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Synoptic Abstract

Experimental design and response surface methodology is applied to
tuning the parameters of an optimization program employing genetic
algorithms. Attention is directed to the combinatorially challenging
DNA sequence assembly problem. Fine tuning of a 10K size test prob-
lem leads to a considerably improved solution to a 35K problem of

sequence assembly that is of significant biological interest.
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1. Introduction

Design and analysis of experiments and response surface methods have
prospered in this century through successful applications in agriculture ini-
tially and in industry in more recent decades. Great strides in the develop-
ment of these methods have taken place owing to improvements in computing
capability. Although the semiconductor industry upon which our computing
platforms depend has particularly benefited from design of experiments and re-
sponse surface methods, computer algorithms themselves are rarely subjected
to “quality improvements” via the statistical paradigms embodied in design
of experiments and response surface methods. The likely explanation is that
“experiments” are cheap to execute and the tedium of methodical experimen-
tation goes by the wayside in the eagerness to obtain instant results. This
scenario is reminiscent of the arguments used to defend “one-factor-at-a-time”
experiments and other seat-of-the-pants strategies. Although statisticians can
sermonize about the sins of inefficient experimentation, practitioners are more
commonly swayed by positive approaches such as successful applications that
may be adaptable to their own situation. Genetic algorithms are our platform
and DNA sequence assembly is our application area in espousing this philos-
ophy. Genetic algorithms provide a class of global optimization algorithms,
inspired by the principles of survival of the fittest and natural selection, sur-
veyed recently by [Collins, Eglese, and Golden, (1988)]. The DNA sequence
assembly process is responsible for taking many smaller, unoriented fragments
of DNA from a parent string of DNA and ordering them, based on a similarity

metric, to reproduce the sequence of the parent fragment.
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The purpose of this paper is to describe our efforts in improving the
performance of a genetic algorithm applied to the DNA sequence assembly
problem. The DNA Sequence Assembly problem, one of the problems high-
lighted by DIMACS, the Center for Discrete Mathematics and Theoretical
Computer Science, during its Computational Biology Year, is a critical part
of the Human Genome Project. It also provides a realistic test bed for the
study of genetic algorithms applied to permutation problems in general. Ge-
netic algorithms have several “tuning” parameters (mutation rate, crossover
rate) that can effect its performance (convergence rate, quality of solution).
In contrast, simulated annealing typically uses a single parameter tied to
the cooling schedule (see either [Bohachevsky, Johnson, and Stein, (1995)] or
[Bohachevsky, Johnson, and Stein, (1986)]. Convergence theorems dictate the
value of the parameters in theory, although in applications, empirical adjust-
ments are necessary |[Bohachevsky, Johnson, and Stein, (1986)]. Employing
the conventional wisdom associated with the settings of tuning parameters
for the genetic algorithm indicates that realistically-sized problems are unap-
proachable [Parsons, Forrest, and Burks, (1995)]. We started with a simple
DNA sequence assembly problem addressed with a genetic algorithm and re-
alized a ten-fold improvement in performance by merely adjusting the tuning
parameters (mutation rate, crossover rate). Moreover, the high-performance
area appeared to resemble a mesa, suggesting that the new settings in this re-
gion would be robust. We then ran the optimized genetic algorithm code on a
real problem and were delighted to discover a one “contig” solution (the pieces

assembled into one long contiguous string) that appears competitive with the
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current, published solution. Moreover, in the course of assessing this solution,
we discovered several anomalies in the DNA segments themselves that have
not been addressed by our predecessors.

Section 3 presents a brief introduction to genetic algorithms. Although
books on genetic algorithms and complexity have appeared in the popular
press [Holland, (1975), Goldberg, (1989), Holland, (1995)], results and meth-
ods are generally unknown to most statisticians. Section 5 outlines the steps
taken in the design of experiments - response surface methods endeavor seek-
ing “optimal” parameters in the smaller sequence assembly problem. Although
this effort is a somewhat standard application of these techniques, it is helpful
to recognize the benefits accrued when the experimentation can take place on
a work station. Section 6 focuses on the 35K assembly problem, yielding a
solution to an interesting biological problem that previously required consid-
erable “human intervention” to arrive at a consensus sequence. We argue on

a number of grounds that the published consensus sequence is suspect.

