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Outline of paperEach of the type systems considered in this paper is parameterised by the choice of a system ofpredicates on type expressions, whose basic properties are described in Section 1. A number ofexamples are included to illustrate the use of this framework to describe a range of type systemsincluding Haskell type classes, extensible records and subtyping. Section 2 describes the use ofquali�ed types in the context of polymorphic �-calculus with explicit typing. This is extendedin Section 3 using a general notion of evidence to explore the relationship between implicit andexplicit overloading. An alternative approach, suitable for use in an implicitly typed language,is introduced in Section 4 using an extension of the ML type system [Mil78] to support quali�edtypes. Although substantially less powerful than polymorphic �-calculus, we show that theresulting system is suitable for use in a language based on type inference, that allows the type ofa term to be determined without explicit type annotations. The development of a suitable typeinference algorithm is described in Sections 5 and 6. Finally, Section 7 surveys some areas forfurther work.Detailed proofs for many of the results described in this paper may be found in [Jon91b, Jon92];For reasons of space, they cannot be included here.1 PredicatesEach of the type systems considered in this paper is parameterised by the choice of a language ofpredicates � whose properties are described by an entailment relation `̀ between (�nite) sets ofpredicates. Individual predicates may be written using expressions of the form � = p �1 . . . �nwhere p is a predicate symbol corresponding to an n-place relation between types; the predicate� represents the assertion that the types �1, . . . , �n are in this relation. The de�nition of `̀varies from one application to another. The only properties that we will assume are:� monotonicity. P `̀ P 0 whenever P � P 0.� transitivity. if P `̀ Q and Q `̀ R, then P `̀ R.� closure property. if P `̀ Q , then SP `̀ SQ for any substitution S mapping typevariables (and hence type expressions) to type expressions.If P is a set of predicates and � is a predicate, then we write P `̀ � and P ; � as abbreviationsfor P `̀ f�g and P [ f�g respectively.The following subsections illustrate the languages of predicates used in three applications ofquali�ed types. Only the basic ideas are sketched here; further details are given in [Jon91a,Jon92].1.1 Example: type classesIntroduced in [WB89] and adopted as part of the standard for the programming language Haskell[HPJW92], type classes are particularly useful for describing the implementation of standardpolymorphic operators such as computable equality. Much of the original motivation for quali�edtypes came from the study of type classes.Broadly speaking, a type class is a family of types (the instances of the class) on which a numberof values (the member functions) are de�ned. Each predicate symbol corresponds to a user-de�ned class and a predicate of the form C � represents the assertion that � is an instance of2



the class named C . The class Eq is a standard example whose instances are those types whoseelements can be tested for equality using the operator (==) :: 8a:Eq a ) a ! a ! Bool . Asa further example, one possible type for a function to test for membership of a value in a list is8a:Eq a ) a ! [a]! Bool where [a] denotes the type of lists of values of type a.Di�erences in the basic approach to type classes are re
ected in the properties of the `̀ relation.In a standard Haskell system we have axioms such as ; `̀ Eq Int and Eq a `̀ Eq [a]. Thesame framework can also be used to describe the use of Haskell superclasses, and to support theextension to classes with multiple parameters.Type classes are best suited to systems with a type inference algorithm such as that describedin Section 6 where the appropriate instances of each overloaded operator can be determinedautomatically as part of the type inference process.1.2 Example: extensible recordsA record is a set of values labelled by the elements l of a speci�ed set of labels. There hasbeen considerable interest in the use of record types to model inheritance in object orientedprogramming languages and a number of di�erent approaches have been considered. We canconstruct a system of extensible records, strongly reminiscent of [HP90] using predicates of theform:r has l : t indicating that a record of type r has a �eld labelled l of type t .r lacks l indicating that a record of type r does not have a �eld labelled l .This also requires an extension of the language of type expressions to allow types of the form hi(the empty record, which lacks any �elds), r n l (the type of a record obtained by removing a�eld labelled l from a record of type r) and hr j l : ti (the type of a record obtained by extendinga record of type r with a new �eld of type t labelled l). The de�nition of the entailment relationincludes axioms such as ; `̀ (hi lacks l and r lacks l `̀ hr j l : ti has l : t .The primitive operations of record restriction, extension and selection can then be representedby families of functions (indexed by labels) of type:( n l) :: 8r :8t :(r has l : t)) r ! r n l( j l = ) :: 8r :8t :(r lacks l)) r ! t ! hr j l : ti( : l) :: 8r :8t :(r has l : t)) r ! tDetails of the relationship between this approach and those of [Rem89, CM90] are given in[HP90].1.3 Example: subtypingLanguages with subtyping can be described using predicates of the form � � �0, representingthe assertion that � is a subtype of �0. Many such systems, including those of [Mit84, FM89],allow the use of implicit coercions from one type to another. The extensions required to supportthis are discussed in Section 7.4. 3



