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Abstract

In this paper, joint design of linear relay precoder and destination equalizer for dual-hop non-

regenerative amplify-and-forward (AF) MIMO-OFDM systemsunder channel estimation errors is in-

vestigated. Second order moments of channel estimation errors in the two hops are first deduced. Then

based on the Bayesian framework, joint design of linear robust precoder at the relay and equalizer

at the destination is proposed to minimize the total mean-square-error (MSE) of the output signal at

the destination. The optimal designs for both correlated and uncorrelated channel estimation errors are

considered. The relationship with existing algorithms is also disclosed. Simulation results show that the

proposed robust designs outperform the design based on estimated channel state information only.
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I. INTRODUCTION

In order to enhance the coverage of base stations and qualityof wireless links, dual-hop

relaying is being considered to be one of the essential partsfor future communication systems

(e.g., LTE, IMT-Adanced, Winner Project). In dual-hop cooperative communication, relay nodes

receive signal transmitted from a source and then forward itto the destination [1], [2]. Roughly

speaking, there are three different relay strategies: decode-and-forward (DF), compress-and-

forward (CF) and amplify-and-forward (AF). Among them, AF strategy is the most preferable

for practical systems due to its low complexity [3]–[7].

On the other hand, for wideband communication, multiple-input multiple-output (MIMO)

orthogonal-frequency-division-multiplexing (OFDM) hasgained a lot of attention in both in-

dustrial and academic communities, due to its high spectralefficiency, spatial diversity and

multiplexing gains [8]–[11]. The combination of AF and MIMO-OFDM becomes an attractive

option for enabling high-speed wireless multi-media services [12].

In the last decade, linear transceiver design for various systems has been extensively investi-

gated because of its low implementation complexity and satisfactory performance [8], [13]. For

linear transceiver design, minimum mean-square-error (MMSE) is one of the most important

and frequently used criteria [14]–[20]. For example, for point-to-point MIMO and MIMO-

OFDM systems, linear MMSE transceiver design has been discussed in details in [14]–[16].

Linear MMSE transceiver design for multiuser MIMO systems has been considered in [17]. For

single carrier AF MIMO relay systems, linear MMSE precoder at the relay and equalizer at the

destination are joint designed in [19]. Furthermore, the linear MMSE transceiver design for dual

hop MIMO-OFDM relay systems is proposed in [20].

In all the above works, channel state information (CSI) is assumed to be perfectly known.

Unfortunately, in practical systems, CSI must be estimatedand channel estimation errors are

inevitable. When channel estimation errors exist, in general, two classes of robust designs can

be employed: min-max and stochastic robust designs. If the distributions of channel estimation

errors are known to be unbounded, stochastic robust design is preferred. Stochastic robust design

includes probability-based design and Bayesian design. Inthis paper, we focus on Bayesian

design, in which an averaged mean-square-error (MSE) performance is considered. Recently,

Bayesian robust linear MMSE transceiver design under channel uncertainties has been addressed
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for point-to-point MIMO systems [22], [23] and point-to-point MIMO-OFDM systems [24].

In this paper, we take a step further and consider the robust linear MMSE relay precoder and

destination equalizer design for dual-hop AF MIMO-OFDM relay systems without considering

direct link. For channel estimation in the two hops, both thelinear minimum mean square error

and maximum likelihood estimators are derived, based on which the second order moments

of channel estimation errors are deduced. Using the Bayesian framework, channel estimation

errors are taken into account in the transceiver design criterion. Then a general closed-form

solution for the optimal transceiver is proposed. Both the uncorrelated and correlated channel

estimation errors are considered. The relationship between the proposed algorithm and several

existing robust transceiver designs is revealed. Furthermore, simulation results demonstrate that

the proposed robust algorithms provide an obvious advantage in terms of data mean-square-error

(MSE) compared to the algorithm based on estimated CSI only.

This paper is organized as follows. System model is presented in Section II. Channel estimators

and the corresponding covariance of channel estimation errors are derived in section III. The

optimization problem for transceiver design is formulatedin Section IV. In Section V, the general

optimal closed-form solution for the transceiver design problem is proposed. Simulation results

are given in Section VI and finally, conclusions are drawn in Section VII.

The following notations are used throughout this paper. Boldface lowercase letters denote

vectors, while boldface uppercase letters denote matrices. The notationsZT, ZH andZ∗ denote

the transpose, Hermitian and conjugate of the matrixZ, respectively, andTr(Z) is the trace

of the matrixZ. The symbolIM denotes theM ×M identity matrix, while0M×N denotes the

M×N all zero matrix. The notationZ
1

2 is the Hermitian square root of the positive semi-definite

matrix Z, such thatZ = Z
1

2Z
1

2 andZ
1

2 is a Hermitian matrix. The symbolE{.} represents the

expectation operation. The operationvec(Z) stacks the columns of the matrixZ into a single

vector. The symbol⊗ represents Kronecker product. The symbola+ meansmax{0, a}. The

notationdiag[A,B] denotes the block diagonal matrix withA andB as the diagonal elements.

II. SYSTEM MODEL

In this paper, a dual-hop amplify-and-forward (AF) MIMO-OFDM relay cooperative com-

munication system is considered, which consists of one source with NS antennas, one relay

with MR receive antennas andNR transmit antennas, and one destination withMD antennas, as
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shown in Fig. 1. At the first hop, the source transmits data to the relay, and the received signal

xk at the relay on thekth subcarrier is

xk = Hsr,ksk + n1,k k = 0, 1, · · ·K − 1, (1)

wheresk is the data vector transmitted by the source with covariancematrix Rsk
= E{sksHk }

on thekth subcarrier, andRsk
can be an arbitrary covariance matrix. The matrixHsr,k is the

MIMO channel between the source and relay on thekth subcarrier. The symboln1,k is the

additive Gaussian noise with zero mean and covariance matrix Rn1,k
= σ2

n1
IMR

on the kth

subcarrier. At the relay, for each subcarrrier, the received signalxk is multiplied by a precoder

matrix Fk, under a power constraint
∑

k Tr(FkRxk
FH

k ) ≤ Pr whereRxk
= E{xkx

H
k } andPr

is the maximum transmit power. Then the resulting signal is transmitted to the destination. The

received datayk at the destination on thekth subcarrier is

yk = Hrd,kFkHsr,ksk +Hrd,kFkn1,k + n2,k, (2)

where the symboln2,k is the additive Gaussian noise vector on thekth subcarrier at the second

hop with zero mean and covariance matrixRn2,k
= σ2

n2
IMD

. In order to guarantee the transmitted

datask can be recovered at the destination, it is assumed thatMR, NR, andMD are greater than

or equal toNS [6].

