is 0.0173. By using NURBS elements, we can exactly represent the circular
boundary geometry, completely eliminating geometry error. Time steps for the body-fitted compu-
tations are selected to ensure that there are roughly 200 time steps per period in periodic solutions.

Figure 5: The body-fitted reference mesh.

3.4.3. Comparison of results

We consider four quantities of interest for this problem, although some are relevant only in
certain flow regimes. We always measure the drag coefficient, CD, defined as 2FD/ρU2d, where
FD is the drag force or horizontal component of traction integrated over the cylinder surface, ρ is
the fluid density, U is the inflow velocity, and d is the diameter of the cylinder. At low Reynolds
numbers cases that reach steady solutions, we consider the bubble recirculation length, LW . LW

measures how far the stationary vortices occurring at low Reynolds numbers extend downstream of
the cylinder. It is defined precisely in Lima E Silva et al. [99]. At higher Reynolds numbers, where
flow symmetry breaks, leading to periodic solutions, we consider the lift coefficient, CL, and the
Strouhal number, St. CL is defined as 2FL/ρU2d, where FL is the lift force or vertical component
of traction integrated over the cylinder surface. St is given as f d/U, where f is the frequency
of vortex shedding. The vortex shedding only occurs if the Reynolds number is sufficiently high.
We identify the frequency of vortex shedding with the frequency of oscillation in CL. In periodic
solutions, the reported value of CL is the amplitude of its oscillation and the reported value of CD

is its time average.
The evaluations of CL and CD rely on computing the traction at the fluid–structure interface. A

naive evaluation of traction from the fluid Cauchy stress, −σσσ1n1, will converge poorly to the true
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traction, so we prefer to use variationally-consistent, conservative definitions of traction [56, 104].
In the case of Nitsche’s method, the appropriate discrete traction on surfaces with weakly enforced
Dirichlet boundary conditions includes the penalty terms, matching the traction boundary condition
of the FSI structural sub-problem (11):

th = −σσσh
1n1 − ρ1

{(
uh

1 − ûh
)
· n1

}
−

(
uh

1 − u2

)
+ τB

TAN

((
uh

1 − u2

)
−

((
uh

1 − u2

)
· n1

)
n1

)
+ τB

NOR

((
uh

1 − u2

)
· n1

)
n1 , (24)

where { · }− denotes the negative part of the bracketed quantity, that is, {A}− = A if A < 0 and
{A}− = 0 if A ≥ 0. In this case, ΓI is stationary, so u2 = 0. On a surface with a strongly-enforced
Dirichlet condition, as seen in the body-fitted computation, the conservative traction must satisfy∫

(ΓI)t

wh
1 · t

h dΓ = BVMS
1 ({wh

1, q
h}, {uh

1, ph}; ûh) − FVMS
1 ({wh

1, q
h}) (25)

for all wh
1 in an expanded discrete velocity test space that does not strongly enforce the Dirichlet

condition. To obtain the ith component of the integral of this conservative traction over the bound-
ary (ΓI)t, we would evaluate the right-hand side of Eq. (25) with wh

1 = ei on (ΓI)t and qh = 0. The
desired wh

1 is straightforward to construct from shape functions that satisfy the partition of unity
property.

First, using three levels of adaptive quadrature, we investigate the effects of different penalty
values. We consider only the case in which τB

NOR = τB
TAN = τB. In the current non-dimensional

setting, we state these penalty values without units. However, they have the physical interpretation
of traction per unit difference in speed (between fluid and structure), and the corresponding dimen-
sions of pressure per speed. Further, we would generally expect these values to increase with mesh
refinement, so the numbers given here should not be blindly transplanted into other computations
without first applying dimensional analysis and considering the relative level of refinement.

Tables 1 and 2 collect the results of applying τB = 102 and τB = 103 at various Reynolds num-
bers for meshes M1 and M2. For comparison, we also give ranges of typical values for these quanti-
ties from the CFD literature, specifically [96–103], in Table 3. Figure 6 displays several snapshots
of velocity and pressure fields computed using the variational immersed boundary method with
τB = 102 and l = 3 on M1.

From this study, we find that the penalties of the order 101 are not consistently stable, while
penalties of the order 104 and higher become costly to compute with, due to their effect on the
conditioning of the problem. This suggests that, while we do not provide a formula for τB, it may
be chosen from within a wide range of computable values while still providing accurate results.
As long as the penalty is chosen such that the computation converges with a reasonable amount
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M1
Re = 40 Re = 80

CD LW CD CL St
τB = 102 1.611 2.26 1.413 ±0.252 0.159
τB = 103 1.611 2.26 1.411 ±0.250 0.159

Body-fitted 1.612 2.27 1.415 ±0.254 0.159
Re = 100 Re = 200

CD CL St CD CL St
τB = 102 1.384 ±0.338 0.170 1.369 ±0.694 0.200
τB = 103 1.381 ±0.336 0.171 1.369 ±0.696 0.200

Body-fitted 1.386 ±0.341 0.170 1.378 ±0.706 0.200

Table 1: Comparison of quantities of interest with various penalty values and l = 3 levels of adaptive quadrature on
mesh M1.

M2
Re = 40 Re = 80

CD LW CD CL St
τB = 102 1.612 2.27 1.415 ±0.254 0.159
τB = 103 1.612 2.27 1.415 ±0.253 0.158

Body-fitted 1.612 2.27 1.415 ±0.254 0.159
Re = 100 Re = 200

CD CL St CD CL St
τB = 102 1.386 ±0.341 0.170 1.378 ±0.706 0.200
τB = 103 1.386 ±0.341 0.170 1.378 ±0.705 0.200

Body-fitted 1.386 ±0.341 0.170 1.378 ±0.706 0.200

Table 2: Comparison of quantities of interest with various penalty values and l = 3 levels of adaptive quadrature on
mesh M2.

Re = 40 Re = 80
CD LW CD CL St

Literature 1.52–1.63 2.24–2.32 1.34–1.44 ± 0.26 0.15–0.16
Re = 100 Re = 200

CD CL St CD CL St
Literature 1.33–1.43 ± 0.30–0.34 0.16–0.17 1.31–1.45 ±0.64–0.71 0.19–0.20

Table 3: Ranges of typical values of quantities of interest from the CFD literature [96–103]
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(a) Re = 40 (b) Re = 100

Figure 6: Visualizations of velocity and pressure fields about a cylinder immersed in M1, showing both steady (Re =

40) and time-periodic (Re = 100) solutions. Results are obtained using τB = 102 and l = 3.
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of work, our Nitsche-based variational immersed boundary method achieves good agreement (at
the quantity of interest level) with a much more refined boundary-fitted computation. In some
cases on M1 we see slightly worse results with the higher value of τB. This is consistent with the
idea that approaching strong enforcement of Dirichlet boundary conditions on a mesh that is too
coarse to resolve the boundary layer will result in lower quality solutions. Some violation of the
no-slip boundary condition can in fact be desirable on a coarse mesh, as it imitates the presence of
a boundary layer [53–57].

M2
Re = 40 Re = 80

CD LW CD CL St
l = 0 1.620 2.31 1.473 ±0.247 0.158
l = 3 1.612 2.27 1.415 ±0.254 0.159

Body-fitted 1.612 2.27 1.415 ±0.254 0.159
Re = 100 Re = 200

CD CL St CD CL St
l = 0 1.477 ±0.335 0.169 1.613 ±0.631 0.199
l = 3 1.386 ±0.341 0.170 1.378 ±0.706 0.200

Body-fitted 1.386 ±0.341 0.170 1.378 ±0.706 0.200

Table 4: Comparison of quantities of interest with penalty τB = 102 and different levels, l, of adaptive quadrature. The
l = 3 results are repeated from Table 2 for the reader’s convenience.

Finding that the penalty τB = 102 applied to discretization M2 produces quantities of inter-
est that largely agree with our body-fitted reference and results from the literature, we proceed to
consider the effect of adaptive quadrature with this value of the penalty parameter. These results
are collected in Table 4 and again compared with our reference computation. The degradation
of results in the absence of adaptive quadrature demonstrates the effects of error introduced by
under-integrating discontinuous functions. This degradation becomes more severe with increased
Reynolds number, suggesting that adaptive quadrature would be especially crucial in computations
involving turbulent flows. The agreement of the non-boundary-fitted results with those computed
on a refined, body-fitted reference mesh shows that the non-boundary-fitted methodology is accu-
rate, even when the boundary layer is composed of larger, haphazardly-cut elements.

Remark 6. The results in Table 2 demonstrate interesting correlations: removal of adaptive quadra-
ture consistently increases drag and decreases lift. This suggests that inadequate integration may
tend to overestimate viscous forces and underestimate pressure forces, but we do not investigate
that question further in this paper. Table 2 also shows that the errors due to the lack of adaptive
quadrature grow with Reynolds number. Thus adaptive quadrature is critical when the proposed
technique is taken to the high Reynolds number regime (and for example, turbulence).
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4. Immersed shell structures

The preceding examples involve flow around bulky objects. We would also like to study flow
around extremely thin immersed structures, such as heart valve leaflets. The method developed in
Section 3 could be applied if the thin structures were fully modeled as 3D solids and immersed
into a sufficiently refined fluid mesh. However, we would prefer a computationally more efficient
approach that models the solid as a two-dimensional manifold shell structure. Such a technique
would necessarily decouple the fluid resolution from the structure thickness.

This presents a conceptual difficulty. The exact solution for the pressure around a shell structure
may be discontinuous at the structure. Since, for practical reasons discussed in Section 1, we
are committed to using a non-boundary-fitted method, the fluid discretization cannot be informed
by the structure’s position. This means that our fluid approximation space cannot be selected
in such a way that the pressure basis functions are themselves discontinuous at the immersed
boundary. This implies an inherent approximation error in the pressure field. This error will
converge slowly for polynomial bases [105]. Nonetheless, we believe that solutions of sufficient
accuracy for engineering purposes can be obtained in this fashion and we focus on developing a
robust method for obtaining these solutions.