2 Polymorphic �-calculus with quali�ed types2.1 Basic de�nitionsIn this section, we work with a variant of the polymorphic �-calculus that includes quali�edtypes using type expressions of the form:� ::= t j � ! � j 8t :� j �) �where t ranges over a given set of type variables. The ! and ) symbols are treated as rightassociative in�x binary operators with ! binding more tightly than ). Additional type con-structors such as those for integers, lists and record types will be used as required. The set oftype variables appearing (free) in an expression X is denoted TV (X ).To begin with we use an unmodi�ed form of the (unchecked) terms of polymorphic �-calculus,given by expressions of the form:M ::= x jMN j �x :�:M jM� j �t :Mwhere x ranges over a given set of term variables. The set of free (term) variables appearing ina term M will be denoted FV (M ). Note that we do not provide constructs for the introductionof new overloadings such as inst and over in [WB89]. If none of the free variables for a giventerm have quali�ed (i.e. overloaded) types, then no overloading will be used in the expression.2.2 Typing rulesA type assignment is a (�nite) set of typing statements of the form x :� in which no term variablex appears more than once. If A is a type assignment, then we write dom A = f x j (x :�) 2 A g,and if x is a term variable with x 62 dom A, then we write A; x :� as an abbreviation for the typeassignment A[fx :�g. The type assignment obtained from A by removing any typing statementfor the variable x is denoted Ax . A type assignment A can be interpreted as a function mappingeach element of dom A to a type scheme. In particular, if (x :�) 2 A, then we write A(x ) = �.An expression of the form P j A ` M : � represents the assertion that the term M has type �when the predicates in P are satis�ed and the types of free variables in M are as speci�ed in thetype assignment A. The typing rules for this system are given in Figure 1. Most of these aresimilar to the rules for explicit typing of polymorphic �-calculus and do not involve the predicateset.By an abuse of notation, we will also use P j A ` M : � as a proposition asserting the existenceof a derivation of P j A ` M : �.3 EvidenceAlthough the system of quali�ed types described in the previous sections is suitable for reasoningabout the types of overloaded terms, it cannot be used to describe their evaluation. For example,the knowledge that Int is an instance of the class Eq is not su�cient to determine the value ofthe expression 2 == 3; we must also be provided with the value of the equality operator thatmakes Int an instance of Eq . In general, we can only use a term of type � ) � if we are alsosupplied with suitable evidence that the predicate � does indeed hold.4



Standard rules: (var) (x :�) 2 AP j A ` x : �(!E ) P j A ` M : �0 ! � P j A ` N : �0P j A ` MN : �(!I ) P j A; x :�0 ` M : �P j A ` �x :�0:M : �0 ! �Quali�ed types: ()E ) P j A ` M : �) � P `̀ �P j A ` M : �()I ) P ; � j A ` M : �P j A ` M : � ) �Polymorphism: (8E ) P j A ` M : 8t :�P j A ` M � : [�=t ]�(8I ) P j A ` M : � t 62 TV (A) [TV (P)P j A ` �t :M : 8t :�Figure 1: Typing rules for polymorphic �-calculus with quali�ed typesThis leads us to consider an extension of the term language that makes the role of evidenceexplicit, using:� Evidence expressions: A language of evidence expressions e denoting evidence values,including a set of evidence variables v .� Evidence construction: A predicate assignment is a set of elements of the form (v :�)in which no evidence variable appears more than once. The `̀ relation is extended to athree place relation P `̀ e : �, indicating that it is possible to construct evidence e forthe predicate � in any environment binding the variables in the predicate assignment P toappropriate evidence values. Thus predicates play a similar role for evidence expressionsas types for simple �-calculus terms.� Evidence abstraction: A term M of type � ) � is implemented by a term of the form�v :�:M 0 where v is an evidence variable and M 0 is a term of type � corresponding to Musing v in each place where evidence for � is needed.� Evidence application: Each use of an overloaded expression N of type �) � is replacedby a term of the form N 0e where N 0 is a term corresponding to N and e is an evidenceexpression for �.� Evidence reduction: The standard rules of computation are augmented by a variant of�-reduction for evidence abstraction and application:(�v :M )e >�e [e=v ]M :Most of the typing rules given in Figure 1 can be used with the extended system without mod-i�cation. The only exceptions are the rules for dealing with quali�ed types; suitably modi�edversions of these are given in Figure 2. 5



()I ) P ; v :� j A ` M : �P j A ` �v :�:M : � ) �()E ) P j A ` M : �) � P `̀ e :�P j A ` Me : �Figure 2: Modi�ed rules for quali�ed types with evidenceNotice that extending the term language to make the use of evidence explicit gives unicity oftype; each well-typed term has a uniquely determined type. This approach is very similar to thetechniques used to make polymorphism explicit in the translation from implicit to explicit typed�-calculus using abstraction and application over types [Mit90]. As in that situation, there is asimple correspondence between derivations in the two systems, described by means of a functionErase mapping explicitly overloaded terms to their implicitly overloaded counterparts:Erase(x ) = xErase(MN ) = (Erase(M ))(Erase(N ))...Erase(�v :�:M ) = Erase(M )Erase(Me) = Erase(M )The correspondence between the two systems can now be described by:Theorem 1 P j A ` M : � using the original typing rules if and only if P 0 j A ` M 0 : � by aderivation of the same structure in the extended system such that P = f� j (v : �) 2 P 0 g andErase(M 0) =M.Given a term M in the original system, each corresponding term using explicit overloading iscalled a translation of M and can be used to give a semantics for the term. We write P 0 j A `M ;M 0 : � to refer to the translation of a term in a speci�c context. Note that the translationof a given term may not be uniquely de�ned (with distinct translations corresponding to distinctderivations of P j A ` M : �). This is discussed in more detail in Section 7.1.The form of evidence required will vary from one application to another. Suitable choices foreach of the examples described in Section 1 are as follows:� Type classes: The evidence for a type class predicate of the form C � is a dictionarycontaining the values of the members of C at the instance � . For example, in the simplestcase, the evidence for a predicate Eq � might be an equality test function for values of type� .� Extensible records: The evidence for a predicate of the form (r lacks l) is the function:( j l = ) :: 8t : r ! t ! (r j l : t)The evidence for a predicate of the form (r has l : t) is the pair of functions:( n l) :: r ! r n l( : l) :: r ! tIn practice, a concrete implementation of extensible records is likely to use o�sets into atable of values used to store a record as evidence, passing these values to generic functionsfor updating or selecting from a record where necessary.6



