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Abstract

This article presents vision functions needed on a mo-
bile robot to deal with landmark-based navigation in
buildings. Landmarks are planar, quadrangular surfaces,
which must be distinguished from the background, typi-
cally a poster on a wall or a door-plate. In a first step,
these landmarks are detected and their positions with re-
spect to a global reference frame are learned; this learn-
ing step is supervised so that only the best landmarks
are memorized, with an invariant representation based
on a set of interest points. Then, when the robot looks
for visible landmarks, the recognition procedure takes ad-
vantage of the partial Hausdorff distance to compare the
landmark model and the detected quadrangles. The pa-
per presents the landmark detection and recognition pro-
cedures, and discusses their performances.

1 Introduction

Landmark-based environment modeling can be used in
different contexts. In [1], we described a navigation
method based on the expression of trajectories with
respect to landmarks reference frames; in such a context,
the robot localization is only relative to a reference
landmark. In [2], we described a navigation strategy
dedicated for corridor-like environments: in an office
building, the corridors topology can be modeled using a
Generalized Voronoi Graph, and the visual recognition
of landmarks is used to annotate some specific areas, like
the corridor crossings or the room entrances; the robot
localization is only qualitative. In this paper, we describe
another application of our visual landmark framework,
the enhancement of a localization function based mainly
on laser segments; the environment model is mainly built
thanks to the laser sensor, and the visual landmarks are
used in order to recover the robot position in situations
where the laser sensor is not efficient.

The contribution of this paper also consists in an

improved landmark detection method, based on edge
grouping by a relaxation algorithm, and a new landmark
recognition method based on the matching of a set of
interest points using the partial Hausdorff distance.
The stability of such a method with respect to several
parameters is discussed.

In the section 2, the landmark detection algorithm is de-
scribed; the method is dedicated to planar and quadran-
gular landmarks. The section 3 presents our strategy to
represent and to recognize such landmarks, from the con-
struction of an invariant appearance model -an icon- at
first, and then, from the matching of interest points ex-
tracted from this icon. Next, in the section 4, experimen-
tal results about the construction and the exploitation of
a landmark-based model, are commented. Finally in the
section 5, discussions about this work and some future
researches are considered.

2 Quadrangle detection by edge grouping

As we focus this work on quadrangular landmarks, we
chose a natural way of extracting quadrilaterons that re-
lies upon perceptual grouping on edge segments.

Edges are obtained by classical contour extraction and
segmentation methods. All the segments are separated
into two classes according to their main directions in
the image. The matching process is first applied to the
horizontally-oriented edges, which produces additional
constraints for the remaining vertically-oriented edges
matching process.

The whole process is based on the sequential application
of constraints. Constraints between single segments are
applied in order to define an initial set of pairs of segments
matchings. Then constraints between segments pairs are
processed through a continuous relaxation scheme.



2.1 Constraints between single segments

Segment couples corresponding to potential landmarks
are formed according to geometric and luminance consis-
tency criteria.

Geometric constraints. Two image segments ¢ and k
must have a length ratio superior to a certain value
and must overlap coarsely. For each combination
(i,k), a global score noted score(i, k) is computed
as the sum of two terms respectively depending on
the length and overlapping ratios between segments
7 and k.

We have an additional constraint for the vertically-
oriented segments from the already matched
horizontally-oriented segments. Indeed, for each cou-
ple (4,7) of vertically-oriented segments, there must
exist at least one couple (k, 1) of horizontally-oriented
segments, such as the angular sector delimited by the
straight lines containing ¢ and j include segments k
and [ and vice versa.

Luminance constraints. For each extracted segment,
an average grey-level profile is computed in the di-
rection orthogonal to it. For each combination (i, k),
we deduce a score resulting from correlation be-
tween these profiles. If this score exceeds a certain
threshold, the correspondent potential matching is
removed.

2.2 Constraints between segments couples

Uniqueness and convexity rules are checked for the re-
maining potential segments matchings. Uniqueness rule
implies that for two segments pairs, any segment of the
first pair can be associated to at most one segment from
the other pair. Convexity rule says that two pairs of seg-
ments define two quadrangles which must verify rules of
full inclusion or (on the contrary) no intersection.