The signalx received at the relay and the signaly received at the destination in frequency

domain can be compactly written as

x = Hsrs + n1, (3)

y = HrdFHsrs+HrdFn1 + n2, (4)

where

y , [yT
0 , · · · ,yT

K−1]
T, s , [sT0 , · · · , sTK−1]

T (5a)

F , diag[F0, · · · ,FK−1], (5b)

Hsr , diag[Hsr,0,Hsr,1, · · · ,Hsr,K−1], (5c)

Hrd , diag[Hrd,0,Hrd,1, · · · ,Hrd,K−1], (5d)

n1 , [nT
1,0,n

T
1,1, · · · ,nT

1,K−1]
T, (5e)

n2 , [nT
2,0,n

T
2,1, · · · ,nT

2,K−1]
T. (5f)
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Notice that in general the matrixF in (4) can be an arbitraryKNR ×KMR matrix instead

of a block diagonal matrix. This corresponds to mixing the data from different subcarriers

at the relay, and is referred as subcarrier cooperative AF MIMO-OFDM systems [20]. It is

obvious that when the number of subcarrierK is large, transceiver design for such systems

needs very high complexity. On other hand, it has been shown in [20] that the low-complexity

subcarrier independent AF MIMO-OFDM systems (i.e., the system considered in (3) and (4))

only have a slight performance loss in terms of total data mean-square-error (MSE) compared

to the subcarrier cooperative AF MIMO-OFDM systems. Therefore, in this paper, we focus on

the more practical subcarrier independent AF MIMO-OFDM relay systems.

III. CHANNEL ESTIMATION ERROR MODELING

In practical systems, channel state information (CSI) is unknown and must be estimated.

Here, we consider estimating the channels based on trainingsequence. Furthermore, the two

frequency-selective MIMO channels between the source and relay, and that between the relay

and destination are estimated independently. In our work, the source-relay channel is estimated at

the relay, while the relay-destination channel is estimated at the destination. Then each channel

estimation problem is a standard point-to-point MIMO-OFDMchannel estimation.

For point-to-point MIMO-OFDM systems, channels can be estimated in either frequency

domain or time domain. The advantage of time domain over frequency domain channel estimation

is that there are much fewer parameters to be estimated [25].Therefore, we focus on time domain

channel estimation. Because the channels in the two hops areseparately estimated in time domain,

we will present the first hop channel estimation as an exampleand the same procedure can be

applied to the second hop channel estimation.

From the received signal model in frequency domain given by (3), the corresponding time

domain signal is

r = (FH ⊗ IMR
)x

= (FH ⊗ IMR
)Hsr(F ⊗ INS

)
︸ ︷︷ ︸

,Hsr

(FH ⊗ INS
)s

︸ ︷︷ ︸

,d

+ (FH ⊗ IMR
)n1

︸ ︷︷ ︸

,v

(6)

whereF is the discrete-Fourier-transform (DFT) matrix with dimensionK ×K. Based on the
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properties of DFT matrix, it is proved in Appendix A that (6) can be rewritten as

r =
(
DT ⊗ IMR

)
vec([H(0)

sr · · · H
(L1−1)
sr ])

︸ ︷︷ ︸

,ξsr

+v, (7)

where the matricesH(ℓ)
sr are defined as

H
(ℓ)
sr =

K−1∑

k=0

Hsr,ke
j 2π

K
kℓ, ℓ = 0, 1, · · ·L1 − 1. (8)

It is obvious thatH(ℓ)
sr is the ℓth tap of the multi-path MIMO channel between the source and

relay in the time domain andL1 is the length of the multi-path channel. The data matrixD is

a block circular matrix as

D ,











d0 d1 · · · · · · · · · dK−1

dK−1 d0
. . . . . .

... dK−2

... · · · . . . . . .
...

...

dK−L1+1 dK−L1+2 · · · · · · · · · dK−L1











, (9)

where the elementdi is expressed as

di =
1√
K

K−1∑

k=0

ske
j 2π
K

k(i), i = 0, · · · , K − 1. (10)

Based on the signal model in (7), the linear minimum-mean-square-error (LMMSE) channel

estimate is given by [25]

ξ̂sr = (σ−2
n1
(DT ⊗ IMR

)H(DT ⊗ IMR
) +R−1

channel)
−1σ−2

n1
(DT ⊗ IMR

)Hy, (11)

with the corresponding MSE

E{(ξsr − ξ̂sr)(ξsr − ξ̂sr)
H} = (R−1

channel + σ−2
n1
(D∗DT)⊗ IMR

)−1, (12)

where Rchannel = E{ξsrξsr
H} is the prior information for channel covariance matrix. For

uncorrelated channel taps,Rchannel = Λchannel⊗IMRNS
andΛchannel = diag[σh0

, σh1
, · · · , σhL−1

],

whereσhl
is the variance of thelth channel tap [24].

On the other hand, the channel in frequency domain and time domain has the following

relationship1

vec([Hsr,0 · · · Hsr,K−1]) =
√
K(FL1

⊗ IMRNS
)ξsr, (13)

1This relationship holds for both perfect CSI and estimated CSI.
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whereFL1
is the firstL1 columns ofF . If the frequency domain channel estimatêHsr,k is

computed according to (13), we have

E{vec([∆Hsr,0 · · · ∆Hsr,K−1])vec
H([∆Hsr,0 · · · ∆Hsr,K−1])}

= (FL1
⊗ IMRNS

) (Λ−1
channel ⊗ INS

+ σ−2
n1
(D∗DT))−1

︸ ︷︷ ︸

,Φ
sr

⊗IMR
(FL1

⊗ IMRNS
)HK, (14)

where∆Hsr,k = Hsr,k − Ĥsr,k.

In case there is no prior information onRchannel, we can assign uninformative prior toξsr, that

is, σh0
, σh1

, · · · , σhL−1
approach infinity [26]. In this case,R−1

channel → 0, and then the channel

estimator (11) and estimation MSE (12) reduce to that of maximum likelihood (ML) estimation

[25, P.179].

Taking theMRNS ×MRNS block diagonal elements from (14) gives

E{vec(∆Hsr,k)vec
H(∆Hsr,k)} =

(
L1−1∑

ℓ2=0

L1−1∑

ℓ1=0

(e−j 2π
K

k(ℓ1−ℓ2)Φsr
ℓ1,ℓ2

)

)

⊗ IMR
. (15)

whereΦsr
ℓ1,ℓ2

is theNS ×NS matrix taken from the following partition ofΦsr

Φsr =








Φsr
0,0 Φsr

0,1 · · · Φsr
0,L1−1

... · · · . . .
...