� Subtypes: The evidence for a predicate � � �0 is a coercion function that maps values oftype � to values of type �0.Further details of the use of evidence in these applications is included in [Jon92].4 An extension of ML using quali�ed typesPolymorphic �-calculus is not a suitable language to describe an implicitly typed language inwhich the need for explicit type annotations is replaced by the existence of a type inferencealgorithm. In practice, the bene�ts of type inference are often considered to outweigh the dis-advantages of a less powerful type system. The ML type system [Mil78, DM82] is a well-knownexample in which the price of type inference is the inability to de�ne functions with polymorphicarguments. Nevertheless, it has proved to be very useful in practice and has been adopted by anumber of later languages.4.1 Basic de�nitionsFollowing the de�nition of types and type schemes in ML we consider a structured language oftypes, with the principal restriction being the inability to support functions with either poly-morphic or overloaded arguments:� ::= t j � ! � types� ::= P ) � quali�ed types� ::= 8T :� type schemes(P and T range over �nite sets of predicates and �nite sets of type variables respectively).It is convenient to introduce some abbreviations for quali�ed type and type scheme expressions.In particular, if � = (P ) � ) and � = 8T :�, then we write:Abbreviation Quali�ed type Abbreviation Type scheme� ; ) � � 8 ;:�� ) � P ; � ) � 8t :� 8(T [ ftg):�P 0 ) � P [ P 0 ) � 8T 0:� 8(T [T 0):�In addition, if f�ig is an indexed set of variables, we write 8�i :� as an abbreviation for 8f�ig:�.As usual, type schemes are regarded as equal if they are equivalent upto renaming of boundvariables.Using this notation, any type scheme can be written in the form 8�i :P ) � , representing the setof quali�ed types f [�i=�i]P ) [�i=�i]� j �i 2 Type g where [�i=�i ] is the substitution mappingeach of the variables �i to the corresponding type �i and Type is the set of all simple typeexpressions (represented by � in the grammar above).As in [Mil78, DM82, CDK86], we use a term language based on simple untyped �-calculus withthe addition of a let construct to enable the de�nition and use of polymorphic (and in this case,overloaded) terms. M ::= x jMN j �x :M j let x = M in NA suitable set of typing rules for this system is given in Figure 3. Note the use of the symbols � ,� and � to restrict the application of certain rules to speci�c sets of type expressions.7



Standard rules: (var) (x :�) 2 AP j A ` x : �(!E ) P j A ` M : � 0 ! � P j A ` N : � 0P j A ` MN : �(!I ) P j Ax ; x :� 0 ` M : �P j A ` �x :M : � 0 ! �Quali�ed types: ()E ) P j A ` M : � ) � P `̀ �P j A ` M : �()I ) P ; � j A ` M : �P j A ` M : �) �Polymorphism: (8E ) P j A ` M : 8t :�P j A ` M : [�=t ]�(8I ) P j A ` M : � t 62 TV (A) [TV (P)P j A ` M : 8t :�Local De�nition: (let) P j A ` M : � Q j Ax ; x :� ` N : �P [Q j A ` (let x = M in N ) : �Figure 3: ML-like typing rules for quali�ed types4.2 Constrained type schemesA typing judgement P j A ` M : � assigns a type scheme � to a term M , but also constrainsuses of this typing to environments satisfying the predicates in P . This observation motivatesthe use of constrained type schemes, written as pairs of the form (P j �) where P is a set ofpredicates and � is a type scheme. Following the development of type inference in [DM82], wewill de�ne an ordering that can be used to describe when one constrained type scheme is moregeneral than another. As a �rst step, we introduce the concept of generic instances:De�nition 1 A quali�ed type R ) � is said to be a generic instance of the constrained typescheme (P j 8�i :Q ) � ) if there are types �i such that R `̀ P [ [�i=�i ]Q and � = [�i=�i ]� .The principal motivation for the de�nition of the ordering (�) between type schemes is that astatement of the form �0 � � should mean that it is possible to use an object of type � whereveran object of type �0 is required.De�nition 2 The constrained type scheme (Q j �) is said to be more general than a constrainedtype scheme (P j �), written (P j �) � (Q j �), if every generic instance of (Q j �) is also ageneric instance of (P j �).It is straightforward to show that this de�nes a preorder on the set of constrained type schemes,such that a quali�ed type � is a generic instance of the type scheme � if and only if � � �. Wewill write (P j �) ' (Q j �) to indicate when two constrained type schemes are equivalent with8