The propagation procedure is applied to all the segments
matchings remaining from the first step through continu-
ous relaxation. Like Hummel in [3], we define a confidence
level p(i, k) € [0, 1] for the association between segments
i and k. p(i, k) = 1 if k is unambiguously associated with
i, 0 if it is not the case.

The relaxation process consists in making the ambiguous
matchings (p(i,k) €]0,1[) evolve towards 0 or 1. The
n X n matrix P such as Py, = p(i, k) is the association
matrix we must estimate. K is the space of acceptable
association matrices, defined as:

n
K ={P = {Pi}1<ik<n | V(i, k) Pix >0 and Vi Zpik =1}
k=1

with n the number of image segments. The relaxation
process requires two steps :

e an initial set of segments Lg(i) is formed such as the
initial weights pg(i, k) are zero if the association (7,k)

doesn’t respect the constraints on single segments. For
the others, we compute po(i, k) by :

score(i, k)

E score(i, 1)’

1€ Lo (i)

po(i, k) = with Lo(é) = {l/po(i, 1) # 0}

e an iterative update of the weights p(i, k) to reduce the
matching inconsistencies between segments. This iter-
ative algorithm maximizes the global consistency score
using gradient ascent in the K space :

maXpeg A(P)
{ A(P) =323 r(i, 4, k, Dp(i, k)p(4,1)
ik g,
where the r(i, 7, k,l) represents the compatibility degree
between associations (i, k) and (j,1) : the bigger is the
value of r(i, j, k,1), the stronger is the compatibility.

Figure 1 illustrates quadrilateral object detection in a
typical indoor environment. The lines and their asso-
ciated numbers represent the matched pairs of horizon-
tally and vertically-oriented segments that finally define
potential landmarks.

Figure 1: Segment matchings and detected landmarks

2.3 Final landmarks extraction

Once the matching process is done, we can use the output
data, i.e. straight lines quadruples, to refine the poten-
tial landmarks boundaries. This procedure has already
been described in [1], and may be rapidly recalled, as in
figure 2: (1) computation of grey-level profiles along di-
rections orthogonal to the estimated boundary direction,
(2) correlation of these profiles with step-like signals and
(3) RANSAC straight line parameters estimation from
correlation maxima.

3 Landmark recognition

The different sources for misrecognition with planar land-
marks are light effects, in particular in indoor environ-
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Figure 2: Refined extraction

ments, perspective distortion, scale changes, and bad
warping from the detection step.

To perform recognition, the simplest class of methods we
may think to are correlation-based methods. Centered,
normalized correlation between views of poster-like land-
marks may allow to get a distance invariant to scale, per-
spective, overall light changes. However two drawbacks
arise : first, the lack of compactness of the data to be
stored, as we would need at least an image of the land-
mark, and, second, the difficulty to handle partial occlu-
sions, or local light effects.

Among all the other appearance-based methods that have
been described in the computer vision literature over
these last years, the most promising are surely the ones
based on interest points matchings. Schmidt [4] has de-
veloped a framework for object recognition based on Har-
ris points matchings thanks to local descriptors based on
Gaussian derivative. Recent studies [5] have put into light
the remarkable behavior of Harris operator as far as scale,
rotation or light changes are concerned.

In our situation, we also use an approach based on interest
points in addition to the boundaries of the quadrangular
landmark, that makes our task much easier. Indeed, these
boundaries allow us to define an homography to rectify
the observed pattern. Using such a mapping for recog-
nition allows us (1) to use only spatial configuration of
interest points, (2) at one scale only and (3) to have an
invariant representation under perspective changes, up to
a certain level.

3.1 Landmark iconification

Let us consider, on the one hand, an extracted quadran-
gular landmark @ = {P;}1<;<4 from an image I, and,
on the other hand, a square S, corresponding to a s X s
picture (s typically equal to 75), i.e. at lower scale than
in image I. The four matchings this definition induces
allow us to define an homography Hgg mapping points
from S to Q.