4.1. Reduction of Nitsche’s method to the penalty method

Consider integrating the boundary terms of Eq. (12) over both sides of a thin immersed shell
structure. If the velocity and pressure approximation spaces are continuous through the vanishing
thickness of the shell (and the velocity approximation space is continuously differentiable), then
the dependence of the consistency and adjoint consistency terms on the normal vector will cause
contributions from opposing sides to cancel one another. The only remaining terms will be the
penalty and the inflow stabilization. In the case of an immersed shell structure, we may view
the inflow term as a velocity-dependent penalty. The Nitsche-type formulation given in Eq. (12)
therefore reduces to the following penalty method

BVMS
1

(
{wh

1, q
h}, {uh

1, ph}; ûh
)
− FVMS

1

(
{wh

1, q
h}
)

−

∫
(ΓI)−

wh
1 · ρ1

((
uh

1 − ûh
)
· n1

) (
uh

1 − u2

)
dΓ

+

∫
ΓI

τB
TAN

(
wh

1 −
(
wh

1 · n1

)
n1

)
·
((

uh
1 − u2

)
−

((
uh

1 − u2

)
· n1

)
n1

)
dΓ

+

∫
ΓI

τB
NOR

(
wh

1 · n1

) ((
uh

1 − u2

)
· n1

)
dΓ = 0 (26)

when the approximation spacesVh
u andVh

p are sufficiently regular around the shell. In Section 4.6,
we will demonstrate that this method is sufficient to compute quantities of interest in the benchmark
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problem of flow over an elastic beam.

Remark 7. The inflow term in Eq. (26) is often much smaller in magnitude than the τB
(·) terms,

when practical values of the penalty parameters are selected. For the problems considered in this
paper, the inflow term may be omitted entirely, with little to no effect. We have, however, included
it, for consistency with our formulation for volumetric objects. It is possible that this term may
play a significant role in other FSI problems.

To determine the velocity and pressure about an immersed valve in its closed state, a method
must be capable of developing nearly hydrostatic solutions in the presence of large pressure gradi-
ents. Penalty forces will only exist if there are nonzero violations of kinematic constraints. A pure
penalty method rules out the desired hydrostatic solutions: every term that could resist the pressure
gradient to satisfy balance of linear momentum depends on velocity. Increasing β may diminish
leakage through a structure, but it is a well-known disadvantage of penalty methods that extreme
values of penalty parameters will adversely affect the numerical solvability of the resulting prob-
lem. This motivates us to return to Eq. (2) and develop a method that does not formally eliminate
the multiplier field.

4.2. Reintroducing the multipliers

Since the introduction of constraints tends to make discrete problems more difficult to solve,
we will only reintroduce a scalar multiplier field to strengthen enforcement of the no-penetration
part of the FSI kinematic constraint, rather than the vector-valued multiplier field of Eq. (2). The
viscous, tangential component of the constraint will continue to be enforced by only the penalty
τB

TAN. This may be thought of as a formal elimination of just the tangential component of the
multiplier field, which also retains the ability to allow the flow to slip at the boundary, which tends
to produce more accurate fluid solutions as discussed in Section 3.1. For clarity, we redefine the
FSI boundary terms on the mid-surface of the shell structure, Γt, rather than considering the full
boundary, ΓI. This means that constants in the current formulation may differ from those of Eq. (2)
by factors of two. We arrive, then, at the formulation

B1({w1, q}, {u1, p}; û) − F1({w1, q}) +

∫
Γt

w1 · (λnn2) dΓ +

∫
Γt

w1 · β(u1 − u2) dΓ = 0, (27)

B2(w2,u2) − F2(w2) −
∫

Γt

w2 · (λnn2) dΓ −

∫
Γt

w2 · β(u1 − u2) dΓ = 0, (28)∫
Γt

δλnn2 · (u1 − u2) dΓ = 0, (29)

where λn is the new scalar multiplier field and, to emphasize the relation to Eq. (2), the penalty force
has not been split into normal and tangential components. The consistency and adjoint consistency

25



terms associated with eliminating the tangential component of the multiplier have been omitted
under the assumption that they will vanish after integrating over both sides of the thin shell, as
discussed in Section 4.1.

4.2.1. Implementation of the Lagrange multipliers

We wish to implement the constraint between the fluid and structure solutions in a way that is
minimally disruptive to the two sub-problems, allowing existing methods for computational fluid
and solid mechanics to be applied to each. A monolithic solution for the velocities and multipli-
ers would limit our ability to quickly interchange fluid or structure formulations and, as a mixed
formulation, would require either special choices of approximation spaces [106] or additional sta-
bilization terms [107] to satisfy the Babuška-Brezzi stability conditions. Appropriate approxima-
tion spaces or stabilization terms are not obvious for the current case. This section discusses two
alternative solution strategies for implementing the Lagrange multipliers.

The unconstrained problem that follows from considering λλλ to be fixed is similar to that fol-
lowing from the penalty method. The multiplier simply enters each sub-problem as a prescribed
boundary traction. We consider, then, an iterative strategy that updates λλλ between solutions of such
unconstrained problems.

Our starting point is the iterative method independently introduced by Hestenes [108] and
Powell [109] in 1969. This method attempts to minimize an augmented Lagrangian of the form

L(x, λ) = f (x) + λg(x) + β‖g(x)‖2 (30)

where x is the primal variable, λ is the multiplier, β > 0 is a penalty parameter, and f (x) is an
objective function that we seek to minimize, subject to the constraint g(x) = 0. The method
consists of starting with λ = 0 and repeating the steps

1. Solve x← arg min L(·, λ), where λ is treated as a fixed parameter.

2. Update the multiplier by λ← λ + βg(x),

until ‖g(x)‖ < ε. We may attempt to apply this strategy to our problem by representing the field λn

by samples at quadrature points of Γt and repeating the following steps

1. Solve for approximate fluid and structure velocities uh
1 and uh

2, treating λn as fixed data.
We discuss specific solution strategies for this unconstrained (but still coupled) problem in
Section 4.5.

2. Update the multiplier field by λn ← λn + τB
NOR(uh

1 − uh
2) · n2, where λn and uh

i are evaluated at
the quadrature points of Γt,

until
(∫

Γt
|(uh

1 − uh
2) · n2|

2 dΓ
)1/2

< ε.
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However, if the approximation spaces are not selected in a stable way, there may not be a solu-
tion to the discrete problem and the iteration may never converge to arbitrary ε. We observe that,
in some cases, specifically those discussed in Section 4.3, the iteration does appear to converge
linearly. However, for more general fluid and structure geometries, the procedure does not appear
to converge. It may be possible, and practically effective, to formulate a variety of ad hoc termi-
nation criteria, but, for problems in which the iterative procedure will not converge, we consider
only the case of applying a single iteration within each time step and using the updated λn as the
initial guess for the (severely truncated) iteration within the next time step. In this case, the multi-
plier becomes an accumulation of penalty tractions from previous time steps. This is equivalent to
replacing the multiplier and normal penalty terms∫

Γt

(w1 − w2) · (λnn2) dΓ +

∫
Γt

((w1 − w2) · n2) τB
NOR ((u1 − u2) · n2) dΓ (31)

by a penalization of (a backward Euler evaluation of) the time integral of pointwise normal velocity
differences on the immersed surface Γt∫

Γt

{
τB

NOR

∆t
(w1(x, t) − w2(x, t)) · n2(x, t)∫ t

0

(
u1(ϕτ(ϕ−1

t (x)), τ) − u2(ϕτ(ϕ−1
t (x)), τ)

)
· n2(ϕτ(ϕ−1

t (x)), τ) dτ
}

dΓ , (32)

where ϕτ(X) gives the spatial position at time τ of material point X ∈ Γ0 and the measure dΓ

corresponds to the integration variable x ∈ Γt. That the time integral in Eq. (32) is evaluated using
the backward Euler method is demonstrated in the following exposition. First define (at fixed X)

I(t) =
τB

NOR

∆t

∫ t

0
(u1(τ) − u2(τ)) · n2(τ) dτ . (33)

The time rate-of-change of the integral I will be its integrand

İ =
τB

NOR

∆t
(u1 − u2) · n2 . (34)

We approximate I at time tn+1+α f by

In+1+α f = In+α f + ∆tİn+1+α f (35)

where In+α f is an accumulation of previous single-iteration approximations to λn and ∆tİn+1+α f
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is the current time step’s penalty forcing, which is the penalty τB
NOR times the α-level1 velocity

difference between the structure and fluid. Eq. 35 is precisely the backward Euler algorithm for
computing I. Thus the term of Eq. (32) is accounted for in a fully implicit manner within the
discrete solution process, using a manifestly stable time integrator. An order of accuracy is lost
relative to the generalized-α scheme, but, in our application, other considerations have driven the
time step down to small enough values for this distinction to have few practical implications; we
are primarily concerned with stability.

Integrating a constraint residual in time is not a new concept for approximation of a Lagrange
multiplier. The differential equation given in Eq. (34) resembles the method of artificial com-
pressibility, devised by Chorin [110] in 1967 and widely used since to simulate incompressible
flows (see, e.g., Brooks and Hughes [68]). In this method, the approximated Lagrange multiplier
p representing the pressure evolves through time in an analogous way to I:

∂t p = −
1
δ
∇∇∇ · u , (36)

where the constraint is ∇∇∇ · u = 0 (instead of (u1 − u2) · n2 = 0), 1/δ is the penalty parameter, and
the difference in sign is due to the arbitrary choice of sign with which λ enters the augmented La-
grangian formulation (1). A physical interpretation of this, similar to Chorin’s original formulation
of Eq. (36) in terms of a fictitious density variable, is that we are penalizing a displacement pene-
tration of the fluid through the leaflet, using the penalty τB

NOR/∆t. This interpretation makes clear
how penalizing the time integral of velocity prevents the steady creep of flow through a barrier.