2. The Basics of DNA Sequence Assembly

The goal of the Human Genome Project is to identify the exact sequence
and function of the base pairs for the entire human genome, which consists of
approximately 3 billion base pairs for each person. There are many compo-
nents to this project; the work discussed here deals with the sequencing step —
combining information about the sequence of small fragments of DNA into a
coherent sequence for a much larger sequence. Waterman [Waterman, (1995)]

includes an approachable introduction to many of the terms involved with
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DNA sequencing and other computational challenges stemming from the Hu-
man Genome Project.

DNA consists of two anti-parallel, complementary strands of nucleic acids.
The accuracy of the various sequencing processes constrain laboratory ap-
proaches to DNA sequencing (see [Howe and Ward, (1989)] or alternatively
[Hunkapiller, Kaiser, Koop, and Hood, (1991)]. Currently, strands of DNA
longer than approximately 500-1000 base pairs cannot routinely be sequenced
accurately. However, the length of DNA strands of interest are on the order
of 40,000 bases or even 400,000 bases in length. Consequently, these large
strands of DNA are broken into smaller pieces for sequencing. The shotgun
sequencing process replicates and separates these strands, and then breaks the
strands into smaller fragments. These fragments are processed on the auto-
mated sequencing machines to determine the base sequence for the fragment.
Unfortunately, in the process of making and sequencing the fragments, in-
formation about the location, orientation and strandedness of the fragments
with respect to the original (parent) sequence is lost. The only information

remaining about a fragment is its base sequence.
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FI1GURE 1: DNA Sequence Assembly with 2 Copies of the Parent

The assembly process is illustrated in Figure 1. The process begins with
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a parent strand, that is copied numerous times, although the figure shows
only two copies. Restriction enzymes are applied to the copies of the parent,
creating a set of fragments. Since different enzymes look for different base
sequences, the set of fragments for each parent differ. The bar over certain
fragments indicate that they are on the opposite strand and therefore have a
reverse orientation. This orientation is lost during the fragmentation process.
The assembly process then compares the individual base pair sequences for the
fragments and, using this information, assembles a consensus sequence for the
parent DNA. Table 1 shows what the overlap comparison for the fragments in
the figure would show. For example, fragment f; is wholly contained within
the stretch of the parent DNA occupied by fragment fy. Since f5 is also a
large fragment, this overlap is designated H for high-degree of overlap in the
table. The other entries Table 1 can be determined from Figure 1 using the
same approach.

Any empty locations in the table represent essentially random similarities,
and hence are not necessarily zero. Consecutive overlapping fragments make
up a contig, and the goal of the assembly process is to order the fragments
such that the result is one contiguous sequence of overlapping fragments. One
reasonable result ordering that accounts for all the high overlap scores would

be the ordering of:

fl:fﬁ;ff):,f107f47.f97f27,f77ﬁ7f8

The hypothesis followed in the assembly process is that fragments with a
high degree of similarity of their sequences (a high overlap strength) likely

come from the same area of the DNA (see [Kececioglu and Myers, (1995)],
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TABLE 1: Table of Relative Similarity Scores for Example Frag-
ments. H — High degree of overlap; M — Medium degree; L —
Low degree.

[Hunkapiller, Kaiser, Koop, and Hood, (1991)] or [Waterman, (1995)] for more
information on the classic approach to DNA sequence assembly). The implica-
tions and validity of this hypothesis is addressed briefly in Myers [Myers, (1994)].
The DNA fragment assembly problem as it is formulated here is NP-hard.
A problem is NP-complete (which stands for non-deterministic polynomial

time complete) if it satisfies both of the following conditions:

1. The solution to the problem can be wverified in an amount of time that

grows as a polynomial in the size of the problem:
Time(n) = ¢; * n* + ¢

Thus, the amount of computation time required to verify a solution to
a problem of size n is a k'"-order polynomial. This k is required to be

independent of n. So, if one happened to guess the right answer, it would
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take at worst a polynomial amount of time to verify that the guess was
correct. The time to make the guess is assumed to be linear in the size

of the problem.

2. It is possible to encode all other problems in the class of NP problems

as an instance of this problem.

A problem is NP-hard if it is known only to satisfy the second of these two
conditions.