Φsr
L1−1,0 Φsr

L1−1,1 · · · Φsr
L1−1,L1−1







. (16)

Furthermore, based on (15), for an arbitrary square matrixR, it is proved in Appendix B that

E{∆Hsr,kR∆HH
sr,k} = Tr

(

R

L1−1∑

ℓ2=0

L1−1∑

ℓ1=0

(

e−j 2π
K

k(ℓ1−ℓ2)(Φsr
ℓ1,ℓ2

)T
)
)

IMR
. (17)

A similar result holds for the second hop. In particular, denoting the relationship between the

true value and estimate of the second hop channel as

Hrd,k = Ĥrd,k +∆Hrd,k, k = 0, · · · , K − 1, (18)

we have the following property

E{∆Hrd,kR∆HH
rd,k} = Tr

(

R

L2−1∑

ℓ1=0

L2−1∑

ℓ2=0

(

e−j 2π
K

k(ℓ1−ℓ2)(Φrd
ℓ1,ℓ2

)
T
)
)

IMD
, (19)

whereL2 is the length of the second hop channel in time domain. Furthermore, as the two

channels are estimated independently,∆Hsr,k and∆Hrd,k are independent.
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IV. TRANSCEIVER DESIGN PROBLEM FORMULATION

At the destination, a linear equalizerGk is adopted for each subcarrier to detect the transmitted

datask (see Fig. 1). The problem is how to design the linear precodermatrix Fk at the relay

and the linear equalizerGk at the destination to minimize the MSE of the received data atthe

destination:

MSEk(Fk,Gk) = E{Tr
(
(Gkyk − sk)(Gkyk − sk)

H
)
}, (20)

where the expectation is taken with respect tosk, ∆Hsr,k, ∆Hrd,k, n1,k andn2,k. Sincesk, n1,k

andn2,k are independent, the MSE expression (20) can be written as

MSEk(Fk,Gk)

= E{‖(GkHrd,kFkHsr,k − INS
)sk +GkHrd,kFkn1,k +Gkn2,k‖2}

= E∆Hsr,k ,∆Hrd,k
{Tr((GkHrd,kFkHsr,k − INS

)Rsk
(GkHrd,kFkHsr,k − INS

)H)}

+ E∆Hrd,k
{Tr

(
(GkHrd,kFk)Rn1,k

(GkHrd,kFk)
H
)
}+ Tr(GkRn2,k

GH
k )

= E∆Hsr,k ,∆Hrd,k
{Tr

(
(GkHrd,kFkHsr,k)Rsk

(GkHrd,kFkHsr,k)
H
)
}

+ Tr
(
GkE∆Hrd,k

{Hrd,kFkRn1,k
FH

kH
H
rd,k}GH

k

)

− Tr
(

Rs,k(GkĤrd,kFkĤsr,k)
H
)

− Tr
(

GkĤrd,kFkĤsr,kRs,k

)

+ Tr(Rsk
) + Tr(GkRn2,k

GH
k ). (21)

Because∆Hsr,k and∆Hrd,k are independent, the first term ofMSEk is

E∆Hsr,k ,∆Hrd,k
{Tr

(
(GkHrd,kFkHsr,k)Rsk

(GkHrd,kFkHsr,k)
H
)
}

= Tr
(
GkE∆Hrd,k

{
Hrd,kFkE∆Hsr,k

{Hsr,kRsk
HH

sr,k}FH
kH

H
rd,k

}
GH

k

)
. (22)

For the inner expectation, the following equation holds

E∆Hsr,k
{Hsr,kRsk

HH
sr,k} = E∆Hsr,k

{(Ĥsr,k +∆Hsr,k)Rsk
(Ĥsr,k +∆Hsr,k)

H}

= Tr(Rsk
Ψsr,k)IMR

+ Ĥsr,kRsk
ĤH

sr,k , Πk, (23)

where based on (17) the matrixΨsr,k is defined as

Ψsr,k =

L1−1∑

ℓ1=0

L1−1∑

ℓ2=0

(

e−j 2π
K

k(ℓ1−ℓ2)(Φsr
ℓ1,ℓ2

)T
)

. (24)
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Applying (23) and the corresponding result for∆Hrd,k to (22), the first term ofMSEk becomes

Tr
(
GkE∆Hrd,k

{
Hrd,kFkE∆Hsr,k

{Hsr,kRsk
HH

sr,k}FH
kH

H
rd,k

}
GH

k

)

= Tr(Gk(Tr(FkΠkF
H
k Ψrd,k)IMD

+ Ĥrd,kFkΠkF
H
k Ĥ

H
rd,k)G

H
k ), (25)

where the matrixΨrd,k is defined as

Ψrd,k =

L2−1∑

ℓ1=0

L2−1∑

ℓ2=0

(

e−j 2π
K

k(ℓ1−ℓ2)(Φrd
ℓ1,ℓ2

)
T
)

. (26)

Similarly, the second term ofMSEk in (21) can be simplified as

Tr
(
GkE∆Hrd,k

{Hrd,kFkRn1,kF
H
kH

H
rd,k}GH

k

)

= Tr(Gk

(

Tr(FkRn1,k
FH

kΨrd,k)IMD
+ Ĥrd,kFkRn1,kF

H
k Ĥ

H
rd,k

)

GH
k ). (27)

Based on (25) and (27), theMSEk (21) equals to

MSEk(Fk,Gk) = Tr
(

Gk(Ĥrd,kFkRxk
FH

k Ĥ
H
rd,k +Kk)G

H
k

)

− Tr
(

Rsk
ĤH

sr,kF
H
k Ĥ

H
rd,kG

H
k

)

− Tr
(

GkĤrd,kFkĤsr,kRsk

)

+ Tr(Rsk
) (28)

where

Rxk
= Πk + σ2

n1
IMR

(29)

Kk = (Tr(FkRxk
FH

k Ψrd,k) + σ2
n2
)IMD

, ηkIMD
. (30)

Notice that the matrixRxk
is the correlation matrix of the receive signalxk on thekth subcarrier

at the relay.

Subject to the transmit power constraint at the relay, the joint design of precoder at the relay

and equalizer at the destination that minimizes the total MSE of the output data at the destination

can be formulated as the following optimization problem

min
Fk ,Gk

∑

k

MSEk(Fk,Gk)

s.t.
∑

k

Tr(FkRxk
FH

k ) ≤ Pr. (31)

Remark 1: In this paper, the relay estimates the source-relay channeland the destination

estimates the relay-destination channel. The precoderFk andGk can be designed at the relay
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or at the destination. Sharing channel estimation between the relay and the destination is un-

avoidable. However, when channel is varying slowly, and thechannel estimation feedback occurs

infrequently, the errors in feedback can be negligible.

V. PROPOSEDCLOSED-FORM SOLUTION

In this section, we will derive a closed-form solution for the optimization problem (31). In

order to facilitate the analysis, the optimization problem(31) is rewritten as

min
Fk,Gk,Pr,k

∑

k

MSEk(Fk,Gk)

s.t. Tr(FkRxk
FH

k ) ≤ Pr,k, k = 0, · · · , K − 1
∑

k

Pr,k ≤ Pr, (32)

with the physical meaning ofPr,k being the maximum allocated power over thekth subcarrier.

The Lagrangian function of the optimization problem (32) is

L(Fk,Gk, Pr,k) =
∑

k

MSEk(Fk,Gk) +
∑

k

γk(Tr(FkRxk
FH

k )− Pr,k) + γ(
∑

k

Pr,k − Pr)

(33)

where the positive scalarsγk andγ are the Lagrange multipliers. Differentiating (33) with respect

to Fk, Gk andPr,k, and setting the corresponding results to zero, the Karush-Kuhn-Tucker (KKT)

conditions of the optimization problem (32) are given by [27]

Gk(Ĥrd,kFkRxk
FH

k Ĥ
H
rd,k +Kk) = Rsk

(Ĥrd,kFkĤsr,k)
H, (34a)

ĤH
rd,kG

H
kGkĤrd,kFkRxk

+ (Tr(GkG
H
k )Ψrd,k + γk)FkRxk

=
(

Ĥsr,kRsk
GkĤrd,k

)H

, (34b)

γk(Tr(FkRxk
FH

k )− Pr,k) = 0, (34c)

γk ≥ 0, k = 0, · · · , K − 1, (34d)

γ(
∑

k

Pr,k − Pr) = 0, (34e)

γ0 = γ1 = · · · = γK−1 = γ, (34f)

Tr(FkRxk
FH

k ) ≤ Pr,k, (34g)
∑

k

Pr,k ≤ Pr. (34h)

June 1, 2010 DRAFT
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It is obvious that the objective function and constraints of(32) are continuously differentiable.