respect to (�), i.e. when each is more general than the other. The following properties are easilyestablished:� � ' (; j �) for any type scheme �.� If � is a quali�ed type and P is a set of predicates, then (P j �) ' P ) �.� If � is a type scheme and P is a set of predicates, then (P j �) � �.� If �0 � � and P 0 `̀ P , then (P 0 j �0) � (P j �).� If none of the variables �i appear in P , then the constrained type scheme (P j 8�i :�) isequivalent to the type scheme 8�i :P ) �. Thus every constrained type scheme can berepresented by a simple type scheme using a renaming of bound variables.The application of a substitution S to a constrained type scheme (P j �) is de�ned by S (P j �) =(SP j S�). The next proposition describes an important property of the ordering on constrainedtype schemes.Proposition 1 For any substitution S and constrained type schemes (P j �) and (Q j �):(P j �) � (Q j �) ) S (P j �) � S (Q j �):4.3 Ordering of type assignmentsThe de�nition of constrained type schemes and the ordering (�) extends naturally to an orderingon (constrained) type assignments.De�nition 3 If A and A0 are type assignments and P, P 0 are sets of predicates, then we saythat (P j A) is more general than (P 0 j A0), written (P 0 j A0) � (P j A), if dom A = dom A0 and(P 0 j A0(x )) � (P j A(x )) for each x 2 dom A.The results of the previous section can be used to prove that this ordering on type assignmentsis re
exive, transitive and preserved by substitutions. In this paper, we will only use the specialcase where P = ; in which case we write (P 0 j A0) � A. This can be interpreted as indicatingthat each of the types assigned to a variable in A is more general than the type assigned in A0in any environment that satis�es the predicates in P 0.4.4 GeneralisationGiven a derivation P j A ` M : � , it is useful to have a notation for the most general type schemethat can be obtained forM from this derivation using the rules ()I ) and (8I ) given in Figure 3.De�nition 4 The generalisation of a quali�ed type � with respect to a type assignment A iswritten Gen(A; �) and de�ned by:Gen(A; �) = 8(TV (�) nTV (A)):�:In other words, if f�ig = TV (�) nTV (A), then Gen(A; �) = 8�i :�. The following propositionsdescribe the interaction of generalisation with predicate entailment and substitution.Proposition 2 Suppose that A is a type assignment, P and P 0 are sets of predicates and � is atype. Then Gen(A;P 0 ) � ) � Gen(A;P ) � ) whenever P 0 `̀ P.9



Proposition 3 If A is a type assignment, � is a quali�ed type and S is a substitution, then:Gen(SA; S�) � S (Gen(A; �)):Furthermore, there is a substitution R such that:RA = SA and SGen(A; �) = Gen(RA;R�):5 A syntax-directed approachThe typing rules in Figure 3 provide clear descriptions of the treatment of each of the syntacticconstructs of the term and type languages. Unfortunately, they are not suitable for use in a typeinference algorithm where it should be possible to determine an appropriate order in which toapply the typing rules by a simple analysis of the syntactic structure of the term whose type isrequired.In this section, we introduce an alternative set of typing rules with a single rule for each syntacticconstruct in the term language. We refer to this as the syntax-directed system because it hasthe following important property: all typing derivations for a given term M (if there are any)have the same structure, uniquely determined by the syntactic structure of M . We regard thesyntax-directed system as a tool for exploring the type system of Section 4 and we establisha congruence between the two systems so that results about one can be translated into resultsabout the other. The advantages of working with the syntax-directed system are:� The rules are better suited to use in a type inference algorithm; having found types foreach of the subterms of a given term M , there is at most one rule that can be used toobtain a type for the term M itself.� Only type expressions are involved in the matching process. Type schemes and quali�edtypes can only appear in type assignments.� There are fewer rules and hence fewer cases to be considered in formal proofs.A similar approach is described in [CDK86] which gives a deterministic set of typing rules forML and outlines their equivalence to the rules in [DM82].5.1 Syntax-directed typing rulesThe typing rules for the syntax-directed system are given in Figure 4. Typings in this systemare written in form P j A s̀ M : � , where � ranges over the set of type expressions rather thanthe set of type schemes as in the typing judgements of Section 4. Other than this, the principaldi�erences between the two systems are in the rules (var)s and (let)s which use the operationsof instantiation and generalisation introduced in Sections 4.2 and 4.4.5.2 Properties of the syntax-directed systemThe following proposition illustrates the parametric polymorphismpresent in the syntax-directedsystem; instantiating the free type variables in a derivable typing with arbitrary types producesanother derivable typing.Proposition 4 If P j A s̀ M : � and S is a substitution, then SP j SA s̀ M : S� .10