The DNA sequence assembly problem resembles the better-known NP-hard
problem, the Traveling Salesperson Problem (TSP). Briefly, an instance of TSP
has a set of cities and distances between all pairs of cities. The objective is
to find a tour of the cities that visits all cities exactly once and traverses the
minimum total distance. By associating fragments with cities and the inverse
of pairwise overlap strengths with the distances, the DNA fragment assembly
problem can be seen as a TSP instance. There are crucial differences between
TSP and fragment assembly that disallow many of the heuristic approaches
to TSP. First, although the graph can be considered complete, many of the
overlaps are zero. The overlap strengths do not satisfy the triangle inequality.
Additional complications arise as inconsistent overlap information is possible
due either to repeated sequences in the DNA itself or errors in the determina-
tion of the sequence of the fragment.

Since the sequence assembly problem is NP-hard, heuristic approaches
are needed to solve an instance of the problem in reasonable time. Simu-
lated annealing [Churchill, Burks, Eggert, Engle, and Waterman, (1993)]has

been used for this problem as well as for the closely related physical map-
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ping problem [Goldstein and Waterman, (1987)]. Here we describe a genetic
algorithm approach to the fragment assembly problem. The genetic algo-
rithm is implemented within the context of the Genesis genetic algorithm
package [Grefenstette, (1984)]. Our modifications to Genesis to support the
new operators are all written in the C programming language, as is the Gen-
esis package itself. Genesis is available on the Internet; our modifications are

available on request.

We use five realistically sized data sets, referred to as POBF, AMCG, Seto,
MSeto and MSeto2 to demonstrate the performance of the approach. The first
data set, POBF, is a human apolopoprotein with accession number M15421 in
GenBank [Carlsson, Darnfors, Olofsson, and Bjursell, (1986)], which is 10089
bases long. The data set AMCG is the initial 40% (20,100) of the bases from
LAMCG, the complete genome of bacteriophage lambda, accession numbers
J02459 and M17233 [Sanger, Coulson, Hill, and Petersen, (1982)]. The Seto
data set is an experimental data set made available for testing sequencing
algorithms [Seto, Koop, and Hood, (1993)]. This data set represents 34,475
bases of consensus sequence. The data sets referred to here as MSeto and
MSeto2 respectively are 752 and 743 fragment subsets of the Seto data set.
When we analyzed the Seto set, we found 86 fragments that did not have sig-
nificant similarity to the published consensus sequence based on our similarity
metric. We removed these fragments from the data set, since they can not
be properly placed using only this similarity information. Initially, we only
removed the 77 fragments with similarity less than 10. The data sets have

177, 352, 829, 752 and 743 fragments respectively.
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3. The Basics of Genetic Algorithms

Genetic algorithms are a method of solving problems inspired by the prin-
ciples of natural selection. Originally proposed by Holland [Holland, (1975)] in
the seventies, genetic algorithms have experienced a resurgence in popularity
and use [Forrest, (1993), Goldberg, (1989)]. In its simplest form, a genetic
algorithm operates over a population of binary strings, termed individuals. A
fitness function, usually whatever function is to be optimized, assigns a fit-
ness to each individual in the population. An individual represents a potential
solution to the problem or a setting of the function values. Each individual
competes with the others in the population based on its fitness. Thus, the
survival of a solution depends on its fitness relative to the fitness of other indi-
viduals currently in the population. Research on the behavior of genetic algo-
rithms shows that this process exploits the presence of good “building blocks”

partial solutions that contribute positively to the fitness of an individual
by allocating an exponentially increasing number of trials to individuals with
good building blocks.

Two primary search operators traditionally appear in genetic algorithms:
crossover and mutation. The crossover operator combines two individuals in
the population and creates two new individuals that each contain some portion
of the genetic material of the parents. The mutation operator randomly alters
some part of an individual to create a new individual. The selection mechanism
determines which individuals move into the next generation and which die off.
The basic selection mechanism uses the ratio of the fitness of the individual to

the average fitness of the population to determine the expected value of the
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number of copies of that individual that will appear in the next generation.