Furthermore, it is easy to see that solutions of the optimization problem (32) satisfy the regularity

condition, i.e., Abadie constraint qualification (ACQ), because linear independence constraint

qualification (LICQ) can be proved [28]. Based on these facts, the KKT conditions are the

necessary conditions.2 From KKT conditions, we can have the following two useful properties

which can help us to find the optimal solution.

Property 1: It is proved in Appendix C that for anyFk satisfying the KKT conditions (34a)-

(34e), the power constraints (34g) and (34h) must occur on the boundaries

Tr(FkRxk
FH

k ) = Pr,k, (35)
∑

k

Pr,k = Pr. (36)

Furthermore, the correspondingGk satisfies

Tr(GkG
H
k ) = γkPr,k/σ

2
n2
. (37)

Property 2: Define the matricesUTk
, VTk

, ΛTk
, UΘk

, and ΛΘk
based on singular value

decomposition (SVD) as

(Pr,kΨrd,k + σ2
n2
INR

)−
H

2 ĤH
rd,k Ĥrd,k(Pr,kΨrd,k + σ2

n2
INR

)−
1

2

︸ ︷︷ ︸

,Θk

= UΘk
ΛΘk

UH
Θk

, (38)

R
−

1

2

x,kĤsr,kRsk
= UTk

ΛTk
VH

Tk
, (39)

with elements of the diagonal matrixΛTk
and ΛΘk

arranged in decreasing order. Then with

KKT conditions (34a) and (34b), it is proved in Appendix D that the optimal precoderFk and

equalizerGk for the optimization problem (32) are in the forms of

Fk = (Pr,kΨrd,k + σ2
n2
INR

)−
1

2UΘk ,qkAFk
UH

Tk,pk
R

−
1

2

xk
, (40)

Gk = VTk,pkAGk
UH

Θk ,qk
(Pr,kΨrd,k + σ2

n2
INR

)−
H

2 ĤH
rd,k, (41)

2Notice that the solutionF0 = · · · = FK−1 = 0 andG0 = · · · = GK−1 = 0 also satisfies the KKT conditions, but this

solution is meaningless as no signal can be transmitted [14].
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whereAFk
andAGk

are to be determined. The matrixUTk,pk andVTk,pk are the firstpk columns

of UTk
andVTk

, respectively, andpk = Rank(ΛTk
). Similarly, UΘk,qk is the firstqk columns

of UΘk
, andqk = Rank(ΛΘk

).

Right multiplying both sides of (34a) withGH
k and left multiplying both sides of (34b) with

FH
k , and making use of (40) and (41), the first two KKT conditions become

AGk
Λ̄Θk

AFk
AH

Fk
Λ̄Θk

AH
Gk

+ ηkAGk
Λ̄Θk

AH
Gk

= (AGk
Λ̄Θk

AFk
Λ̄Tk

)H, (42)

AH
Fk
Λ̄Θk

AH
Gk

AGk
Λ̄Θk

AFk
+

γk
σ2
n2

AH
Fk
AFk

= (Λ̄Tk
AGk

Λ̄Θk
AFk

)H, (43)

where the matrix̄ΛΘk
is theqk × qk principal submatrix ofΛΘk

. Similarly, Λ̄Tk
is thepk × pk

principal submatrix ofΛTk
. In this paper, we consider AF MIMO-OFDM relay systems, the

matricesAFk
andAGk

can be of arbitrary dimension instead of the square matricesconsidered

in [14] and [22]. It should be noticed that as the optimization problem (32) is not a convex

problem, the KKT conditions are only necessary conditions.That is, there are many solutions

that will satisfy the KKT conditions. To identify the optimal solution, we need an additional

information which is presented in the followingProperty 3 .

Property 3: Putting the results ofProperty 1 and Property 2 into the optimization problem

(32), based on majorization theory, it is proved in AppendixE that the optimalAFk
andAGk

have the following diagonal structure

AFk,opt =




ΛFk,opt 0Nk ,pk−Nk

0qk−Nk,Nk
0qk−Nk,pk−Nk



 , (44)

AGk,opt =




ΛGk,opt 0Nk ,qk−Nk

0pk−Nk,Nk
0pk−Nk,qk−Nk



 , (45)

whereΛFk,opt and ΛGk,opt are twoNk × Nk diagonal matrices to be determined, andNk =

min(pk, qk).

Substituting (44) and (45) into (42) and (43), and noticing that all matrices are diagonal,
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ΛFk ,opt andΛGk,opt can be easily solved to be

ΛFk,opt =









√

σ2
n2
ηk

γk
Λ̃

−
1

2

Θk
Λ̃Tk

− ηkΛ̃
−1

Θk





+



1

2

, (46)

ΛGk,opt =

[(√
γk

ηkσ2
n2

Λ̃
−

1

2

Θk
Λ̃Tk

− γk
σ2
n2

Λ̃
−1

Θk

)+
] 1

2

Λ̃
−

1

2

Θk
, (47)

where the matrices̃ΛTk
andΛ̃Θk

are the principal sub-matrices ofΛTk
andΛΘk

with dimension

Nk × Nk, andNk = min{rank(ΛΘk
), rank(ΛTk

)}. The matricesUTk,Nk
, VTk,Nk

andUΘk,Nk

are the firstNk columns ofUTk
, VTk

andUΘk
, respectively.

In the general solution (46)-(47),Pr,k, ηk andγk are unknown. However notice that from (35)

and (37) inProperty 1 , the optimal precoder and equalizer should simultaneouslysatisfy

Tr(Fk,optRxk
FH

k,opt) = Pr,k, (48)

Tr(Gk,optG
H
k,opt) = γkPr,k/σ

2
n2
. (49)

Substituting (44)-(47) into (48) and (49), it can be straightforwardly shown thatηk andγk can

be expressed as functions ofPr,k

ηk =
b3,kPr,k

Pr,kb1,k + b1,kb4,k − b2,kb3,k
, (50)

γk =
b3,kσ

2
n2
(Pr,kb1,k + b1,kb4,k − b2,kb3,k)

(Pr,k + b4,k)2Pr,k

, (51)

whereb1,k, b2,k, b3,k andb4,k are defined as

b1,k , Tr(UH
Θk,Nk

(Pr,kΨrd,k + σ2
n2
INR

)−1UΘk,Nk
Λ̃Tk

Λ̃
−

1

2

Θk
ΛI,k), (52a)

b2,k , Tr(UH
Θk,Nk

(Pr,kΨrd,k + σ2
n2
INR

)−1UΘk,Nk
Λ̃

−1

Θk
ΛI,k), (52b)

b3,k , Tr(Λ̃Tk
Λ̃

−
1

2

Θk
ΛI,k), (52c)

b4,k , Tr(Λ̃
−1

Θk
ΛI,k), (52d)

andΛI,k is a diagonal selection matrix with diagonal elements being1 or 0, and serves to replace

the operation ‘+’. Combining all the results in this section, we have the following summary.