Hgg allows to define a new small-sized image I’ from
the image I by averaging pixels from I into the pixels
in I’. This process is illustrated on figure 3. To handle

perspective distortions, averaging is done in order not
to lose too much information from the original image to
approximate the low-scale front view. If we consider a
pixel (a,b) in image I, its grey level value is determined
by taking into account all the pixels in image I belonging
to a certain neighborhood of Hsg(a,b,1)7, its image in
I. This neighborhood is computed by approximating with
simple heuristics the image of a pixel square, i.e. a certain
quadrilateron. This process is illustrated in figure 4.
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Figure 3: The landmark model construction
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Figure 4: Averaging invariantly to perspective effects

We process this image I’ by the Harris operator with
a certain cornerness threshold to get a set of nj, Harris
points {P"}1<i<n, -

3.2 Partial Hausdorff distance

In order to compare two sets of points, a popular distance
is the Hausdorff distance, and noticeably its partial ver-
sion introduced by Huttenlocher[6]. Let be two sets of



points S; = {P!} and Sy = {sz}, the Hausdorff distance
between S; and Sy is defined by :

dh(Sl, SQ) = max(h(Sl, 52)7 h(SQ, Sl))
h(Sh 52) = INaX1<;<|94| min1§j§\52| ”Pil - PJ‘QH

A natural way of extending this definition to take into
account outliers and to perform robust pattern recogni-
tion is to relax this definition and take the k" great-
est minimum distance or, equivalently, a fraction r of
min(]S1], |Sz2]), the minimum of the two sets cardinals, to
define :

dZ(Sl, SQ) = Inax(h’”(Sl, SQ), hT(SQ, Sl))
R (S, 82) = ki<, minig <y, |15 — Pl
k = r.min(|S1],]S2|)

We set a threshold 7 on the computed distance to de-
cide which class the current object belongs to. Physically
speaking, an object is recognized provided that we can
find a correspondent point in the first set for at least &
points in the second, and vice versa. From this defini-
tion, we see that we can stop computation as soon as
min(]S1], |S2]) — k outliers have been detected, so recog-
nition tests can be performed in relatively short time.
However, given a threshold 7, all fractions r are not de-
sirable for recognition purposes and vice versa. Indeed,
if we estimate the distribution of the number of points
from a set S; for which we can find at least one point
from another set Se within a given distance 7, among all
couples of sets of nj points, we see that there is an inher-
ent bias in this distribution. Figure 5 illustrates this fact
and shows that with 7 = 3 pixels and nj; = 50 points we
must consider a fraction of points r > 0.6 to avoid the
“intrinsic” bias zone.
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Figure 5: Constraint on the choice of Hausdorff fraction

3.3 Learning appearance models

In our implementation, the learning phase is performed
on a totally supervised way, as we define, for each land-
mark, a set of representative images I; from which we
extract iconified views I]. A Principal Component Anal-
ysis on the data extracted from each landmark allows us
to keep only the three most representative models that
we will use for further recognition.

Saliency is guaranteed at different levels : edges detected
at the segmentation step, covariance level of the iconified
view I’ and number of interest points extracted from I’.
All of them define a saliency criterion to be satisfied sat-
isfied.

In addition of this saliency level, we define a visibility level
that indicates how far from each other are the extreme
positions at which the landmark is seen. To achieve this
goal, we consider the n; learning images I;.

For all the couples (i, j) € [1,n;]%, we can define an inter-
image homography H®* mapping the vertices of the land-
mark in image I; to its corresponding vertices in image
I;. Let us consider the normalized homography H 7 such
as f[;% = 1. Then we define the visibility confidence by :

ve = mazi;|HY — I

I is the identity matrix. The greater is v., the more
extended is the area on which the landmark can be seen,
provided that the camera parameters remain constant in
this phase.

3.4 Appearance model evaluation

We have tried to analyze this representation discriminat-
ing power through the distribution of the distances we
get between a given landmark and other ones from a 150
images database done while the robot wandered around
the lab, illustrated through some examples on figure 6.

A poster we find in this sequence has been selected and
learned as landmark, and figure 6 now represents the dis-
tributions of the distance values we get (a) for the objects
not corresponding to this learned landmark and (b) for
the objects corresponding to it. We can see on these
graphs that classes are well separated. Another point
visible in (a) arises from the choice of a partial distance
and echoes to what we noticed in 3.2 : distances dis-
tribution between sets in S can be approximated by a
Gaussian function, which center and variance depends on
the Hausdorff fraction and on the sets cardinals.