(var)s (x :�) 2 AP j A s̀ x : � (P ) � ) � �(!E )s P j A s̀ M : � 0 ! � P j A s̀ N : � 0P j A s̀ MN : �(!I )s P j Ax ; x :� 0 s̀ M : �P j A s̀ �x :M : � 0 ! �(let)s P j A s̀ M : � P 0 j Ax ; x :� s̀ N : � 0P 0 j A s̀ (let x = M in N ) : � 0 � = Gen(A;P ) � )Figure 4: Syntax-directed inference systemA similar result is established in [Dam85] where it is shown that for any derivation A ` M : �in the usual (non-deterministic) ML type system and any substitution S , there is a derivationSA ` M : S� which can be chosen in such a way that the height of the latter is bounded bythe height of the former. This additional condition is needed to ensure the validity of proofsby induction on the size of a derivation. This complication is avoided by the syntax-directedsystem; the derivations in proposition 4 are guaranteed to have the same structure because theterm M is common to both.There is also a form of polymorphism over the sets of environments in which a particular typingcan be used, as described by the following proposition:Proposition 5 If P j A s̀ M : � and Q `̀ P, then Q j A s̀ M : � .Recall that an ordering �0 � � is intended to mean that, at least for the purposes of typeinference, it is possible to use an object of type � whenever with an object of type �0 is required.In much the same way, given two type assignments such that A0 � A (so that the type assigned toeach variable in A is more general than the corresponding type in A0), then we would expect thatany typing that can be derived using A0 could also be derived from A. The following propositionestablishes a slightly more general form of this result:Proposition 6 If P j A0 s̀ M : � and (P j A0) � A, then P j A s̀ M : � .The hypothesis (P j A0) � A means that the types assigned to variables in A are more generalthan those given by A0 in any environment that satis�es the predicates in P . For example:(Eq Int j f(==): Int ! Int ! Boolg) � f(==):8a:Eq a ) a ! a ! Boolgand hence, by the proposition above, it is possible to replace an integer equality function witha generic equality function of type 8a:Eq a ) a ! a ! Bool in any environment that satis�esEq Int .5.3 Relationship with original type systemIn order to use the syntax-directed system as a tool for reasoning about the type system describedin Section 4, we need to investigate the way in which the existence of a derivation in one systemdetermines the existence of derivations in the other.11



Our �rst result establishes the soundness of the syntax-directed system with respect to theoriginal typing rules, showing that any derivable typing in the former system is also derivable inthe latter.Theorem 2 If P j A s̀ M : � , then P j A ` M : � .The translation of derivations in the original type system to those of the syntax-directed systemis less obvious. For example, if P j A ` M : �, then it will not in general be possible to derivethe same typing in the syntax-directed system because � is a type scheme, not a simple type.However, for any derivation P 0 j A s̀ M : � , theorem 2 guarantees the existence of a derivationP 0 j A ` M : � and hence ; j A ` M : Gen(A;P 0 ) � 0) by de�nition 4. The following theoremshows that it is always possible to �nd a derivation in this way such that the inferred type schemeGen(A;P 0 ) � 0) is more general than the constrained type scheme (P j �) determined by theoriginal derivation.Theorem 3 If P j A ` M : �, then P 0 j A s̀ M : � for some set of predicates P 0 and type �such that (P j �) � Gen(A;P 0 ) � ).6 Type inferenceIn this section, we give an algorithm for calculating a typing for a given term, using an extensionof Milner's algorithm W [Mil78] to support quali�ed types. We show that the typings producedby this algorithm are derivable in the syntax-directed system and that they are, in a certainsense, the most general typings possible. Combining this with the results of the previous section,the algorithm can be used to reason about the type system in Section 4.6.1 Uni�cationThis section describes the uni�cation algorithmwhich is a central component of the type inferencealgorithm. A substitution S is called a uni�er for the type expressions � and � 0 if S� = S� 0.The following theorem is due to Robinson [Rob65].Theorem 4 (Uni�cation algorithm) There is an algorithm whose input is a pair of typeexpressions � and � 0 such that either:the algorithm succeeds with a substitution U as its result and the uni�ers of � and � 0 areprecisely those substitutions of the form RU for any substitution R. The substitution U iscalled a most general uni�er for � and � 0, and is denoted mgu(�; � 0).or the algorithm fails and there are no uni�ers for � and � 0.In the following, we write � U� � 0 for the assertion that the uni�cation algorithm succeeds by�nding a most general uni�er U for � and � 0.6.2 A type inference algorithmFollowing the presentation of [Rem89], we describe the type inference algorithm using the in-ference rules in Figure 5. These rules use typings of the form P j TA Ẁ M : � where P is aset of predicates, T is a substitution, A is a type assignment, M is a term and � is a simpletype expression. The typing rules can be interpreted as an attribute grammar in which A are M12



(var)W (x :8�i:P ) � ) 2 A[�i=�i]P j A Ẁ x : [�i=�i ]� �i new(!E )W P j TA Ẁ M : � Q j T 0TA Ẁ N : � 0 T 0� U� � 0 ! �U (T 0P [Q) j UT 0TA Ẁ MN : U� � new(!I )W P j T (Ax ; x :�) Ẁ M : �P j TA Ẁ �x :M : T�! � � new(let)W P j TA Ẁ M : � P 0 j T 0(TAx ; x :�) Ẁ N : � 0P 0 j T 0TA Ẁ (let x = M in N ) : � 0 � = Gen(TA;P ) � )Figure 5: Type inference algorithm Winherited attributes, while P , T and � are synthesised. One of the advantages of this choice ofnotation is that it highlights the relationship between W and the syntax-directed system. Thispoint is illustrated by the following theorem.Theorem 5 If P j TA Ẁ M : � , then P j TA s̀ M : � .Combining this with the result of theorem 2 gives the following important corollary.Corollary 1 (Soundness of W) If P j TA Ẁ M : � , then P j TA ` M : � .With the exception of (let)W, each of the rules in Figure 5 introduces `new' variables; i.e. variablesthat do not appear in the hypotheses of the rule nor in any other distinct branches of the completederivation. Note that it is always possible to choose type variables in this way because the setof type variables is assumed to be countably in�nite. In the presence of new variables, it isconvenient to work with a weaker form of equality on substitutions, writing S � R to indicatethat St = Rt for all but a �nite number of new variables t . In most cases, we can treat S � R asS = R, since the only di�erences between the substitutions occur at variables that are not usedelsewhere in the algorithm.This notation enables us to give an accurate statement of the following result which shows thatthe typings obtained by W are, in a precise sense, the most general derivable typings for a giventerm.Theorem 6 Suppose that P j SA s̀ M : � . Then Q j TA Ẁ M : � and there is a substitution Rsuch that S � RT, � = R� and P `̀ RQ.Combining the result of theorem 6 with that of theorem 3 we obtain a similar completeness resultfor W with respect to the type system of Section 4.Corollary 2 (Completeness of W) Suppose that P j SA ` M : �. Then Q j TA Ẁ M : �and there is a substitution R such that S � RT and (P j �) � RGen(TA;Q ) �).6.3 Principal type schemesA term M is well-typed under a type assignment A if P j A ` M : � for some P and �. Itis natural to try to characterise the set of constrained type schemes (P j �) for which such aderivation can be found. This can be described using the concept of a principal type scheme:13