These general types of operators perform different roles in the evolution of
solutions in a genetic algorithm. The crossover operator is considered to focus
on exploiting the information existing in a population. In contrast, the muta-
tion operator’s role is exploring parts of the space not yet visited. The selection
mechanism focuses the search to those areas that seem to have high fitness.
Tuning a genetic algorithm requires balancing the forces of these operators to
allow good solutions to evolve and flourish. The operators work together to
combine good building blocks from different individuals to construct better

and larger building blocks.

The genetic algorithm described here differs from the traditional genetic
algorithm in several respects. First, solutions consist of a permutation of the
fragments. The simplest way to represent a permutation is using the list of
fragment identifiers; this is the representation used here. This representation,
though, necessitates the use of either specialized operators or some mechanism
to penalize illegal solutions since the operators are not closed over the space of
permutations. We chose to use specialized operators. Additionally, we use two
specialized macro-operators that were designed to overcome deficiencies in the
classes of solutions found. Thus, there are four operators: edge-recombination
crossover; swap, which acts as our mutation operator; transposition; and in-

version.

The fitness function used is analogous to that for TSP. We determine pair-
wise the similarity among all fragments to determine to what degree they

overlap [Churchill, Burks, Eggert, Engle, and Waterman, (1993)]. This value
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is their overlap score, w[f1, f2|. For individual P = py,pa, ..., py,, the fitness is

computed as follows:

1

11)[fpi’fpi+1] (1)

i=1

n

The edge-recombination crossover operator was specifically designed for
problems such as the DNA Sequence Assembly Problem that exploit adja-
cency information in the formation of high-quality solutions. TSP is another
problem in this class, while job shop scheduling is not. Edge recombination is a
complicated operator; a detailed explanation of the operator implemented here
appears in [Starkweather, McDaniel, Mathias, Whitley, and Whitley, (1991)].
In general, this crossover attempts to preserve adjacencies in the parents, and
in particular, those adjacencies that are common to both parents. When nei-
ther of those options is possible, a random selection is made. This operator is
appropriate for the sequence assembly problem since the building blocks of a
good fragment ordering consist of a set of fragments that are related to each
other by the similarity metric and should therefore be adjacent to one another.

The swap operator randomly selects two locations in the permutation and
swaps the values. Transposition and inversion are a form of mutation operator
in that they operate on one individual. These operators both affect individuals
based on contigs. A contig is a region of an individual such that all adjacent
fragments in the region have a non-zero overlap score. A contig represents
a portion of the solution that forms a contiguous stretch of base pairs. The
inversion operator randomly selects a contig and inverts the fragment ordering
in the contig. The transposition operator selects two contigs at random and

switches their position in the individual.
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To help ameliorate the convergence problems, we use sigma scaling and an
elitist strategy. Under the elitist strategy, the best individual encountered so
far is always retained in the population. Sigma scaling controls convergence
by limiting the number of new copies of an individual in the next generation.

The parameters required for a genetic algorithm with this configuration of
operators include the rate of application of the four operators and the popu-
lation size. We undertook this use of experimental design to discover how to

improve the performance of the genetic algorithm.

4. Summary of Previous Work

Genetic algorithms have been applied to many different optimization prob-
lems, including parameter/function optimization and combinatorial optimiza-
tion problems. Permutation problems such as job shop scheduling and the trav-
eling salesman problem raise difficult representation and operator design issues.
The obvious representation for a permutation, an ordered list of elements in the
permutation, is not readily manipulated by the traditional crossover and mu-
tation operators. Problems occur as there are a significant number of infeasible
solutions (combinations that are not permutations) and the operators are not
closed over feasible solutions. In our prior work, we used both the sorted-order
representation with the standard operators and the straightforward represen-
tation with specialized operators [Parsons, Forrest, and Burks, (1995)]. This
work indicated that the specialized operators were essential to achieve good
performance for the DNA Sequence Assembly Problem. However, we had

limited success scaling that algorithm to problems larger than 10kb.
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Later in the text, we present Table 5, which summarizes the previous results
of the genetic algorithm on the larger data sets considered here. The genetic
algorithm was able to find the correct solution to the 10kb data set, although
the number of trials required did not indicate that the process scaled well for
larger data sets. The previous best results for the 20kb and Seto data sets
supported that concern. While the 13 contig solution is not a terrible one, the
solution of the Seto set is not much improved over a random solution. Clearly,
if the genetic algorithm was to contribute to problems of realistic size, the

performance on these data sets had to be understood.