Summary: The optimal precoderFk,opt and equalizerGk,opt are
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Fk,opt = (Pr,kΨrd,k + σ2
n2
INR

)−
1

2UΘk,Nk
ΛFk ,optU

H
Tk,Nk

R
−

1

2

xk
, (53)

Gk,opt = VTk,Nk
ΛGk,optU

H
Θk,Nk

(Pr,kΨrd,k + σ2
n2
INR

)−
H

2 ĤH
rd,k, (54)

where

ΛFk,opt =









√

σ2
n2
ηk

γk
Λ̃

−
1

2

Θk
Λ̃Tk

− ηkΛ̃
−1

Θk





+



1

2

, (55)

ΛGk,opt =

[(√
γk

ηkσ2
n2

Λ̃
−

1

2

Θk
Λ̃Tk

− γk
σ2
n2

Λ̃
−1

Θk

)+
] 1

2

Λ̃
−

1

2

Θk
, (56)

with ηk andγk given by (50)-(52).

From the above summary, it is obvious that the problem of finding optimal precoder and

equalizer reduces to computingPr,k, and it can be solved based on (51) and the following two

constraints (i.e., (34f) and (36))

γ0 = · · · = γK−1, (57)
∑

k

Pr,k = Pr. (58)

In the following subsections, we will discuss how to computePr,k.

Remark 2: When both channels in the two hops are flat-fading channels, the considered

system reduces to single-carrier AF MIMO relay system. It should be noticed that for single-

carrier MIMO relay systems, there is no need to consider power allocation among subcarriers,

and we can setPr,k = Pr. In this case, the proposed closed-form solution is exactlythe optimal

solution for the robust transceiver design in flat-fading channel. Furthermore, when the CSI in

the two hops are perfectly known, the derived solution reduces to the optimal solution proposed

in [19].

Remark 3: Notice that when the source-relay link is noiseless and the first hop channel

is an identity matrix, the closed-form solution can be simplified to the optimal robust linear

MMSE transceiver for point-to-point MIMO-OFDM systems [24]. Moreover, if single carrier

transmission is employed, the closed-form solution further reduces to the optimal point-to-point

MIMO robust LMMSE transceiver [22].
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Remark 4: The complexity of the proposed algorithm is dominated matrix decomposition,

matrix multiplication and matrix inversion. The complexity of each of these matrix operations is

known to beO(n3), wheren is the matrix dimension [29]. So the complexity of our proposed

algorithm isO(m3), wherem = max{MD, NR, ND, NS}.

A. Uncorrelated Channel Estimation Error

When the channel estimation errors are uncorrelated (for example, by using training sequences

that are white in both time and space dimensions), the following condition must be satisfied [10],

[30]–[32]

DDH ∝ INSL1
. (59)

Then according to (14), we haveΨsr,k =
∑

ℓ1
Φsr

ℓ1,ℓ1
/K ∝ INS

. Similarly, for the second hop,

we also have

Ψrd,k ∝ INR
, δrd,kINR

, (60)

where the specific form ofδrd,k can be easily derived based on (26).

Putting (60) into the left hand side of (38), the expression becomes

(Pr,kΨrd,k + σ2
n2
INR

)−
H

2 ĤH
rd,kĤrd,k(Pr,kΨrd,k + σ2

n2
INR

)−
1

2

=
1

Pr,kδrd,k + σ2
n2

ĤH
rd,kĤrd,k. (61)

Applying eigen-decomposition̂HH
rd,kĤrd,k = UHk

ΛHk
UH

Hk
and comparing with the right hand

side of (38), we have

UΘk
= UHk

, ΛΘk
=

1

(Pr,kδrd,k + σ2
n2
)
ΛHk

. (62)

Substituting (62) into (51),γk reduces to

γk =

σ2
n2

(

Tr(Λ̃Tk
Λ̃

−
1

2

Hk
ΛI,k)

)2

(

Pr,k

(

1 + δrd,kTr(Λ̃
−1

Hk
ΛI,k)

)

+ σ2
n2
Tr(Λ̃

−1

Hk
ΛI,k)

)2 , (63)

whereΛ̃Hk
is theNk ×Nk principal submatrix ofΛHk

.
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With (63) and the facts that
∑

k Pr,k = Pr andγ0 = · · · = γK−1, Pr,k can be straightforwardly

computed to be

Pr,k =

√

σ2
n2

γ

Tr(Λ̃Tk
Λ̃

−
1

2

Hk
ΛI,k)

1 + δrd,kTr(Λ̃
−1

Hk
ΛI,k)

−
σ2
n2
Tr(Λ̃

−1

Hk
ΛI,k)

1 + δrd,kTr(Λ̃
−1

Hk
ΛI,k)

, k = 0, · · ·K − 1, (64)

whereγ equals to

γ = σ2
n2




∑

k

Tr(Λ̃Tk
Λ̃

−
1

2

Hk
ΛI,k)

1 + δrd,kTr(Λ̃
−1

Hk
ΛI,k)





2/(

Pr +
∑

k

σ2
n2
Tr(Λ̃

−1

Hk
ΛI,k)

1 + δrd,kTr(Λ̃
−1

Hk
ΛI,k)

)2

. (65)

B. Correlated Channel Estimation Error

Due to limited length of training sequence,DDH ∝ I may not be possible to achieve [30].

In this case, the channel estimation errors are correlated,andΨrd,k 6∝ I. From (38), it can be

seen that the relationship betweenΛΘk
andPr,k cannot be expressed in a closed-form . Then the

solution forPr,k cannot be directly obtained. However, notice that whenPr,kλmin(Ψrd,k) ≫ σ2
n2

,

whereλmin(Z) denotes the minimum eigenvalue ofZ, we have

Pr,kΨrd,k + σ2
n2
INR

≈ Pr,kΨrd,k. (66)

This situation occurs at high SNR in the second hop, and we term this high SNR approximation

(HSA). On the other hand, whenPr,kλmin(Ψrd,k) ≫ σ2
n2

cannot be guaranteed, we have

Pr,kΨrd,k + σ2
n2
INR

≈ (Pr,kλmax(Ψrd,k) + σ2
n2
)INR

, (67)

and it is termed spectral approximation (SPA). For spectralapproximation,Ψrd is replaced by

λmax(Ψrd)I, and from the MSE formulation in (28), it is obvious that the resultant expression

forms an upper-bound to the original MSE. Notice that when the training sequences are close

to white sequence [34], [35], the eigenvalue spread ofΨrd is small, and SPA is a good approx-

imation. In the following, computations ofPr,k under different approximations are detailed.