De�nition 5 A principal type scheme for a term M under a type assignment A is a constrainedtype scheme (P j �) such that P j A `M : �, and (P 0 j �0) � (P j �) whenever P 0 j A ` M : �0.The following result gives a su�cient condition for the existence of principal type schemes, byshowing how they can be constructed from typings produced by W.Corollary 3 Suppose that M is a term, A is a type assignment and Q j TA Ẁ M : � for someQ, T and �. Then Gen(TA;Q ) �) is a principal type scheme for M under TA.Combining this with corollary 2 gives a necessary condition for the existence of principal typeschemes: a term is well-typed if and only if it has a principal type scheme. Furthermore, if itexists, a suitable principal type can be calculated using the type inference algorithm W.Corollary 4 (Principal type theorem) Let M be a term and A an arbitrary type assignment.The following conditions are equivalent:� M is well-typed under A.� Q j TA Ẁ M : � for some Q and � and there is a substitution R such that RTA = A.� M has a principal typing under A.7 Extensions and topics for further work7.1 The coherence problemIt is important to point out that the type systems described by the rules in the previous sectionsare not coherent (in the sense of [BCGS89]). In other words, it is possible to construct translationsP j A ` M ;M 01 : � and P j A ` M ;M 02 : � in which the termsM 01 andM 02 are not equivalent,and hence the semantics of M are not well-de�ned.For an example in which the coherence problem arises, consider the term out (in x ) under thepredicate assignment P = fu : C Int ; v : C Boolg and the type assignment:A = fx : Int ; in : 8a:C a ) Int ! a; out : 8a:C a ) a ! Intgfor some unary predicate symbol C . Instantiating the quanti�ed type variable in the typeof in (and hence also in that of out) with the types Int and Bool leads to distinct derivationsP j A ` out (in x ) : Int in which the corresponding translations, out u (in u x ) and out v (in v x )are clearly not equal.Note that the principal type scheme of out (in x ) in this example is 8a:C a ) Int and that thetype variable a (the source of the lack of coherence in the derivations above) appears only inthe predicate qualifying the type of the term, not in the type itself. Motivated by the functionalprogramming language Haskell [HPJW92], we say that a type of the form 8�i :P ) � is unam-biguous if f�ig \ TV (P) � TV (� ). Extending the results of this paper to describe the use oftranslations in the syntax-directed system and the type inference algorithm, we have establishedthe following coherence result:Theorem 7 If P j A ` M ;M 01 : � and P j A ` M ;M 02 : � and the principal type scheme ofM in A is unambiguous, then the translations M 01 and M 02 are equivalent.This generalises an earlier result by Blott [Blo90] for the special case of [WB89]. Full details areincluded in [Jon92] and we expect to describe this work more fully in a forthcoming paper.14



7.2 Eliminating evidence parametersUsing translations as described in Section 3, a term M of type 8�i :P ) � will be implementedby a term of the form �v1: . . .�vn :M 0, where P = f�1; . . . ; �ng and each vi is an evidence variablefor the corresponding predicate �i . The following subsections outline a number of situations inwhich it is useful to reduce or even eliminate the use of evidence parameters, either to obtain amore e�cient implementation or to avoid unnecessary repeated calculations.7.2.1 Simpli�cationThe translation of a term whose type is quali�ed by a set of predicates P requires one evidenceabstraction for each element of P . Thus the number of evidence parameters that are required canbe reduced by �nding a smaller set of predicates Q , equivalent to P in the sense that P `̀ Q andQ `̀ P (and hence the type of the new term is equivalent to that of the original term). In thissituation, we have a compromise between reducing the number of evidence parameters requiredand the cost of constructing evidence for P from evidence for Q . The process of simpli�cationcan be formalised by allowing the rule:P j A Ẁ M : � P `̀ Q Q `̀ PQ j A Ẁ M : �to be used at any stage during type inference to simplify the inferred predicate set. It is relativelystraightforward to show that this rule is sound and that the extended algorithm still calculatesprincipal (but potentially simpli�ed) type schemes.In general, the task of �nding an optimal set of predicates with which to replace P is likely tobe intractable. One potentially useful approach would be to determine a minimal subset Q � Psuch that Q `̀ P . To see that this is likely to be a good choice, note that:� P `̀ Q , by monotonicity of `̀ and hence Q is equivalent to P as required.� Since Q � P , the number of evidence abstractions required using Q is less than or equalto the number required when using P .� The construction of evidence for a predicate in P using evidence for Q is trivial for eachpredicate that is already in Q .7.2.2 Evidence parameters considered harmfulThe principal motivation for including the let construct in the term language was to enable thede�nition and use of polymorphic and overloaded values. In practice, the same construct is alsoused for a number of other purposes:� To avoid repeated evaluation of a value that is used at a number of points in an expression.� To create cyclic data structures using recursive bindings [BW89].� To enable the use of identi�ers as abbreviations for the subexpressions of a large expression.Note however that the addition of evidence parameters to the value de�ned in a let expressionmay mean that the evaluation of an overloaded term will not behave as intended. For example,if f : 8a:C a ) Int ! a, then we have a translation:let x = f 0 in (x ; x ) ; �v : let x = (�v :f v 0) in (x v ; x v)15