5. Experimental Design for Genetic Algorithms

Genetic algorithm experiments have the same basic flavor as generic al-
gorithms — namely, a set of independent variables to tweak the system and
an outcome or performance measure to assess performance. The independent
variables here are the algorithm tuning parameters (crossover, swap, trans-
position and inversion) as mentioned in the previous sections and include
generally several operator application rates and population size. Previous
work [17] had indicated that non-standard settings for the operator applica-
tion rates would likely be required. Population size is a curious parameter
in the mix in that it governs the rate of expenditures of computing resources
in the investigation. Initially, we install this size at a fixed value and subse-
quent to fine-tuning the operator application rates, we decreased this char-
acteristic for further savings. “Performance” has perhaps been inadvertently

intimated to be total execution time to achieving the optimum for a given
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problem. In fact, this could be a desirable yield/dependent variable definition
— however, the characteristics of our problem suggest otherwise. Once the ge-
netic algorithm approaches an optimal solution (as evidenced by diminished
improvements of the fitness function), the “end-game” problem emerges (see
[Bohachevsky, Johnson, and Stein, (1992)]). It is not productive to pursue im-
provements using a genetic algorithm at that stage, but rather one should use
a problem specific strategy such as a hillclimbing algorithm. To finesse this
difficulty, we opted to use the best value of the fitness function achieved for a

specified expenditure of resources, measured by the total number of trials.

Initial interest focused on the four operators with two-level high and low
rates given in Table 1. We used a fairly small population size of 500 and
intended to report the performance measure as of one million trials. The
problem chosen was the 10kb POBF data set, heretofore the largest prob-
lem solved under the conventional parameter settings. Intuitively, it seems
quite conceivable that specification of one of the operator values could impact
how another operator affects performance. Hence, we had concerns about
potential interactions among the operator rates. Combining these concerns
with our computing resource constraints (a Sparc workstation), we opted for
a replicated 2 full factorial design with rates specified in Table 1. We had
the ability to observe results of the full factorial design as they were produced
so the run-order was set to be a half-fraction, the other half-fraction and then
the replicates of the design. Although this constitutes what appears to be a
blocking effect, the reality is that randomness arises solely from the random

number generator so we could ignore this blocking contributor.
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Our initial concerns about interactions turned out to be unfounded and in
fact, only two of the four operator application rates (crossover and swap) had
strong effects. Lower rates of each seemed to be desirable which suggested
a steepest ascent search with these two variables with the other two rates
effectively inert. However, the variance of the performance was lower with the
higher rate of transposition, so that dictated its setting. For the time being,
we focused attention solely on the rates for the crossover and swap operators.
Table 3 gives the performance of the genetic algorithm for the replicated full
factorial design. We then positioned a central composite design centered at a
mutation rate of 3.2% and a crossover rate of 26.8%. We were very pleased
to discover that there was a substantial region of crossover and swap values
over which the genetic algorithm achieved good performance Figure 2 shows
this mesa at a low rate for inversion and the high rate for transposition. The

degree to which the performance plummets is striking.

The “optimal” region of good performance rates for crossover and swap
are counter-intuitive. Historically, genetic algorithms were assumed to derive
most of their power from the crossover operator, but set at a level much higher
than that observed here. Of course, this preliminary result needed to be tem-
pered until these rates were tested on larger problems. However, before doing
so, we did some investigation of the population size. Population size is the
resource driver in genetic algorithms affecting the number of evaluations of
the fitness function. More specifically, the population size and the number of
generations determine the number of fitness function evaluations for a given

run — defined here as the number of trials. Large population sizes can reduce
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F1GURE 2: Fitness Response. Other parameters for all runs:
Population size 500, 1 million trials, 2,100 generations, Sigma
Scaling 2.0, and Elitist Strategy.

the number of generations required to produce convergence at the expense of
increased memory requirements. Small population sizes could limit the diver-
sity of the population and thus, could adversely affect the efficacy of crossover
to contribute to the optimization. Premature convergence is a typical problem
when the population size is too small, since the rate at which the superior in-
dividuals in a population reproduce quickly reduces the representation in the
population of competing but potentially beneficial individuals.