1) High SNR Approximation (HSA) at the second hop: Based on HSA, the left hand side of

(38) becomes

(Pr,kΨrd,k + σ2
n2
INR

)−
H

2 ĤH
rd,kĤrd,k(Pr,kΨrd,k + σ2

n2
INR

)−
1

2

≈ 1

Pr,k

Ψ
−

H

2

rd,kĤ
H
rd,k Ĥrd,kΨ

−
1

2

rd,k
︸ ︷︷ ︸

,Γk

=
1

Pr,k

UΓk
ΛΓk

UH
Γk
, (68)
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where the second equality is based on SVD. Comparing the right hand side of (68) with that of

(38), we directly have

UΘk
= UΓk

, ΛΘk
=

1

Pr,k

ΛΓk
. (69)

Substituting (69) into (51),γk reduces to a simpler form

γk =
1

P 2
r,k

c3,kσ
2
n2
(c1,k + c1,kc4,k − c2,kc3,k)

(1 + c4,k)2
︸ ︷︷ ︸

,χk

, (70)

wherec1,k, c2,k, c3,k and c4,k are defined as

c1,k , Tr(UH
Γk,Nk

Ψ−1
rd,kUΓk,Nk

Λ̃Tk
Λ̃

−
1

2

Γk
ΛI,k), (71a)

c2,k , Tr(UH
Γk,Nk

Ψ−1
rd,kUΓk,Nk

Λ̃
−1

Γk
ΛI,k), (71b)

c3,k , Tr(Λ̃Tk
Λ̃

−
1

2

Γk
ΛI,k), (71c)

c4,k , Tr(Λ̃
−1

Γk
ΛI,k), (71d)

with the diagonal matrix̃ΛΓk
being theNk × Nk principal submatrix ofΛΓk

, and the matrix

UΓk,Nk
consists of the firstNk columns of the matrixUΓk

. Together with the facts that
∑

k Pr,k =

Pr andγ0 = · · · = γK−1, Pr,k can be solved as

Pr,k = Pr

√
χk

∑

k

√
χk

. (72)

2) Spectral Approximation (SPA): With SPA, the left hand side of (38) becomes

(Pr,kΨrd,k + σ2
n2
INR

)−
H

2 ĤH
rd,kĤrd,k(Pr,kΨrd,k + σ2

n2
INR

)−
1

2

≈ 1

Pr,kλmax(Ψrd,k) + σ2
n2

ĤH
rd,kĤrd,k. (73)

Comparing (73) to (61), it is obvious that the problem becomes exactly the same as that discussed

for uncorrelated channel estimation errors. Therefore, the allocated power to thekth subcarrier

Pr,k can be calculated by (64) but withδrd,k replaced byλmax(Ψrd,k).

Notice that the selection criterionPr,kλmin(Ψrd,k) ≫ σ2
n2

involves the parameter of interest

Pr,k. In practice, we can replacePr,k in the criterion byPr/K. Then the proposed algorithm

can be summarized as using HSA when(Pr/K)λmin(Ψrd,k)/σ
2
n2

≥ T , otherwise we use SPA,

whereT is a threshold.
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Remark 5: Our design is valid for both cases whether the source has channel state information

(CSI) or not, since our design is suitable for any correlation matrixRs,k which is determined by

the precoder at the source. The precoder at the source can be easily designed based on different

criteria such as zero forcing (ZF), capacity maximization (CM) and minimum-mean-square-error

(MMSE) using the first hop channel information. Once the precoder at the source is fixed, the

optimal forward matrix at the relay and the equalizer at destination can be designed using the

proposed design.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we investigate the performance of the proposed algorithms. For the purpose of

comparison, the algorithm based on estimated channel only (without taking the channel errors

into account) is also simulated. An AF MIMO-OFDM relay system where the source, relay

and destination are equipped with same number of antennas,NS = MR = NR = MD = 2

is considered. The number of subcarriersK is set to be 64, and the length of the multi-path

channels in both hops is 5, and is denoted asL. The channel response is generated according

to the HIPERLAN/2 standard [10]. The signal-to-noise ratio(SNR) of the first hop is defined

asEs/N1 = Tr(Rs)/(KMRσ
2
n1
), and is fixed as30dB. At the source, on each subcarrier, two

independent data streams are transmitted by two antennas atthe same power, and QPSK is used

as the modulation scheme. TheSNR at the second hop is defined asEr/N2 = Pr/(KMDσ
2
n2
).

In the figures, MSE is referred to total simulated MSE over allsubcarriers normalized byK.

Based on the definition ofD in (9), DDH is a block circular matrix. In the following, only

the effect of spatial correlation of training sequence is demonstrated, and the training is white

in time dimension. In this case,DDH is a block diagonal matrix, and can be written asDDH =

IL ⊗
∑

i did
H
i , where

∑

i did
H
i /K is the spatial correlation matrix of the training sequence.

Furthermore, the widely used exponential correlation model is adopted to denote the spatial

correlation matrix [22], [23], and therefore we have

DDH = IL ⊗K




1 α

α 1



 . (74)

It is assumed that the same training sequence is used for channel estimation in the two hops.
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Based on the definition ofΨsr,k andΨrd,k in (24) and (26), and together with (74), we have

Ψsr,k = Ψrd,k =
L

K
σ2
e




1 α

α 1





−1

, (75)

whereσ2
e is the noise variance during channel estimation.

First, we investigate the performance of the proposed robust algorithm when channel estimation

errors are uncorrelated, which corresponds toα = 0 in (75). Fig. 2 shows the MSE of the received

signal at the destination with differentσ2
e . It can be seen that the performance of the proposed

robust algorithm is always better than that of the algorithmbased on estimated CSI only, as long

asσ2
e is not zero. Furthermore, the performance improvement of the proposed robust algorithm

over the algorithm based on only estimated CSI enlarges whenσ2
e increases. Fig. 3 shows

the corresponding performance under correlated channel estimation errors (α = 0.4), and the

thresholdT is set to be 10. It can be seen that a similar conclusion can be drawn as in Fig. 2.

Fig. 4 shows the MSE of the received signal at the destinationfor HSA, SPA and the proposed

algorithm that switches between the two, whenα = 0.4. It is clear that HSA performs better than

SPA at high SNR region, as at high SNR, (66) in HSA becomes equality. On the other hand,

SPA performs better than HSA at low SNR region. The proposed robust algorithm combines the

benefits of both HSA and SPA.

Fig. 5 shows the MSE of the output data at the destination for both proposed robust algorithm

and the algorithm based on estimated CSI only, with different α andEr/N2 = 25dB . It can be

seen that although performance degradation is observed forboth algorithms whenα increases,

the proposed robust algorithm shows a significant improvement over the algorithm based on

estimated CSI only. Furthermore, asα = 0 gives the best data MSE performance, it demonstrates

that white sequence is prefered in channel estimation.

Finally, Fig. 6 shows the bit error rates (BER) of the output data at the destination for different

σ2
e , whenα = 0.5. It can be seen that the BER performance is consistent with MSE performance

in Fig. 2 and Fig. 3.