and the evaluation of x v in the translation is no longer shared. There are a number of potentialsolutions to this problem. In the example above, one method would be to rewrite the translationas: �v : let x = (f v 0) in (x ; x ):This is the kind of translation which will be obtained using a monomorphism restriction suchas that proposed for Haskell [HPJW92] which restricts the amount of overloading that can beused in particular syntactic forms of binding. Note that this approach is only suitable when thevariable de�ned in the let expression is not required to have a polymorphic type in the scope ofthat de�nition.7.2.3 Constant and locally-constant overloadingConsider the typing of local de�nitions in the type system of Section 4 using the rule:P j A ` M : � Q j Ax ; x :� ` N : �P [Q j A ` (let x = M in N ) : �Notice that this allows some of the predicates constraining the typing of M (i.e. those in P) tobe retained as a constraint on the environment in the conclusion of the rule rather than beingincluded in the type scheme �. However, in the corresponding rule (let)s for the syntax-directedsystem, all of the predicates constraining the typing ofM are included in the inferred type schemeGen(A;P ) � ): P j A s̀ M : � P 0 j Ax ; x :Gen(A;P ) � ) s̀ N : � 0P 0 j A s̀ (let x = M in N ) : � 0As a consequence, evidence parameters are needed for all of the predicates in P , even if someof the corresponding evidence values are the same for each occurrence of x in N . In particular,this includes constant evidence (for predicates with no free type variables) and locally-constantevidence (for predicates, each of whose free variables also appears free in A).From the relationship between the type inference algorithm W and the syntax-directed system,it follows that W has the same behaviour; indeed, this is essential to ensure that W calculatesprincipal types: if x 62 FV (N ), then none of the environment constraints described by P needbe re
ected by the constraints on the complete expression in P 0.However, if x 2 FV (N ), it is possible to �nd a set F � P such that P 0 `̀ F and hence the typescheme assigned to x can be replaced by Gen(A; (P nF )) � ), potentially decreasing the numberof evidence parameters required by x . To see this, suppose that Gen(A;P ) � ) = (8�i :P ) � ).A straightforward induction, based on the hypothesis that x 2 FV (N ), shows that P 0 `̀ [�i=�i ]Pfor some types �i . If we now de�ne:FP(A;P) = f (v : �) 2 P j TV (�) � TV (A) g;then F = FP(A;P) is the largest subset of P that is guaranteed to be unchanged by thesubstitution [�i=�i ]. These observations suggest that (let)s could be replaced by the two rules:� In the case where x 62 FV (N ):P j A s̀ M : � P 0 j A s̀ N : � 0 (let)f sP 0 j A s̀ (let x = M in N ) : � 0The typing judgement involving M serves only to preserve to property that all subtermsof a well-typed term are also well-typed. 16



� In the case where x 2 FV (N ):P j A s̀ M : � P 0 j Ax ; x :Gen(A;P n F ) � ) s̀ N : � 0 P 0 `̀ F (let)bsP 0 j A s̀ (let x = M in N ) : � 0where F = FP(A;P).While these rules retain the syntax-directed character necessary for use in a type inferencealgorithm, they are not suitable for typing top-level de�nitions (such as those in Haskell orML) which are treated as let expressions in which the scope of the de�ned variable is not fullydetermined at compile-time.A more realistic approach would be to use just (let)bs in place of (let)s , with the understandingthat type schemes inferred by W are only guaranteed to be principal in the case where x 2 FV (N )for all subterms of the form let x = M inN in the term whose type is being inferred. Justi�cationfor this approach is as follows:� For a top-level declaration of the identi�er x , we can take the scope of the declaration to bethe set of all terms that might reasonably be evaluated in the scope of such a declaration,which of course includes the term x .� For let expressions in which the scope of the de�ned variable is known, the local de�nition inan expression of the form let x =M in N is redundant, and the expression is semanticallyequivalent to N . However, expressions of this form are sometimes used in implicitly typedlanguages to force a less general type than might otherwise be obtained by the type inferencemechanism. For example, if (==) is an integer equality function and 0 is an integerconstant, then �x :let y = (x == 0) in x has principal type scheme Int ! Int , whereasthe principal type scheme for �x :x is 8a:a ! a. Such ad-hoc `coding-tricks' becomeunnecessary if the term language is extended to allow explicit type declarations.In a practical implementation, it would be useful to arrange for suitable diagnostic messages to begenerated whenever an expression of the form let x = M in N with x 62 FV (N ) is encountered;this would serve as a warning to the programmer that the principal type property may be lost(in addition to catching other potential program errors).7.3 Satis�abilityOne of the most important features of the systems of quali�ed types described in this thesis isthe ability to move `global' constraints on a typing derivation into the type of an object using()I ): P ; � j A ` M : �P j A ` M : � ) �This is essential in many situations where overloading is combined with polymorphism: withoutthe ability to move predicates from the �rst component of a typing P j A ` M : � into the typeof an object we would not be able to apply (8I ) for any type variables appearing in TV (P),severely limiting the use of polymorphism.On the other hand, with the formulation of the typing rules used in the previous sections thereis no attempt to guarantee that the predicates introduced into the type of an object using ()I )are satis�able. As we have already mentioned, an object of type � ) � can only be used if we17