We studied the performance of the genetic algorithm on the data set used
above, varying the population sizes. The results are shown in part in Table 4.

The table focuses on fitness function values only, as this is an appropriate
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Cross. | Trans. | Swap | Inversion

Rate | Rate | Rate Rate

High 5 .38 14 .38
Low 3 .28 .04 .28

TABLE 2: Rates for Full Factorial Experimental Design on
POBF data set. Parameters for all runs: Population size 500, 1
million trials, 2,100 generations, Sigma Scaling 2.0, and Elitist
Strategy.

Crossover | Transposition | Mutation | Inversion Fitness

Rate Rate Rate Rate Value

5 .38 14 .38 45,281 | 44,207
5 .38 14 28 43,892 | 43,950
5 .38 .04 .38 46,739 | 46,755
5 .38 .04 28 45,565 | 45,589
5 28 14 .38 43,439 | 44,438
5 28 14 28 44,798 | 43,026
5 28 .04 .38 43,866 | 45,830
5 28 .04 28 44,250 | 46,906
3 .38 14 .38 48,891 | 49,173
3 .38 14 28 49,191 | 51,601
3 .38 .04 .38 52,495 | 52,193
3 .38 .04 28 52,671 | 52,378
3 28 14 .38 50,393 | 51,618
3 28 14 28 50,492 | 52,212
3 28 .04 .38 53,107 | 49,795
3 28 .04 28 53,116 | 52,261

TABLE 3: Results for Full Factorial Experimental Design on
POBF data set. Parameters for all runs: Population size 500, 1
million trials, 2,100 generations, Sigma Scaling 2.0, and Elitist
Strategy.
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measure of the quality of the optimization process itself. For each population
size, several intermediate fitness function values and the final value after one

million trials are recorded.

The tests on population size indicated, for this data set, that a popu-
lation size comparable to the number of fragments in the data set was the
most effective value when considering total number of function evaluations,
reproducibility of results, and population diversity. This result is somewhat
surprising, when one considers the growth rate of the space of permutations
and the fact that the individuals grow at a rate of nlogn. Additionally, the
data indicates that there is a minimum population size below which the genetic
algorithm can not effectively function, due presumably to a loss of diversity

in the population. The conventional wisdom of genetic algorithms indicates

Pop | Fitness | Fitness | Fitness | Fitness | Fitness
Size | Value | Value | Value | Value | Value
20k 240k 500k 740k 1mil
1000 | 11,320 | 36,079 | 46,188 | 50,307 | 51,946
400 | 19,836 | 45,864 | 50,621 | 53,069 | 54,622
200 | 18,540 | 48,802 | 52,964 | 55,046 | 55,966
50 | 38,439 | 52,194 | 55,202 | 56,134 | 56,647
10 | 41,343 | 49,972 | 51,762 | 52,997 | 53,483

TABLE 4: Population Size Tests for POBF data set. Parame-
ters for all runs: Crossover rate .1, Swap Rate .04, Transposi-
tion Rate .38, Inversion Rate .28, Sigma Scaling 2.0, and Elitist
Strategy.
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that this minimum level should be much larger for a problem of this size
1416 bits per individual based solely on the number of low level building
blocks. The next challenge was to see if these results generalized to larger and

different data sets.

6. Results Generalization and the Seto Data Set

Previously, the genetic algorithm was unable to solve the data sets that
were larger than 10kb. Using the same parameter settings found for the 10kb
data set and a population size only slightly larger than the number of frag-
ments, we ran the genetic algorithm on the other large data sets described
above. Table 5 summarizes the previous results for the three data sets de-
scribed here and the results obtained using the new parameter settings.

The results presented in this table represent improvements in several as-
pects of the performance of the genetic algorithm although they also raise
some issues. The number of function evaluations (trials) required to find the
correct solution for the POBF data was reduced by an order of magnitude
and the number of generations by a factor of 4 through the use of appropriate
parameter settings and the smaller population size. For the AMCG data set,
a smaller number of trials resulted in the correct solution using the adjusted
parameter settings.