4.3. Managing pressure approximation error with stabilization

Due to the poor approximation properties of a pressure space that does not allow discontinuities
on the surface of the shell, we expect the pressure to converge slowly. We show that reasonable
levels of refinement can circumvent this difficulty for certain types of problems in Section 4.6.
However, in problems with large pressure jumps, unphysical compression incurred by the poorly-
approximated pressure will ruin even the qualitative character of solutions. In Section 4.3.1, we
use a model problem to show that this effect becomes practically important in the analysis of heart
valves. Then, in Section 4.3.2, we introduce and test a proposed solution.

4.3.1. A demonstration of the effect of pressure approximation error

We now consider a simplified model of a closed valve, with fluid properties and boundary
conditions similar to those found in cardiovascular applications. We show that we cannot develop
hydrostatic solutions with a reasonable spatial discretization and practical time step.

1See Bazilevs et al. [74] for a discussion of generalized-α time integration using this notation.
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Consider an axis-aligned 2 cm × 2 cm × 2 cm cube, filled with an incompressible Newto-
nian fluid of density ρ1 = 1.0 g cm−3 and viscosity µ = 3.0 × 10−2 g cm−1s−1. The vertical
faces have a no-slip boundary condition, the bottom has a zero-traction outflow boundary con-
dition, and the top has a pressure traction of 120 mmHg. The length scale, fluid properties, and
pressure difference produce conditions comparable to those surrounding a closed aortic valve in
diastole. Now consider immersing a rigid, impermeable horizontal plate into this cube, blocking
its entire cross section at a distance of 1.1 cm from the bottom. The exact solution for this prob-
lem should be hydrostatic, with a discontinuous pressure at the location of the plate. However,
in an immersed-boundary finite element discretization, the continuity of the pressure approxima-
tion functions through the plate means that the irregularity of the exact solution cannot be exactly
reproduced in a computation.

Remark 8. The plate’s height of 1.1 cm is deliberately selected so that the plate will never coincide
with an element boundary for any uniform division of the cube into 2n elements in the z-direction.
This may be seen by considering the fact that 0.110 is a repeating fraction in binary. Even if a
discontinuous pressure basis is used, the discontinuities will not be located on the structure.

Figure 7: The computational mesh used for the closed-valve model problem.

We now compute a solution to this problem, starting from homogeneous initial conditions for
the velocity and using Lagrange multipliers to enforce the no-penetration condition on the shell.
For the mesh we use a trivariate C1-continuous quadratic B-spline patch, uniformly refined into
8 × 8 × 32 elements. The quadrature rule for surface integrals over the immersed plate is a sum of
Gaussian quadrature rules on 40×40 quadrilaterals, evenly dividing a 3 cm × 3 cm square surface,
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cutting through the channel as shown in Figure 7. Surface quadrature points falling outside of
the channel do not contribute to integrals. We find that, if large flow velocities develop with the
given boundary conditions, backflow divergence may occur, and we apply the outflow stabilization
discussed in Section 3.1.1 to both traction boundaries, with γ = 0.5.

Figure 8: The z-component of velocity, in cm s−1, for a highly unphysical steady-state flow solution through a blocked
channel, as computed with ∆t = 10−4 s and no modifications to fluid stabilization terms. The fluid spuriously com-
presses to meet the velocity constraint imposed by the barrier while maintaining a large downward flow through the
channel.

We consider the time step ∆t = 10−4 s practical for computing dynamic FSI at the time scale of
a cardiac cycle. Computing with this time step and using the iterative multiplier approximation of
Section 4.2.1, we see a highly unphysical behavior. Figure 8 shows the vertical velocity component
on a slice of the resulting solution, after the volumetric flow rate through the top of the cube
reached a steady value (t > 0.01 s). While the Lagrange multipliers enforce the constraint very
effectively2, there is still a significant flow through the top face of the cube. The steady-state
volumetric flow rate is 355.2 mL s−1, which is unacceptable for simulation of a valve structure
that exists primarily to block flow. This would be a typical flow rate through an open aortic valve,
during systole [111]. The flow rate varies between cross-sections of the channel, which obviously
violates the incompressibility condition.3 The compression caused by local pressure approximation
error pollutes the entire velocity solution.

2As discussed in Section 4.2.1, we do not always expect the constraint to fully converge, since we have not selected
a stable discretization, but it seems that, for this simple problem, the iterative approach converges. This is not, in
general, expected or found in calculations with different immersed geometries.

3The VMS formulation discretely satisfies global mass conservation for any reasonable test space (which may be
seen by setting q = 1 and w = 0 in Eq. (13)). However, we have no guarantee of local mass conservation.
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We now refine the time step by two orders of magnitude to ∆t = 10−6 s. The steady-state flow
rate shrinks by roughly the same factor as the time step, leveling off at 3.877 mL s−1 after t =

1.2×10−4 s. Refining further in time to ∆t = 10−8 s, the flow rate reduces again to 3.877×10−2 mL
s−1. It seems that, with a sufficiently small time step, we are able to approach the desired hydrostatic
solution. We believe that this steep time step requirement traces back to poor approximation of
the pressure near the immersed shell structure. Reducing the time step causes the momentum
stabilization constant τM, which multiplies the momentum residual in Eq. (13), to be smaller near
the shell. It simultaneously causes the pressure stabilization constant τC to be larger, penalizing
velocity divergence.

4.3.2. A proposed solution

A natural way to replicate these effects without reducing the time step is to locally shrink τM

in elements near the immersed structure. To accomplish this, we modify the definition of τM in
Eq. (16) to be

τM =

s
 Ct

∆t2 + (u − û) ·G(u − û) + CI

(
µ

ρ1

)2

G : G
−1/2

, (37)

which affects all quantities defined in terms of τM, such as u′ and τC. The new factor s > 1 is
dimensionless and allowed to vary in space. For most of the domain, s = 1, but near the shell, we
may make it larger, with the effect of reducing τM. To smooth the transition between larger and
smaller values of s, we define it as a nodal variable, using the pressure approximation space. For
nodes corresponding to pressure basis functions with supports intersecting the shell (i.e. containing
quadrature points for the integration rule on Γt), this nodal variable is set to sshell ≥ 1. For all other
nodes, it is set to the usual value of 1. If the pressure shape functions form a partition of unity, then
s will be uniformly equal to sshell on elements intersecting the shell.

Remark 9. From stability and convergence analysis of analogous stabilized methods for the steady
Stokes and Oseen problems, we see that, for stability and asymptotic convergence, τM is subject
only to upper bounds. It is typically chosen to saturate these bounds, to reduce constants in the
error estimate [72]. However, for flow conditions and approximation spaces of interest, it seems
that we may improve the qualitative character of solutions at coarse discretizations by choosing
smaller values of τM (by using sshell > 1).

We now test this preliminary solution by applying it to the model problem of the previous
section. We investigate the effect of sshell at the practical time step of 10−4 s. Because the time
step for our application is small relative to the spatial discretization of the fluid, τM scales roughly
like ∆t, so we hypothesize that scaling s1/2 by a factor c will have comparable effects to scaling
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∆t by c−1. To mirror the time step changes tested above, we consider sshell = 104 and sshell = 108,
which, as stabilization terms are concerned, imitate time step reductions by factors of 10−2 and
10−4 respectively. Table 5 summarizes these results, comparing the effects of changing ∆t and
sshell. The imitated reduction of time step through s appears to have a comparable effect (at the
order-of-magnitude level) to actual reduction in time step.

∆t Volumetric flow rate sshell

10−4 s 355.2 mL s−1 1
10−6 s 3.877 mL s−1 4.037 mL s−1 104

10−8 s 3.877×10−2 mL s−1 4.048×10−2 mL s−1 108

Table 5: Comparison of the effects of time step and sshell on volumetric flow rate through a blocked tube. The left
column has sshell = 1 for all entries and the right column has ∆t = 10−4 s.

Remark 10. An undesirable consequence of increasing sshell is that the resulting penalty nature of
continuity enforcement near the shell harms the conditioning of the discrete problem. Due to the
simplistic nature of the blocked tube model problem, conditioning is not a significant issue, but
applying the modified stabilization terms to more complex calculations, such as those presented in
Section 5.4, increases the cost of sufficient iterative solution in the linear problem at each Newton
step. The development of a suitable preconditioner may avert this difficultly, but is beyond the
scope of the current work.

4.4. Treatment of shell structure mechanics

In this section, we give concrete form to the structure sub-problem (11). We assume that
the structure is a thin shell, represented mathematically by its mid-surface. Further, we assume
this surface to be piecewise C1-continuous and apply the Kirchhoff–Love shell formulation and
isogeometric discretization studied by Kiendl et al. [63, 112, 113].