can provide evidence for the predicate �. If no such evidence can be obtained, then any objectwith this type is useless.This problem was noted by Volpano and Smith [VS91] for the special case of the system of typeclasses described in [WB89]. With this in mind, they gave a stronger de�nition of well-typingthat includes testing for satis�ability of an inferred type scheme and showed that this makesthe process of determining whether a particular term is well-typed undecidable in an restrictedversion of the Wadler-Blott system. The framework used in this thesis allows us to separatetypability from predicate entailment and to identify the problem as undecidability of the latter.Nevertheless, the di�culty remains.On the one hand we could simply ignore the problem since it will never be possible to resolvethe overloading for an object with an unsatis�able type scheme and hence any attempt to useit will fail. On the other hand, it would certainly be useful if the type system could be used toidentify such objects at the point where they are de�ned and produce suitable error diagnosticsto assist the programmer. One possibility would be to modify the rule for typing let expressionswith: P j A ` M : � Q j Ax ; x :� ` N : � P0 sat �P ;Q j A ` (let x = M in N ) : �to ensure satis�ability with respect to a �xed set of predicates P0, where:P0 sat (8�i :P ) � ) , 9�i :P0 `̀ [�i=�i ]P :The following properties of this relationship between predicate sets and type schemes are easilyestablished and show that this notion of satis�ability is well-behaved with respect to our use ofpolymorphism, entailment and ordering:� If P sat �, then SP sat S� for any substitution S .� If P sat � and Q `̀ P , then Q sat �.� If P sat �0 and (P j �0) � �, then P sat �.We conjecture that, if we restrict our attention to derivations P j A ` M : � for which P0 `̀ P ,then the development of a principal type algorithm and coherence conditions described in theprevious sections will extend naturally to deal with this extension. Note however that we willrequire decidability of P0 sat � for arbitrary P0 and � to ensure decidability of type checking.Another, more positive, application of satis�ability that does not appear to have been consideredelsewhere is to allow the use of more accurate types for particular objects. As an example,consider the function �r :(r :l ; r :l) using the record selection operator described in Section 1.2which has principal type scheme:8r :8a:8b:(r has l :a; r has l :b)) r ! (a; b):On the other hand, for any given record type r , the types assigned to the variables a and b mustbe identical since they both correspond to the same �eld in r . It would therefore seem quitereasonable to treat f as having a principal satis�able type scheme:8r :8a:(r has l :a)) r ! (a; a):To see how this might be dealt with more formally, recall the treatment of the ordering betweentype schemes in Section 4.2. Writing the set of generic instances of a type scheme as:[[8�i:P ) � ]] = fQ ) [�i=�i]� j �i 2 Type; Q `̀ [�i=�i]P g;18



the ordering on type schemes is described by:� � �0 , [[�]] � [[�0]]In a similar way can de�ne the generic satis�able instances of a type scheme with respect to apredicate set P0 as:[[8�i:P ) � ]]satP0 = f [�i=�i]� j �i 2 Type; P0 `̀ [�i=�i]P gand de�ne a satis�ability ordering, again with respect to P0, by:� �satP0 �0 , [[�]]satP0 � [[�0]]satP0We can formalise the notion of principal satis�able type in the same way as in Section 6.3 usingthe (�satP0 ) ordering in place of (�). For the example above, both of the type schemes given areprincipal satis�able type schemes for the term �r :(r :l ; r :l). The �rst of these is the type schemethat would be obtained using our type inference algorithm, but it would clearly be preferable ifthe algorithm could be modi�ed to give the second alternative. Further investigation is neededto discover e�ective procedures or heuristics for calculating more informative types that can beused to support this extension.7.4 The use of subsumptionThe typing rules in Figure 1 are only suitable for reasoning about systems with explicit coercions.For example, if Int � Real , then we can use an addition function:add :: 8a:a � Real ) a ! a ! Realto add two integers together, obtaining a real number as the result. More sophisticated systems,such as those in [Mit84, FM89], cannot be described without adding a form of the rule ofsubsumption: P j A ` M : � 0 P `̀ � 0 � �P j A ` M : �Each use of this rule corresponds to an implicit coercion; the addition of two integers to obtaina real result can be described without explicit overloading using a function:add :: Real ! Real ! Realwith two implicit coercions from Int to Real . As a further example, in the framework of Section 2,the polymorphic identity function �t :�x : t :x can be treated as having type 8a:8b:a � b ) a ! band hence acts as a generic coercion function.No attempt has been made to deal with systems including the rule of subsumption in the devel-opment of the type inference algorithm in Section 6, which is therefore only suitable for languagesusing explicit coercions. The results of [FM89] and [Smi91] are likely to be particularly useful inextending the present system to support the use of implicit coercions.19
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