The results for the Seto set are most striking. While 27 contigs is not
a reasonable answer, it is a dramatic improvement over the previous best
solution we had obtained. As we were analyzing this solution, we realized

that there were a large number of fragments that, according to our similar-
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DataSet | DataSet | Population Number Number | Number
Name Size Size Generations Trials Contigs
POBF 177 1500 13,000 | 5,900,000 1
200 3393 500,117 1
AMCG 352 2500 5,600 | 2,300,000 13
400 6,786 | 2,000,021 1
Seto 829 2500 547 | 1,200,176 125
900 9,045 | 6,000,265 27
900 17,548 | 11,000,354 15
MSeto 752 N/A N/A N/A N/A
775 14,003 8,000,54 5
775 37,623 | 21,500,393 1
MSeto2 743 N/A N/A N/A N/A
775 9,624 | 5,500,544 7
TABLE 5: Comparison of Genetic Algorithm Results. First

line for a data set is result from prior work. Lines below use
Crossover Rate .1, Swap Rate .04, Transposition Rate .38, In-

version Rate .28, Sigma Scaling 2.0, and Elitist Strategy.
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ity metric [Churchill, Burks, Eggert, Engle, and Waterman, (1993)], did not
match the parent sequence to any significant degree. Since our fitness func-
tion is driven only by the overlap information from this similarity metric and
these fragments did not have significant overlaps, we removed them from the
data set. At this stage, we identified 77 fragments that had a similarity metric
of less than 10 with the final parent consensus, giving us a data set with 752

fragments.

The MSeto data set is the Seto data set with these 77 fragments men-
tioned above removed. The 5 contig solution presented above is very close
to a correct solution. In fact, a simple greedy algorithm could convert this
solution to the correct one. Genetic algorithms are best at getting close to
the right solution, but do not tend to make the fine adjustments necessary
to move from a near-optimal to an optimal solution. This behavior is consis-
tent with the behavior of simulated annealing, another stochastic optimization
technique [Bohachevsky, Johnson, and Stein, (1992), Johnson, (1988)]. As in
the case of simulated annealing, other algorithms, such as a hillclimbing algo-

rithm, can be used to make these fine adjustments.

However, the solutions represent another challenge for the genetic algo-
rithm; they contain defects that are not correctable, except by the relatively
unlikely event of a swap operation. The discrepancies occur because lower
quality, yet statistically significant overlaps are chosen instead of higher qual-
ity overlaps (an overlap of 75 is significant, but an overlap of 250 may be
the correct one). The specialized operators are currently designed to retain

significant overlaps by only moving contigs. As a consequence of the above
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choices, the connections between contigs can not be properly made, and the

contig isolation and stranding of fragments occurs.

There are several approaches to this problem. We combined two of them
in an effort to get to the optimal solution: relaxing the constraint on contig
boundaries for the transposition and inversion operators and the addition of

a form of greedy swap. Each of these techniques is described below.

While an overlap of 75-100 is clearly different than random, it likely repre-
sents an inappropriate placement for the fragment. Specifically, one of these
fragments should likely be closer to the end of the contig where it may serve
as a bridge fragment joining contigs. The completely random application of
transposition and inversion proved ineffective (and counter-productive) in our
earlier studies, prompting us to restrict application of the operator to contigs.
However, this restriction means that the only mechanism available for the
movement of this kind of isolated fragment to its proper location is the swap.
What we chose to do instead was to introduce an additional degree of ran-
domness into the transposition and inversion operator. We added a threshold
value for the contig boundary in conjunction with a random value. Overlaps
above that threshold were still considered within the contig. Overlaps below
that threshold had an increasing probability of being designated as the con-
tig boundary. For these preliminary experiments, we used a threshold of 100,
with a 10% probability of breaking the contig at an overlap of 90 and a 90%

probability at an overlap of 10.

The existing swap operation randomly selects two fragments in the ordering

and swapped their positions. We introduced a modification to this operator,
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that only takes affect late in the run. Swaps late in the run are either com-
pletely random as before or greedy. For the greedy swap, one fragment, i,
is chosen at random, and fragment j, the fragment with the highest overlap
strength with 4, is identified. A cursory analysis of the neighborhood in the
ordering of both 7 and j is made to determine whether to move 7 next to j
in the ordering or to move j next to 7. There are a couple of issues with
an operator like this. First, it is important to delay the application of this
operator until later in the run, since otherwise the genetic algorithm may be
led too early into local minima. Second, it proved critical to examine the
neighborhood surrounding the fragments to determine which move to make.
The selection of when to begin the greedy swap and how often to apply it are
currently ad hoc. As with the previous modification, more parameters have

been introduced into the optimization process.