4.4.1. Basic kinematics of a Kirchhoff–Love shell

The current and reference configurations of the shell mid-surface are given by the parametric
mappings x(ξ1, ξ2) and X(ξ1, ξ2). Assuming the range {1, 2} for Greek letter indices, we define
bases

gα =
∂x
∂ξα

, (38)

g3 =
g1 × g2

||g1 × g2||
, (39)
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and

Gα =
∂X
∂ξα

, (40)

G3 =
G1 ×G2

||G1 ×G2||
, (41)

in the current and reference configurations, which yield metric tensors

gαβ = gα · gβ , (42)

Gαβ = Gα ·Gβ , (43)

and curvature coefficients

bαβ = −gα ·
∂g3

∂ξβ
=
∂gα
∂ξβ
· g3 , (44)

Bαβ = −Gα ·
∂G3

∂ξβ
=
∂Gα

∂ξβ
·G3 . (45)

Using kinematic assumptions and mathematical manipulations given in Kiendl [113], we split
the in-plane Green-Lagrange strain Eαβ into membrane and curvature contributions

Eαβ = εαβ + ξ3καβ , (46)

where

εαβ =
1
2

(gαβ −Gαβ) , (47)

καβ = Bαβ − bαβ , (48)

are the membrane strain and curvature tensors, respectively, at the shell mid-surface, ξ3 ∈ [−hth/2, hth/2]
is the through-thickness coordinate and hth is the (variable) shell thickness.

4.4.2. St. Venant–Kirchhoff material model

For the purposes of this paper, we assume a St. Venant–Kirchhoff material, in which the second
Piola-Kirchhoff stress, S, is computed from a constant elasticity tensor, �, applied to E. We are
well aware of the shortcomings of this material model under states of high compression, but these
are precluded in the current situation. The in-plane stresses due to extension and bending are
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integrated through the shell thickness to obtain

nαβ = Cαβγδεγδhth , (49)

mαβ = Cαβγδκγδ
h3

th

12
. (50)

Using the above notation, we specialize the generic structural sub-problem by defining

B2(w,u) =

∫
Γt

w · ρ2hth
∂u
∂t

∣∣∣∣∣
X

dΓ +

∫
Γ0

(n : δεεε + m : δκκκ) dΓ , (51)

F2(w) =

∫
Γt

w · ρ2hthf dΓ +

∫
Γt

w · hnet dΓ , (52)

where hnet = h(ξ3 = −hth/2) + h(ξ3 = +hth/2) sums traction contributions from the two sides of the
shell. For isotropic materials, the material tensor may be derived from a Young’s modulus, E, and
Poisson ratio, ν.

4.4.3. Isogeometric shell discretization

We discretize shell structures isogeometrically, using C1-continuous quadratic B-spline patches
to represent both the reference configuration and the approximate displacement solution. The de-
tails of this discretization are given in Kiendl et al. [63, 113]. A noteworthy aspect of this dis-
cretization is the fact that it requires no rotational degrees of freedom; our C1-continuous approx-
imation space (for a single patch) is in H2, so we may directly apply Galerkin’s method to the
forms defined in Eqs. (51) and (52). It should be noted that for complex structures, the continuity
of the geometrical mapping is often reduced to the C0 level (e.g geometries comprised of multiple
patches). The problem of reduced continuity across patch boundaries can be resolved by applying
linear constraint equations for simple geometries [63], through the bending strip method [112], or
through the blended shell formulation [114].

4.5. Time integration and fluid–structure coupling

We apply the same implicit generalized-α scheme that we use for the fluid sub-problem in
Section 3.3 to coupled FSI problems. Given our variational formulation for the coupled problem,
it would be possible, in principle, to simultaneously solve for the fluid, structure, and multiplier
solutions at each time step, in a monolithic fashion. However, as discussed in Section 4.2.1, we
use an iterative scheme for updating the Lagrange multiplier unknowns, wherein an unconstrained
problem with a constant multiplier field is solved one or more times within each time step. For
the unconstrained problem, we opt to derive separate tangent matrices for the fluid and structure
problems, considering the solution variables of each (along with the multipliers) to be constant in
the other’s linearization. This is not equivalent to a full linearization of the problem, as it discards
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some information regarding the coupling of the sub-problems. However, the ability to isolate the
structural tangent makes the method more modular, easing the implementation of new material
models.

For time steps of the penalty method and the unconstrained problems at each step of the it-
eration described in Section 4.2.1, we apply what is called, in the terminology of Tezduyar and
Sathe [115], a block-iterative approach. This approach alternates between solving for increments
of the fluid and structure solutions. Schematically, consider R f (u f , us) to be the nonlinear resid-
ual for the fully-discrete fluid sub-problem at a particular time step, which depends on the discrete
fluid and structure solutions, u f and us. Likewise, Rs(u f , us) is the residual for the discrete structure
sub-problem. Then the block-iterative procedure to find a root of (R f ,Rs) is to start with guesses
for u f and us, then repeat the steps

1. Assemble R f (u f , us) and a (typically approximate) tangent matrix, A f ≈ ∂R f /∂u f .

2. Solve the linear system A f ∆u f = −R f for the fluid solution increment.

3. Update the fluid solution: u f ← u f + ∆u f .

4. Assemble Rs(u f , us) and As ≈ ∂Rs/∂us.

5. Solve As∆us = −Rs for the structure solution increment.

6. Update the structure solution: us ← us + ∆us.

until R f and Rs are sufficiently converged. Note that this resembles Newton iteration with an
inexact tangent, wherein off-diagonal blocks of the tangent matrix for the combined system, A f (∂R f /∂us)

(∂Rs/∂u f ) As

  ∆u f

∆us

 = −

 R f

Rs

 , (53)

are neglected. However, the update of the fluid solution in step 3 distinguishes block iteration
from an inexact tangent method. To ensure predictable running times and avoid stagnation in
pathological configurations, we typically select the resolution of the nonlinear algebraic solution
by choosing a fixed number of iterations rather than a percentage by which the residual must be
reduced. This may be interpreted as a predictor–multi-corrector scheme based on Newton’s method
[74]. While it is possible that error from isolated, poorly-solved time steps can pollute the future
of a solution, we find that, within reasonable limits, quantities of engineering interest are typically
more sensitive to spatial and temporal discretizations than nonlinear solution tolerance.

4.6. Flow over an elastic beam

In this section, we test our variational immersed boundary framework for shells on the 2D FSI
benchmark problem of flow over an elastic beam. The problem is first proposed by Wall [116]
to solve the coupled fluid–structure dynamics of an elastic beam that is fixed at one end to an
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immobile block and surrounded by flowing fluid. The problem geometry and boundary conditions
are shown in Figure 9. A uniform inflow velocity of 51.3 cm/s is prescribed at the inlet. Lateral
boundaries are assigned zero normal velocity and zero tangential traction. A zero traction boundary
condition is applied at the outflow. The densities of the beam and the fluid are ρ2 = 0.1 g cm−3 and
ρ1 = 1.18 × 10−3 g cm−3, respectively. The fluid viscosity is µ = 1.82 × 10−4 g cm−1s−1. Taking
the box width as a length scale, the Reynolds number is Re = 332.6. The beam is composed of
an isotropic St. Venant–Kirchhoff material, with Young’s modulus E = 2.5 × 106 g cm−1s−2 and
Poisson ratio ν = 0.35. Due to the small ratio of the beam’s thickness to its length, we model
it using the Kirchhoff–Love shell formulation defined by Eqs. (51) and (52), in contrast to other
authors that model the beam using solid elements [74, 116–118]. The problem setup is completely
symmetrical, but the inherent instability of unsteady fluid flow amplifies small numerical errors,
causing a transition to unsteady but periodic motion, in which the beam oscillates up and down
with some frequency and amplitude. We take the frequency and amplitude of this oscillation as
quantities of interest, providing a basis for quantitative comparison with results from other studies.

hx = 0, uy = 0 

hx = 0, uy = 0 

h x
 =

 h
y =

 0
 

u x
 =

 5
1.

3 
cm

/s
, u

y =
 0

 

12
 c

m
 

5 cm 14.5 cm 

Fixed square block 
(1 cm × 1 cm) 

Elastic beam 
(4 cm × 0.06 cm) 

Figure 9: Problem setup for flow over an elastic beam. Not to scale.

We use Nitsche’s method for immersed boundaries with adaptive quadrature to apply boundary
conditions to the perimeter of the box, and the immersed shell formulation to compute interactions
between the beam and fluid. Note that the adaptive quadrature is only applied to the fluid ele-
ments that are cut by the box, where the functions are discontinuous across the object interface.
The adaptive quadrature is not necessary for the fluid elements intersecting the shell, because the
functions are still continuous and the integrand is smooth.

To control for potential differences from other studies, due to either the use of shell theory or
the VMS fluid formulation, we also compute a body-fitted reference case, using the same VMS
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and Kirchhoff–Love shell formulations as the immersed-boundary computation.

4.6.1. Immersed discretizations

To study the properties of our FSI framework under refinement, we construct three meshes,
M1, M2, and M3, of the fluid domain into which the box and attached elastic beam are immersed.
M1 contains 7144 quadratic B-spline elements, with refinement focused near the box and beam,
as shown in Figure 10. The beam mesh consists of 32 quadratic B-spline shell elements. Another
surface consisting of 36 elements is used to generate the surface quadrature rule for the box. M2 is
a uniform h-refinement of M1, and M3 is a uniform refinement of M2. The box surface and beam
discretizations used in conjunction with M2 and M3 are likewise refined.

Figure 10: Mesh M1 for flow over an elastic beam, with the locations of the immersed box and beam highlighted.

For all three meshes, we use l = 3 levels of adaptive quadrature to resolve the boundary of the
immersed box. The pressure differences between sides of the beam are relatively small and a pure
penalty method appears to enforce the no-penetration constraint sufficiently. We therefore use only
the penalty method to couple the beam and fluid, with τB

(·) = 103 g cm−2s−1 in all cases.