VII. CONCLUSIONS

In this paper, linear robust relay precoder and destinationequalizer were jointly designed for

AF MIMO-OFDM relay systems based on MMSE criterion. The linear channel estimators and the
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corresponding MSE expressions were first derived. Then a general solution for optimal precoder

and equalizer was proposed. When the channel estimation errors are uncorrelated, the optimal

solution is in closed-form, and it includes several existing transceiver design results as special

cases. On the other hand, when channel estimation errors arecorrelated, a practical algorithm was

introduced. Simulation results showed that the proposed algorithms offer significant performance

improvements over the algorithm based on estimated CSI only.

APPENDIX A

PROOF OF(7)

Based on the characteristics of DFT operation, the matrixHsr defined in (6) is aKMR×KNS

block circulant matrix

Hsr ,










H
(0)
sr 0 0 · · · H

(L1−1)
sr H

(L1−2)
sr · · · H

(1)
sr

H
(1)
sr H

(0)
sr 0 · · · 0 H

(L1−1)
sr · · · H

(2)
sr

...
...

... · · · ...
...

...
...

0 · · · 0 H
(L1−1)
sr H

(L1−2)
sr H

(L1−3)
sr · · · H

(0)
sr










, (76)

where the elementH(ℓ)
sr is defined in (8). It is obvious thatH(ℓ)

sr is theℓth tap of the multi-path

MIMO channels between the source and relay in the time domainandL1 is the length of the

multi-path channel.

On the other hand, based on the definition ofd in (6), we have

d = [(
1√
K

K−1∑

k=0

ske
j 2π
K

k(0)

︸ ︷︷ ︸

d0

)T (
1√
K

K−1∑

k=0

ske
j 2π
K

k(1)

︸ ︷︷ ︸

d1

)T · · · (
1√
K

K−1∑

k=0

ske
j 2π

K
k(K−1)

︸ ︷︷ ︸

dK−1

)T]T. (77)

From (76) and (77), by straightforward computation, the signal model given in (6) can be

reformulated as

r = Hsrd+ v = vec([H(0)
sr · · · H

(L1−1)
sr ]D) + v

= (DT ⊗ IMR
)vec([H(0)

sr · · · H
(L1−1)
sr ]) + v, (78)

where the matrixD is defined in (9).
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APPENDIX B

PROOF OF(17)

For the expectation of the following product

Σ = E{QRWH} (79)

whereQ andW are twoM ×N random matrices with compatible dimension toR, the(i, j)th

element ofΣ is

Σ(i, j) = E{Q(i, :)RW(j, :)H} =
∑

t

∑

k

E{Q(i, t)R(t, k)W(j, k)∗}. (80)

If the two random matricesQ andW satisfy

E{vec(Q)vecH(W)} = A⊗B, (81)

whereA is aN×N matrix whileB is aM×M matrix, then we have the equalityE{Q(i1, j1)W(i2, j2)
∗} =

B(i1, i2)A(j1, j2). As Q(i, t) andW(j, k) are scalars, (80) can be further written as

Σ(i, j) =
∑

t

∑

k

(R(t, k)E{Q(i, t)W(j, k)∗}) =
∑

t

∑

k

R(t, k)A(t, k)B(i, j). (82)

Finally, writing (82) back to matrix form, we have [36]

Σ = BTr(RAT). (83)

Notice that this conclusion is independent of the matrix variate distributions ofQ andW, but

only determined by their second order moments. PuttingA =
∑L1−1

ℓ2=0

∑L1−1
ℓ1=0 (e

−j 2π
K

k(ℓ1−ℓ2)Φsr
ℓ1,ℓ2

),

B = IMR
andQ = W = ∆Hsr,k , into (83), we have (17).

APPENDIX C

PROOF OFPROPERTY1

Right multiplying both sides of (34a) withGH
k , the following equality holds

Gk(Ĥrd,kFkRxk
FH

k Ĥ
H
rd,k +Kk)G

H
k = Rsk(Ĥrd,kFkĤsr,k)

HGH
k . (84)

Left multiplying (34b) withFH
k , we have

FH
k Ĥ

H
rd,kG

H
kGkĤrd,kFkRxk

+ FH
kTr(GkG

H
k )Ψrd,kFkRxk

+ γkF
H
k FkRxk

= FH
k

(

Ĥsr,kRskGkĤrd,k

)H

. (85)
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After taking the traces of both sides of (84) and (85) and withthe fact that the traces of their

righthand sides are equivalent, i.e.,Tr(Rsk(Ĥrd,kFkĤsr,k)
HGH

k ) = Tr(FH
k (Ĥsr,kRskGkĤrd,k)

H),

we directly have

Tr(Gk(Ĥrd,kFkRxk
FH

k Ĥ
H
rd,k +Kk)G

H
k )

= Tr(FH
k Ĥ

H
rd,kG

H
kGkĤrd,kFkRxk

) + γkTr(F
H
k FkRxk

) + Tr(GkG
H
k )Tr(F

H
kΨrd,kFkRxk

).

(86)

By the property of trace operator,Tr(Gk(Ĥrd,kFkRxk
FH

k Ĥ
H
rd,k)G

H
k ) = Tr(FH

k Ĥ
H
rd,kG

H
kGkĤrd,kFkRxk

),

and (86) reduces to

Tr(GkKkG
H
k ) = Tr(GkG

H
k )Tr(F

H
kΨrd,kFkRxk

) + γkTr(F
H
kFkRxk

). (87)

On the other hand, based on the definition ofKk in (30),Tr(GkKkG
H
k ) can be also expressed

as

Tr(GkKkG
H
k ) = Tr(GkG

H
k )Tr(F

H
k Ψrd,kFkRxk

) + Tr(GkRn2,kG
H
k ). (88)

Comparing (87) with (88), it can be concluded that

Tr(GkRn2,kG
H
k ) = γkTr(FkRxk

FH
k ). (89)

Putting (89) into (34c), we haveTr(GkRn2,kG
H
k ) − γkPr,k = 0. As Rn2,k

= σ2
n2
IMD

, it is

straightforward that

σ2
n2
Tr(GkG

H
k ) = γkPr,k. (90)

Furthermore, based on the factγ0 = γ1 = · · · = γK−1 = γ and taking summation of both

sides of (90), the following equation holds

∑

k

σ2
n2
Tr(GkG

H
k ) = γ

∑

k

Pr,k. (91)

Putting (91) into (34e), we have

∑

k

σ2
n2
Tr(GkG

H
k )− γPr = 0, (92)

and it follows that

γk = γ = σ2
n2

∑

k Tr(GkG
H
k )

Pr

. (93)
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Since for the optimal equalizerGk,
∑

k Tr(Gk,optG
H
k,opt) 6= 0, it can be concluded thatγk 6= 0.

In order to have (34c) satisfied, we must have

Tr(Fk,optRxk
FH

k,opt) = Pr,k. (94)

Furthermore, asγ 6= 0, based on (34e), it is also concluded that

∑

k

Pr,k = Pr. (95)

Finally, (90) constitutes the second part of the Property 1.