These changes allowed us to find a single contig solution of the MSeto data
set, building from the population which produced the 5 contig solution. With
this new operator configuration, we returned to the Seto data set and produced
a 15 contig solution, again building on our previously evolved population. In
examining this solution, we realized that there were more fragments that had
low similarity to the parent with our metric. Indeed, there are 86 fragments
with an overlap score of 13 or less with the parent sequence; the other 743
have an overlap score of 86 or more. Additionally, there are 9 fragments that
have no overlap of weight greater than 100 with more than 1 other fragment.
Therefore, we generated another, slightly smaller, data set with these 86 frag-

ments removed. This data set, as shown in Table 5, is proceeding at a faster
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rate of improvement using the whole suite of modified operators. The perfor-
mance of the genetic algorithm with the modified operators is encouraging for

the large, and therefore realistically sized, data sets.

7. Towards an Understanding of Genetic Algorithms

The study of the population sizes has led to several questions about the ef-
fects on population diversity by the various operators. In the standard genetic
algorithm, once a given position is the same in all members of the population,
only the mutation operator applied at that position will allow that value to
change. This effect is the result of the preservation of positions by the crossover
operator. In the operator suite designed for this problem, all operators have
the potential of altering all bit positions. Therefore, the traditional measure
of convergence is not applicable. Indeed, the figures in Table 4 demonstrate
that the homogeneity metric can vary significantly over the course of the run.

Most of the conventional wisdom regarding population size selection derives
from the problems with diversity and convergence. As the population becomes
less diverse, the search narrows drastically, since the individuals generated by a
homogeneous population do not differ radically from those individuals in that
population. We hypothesize that the different effects of our operator suite and
their impact on convergence may be what allows us to use smaller popula-
tions than would otherwise be anticipated. We are exploring this question to
determine the kind of models and behavior that can be expected for genetic
algorithms applied to permutation problems. Whitley and Yoo have recently
developed exact models of genetic algorithm behavior for certain of the permu-

tation operators [Whitley and Yoo, (1995)]. These models are inapplicable to
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the question posed here, because they assume an infinite population. However,
their models, assuming these infinite populations, still provide insight into the

asymptotic behavior in the finite population case.

8. Conclusions

This paper reports on significant performance improvements for a genetic
algorithm applied to the problem of DNA Sequence Assembly. Specifically,
an order of magnitude improvement was obtained on a medium-sized data
set, and larger data sets have either been solved completely or have produced
workable near-optimal solutions. These performance improvements are the
result of applying techniques from experimental design and response surface
analysis to the parameter settings. Additional changes in the operator suite
resulted in the solution of the realistic data sets. A better understanding of
the nature of the performance enhancements and the operation of the genetic
algorithm in this setting is needed. We intend to explore such questions as we
extend this work further.

There remain the problems associated with the fitness function and prob-
lem formulation. Specifically, it is easily shown that, in the presence of signif-
icantly conserved repeat sequences, this formulation of the problem leads to a
consensus sequence that is shorter than the correct sequence. This compression
occurs since the overlap among fragments from different repeated regions is ex-
tremely high, violating the hypothesis of the assembly. Myers [Myers, (1994)]
has proposed an alternative formulation for the sequencing problem to address

the problem of repeated DNA in the sequence. These issues, as well as the



GENETIC ALGORITHMS FOR DNA SEQUENCING

value judgements made by the sequencers evidenced in the 86 fragments with
low similarity to the parent sequence, indicate that the information being used
by the genetic algorithm is likely insufficient to adequately solve the problem.
However, the genetic algorithm should be able to exploit additional infor-
mation through combined fitness functions such as those proposed by Burks
et al. [Burks, Parsons, and Engle, (1994)]. The problem of repeated DNA is
specifically addressed in that work through the use of map information. Opti-
mization of the modified fitness function separates the members of the different

repeat regions, resulting in the proper consensus sequence.
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