Remark 11. In our computations, the structural surface elements also define the surface quadrature
rule used to compute integrals over ΓI in Eq. (12), as discussed in Section 3.2.1. However, the
surface discretizations and quadrature rules used for shell mechanics and FSI integrals over ΓI do
not, in general, need to coincide. One may wish to use different discretizations if the physical
aspects of the fluid and structural problems are vastly different.
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4.6.2. Body-fitted reference discretizations

As mentioned earlier, the use of shell elements in this benchmark problem is atypical, with
most authors directly modeling the beam as a solid structure. We would like to compare the results
of our variational immersed boundary method with those of other investigations, but we must be
able to distinguish whether differences are in fact due the immersed boundary FSI technique, or
simply the use of shell theory. We compute a reference case, then, with a deforming fluid mesh
fitted directly to the box and a shell representation of the beam. In this case, we strongly enforce
the kinematic constraint at the fluid–structure interface.

We use two body-fitted meshes, one a refinement of the other, to ensure that the reference
solution is properly converged. The first mesh, BM1, shown in Figure 11, contains 6800 quadratic
B-spline elements. The second mesh, BM2, is a uniform h-refinement of BM1.

Figure 11: Mesh BM1 for the body-fitted reference computation of flow over an elastic beam.

The matching interface between the beam and surrounding fluid mesh allows the no-slip con-
dition on the surface of the beam to be enforced strongly. The mesh deforms according to the
solution of a fictitious elastostatic problem that takes the location of the beam as a displacement
boundary condition. The velocity of this deformation enters into the fluid formulation (13) as ûh.
This velocity is derived from displacements of the mesh in consecutive time steps. These displace-
ments are solutions to a fictitious linear elastostatic problem with boundary conditions imposed
by the structural displacement. Mesh quality is preserved throughout this deformation by stiffen-
ing the fictitious material in response to compression: the material tensor is modified such that
the mesh Young’s modulus, Emesh, scales inversely with the square of the Jacobian determinant,
Jξ, of the mesh’s parametric mapping in the previous time step. A more detailed discussion of
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this technology can be found in [23, 74, 119–121]. The importance of this Jacobian stiffening is
demonstrated by the mesh deformations shown in Figure 12.

(a) Emesh ∝ J−1
ξ (b) Emesh ∝ J−2

ξ

Figure 12: Sample mesh deformations, illustrating the effects of Jacobian stiffening on the solution of the fictitious
linear elastic problem. The beam is highlighted in magenta and the mesh solution near the tip is magnified.

4.6.3. Comparison of results

To compare results of different computations we record the y-displacement of the beam’s tip
as a function of time. Specifically, we focus on the frequency at which this displacement oscillates
after reaching a steady periodic motion.

For this problem, the pressure gradients driving the beam are relatively mild and we directly
apply the VMS stabilization of Eq. (16), with none of the modifications discussed in Section 4.3.
Table 6 collects the frequencies of oscillation from computations at various time steps for the body-
fitted reference while Table 7 shows frequencies for the immersed-boundary computations. The
amplitudes and waveforms of the beam tip y-displacement are similar for all cases; Figures 13(a)
and (b) show these waveforms for the body-fitted and immersed-boundary computations, respec-
tively. We see that the two methods converge to periodic solutions of the same frequency. The
convergence of the variational immersed boundary method, however, is considerably slower with
respect to time step.
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BM1 BM2
∆t = 1.0 × 10−3 3.2 Hz 3.2 Hz
∆t = 0.5 × 10−3 3.2 Hz 3.2 Hz

Table 6: Frequencies of oscillation for the y-displacement of the beam tip, computed using body-fitted reference
meshes.

M1 M2 M3
∆t = 2.5 × 10−4 3.6 Hz 3.5 Hz 3.6 Hz
∆t = 1.25 × 10−4 3.5 Hz 3.4 Hz 3.4 Hz
∆t = 0.625 × 10−4 – 3.4 Hz 3.2 Hz

Table 7: Frequencies of oscillation for the y-displacement of the beam tip, computed using immersed boundary FSI.
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Figure 13: Tip y-displacements over time for computations on (a) body-fitted meshes BM1 and BM2, using ∆t =

1.0×10−3 s and ∆t = 0.5×10−3 s, respectively, and (b) on immersed meshes M1, M2, and M3, using ∆t = 2.5×10−4 s,
∆t = 1.25 × 10−4 s, and ∆t = 0.625 × 10−4 s, respectively.
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Figure 14 shows a snapshot of the fluid pressure and beam deformation on M1, when the
beam tip is at its largest displacement. This illustrates the mechanism of low pressure vortices
periodically shedding from the box and driving the oscillatory motion of the beam. The pressure
solution is represented on a stationary background mesh, using continuous basis functions. In the
exact solution, we expect pressure to be discontinuous along the beam. The snapshot illustrates
how the computed solution approximates these discontinuities with sharp gradients.

Figure 14: A snapshot of the pressure field about the immersed beam, computed on M1. The elements of the fluid
mesh remain in the rectilinear configuration shown as the beam moves. The pressure discontinuity at the beam is
approximated by a steep gradient.

5. Application to a bioprosthetic heart valve

In this section, we use the thin shell immersed boundary FSI method developed in Section 4 to
simulate an aortic bioprosthetic heart valve (BHV) and the surrounding blood flow during a cardiac
cycle. The aortic valve regulates flow between the left ventricle of the heart and the ascending
aorta. Figure 15 provides a schematic depiction of its position in relation the surrounding anatomy.
As mentioned in Section 4.4, the weak form of Kirchhoff–Love shell theory requires the shell
geometry to be C1-continuous. We first describe our strategy of mapping a given valve leaflet
geometry to a quadratic B-spline patch. We then address the issue of contact between leaflets. A
benefit of using an immersed boundary FSI method is that the contact formulation can be added
to the structure sub-problem without needing to consider the fluid. We develop a penalty-based
dynamic contact algorithm in Section 5.2 and test it in Section 5.3 to show that this method is
sufficient for our purposes. Finally, we proceed to compute FSI for the BHV in Section 5.4.
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Figure 15: A schematic drawing illustrating the position of the aortic valve relative to the left ventricle of the heart and
the ascending aorta.

5.1. Valve model

We model the geometry of the prosthetic valve using three quadratic B-spline patches—one for
each leaflet. The spline surface for a single leaflet is based on a 23-mm BHV design4 by Edwards
Lifesciences, supplied in the form of a quadrilateral mesh. The spline surface, parameterized as
a square in the knot space with (u, v) ∈ [0, 1] × [0, 1], is specialized for aortic valve leaflets by
degenerating the two edges of spline space (u = 0 and u = 1) to the two commissure points, as
illustrated in Figure 16. We fit the physical space of the B-spline patch to the quadrilateral mesh
surface in two stages. To avoid oscillations at the edges, we first fit a piecewise C1-continuous
spline curve to the edges, with C0 points (repeated knots) at the commissure points. We then fit
the interior physical space of the B-spline patch to the interior of the leaflet surface, holding the
boundary control points fixed.

Figure 16: Generic mapping for an aortic valve leaflet using a B-spline patch, where two edges in the parametric space
are degenerated to commissure points.

The fitting of both the edges and the interior is performed by minimizing the `2-norm of the
Euclidean distances between the vertices of the given quadrilateral mesh, {xi}, and their projections

4This type of pericardial BHV is fabricated from bovine pericardium sheets that are chemically fixed after being
die-cut and mounted onto a metal frame to form the leaflets. As a result, the given geometries are without internal
stress and can be used directly as stress-free configurations.
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onto the spline curve or surface, {xp
i }. The control points of the fitted spline, {C j}, are therefore the

solution of

min
∑

i

∣∣∣xi − xp
i

∣∣∣ 2
≡ min

∑
i

∣∣∣∣∣∣∣ xi −
∑

j

N j(ξ
p
i )C j

∣∣∣∣∣∣∣
2

(54)

where N j is the basis function associated with the j-th control point and ξp
i (in R for curves and R2

for surfaces) is the parametric location corresponding to the projected point xp
i . The parameters of

projected points are determined from the condition that the difference between an input point, xi,
and its projection, xp

i , should be normal to the curve or surface being fit. Thus ξp
i is the solution of

the nonlinear system (xi − xp
i ) · ∂xp

i
∂ξ

p
i

= 0, which can be found by Newton’s iteration. To solve the
minimization problem of Eq. (54), we start with an initial guess of {C j}, then repeat the steps

1. Compute projected points, {xp
i }, and their parameters, {ξp

i }, with the control points, {C j},
fixed.

2. Solve the linear least-squares problem for {C j} that is implied by holding {ξi} fixed in Eq. (54),

until a norm of the change in control point values from one iteration to the next is smaller than
some tolerance. The control mesh and the physical images of knot spans of the resulting BHV
mesh, prior to any refinement (knot insertions) for analysis purposes, are shown in Figure 17. The
refined mesh, which is comprised of 1404 quadratic B-spline elements, is shown in Figure 18.

Figure 17: Left: Control mesh. Right: The physical images of knot spans in the BHV mesh, prior to analysis refine-
ments.

Remark 12. This method of fitting a B-spline patch to the leaflet can be used for patient-specific
valve geometries from in-vivo imaging. The degeneration of two edges to the commissure points
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Figure 18: Refined B-spline mesh for analysis purposes. It is comprised of 1404 quadratic elements. The pinned
boundary condition is applied to the leaflet attachment edge.

provides a physical connection that can be used to map the collagen architecture either in a patient-
specific way or in an average sense. More details on mapping the collagen architecture and calcu-
lating its average using this method can be found in Aggarwal et al. [122].

Remark 13. The use of small, degenerated elements is not intuitively appealing and indeed ap-
pears to inhibit convergence of the nonlinear structure sub-problem (11) to machine precision, with
our relatively straightforward implementations of Galerkin’s method and Newton’s iteration. In
practice, however, we can reduce the residual sufficiently to obtain meaningful simulation results.