Then, figure 7 shows the same kind of histogram of the
partial Hausdorff distances between pictures selected over
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Figure 6: Distances histogram over real images database

a large synthetic database of 120 movie posters, with
some examples of posters on the right. Note that here,
all posters are different and that the values are centered
on a similar value, around 3.0, and that the variance is
comparable to the one in figure 6.
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Figure 7: Distances histogram over synthetic database

An important issue we must care about is the way
the algorithm behaves with light, scale and perspective
changes. Especially, does the Harris detector processing
on low resolution icons, give stable enough representa-
tions ? To investigate this problem, we have created a
synthetic database of images of different landmarks with
different light, scale or perspective conditions. The figure
8 shows some results about it. The graphs correspond to
values 7 = 0.4 and 7 = 1.7.

The top left graph shows that it is possible to have good
recognition results until light saturation appears in the
image. On the same way, if we stay under a critical scale
corresponding to the one of the model, we can notice
on the top right graph, that scale changes do not affect
recognition results. As expected, results are deteriorated
as soon as the pattern apparent size is below the size of
the square we use for representation, i.e. 75.

As far as perspective distortions are concerned, the third

graph in figure 8 represents the evolution of the par-
tial Hausdorff distance when performing a planar rota-
tion in the horizontal plane of a quadrangular landmark.
It shows that the combination of segments and interest
points is a powerful tool to achieve recognition of pla-
nar objects, as distances remain reliable up to 75 degrees
in this case, a situation that may occur in corridor-like
environments. Other studies show that we can consider
partial occlusions of the landmark up to 20% of its area,
as far as both detection (thanks to RANSAC) and recog-
nition (thanks to the partial Hausdorff distance) are con-
cerned.

Partial Hausdorff distance
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Figure 8: Behavior under variable conditions

4 Application to robot navigation

Our experimental setup consists in a XR4000 Nomadic
robot equipped with 2D laser, US and visual sensors
mounted on a pan/tilt rig. [7] had presented a full inte-
gration of various algorithms for the robot navigation and
control under the modular architecture Genom. Localiza-
tion was achieved thanks to odometry and a laser model-
based approach. Such a localization method has very
good results provided that enough data is available in.
However, in some cases, ambiguities appear inevitably :
as an example, the robot may get lost in long corridors,
as it has no possibilities to match segments orthogonal to
the corridor direction. In such parts of the environment,
visual landmark-based navigation may be useful.

4.1 Visibility zones
Our approach has consisted in defining an influence zone
in the map for each landmark so that, systematically at
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this moment, whenever the robot enters such a zone, ac-
cording to the current localization estimate, it stops and
tries to search for the associated landmark. As we may
be in situations where the estimates given by odometry
and laser localizations are noticeably different from the
ground truth, we have implemented a spiral-like system-
atic search to find the landmark associated to the current
visibility zone.
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Figure 9: Definition of landmarks zones

4.2 Localization

When the landmark is found, it is used to perform lo-
calization. As the landmark model has been defined in
the learning phase and the camera is supposed to be
fully calibrated, localization on this planar pattern can be
performed using well-known methods, as the one in [1].
Uncertainty evaluation is achieved by propagating uncer-
tainties on boundaries detection, on model dimensions
and camera calibration through the localization scheme.
Computed pose and its uncertainty are then used to warp
the continuous localization process based on laser seg-
ments.

The robot navigates using these different localization
abilities in a corridor-like environment represented in fig-
ure 9. Recognition rates are about 80 %, which is im-
portant considering the variability in light or pose. Fur-
thermore, uncertainty on localization along corridors is
noticeably reduced thanks to visual landmarks, the one
on y along the first corridor (landmarks #1,#2,#3) drop-
ping to less than 10cm after a landmark is seen, whereas
it could climb to 50cm otherwise.

5 Discussions and future works

We have presented an original framework for the use of vi-
sual landmarks, planar objects in this case. A new recog-
nition method for this kind of landmarks is presented and
is used in robot navigation experiments. In this article,
localization is performed with a fully calibrated camera.
However, considering approaches like [8] and a priori in-
formation on the camera and on the scene (no roll, known
relative height from the landmark, planar movement . . . ),
we think we will be able to achieve auto-calibration-and-
localization on a single landmark, and perform multi-
modal navigation strategies with zooming abilities.
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