APPENDIX D

PROOF OFPROPERTY2

Defining a full rank Hermitian matrixMk = Pr,kΨrd,k+σ2
n2
INR

, then for an arbitraryNR×NR

matrix Fk, it can be written as

Fk = M
−

1

2

k UΘk
ΣFk

UH
Tk
R

−
1

2

xk
(96)

where the inner matrixΣFk
equals toΣFk

= UH
Θk

M
1

2

kFkR
1

2

xk
UTk

.

Putting (96) into (34a), and with the following definitions (the same as the definitions in (38)

and (39))

M
−

H

2

k ĤH
rd,kĤrd,kM

−
1

2

k = UΘk
ΛΘk

UH
Θk

, (97)

R
−

1

2

x,kĤsr,kRs,k = UTk
ΛTk

VH
Tk
, (98)

the equalizerGk can be reformulated as

Gk = Rsk
(Ĥrd,kFkĤsr,k)

H(Ĥrd,kFkRxk
FH

k Ĥ
H
rd,k + ηkIMD

)−1

= (R
−

1

2

xk
Ĥsr,kRsk

)H(R
1

2

xk
FH

k Ĥ
H
rd,kĤrd,kFkR

1

2

xk
+ ηkIMR

)−1R
1

2

xk
FH

k Ĥ
H
rd,k

= VTk
ΛH

Tk
(ΣH

Fk
ΛΘk

ΣFk
+ ηkIMR

)−1ΣH
Fk

︸ ︷︷ ︸

,ΣGk

UH
Θk

M
−

H

2

k ĤH
rd,k, (99)

where the second equality is due to the matrix inversion lemma.

Putting (90) from Appendix C into (34b), after multiplying both sides of (34b) withM
−

1

2

k ,

we have

M
−

1

2

k ĤH
rd,kG

H
kGkĤrd,kFkR

1

2

xk
+M

1

2

kFkR
1

2

xk

γk
σ2
n2

= M
−

1

2

k

(

Ĥsr,kRs,kGkĤrd,k

)H

R
−

1

2

xk
. (100)
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Then substitutingFk in (96) andGk in (99) into (100), we have

ΣF = (ΛΘk
ΣH

Gk
ΣGk

ΛΘk
+

γk
σ2
n2

INR
)−1(ΛTk

ΣGk
ΛΘk

)H. (101)

Since ΛTk
and ΛΘk

are rectangular diagonal matrices (denoting their ranks bypk and qk

respectively), based on (101), it can be concluded thatΣFk
has the following form

ΣFk
=




AFk

0

0 0





NR×MR

, (102)

whereAFk
is of dimensionqk × pk and to be determined. Furthermore, putting (102) into the

definition ofΣGk
in (99), we have

ΣGk
=




AGk

0

0 0





NS×MD

, (103)

whereAGk
is of dimensionpk × qk, and to be determined. Substituting (102) and (103) into

(96) and (99), it can be concluded that

Fk = (Pr,kΨrd,k + σ2
n2
INR

)−
1

2UΘk ,qkAFk
UH

Tk,pk
R

−
1

2

xk
, (104)

Gk = VTk,pkAGk
UH

Θk ,qk
(Pr,kΨrd,k + σ2

n2
INR

)−
H

2 ĤH
rd,k, (105)

where

AGk
= Λ̄

H
Tk
(AH

Fk
Λ̄Θk

AFk
+ ηkIpk)

−1AH
Fk
, (106)

and Λ̄Tk
is thepk × pk principal submatrix ofΛTk

.

APPENDIX E

PROOF OFPROPERTY3

Taking the trace of both sides of (42) and (43), and noticing that the resultant two equations

are the same, it is obvious that

Tr(AGk
Λ̄Θk

AH
Gk

) =
γk

ηkσ2
n2

Tr(AH
Fk
AFk

). (107)

On the other hand, substituting (105) into (90) in Appendix C, we have

Tr(AGk
Λ̄Θk

AH
Gk

) =
γk
σ2
n2

Pr,k. (108)
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Comparing (107) and (108), it follows that

1

ηk
Tr(AH

Fk
AFk

) = Pr,k. (109)

For the objective function in the optimization problem (32), substituting (40) and (41) into

the MSE expression in (28), the MSE on thekth subcarrier can be written as

MSEk(Fk,Gk)

= Tr(Λ̄
2
Tk
(
1

ηk
AH

Fk
Λ̄Θk

AFk
+ Ipk)

−1) + Tr(Rsk
)− Tr(Rsk

ĤH
sr,kR

−1
xk
Ĥsr,kRsk

)
︸ ︷︷ ︸

,ck

, (110)

where ck is a constant part independent ofFk. Therefore, based on (109) and (110), the

optimization problem (32) becomes as

min
AFk

∑

k

Tr(Λ̄
2
Tk
(
1

ηk
AH

Fk
Λ̄Θk

AFk
+ Ipk)

−1) + ck

s.t.
1

ηk
Tr(AH

Fk
AFk

) = Pr,k,

∑

k

Pr,k = Pr. (111)

For any givenPr,k, then the optimization problem (111) can be decoupled into acollection

of the following sub-optimization problems

min
AFk

Tr(Λ̄
2
Tk
(
1

ηk
AH

Fk
Λ̄Θk

AFk
+ Ipk)

−1)

s.t.
1

ηk
Tr(AH

Fk
AFk

) = Pr,k, (112)

where the constant partck is neglected. For any twoM ×M positive semi-definite Hermitian

matricesA andB, we haveTr(AB) ≥∑i λi(A)λM−i+1(B), whereλi(Z) denotes theith largest

eigenvalue of the matrixZ [37]. Together with the fact that elements of the diagonal matrix Λ̃Tk

are in decreasing order, the objective function of (112) is minimized, when(AH
Fk
Λ̄Θk

AFk
/ηk +

INk
) is a diagonal matrix with the diagonal elements in decreasing order. The objective function

can be rewritten as

Tr(Λ̄
2
Tk
(
1

ηk
AH

Fk
Λ̄Θk

AFk
+ INk

)−1)

= dT(Λ̄
2
Tk
) d((

1

ηk
AH

Fk
Λ̄Θk

AFk
+ INk

)−1)
︸ ︷︷ ︸

,b

, f(b), (113)
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whered(Z) denotes the vector which consists of the main diagonal elements of the matrixZ.

It follows thatf(b) is a schur-concave function ofb [37, 3.H.3]. Then, based on [15,Theorem

1], the optimalAFk
has the following structure

AFk,opt =




ΛFk,opt 0Nk,pk−Nk

0qk−Nk,Nk
0qk−Nk,pk−Nk



 , (114)

whereΛFk,opt is aNk ×Nk diagonal matrix to be determined, andNk = min(pk, qk).

Putting (114) into the definition ofAGk,opt in (106), the structure of the optimalAGk,opt is

given by

AGk,opt =




ΛGk,opt 0Nk ,qk−Nk

0pk−Nk,Nk
0pk−Nk,qk−Nk



 , (115)

whereΛGk,opt is also aNk ×Nk diagonal matrix.
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Fig. 1. Amplify-and-forward MIMO relaying.
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