5.2. Contact algorithm

Contact between leaflets is an essential feature of a functioning heart valve. We find that it
occurs during both the opening and closing phases. While the kinematic constraint of continuous
velocity through the fluid and structure should technically obviate any special treatment of struc-
tural contact, weak enforcement of the fluid–structure kinematic constraint allows some structural
interpenetration and we find that additional enforcement of structural non-penetration improves the
quality of solutions. In this section, we describe the penalty method that we use to model contact
and address its physical plausibility. The penalty method has been widely used to handle contact
problems [42–44, 64, 123] because of its conceptual simplicity and because it is straightforward to
implement.

To handle the contact between leaflets using the penalty method, we wish to penalize the pen-
etration of the leaflets. Because the leaflets are modeled as shell structures, it is not immediately
clear how penetration should be defined; a shell has no interior in which to detect penetrating
geometry. However, an aortic valve leaflet, operating under normal anatomical conditions, will
contact other leaflets on only one side, motivating the following definition of penetration.
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Consider leaflets S 1 and S 2 to be smooth parametric surfaces in R3. For x1 ∈ S 1, with surface
normal n1 determining the side on which contact will occur, we say that x1 contacts leaflet S 2 if
the following conditions are met:

1. There exists a point x2 ∈ S 2 with normal n2 such that (x1 − x2) is perpendicular to S 2. We
call x2 the closest point on S 2 to x1, but, without additional assumptions on S 2, the defining
conditions guarantee neither that x2 is unique nor that it minimizes |x1 − x2|. In practice,
we determine x2 by iteratively solving the nonlinear problem of finding ξ = (ξ1, ξ2) in the
parameter space for S 2 such that

(x1 − x2(ξ)) ·
∂x2(ξ)
∂ξ1

= 0

(x1 − x2(ξ)) ·
∂x2(ξ)
∂ξ2

= 0

. (55)

2. |x1 − x2| < c, were c > 0 is a parameter chosen to avoid false positive contact of distant
geometry. We assume that penalties will be strong enough to prevent penetrations larger
than c.

3. n1 · n2 < α, for some −1 ≤ α ≤ 0. Choosing α < 0 allows a hinge-like boundary between
S 1 and S 2 that can open through angles larger than 270◦ without immediately incurring a
contact penalty.

For a contacting point x1, its signed penetration is defined as d = (x2 − x1) · n2. We consider
x1 to penetrate S 2 if d > −h, where c > h ≥ 0 indicates a minimum desired distance between
the contacting sides of S 1 and S 2. This notation is illustrated for a pair of contacting points in
Figure 19.

n1

x1

x2

d

S1

S2

n2
Figure 19: Illustration of contact notation.
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Non-penetration is enforced weakly, by penalizing d > −h. To motivate our contact algorithm,
consider adding the following term∫

S 1

((
(w2)2 − (w2)1

)
· n2

) (
kd+) dΓ (56)

to the left-hand side of Eq. (11). This term tests a penetration residual against a difference of
weighting functions, (w2)1 and (w2)2, where (w2)i is the structure weighting function on surface i.
The term is not a rigorous formulation because the change-of-variables to integrate (w2)2 over S 1

is not precisely defined and the definition of d is ambiguous. With some regularity assumptions
on S 1 and S 2, and c sufficiently small, we could treat the leaflets as manifolds and use the tubular
neighborhood theorem of differential geometry to assert the existence of a well-behaved mapping
between contacting regions, but we do not have a constructive estimate for the bound on c, and
prefer to disambiguate our formulation in an ad hoc manner, by simply detailing our discrete
implementation below.

We test for penetration and apply penalty forces at a discrete set of contact points, {x1
1, . . . , x

n
1} ⊂

S 1. For the subset {x jk
1 } contacting {x jk

2 } ⊂ S 2, we apply opposing forces on S 2, conserving linear
momentum. To conserve angular momentum, the contact forces between x1 and x2 are along their
separation x1−x2, which is, by construction, parallel to n2. The force on x1 is f1 = −w(Pk(d))n2 and
the force on x2 is f2 = −f1, where w is a weight associated to x1 and Pk(d) penalizes penetration.
For our computations, we use the penalty function

Pk(d) =


k

2h (d + h)2 , d ∈ (−h, 0)
kh/2 + kd , d ≥ 0
0 , otherwise

, (57)

where k decides the strength of the position penalty. The behavior of Pk on the interval −h < d < 0,
illustrated in Figure 20, ensures that the penalty activates smoothly as contact begins, helping us
to resolve the nonlinearity through Newton’s iteration. Motivated by Eq. (56), we choose {x j

1}

to be Gaussian integration points on elements of S 1 and weight forces using the corresponding
integration rule. In general, we expect the contact parameters to scale like

k = c1E/∆x (58)

h = c2∆x (59)

where ∆x is a measure of the structural element size. In this paper, however, we focus on a single
application and use values determined effective through numerical experiments.

The above method does not preserve geometrical symmetries. To see this, consider contacting
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Figure 20: The function Pk(d) for k = 2 and h = 1.

planes at an angle; the directions of contact forces depend on the choice of S 1 and S 2, as shown in
Figure 21. To ensure that results are independent of this arbitrary distinction, we compute forces
with both choices and sum the results. To prevent the introduction of contradictory constraints by
this double application of our algorithm, we continuously re-evaluate the contact points {x jk

2 } over
time and throughout the nonlinear iteration5 at each time step.

S1

S2

Figure 21: Symmetrical geometry results in asymmetrical contact forces.

5.3. Dynamic simulation of a heart valve, with prescribed pressure loading

To test the suitability of our contact algorithm for the simulation of an aortic valve, we apply
a physiological transvalvular pressure load in a dynamic simulation of a BHV. This eliminates the

5Our linearization does not account for nonlinearity arising from the dependence of the parameters of the clos-
est point on the displacement solution, but the resulting inexact tangent appears practically effective in spite of this
omission.
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complexity associated with FSI while exercising the contact method at appropriate velocities and
pressures. Further, we can expect to produce symmetrical results in this simplified setting, while
the same cannot be assumed of FSI calculations [46]. Our testing loosely emulated the dynamic
simulation by Kim et al. [5], but, due to differences in geometry and material parameters, we do
not expect to precisely reproduce the results of the cited study.

5.3.1. Description of the problem

This simulation uses the valve geometry discussed in Section 5.1 and an isotropic St. Venant–
Kirchhoff material with E = 107 dyn/cm2 and ν = 0.45. The thickness of the leaflets is 0.0386 cm.
We use the contact algorithm discussed in Section 5.2, setting the parameters to k = 108 dyn/cm3,
h = 0.005 cm, α = 0.7, and c = 0.1 cm. The time-step size used in the dynamic simulation is
0.0001 s and the pinned boundary condition is applied to the leaflet attachment edge as shown in
Figure 18.

In accordance with the expected contact pattern and the convention established in Section 5.2,
the surface normal, n, points from the aortic to the ventricular side of each leaflet. We model the
transvalvular pressure (i.e. pressure difference between left ventricle and aorta) with the traction
−P(t)n, where P(t) is the pressure difference at time t, taken from the profile used by Kim et al. [5]
and reproduced in Figure 22. The duration of a single cardiac cycle is 0.76 s.
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Figure 22: Transvalvular pressure applied to the leaflets as a function of time. The duration of a single cardiac cycle
is 0.76 s.

As in the computations of Kim et al. [5], we use damping to model the viscous and inertial
resistance of the surrounding fluid. We apply a traction of −Cv, where v is the leaflet velocity and
C = 80 (dyn s)/cm3. This value of C is selected to ensure that the valve opens at a physiologically
reasonable time scale when the given pressure is applied.
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5.3.2. Results and discussion

The deformation and strain distribution of the leaflets at several points in the cardiac cycle
(after reaching a periodic solution) is illustrated in Figure 23. The opening begins in a manner that
is qualitatively similar to the results computed by Kim et al. [5], but the fully-open state differs, in
that the belly regions of the leaflets do not snap through to become concave toward the ventricular
side. We find that this snap-through behavior (with our choice of constitutive model) is sensitive
to the level of damping and slight variations in the leaflet geometry. The purpose of the present
computation, however, is largely to test the robustness of the contact algorithm in the impacting
and closed states, so we do not dwell on the details of the fully-open configuration. The pressurized
diastolic state exhibits much greater sagging of the belly region; this is presumably because our
simplified material neglects the stiffening of true tissue under strain. The important conclusion for
our contact algorithm is that the results do not show noticeable penetrations under physiological
pressure levels and there are no spurious asymmetries. Note that in our computation, no symmetry
planes are assumed between the leaflets. The symmetric pattern is obtained as a result of the
symmetric implementation of the contact algorithm described at the end of Section 5.2. We may
therefore proceed to FSI simulation with the same contact parameters and conclusively attribute
any asymmetries in the FSI results to the effects of the fluid.

5.4. FSI simulation

In this section, we immerse the BHV model of Section 5.1 into a pressure-driven incompress-
ible flow through a rigid channel. The fluid properties are the same as those used in the blocked
channel model problem of Figure 7: ρ1 = 1.0 g cm−3 and µ = 3.0 × 10−2 g cm−1s−1. These param-
eters model the physical properties of human blood. The valve leaflets have material properties
E = 107 dyn/cm2 and ν = 0.45.

5.4.1. Parameters of the numerical scheme

As mentioned in Section 4.3, we find that time-step sizes significantly smaller than 10−4 s are
impractical for computing valve FSI through multiple entire cycles. In this study, we compare the
results of using ∆t = 1.0 × 10−4 s and ∆t = 0.5 × 10−4 s. To compute reasonable solutions at
practical time steps, we need to modify sshell. Taking Table 5 as a guide for the effects of sshell

on volumetric flow through a closed valve, we choose sshell = 106. We find that results are rela-
tively insensitive to the tangential FSI penalty, τB

TAN, but conditioning and nonlinear convergence
improve with lower values. For the heart valve, we use a value of τB

TAN = 2.0 × 102 g cm−2s−1.
The no-penetration boundary condition is more critical to the valve’s behavior, and, in the compu-
tations that follow, we use the higher value of τB

NOR = 2.0 × 103 g cm−2s−1. This penalty alone is
not large enough to resist flow, but larger penalties prevent the block-iterative fluid–structure cou-
pling from converging. We must therefore include some approximation of the Lagrange multiplier
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t = 0.0 s t = 0.198 s

t = 0.008 s t = 0.202 s

t = 0.05 s t = 0.3 s

t = 0.17 s t = 0.75 s

Figure 23: Deformations of the valve from a cycle of the dynamic computation, colored by maximum in-plane prin-
cipal Green-Lagrange strain (MIPE, the largest eigenvalue of E), evaluated on the aortic side of the leaflet. Note the
different scale for each time. Time is synchronized with Figure 22. The initial condition at t = 0 s comes from the
preceding cycle and is not the stress-free configuration.
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field. With the complex time-dependent geometry of the immersed leaflets, the iterative approxi-
mation of Lagrange multipliers discussed in Section 4.2.1 does not converge. We therefore opt to
use the single-iteration approximation of multipliers. Section 4.2.1 discusses this approximation
and compares it to the method of artificial compressibility for incompressible flows and also to a
penalization of the displacement difference between the fluid and structure.

5.4.2. Channel geometry

The channel geometry, shown in Figure 24, is a circular tube of diameter 2.3 cm and length
16 cm, with a three-lobed dilation near the valve to model the aortic sinus. It is comprised of
quadratic NURBS patches, allowing us to exactly represent the circular portions. We use a multi-
patch design to avoid including a singularity at the center of the cylindrical sections. Cross-sections
of this multi-patch design are shown in Figure 25. The mesh contains a total of 57600 quadratic
NURBS elements. Refinement is focused near the valve and sinus, as shown in Figure 24. The
mesh is also clustered towards the wall to better capture boundary-layer phenomena. The modeling
of the sinus, magnified in Figure 26, does not include the flexible wall in the human aorta, but the
experiments of Bellhouse and Bellhouse [124] determined that the presence of such a channel
dilation near the valve plays an important role in the valve’s dynamics.

Figure 24: A view of the fluid domain into which the valve is immersed.

Figure 25: Cross-sections of the fluid mesh, taken from the cylindrical portion and from the sinus.
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Figure 26: The sinus, magnified and shown in relation to the valve leaflets (pink) and rigid stent (blue).

Remark 14. As in the elastic beam computations of Section 4.6, We use comparable spatial res-
olutions for the fluid and structure meshes. The shell structure elements are used to define the
surface quadrature rule for fluid–structure interface integrals in Eq. (12).

5.4.3. Boundary and initial conditions

The nominal outflow boundary is 11 cm downstream of the valve, located at the right end of
the channel, based on the orientation of Figure 24. The nominal inflow is located 5 cm upstream at
the left end of the channel. The designations of inflow and outflow are based on the prevailing flow
direction during systole, where the valve is open and the majority of flow occurs. In general, fluid
may move in both directions and there is typically some regurgitation during diastole. An idealized
left ventricular pressure profile, shown in Figure 27, is applied as a traction boundary condition at
the inflow. The duration of a single cardiac cycle used in the FSI computation is 0.86 s. The traction
−(p0 +RQ)n1 is applied at the outflow, where p0 is a constant physiological pressure level, Q is the
volumetric flow rate through the outflow (with the convention that Q > 0 indicates flow leaving the
domain), R > 0 is a resistance constant, and n1 is the outward facing normal of the fluid domain.
This resistance boundary condition and its implementation are discussed in Bazilevs et al. [84]. In
the present computation, we use p0 = 80 mmHg and R = 70 (dyn s)/cm5. These values ensure
a realistic transvalvular pressure difference of 80 mmHg in the diastolic steady state (where Q is
nearly zero) while permitting a reasonable flow rate during systole. Such boundary conditions are
sufficient to demonstrate the robustness of our thin shell FSI and contact methodologies under the
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range of relevant flow regimes, but the resistance outflow boundary condition is relatively crude,
neglecting several important physical phenomena. Section 5.4.4 points out how this simplified
outflow boundary condition affects our solution. For a discussion of more realistic cardiovascular
outflow boundary conditions, see Vignon-Clementel et al. [125]. At both inflow and outflow, we
apply the backflow stabilization discussed in Section 3.1.1, with γ = 0.5. On the walls of the
channel, we strongly enforce the Dirichlet condition u1 = 0.
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Figure 27: The idealized left ventricular (LV) pressure profile applied to the nominal inflow of the fluid domain. The
duration of a single cardiac cycle is 0.86 s.

The left ventricular pressure profile of Figure 27 deliberately coincides with p0 at t = 0. In this
way, we may begin from an initial condition of u1 = 0, u2 = 0, and λn = 0: a stationary, stress-free
state. While the fluid–structure interface multiplier, λn, is independent of previous history in the
continuous formulation (27), our use of the previous time step’s fluid–structure traction as an initial
(and, in the single-iteration scheme, only) guess for the multiplier introduces a history dependence,
so the initial value of λn becomes significant.

To properly seal the gap between the pinned edge of the valve and the channel wall, we extend
the pinned edges of the valve leaflets with a rigid stent, as shown in Figure 26. It is important to
note that our variational immersed boundary method does not require this stent to exactly match
the channel wall; it extends outside of the fluid domain, much like the rigid plate in the model
problem of Section 4.3.

5.4.4. Results and discussion

We now discuss the results of computing with the setup described above. We compute for
several cycles from the homogeneous initial condition, until reaching a time-periodic solution.
We first consider the volumetric flow through the channel and how its features follow from our
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boundary conditions. Next, we examine finer features of the fluid solution field. Finally, we com-
pare the deformations of the valve leaflets to the results of the pressure-driven structural dynamics
computation of Section 5.3.

Figure 28 shows the volumetric flow rate through the top of the tube throughout the cardiac
cycle. Magnitudes of computed flow rate during systole and diastole are comparable to typical
aortic flow rates, but we discuss below several unusual features of the computed profile. The
most striking feature of the computed flow profile is the oscillation during diastole. This is a
reverberation of the fluid hammer impact on the closing valve. This is a physical phenomenon,
not a computational artifact, and is the source of the S2 heart sound, marking the beginning of
diastole [126, 127]. A similar decaying flow rate oscillation has been observed in vitro with flow
loop experiments [128–130]. Further, the frequency of the computed oscillation (about 40 Hz)
is within the range of observed aortic heart sound frequencies in patients with recently-implanted
bioprosthetic aortic valves [131]. However, the magnitude of our computed oscillation is larger
and it decays more slowly.
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Figure 28: Computed volumetric flow rate through the top of the fluid domain, during a full cardiac cycle of 0.86 s,
with ∆t = 1.0 × 10−4 s and ∆t = 0.5 × 10−4 s.

One may suspect that this prominent oscillation is the result of insufficient fluid–structure cou-
pling, but, if this was the source of the oscillation, we would expect a significant difference between
the computations with ∆t = 1.0 × 10−4 s and ∆t = 0.5 × 10−4 s, due to the twofold stiffening of
the “displacement” penalty coefficient, τB

NOR/∆t, at the smaller time step. With the simplified fluid
boundary conditions that we have applied, the oscillation in flow rate is most plausibly a con-
sequence of the physical model, not the numerical method. In the analysis of closed hydraulic
systems (such as the cardiovascular system), it is common to consider analogous electrical circuits
[132]. The “circuit” that we are modeling is shown in Figure 29. The closed elastic valve acts
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as a hydraulic accumulator, which is analogous to an electrical capacitor6. The inertia of the fluid
acts like an inductor. These components, in series with the resistance of viscous forces and the
boundary condition, are driven by a pressure difference, which fills the role of a time-varying volt-
age source in the electrical analogy. The exponentially decaying current oscillation observed in
Figure 28 is qualitatively similar to the transient response of the corresponding RLC circuit to a
sudden change in voltage. A more sophisticated model might include inductance and capacitance
in the boundary conditions, to represent the inertia of blood outside of the computational domain
and the Windkessel effect from large elastic arteries. The amplitude of the oscillation may also
be exaggerated by our leaflet material model, which approximates the stiffness of a bioprosthetic
valve about zero strain. The recruitment of collagen fibers in biological soft tissue leads to an
exponential stiffening with strain that we have not attempted to model in this work, so the storage
of a given amount of energy requires greater strain with our simplified valve.
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Figure 29: The electrical circuit that is analogous to the valve model of this paper (when the valve is closed).

Another physiologically unrealistic feature of the computed flow profile is the relatively flat
flow rate during systole. Typically, the aortic flow rate reaches a rounded peak. This discrepancy
may again be attributed to the simplified boundary conditions. Because the left ventricular pressure
in our idealized pressure profile is constant for most of systole and the external flow loop is modeled
only by a resistance and pressure difference, we expect the velocity of flow to asymptotically
approach a terminal value at which the resistance of viscous forces and the boundary condition

6When current reverses and the valve opens, it will behave more like a resistor. Its overall behavior is not like that of
any standard electrical circuit component; the typical analogy between valves and diodes would omit the capacitance
in the closed state.
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t = 0.025 s t = 0.045 s t = 0.055 s

t = 0.15 s t = 0.32 s t = 0.34 s

t = 0.35 s t = 0.7 s t = 0.86 s

Figure 30: Volume-renderings of the fluid velocity field at several points during a cardiac cycle. The time t is synchro-
nized with Figure 27 for the current cycle.
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exactly balance the difference between the left ventricular pressure and p0. This is in contrast to the
physiological setting, in which flow contributes to a stored pressure as large arteries temporarily
expand to accommodate the systolic output of the left ventricle. In the electrical analogy, these
arteries act like a reservoir capacitor, smoothing the cardiac output.

The small rise in flow rate at the end of the cycle may seem counter-intuitive, given that the left
ventricular pressure is still less than p0. However, this flow corresponds to the valve returning to its
stress-free configuration as the transvalvular pressure goes back to zero. In the electrical analogy,
this corresponds to the current released by the capacitor (valve) discharging as the external voltage
(pressure) difference is removed.

Figure 31: Pressure at time t = 0.7 s, shown on a slice and with an iso-surface at p = 40 mmHg.

We now look at the details of the fluid solution fields. In Figure 30, we show several snapshots
of the fluid velocity field computed with the smaller time step of ∆t = 0.5 × 10−4 s. As the valve
opens, we see a transition to turbulent flow. This turbulence is exaggerated, in comparison to the
physiological case [133], by the flow rate plateau at peak ejection. The valve begins to close under
forward flow, as shown by the snapshot at t = 0.32 s. The snapshot at t = 0.35 s illustrates the fluid
hammer effect that initially excites the oscillation evident in the flow rate. After 0.7 s, the S2 heart
sound is decayed and the solution becomes effectively hydrostatic. The fluid solution at t = 0.7 s
is, however, not trivial. In Figure 31, we show a slice and iso-surface of the corresponding pressure
field. The pressure below the valve is nearly zero, as prescribed by the left ventricular profile, and
the pressure above the valve is around 106000 dyn/cm2 (80 mmHg), which is the value chosen for
p0 in the outflow boundary condition. The iso-surface is at p = 40 mmHg, halfway between the
pressures above and below the valve. It clearly displays the shape of the closed tri-leaflet valve and
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rigid stent. A careful examination of this figure reveals small pressure oscillations near the valve,
visible in both the slice and iso-surface. This is possibly a result of the weakened fluid stabilization
near the structure.

t = 0.025 s t = 0.32 s

t = 0.045 s t = 0.34 s

t = 0.055 s t = 0.35 s

t = 0.15 s t = 0.7 s

Figure 32: Deformations of the valve from the FSI computation, colored by maximum in-plane principal Green-
Lagrange strain (MIPE, the largest eigenvalue of E), evaluated on the aortic side of the leaflet. Note the different scale
for each time.

The loading produced by the fluid differs significantly from the uniform pressure load pre-
scribed in the computation of Section 5.3. Figure 32 shows the deformations and strain fields of
the leaflets at several points during the cardiac cycle. The deformations during systole are markedly
different from those computed using only structural dynamics. Specifically, the leaflets remain par-
tially in contact while opening in the FSI simulation, whereas they immediately separate when a
pressure load is applied in the structural dynamics computation. The strain field at time t = 0.35
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s is also interesting in that the strain near the commissure points is significantly higher than it is
at t = 0.7 s. This is due to the effect of the fluid hammer striking the valve as it initially closes.
This phenomenon is completely neglected by both quasi-static and pressure-driven dynamic com-
putations, as neither accounts for the inertia of the fluid. The FSI solution does not preserve the
geometrical symmetry of the initial data. This loss of symmetry is typical of turbulent flow and was
observed as well in the heart valve FSI computations of Borazjani [46]. This result underscores
the importance of computing FSI for the entire valve, without symmetry assumptions.

6. Conclusions

This paper develops several variations of immersed boundary FSI within a variational frame-
work based on the augmented Lagrangian Eq. (1). Prior work has connected this framework to
an extension of Nitsche’s method for fluid mechanics [51]. We apply this formulation to the CFD
benchmark of 2D flow over a cylinder in Section 3.4. When applied to immersed boundary FSI for
thin shell structures, modeled geometrically as surfaces, Nitsche’s method reduces to the penalty
method. The penalty method is effective for some problems, where pressure gradients are not too
large, such as the benchmark problem considered in Section 4.6. However, we find that for applica-
tions such as heart valves, where large pressure gradients develop across thin structures, the penalty
method has undesirable properties. We attempt to correct its deficiencies by retaining the Lagrange
multiplier as a solution variable. We consider an iterative approximation of the multiplier, based
on the work of Hestenes [108] and Powell [109]. For computations in which this method does not
converge, we reduce it to the degenerate case of a single iteration in each time step. In that limit,
it becomes analogous to Chorin’s method of artificial compressibility [110], where the multiplier
field solves an auxiliary differential equation in time.

We find that the approximation error that comes from representing a pressure discontinuity
with continuous basis functions leads to poor local mass conservation near the discontinuity. This
allows large velocity errors to develop in the rest of the domain. In Section 4.3, we introduce
a preliminary work-around that modifies stabilization terms near the immersed structure. This
appears to limit local compression without rendering the formulation unstable.

Figure 33 summarizes the interrelationships between the various FSI technologies developed
in this work. Combined with a penalty-based contact algorithm for shell structures, these technolo-
gies allow us to simulate the dynamics of a BHV immersed and coupled in a cyclic, pressure-driven
flow, with physiologically realistic pressure differences. We note that as is typically the case in FSI,
different problem features demand different computational strategies.
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Figure 33: A graphical map of the interrelated ideas, methods, and results of this paper. Arrows indicate conceptual
flow from ideas to numerical methods to specific computations. Branch-points in this flow are highlighted in green
and computations are highlighted in red.
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6.1. Limitations and further work

The current work motivates a number of refinements and extensions that we allude to through-
out the body of the paper and summarize below.

• The FSI methods of this paper rely on penalty parameters. We have suggested guidelines,
such as Eq. (21), for scaling these penalties with the approximation spaces and physical
parameters, but we have not introduced explicit formulas. The appropriate definition of mesh
size, “h”, is not clear for the case of immersed boundaries. We have, in the computations of
this paper, simply used constant penalties deemed effective through numerical experiments.

• We would like to develop a stable formulation to solve for the fluid–structure interface mul-
tiplier. As noted above, there is no obvious way to develop an inf-sup stable approximation
space for the multiplier field, but we may be able to work within the framework of stabilized
methods [107].

• The suppression of momentum stabilization near immersed shell structures that we develop
in Section 4.3 is practically effective but aesthetically unappealing and not thoroughly stud-
ied. A theoretical study of the underlying approximation issue may reveal a more elegant
solution. Alternatively, because the methods from this paper for enforcing the fluid–structure
kinematic constraint are largely independent of the specific formulation for the fluid sub-
problem, they may easily be combined with variational fluid solvers that do not directly
invoke the pressure gradient. For example, the use of a divergence-conforming approxima-
tion space for the fluid velocity could be modified to include concentrated boundary forces,
while completely eliminating the problem of poor pressure approximation. The Lagrange
multiplier (pressure) would no longer be needed to enforce a constraint that is built directly
into the solution space. The emerging technology of divergence-conforming B-splines has
been successfully applied to unsteady Navier–Stokes and would allow us to combine the
advantages of isogeoemetric discretization with pointwise mass conservation [134].

• We discuss the lack of physical realism in our heart valve model at length in Section 5.4.4. To
experimentally validate our method for valve simulation, we will need to introduce a more
realistic material model for the valve leaflets and more sophisticated boundary conditions for
the fluid domain.

• We also plan to use the hierarchical B-spline or NURBS refinement [135]. By hierarchically
refining near the structure, one would be able to better resolve the pressure jump and the
boundary layer. This could lead to improved results.
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[83] M. Ruess, D. Schillinger, A. I. Özcan, and E. Rank. Weak coupling for isogeometric anal-
ysis of non-matching and trimmed multi-patch geometries. Computer Methods in Applied

Mechanics and Engineering, 269:46–731, 2014.

[84] Y. Bazilevs, J. R. Gohean, T. J. R. Hughes, R. D. Moser, and Y. Zhang. Patient-specific
isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to im-
plantation of the Jarvik 2000 left ventricular assist device. Computer Methods in Applied

Mechanics and Engineering, 198:3534–3550, 2009.

[85] M. Esmaily-Moghadam, Y. Bazilevs, T.-Y. Hsia, I. E. Vignon-Clementel, A. L. Marsden,
and Modeling of Congenital Hearts Alliance (MOCHA). A comparison of outlet boundary

69



treatments for prevention of backflow divergence with relevance to blood flow simulations.
Computational Mechanics, 48:277–291, 2011.

[86] J. Benk, M. Ulbrich, and M. Mehl. The Nitsche method of the Navier–Stokes equations for
immersed and moving boundaries. In Proceedings of the Seventh International Conference

on Computational Fluid Dynamics, ICCFD7. International Conference on Computational
Fluid Dynamics, 2012.
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[112] J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, and K.-U. Bletzinger. The bending strip
method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple
patches. Computer Methods in Applied Mechanics and Engineering, 199:2403–2416, 2010.

[113] J. Kiendl. Isogeometric Analysis and Shape Optimal Design of Shell Structures. PhD thesis,
Lehrstuhl für Statik, Technische Universität München, 2011.

[114] D. J. Benson, Y. Bazilevs, M.-C. Hsu, and T. J. R. Hughes. A large deformation, rotation-
free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering,
200:1367–1378, 2011.

[115] T. E. Tezduyar and S. Sathe. Modelling of fluid–structure interactions with the space–
time finite elements: Solution techniques. International Journal for Numerical Methods in

Fluids, 54(6–8):855–900, 2007.

[116] W. Wall. Fluid–Structure Interaction with Stabilized Finite Elements. PhD thesis, University
of Stuttgart, 1999.
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