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R.J. PARSONS & M.E. JOHNSON1. IntroductionDesign and analysis of experiments and response surface methods haveprospered in this century through successful applications in agriculture ini-tially and in industry in more recent decades. Great strides in the develop-ment of these methods have taken place owing to improvements in computingcapability. Although the semiconductor industry upon which our computingplatforms depend has particularly bene�ted from design of experiments and re-sponse surface methods, computer algorithms themselves are rarely subjectedto \quality improvements" via the statistical paradigms embodied in designof experiments and response surface methods. The likely explanation is that\experiments" are cheap to execute and the tedium of methodical experimen-tation goes by the wayside in the eagerness to obtain instant results. Thisscenario is reminiscent of the arguments used to defend \one-factor-at-a-time"experiments and other seat-of-the-pants strategies. Although statisticians cansermonize about the sins of ine�cient experimentation, practitioners are morecommonly swayed by positive approaches such as successful applications thatmay be adaptable to their own situation. Genetic algorithms are our platformand DNA sequence assembly is our application area in espousing this philos-ophy. Genetic algorithms provide a class of global optimization algorithms,inspired by the principles of survival of the �ttest and natural selection, sur-veyed recently by [Collins, Eglese, and Golden, (1988)]. The DNA sequenceassembly process is responsible for taking many smaller, unoriented fragmentsof DNA from a parent string of DNA and ordering them, based on a similaritymetric, to reproduce the sequence of the parent fragment.



GENETIC ALGORITHMS FOR DNA SEQUENCINGThe purpose of this paper is to describe our e�orts in improving theperformance of a genetic algorithm applied to the DNA sequence assemblyproblem. The DNA Sequence Assembly problem, one of the problems high-lighted by DIMACS, the Center for Discrete Mathematics and TheoreticalComputer Science, during its Computational Biology Year, is a critical partof the Human Genome Project. It also provides a realistic test bed for thestudy of genetic algorithms applied to permutation problems in general. Ge-netic algorithms have several \tuning" parameters (mutation rate, crossoverrate) that can e�ect its performance (convergence rate, quality of solution).In contrast, simulated annealing typically uses a single parameter tied tothe cooling schedule (see either [Bohachevsky, Johnson, and Stein, (1995)] or[Bohachevsky, Johnson, and Stein, (1986)]. Convergence theorems dictate thevalue of the parameters in theory, although in applications, empirical adjust-ments are necessary [Bohachevsky, Johnson, and Stein, (1986)]. Employingthe conventional wisdom associated with the settings of tuning parametersfor the genetic algorithm indicates that realistically-sized problems are unap-proachable [Parsons, Forrest, and Burks, (1995)]. We started with a simpleDNA sequence assembly problem addressed with a genetic algorithm and re-alized a ten-fold improvement in performance by merely adjusting the tuningparameters (mutation rate, crossover rate). Moreover, the high-performancearea appeared to resemble a mesa, suggesting that the new settings in this re-gion would be robust. We then ran the optimized genetic algorithm code on areal problem and were delighted to discover a one \contig" solution (the piecesassembled into one long contiguous string) that appears competitive with the



R.J. PARSONS & M.E. JOHNSONcurrent, published solution. Moreover, in the course of assessing this solution,we discovered several anomalies in the DNA segments themselves that havenot been addressed by our predecessors.Section 3 presents a brief introduction to genetic algorithms. Althoughbooks on genetic algorithms and complexity have appeared in the popularpress [Holland, (1975), Goldberg, (1989), Holland, (1995)], results and meth-ods are generally unknown to most statisticians. Section 5 outlines the stepstaken in the design of experiments - response surface methods endeavor seek-ing \optimal" parameters in the smaller sequence assembly problem. Althoughthis e�ort is a somewhat standard application of these techniques, it is helpfulto recognize the bene�ts accrued when the experimentation can take place ona work station. Section 6 focuses on the 35K assembly problem, yielding asolution to an interesting biological problem that previously required consid-erable \human intervention" to arrive at a consensus sequence. We argue ona number of grounds that the published consensus sequence is suspect.2. The Basics of DNA Sequence AssemblyThe goal of the Human Genome Project is to identify the exact sequenceand function of the base pairs for the entire human genome, which consists ofapproximately 3 billion base pairs for each person. There are many compo-nents to this project; the work discussed here deals with the sequencing step {combining information about the sequence of small fragments of DNA into acoherent sequence for a much larger sequence. Waterman [Waterman, (1995)]includes an approachable introduction to many of the terms involved with



GENETIC ALGORITHMS FOR DNA SEQUENCINGDNA sequencing and other computational challenges stemming from the Hu-man Genome Project.DNA consists of two anti-parallel, complementary strands of nucleic acids.The accuracy of the various sequencing processes constrain laboratory ap-proaches to DNA sequencing (see [Howe and Ward, (1989)] or alternatively[Hunkapiller, Kaiser, Koop, and Hood, (1991)]. Currently, strands of DNAlonger than approximately 500-1000 base pairs cannot routinely be sequencedaccurately. However, the length of DNA strands of interest are on the orderof 40,000 bases or even 400,000 bases in length. Consequently, these largestrands of DNA are broken into smaller pieces for sequencing. The shotgunsequencing process replicates and separates these strands, and then breaks thestrands into smaller fragments. These fragments are processed on the auto-mated sequencing machines to determine the base sequence for the fragment.Unfortunately, in the process of making and sequencing the fragments, in-formation about the location, orientation and strandedness of the fragmentswith respect to the original (parent) sequence is lost. The only informationremaining about a fragment is its base sequence.
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Figure 1: DNA Sequence Assembly with 2 Copies of the ParentThe assembly process is illustrated in Figure 1. The process begins with



R.J. PARSONS & M.E. JOHNSONa parent strand, that is copied numerous times, although the �gure showsonly two copies. Restriction enzymes are applied to the copies of the parent,creating a set of fragments. Since di�erent enzymes look for di�erent basesequences, the set of fragments for each parent di�er. The bar over certainfragments indicate that they are on the opposite strand and therefore have areverse orientation. This orientation is lost during the fragmentation process.The assembly process then compares the individual base pair sequences for thefragments and, using this information, assembles a consensus sequence for theparent DNA. Table 1 shows what the overlap comparison for the fragments inthe �gure would show. For example, fragment f2 is wholly contained withinthe stretch of the parent DNA occupied by fragment f9. Since f2 is also alarge fragment, this overlap is designated H for high-degree of overlap in thetable. The other entries Table 1 can be determined from Figure 1 using thesame approach.Any empty locations in the table represent essentially random similarities,and hence are not necessarily zero. Consecutive overlapping fragments makeup a contig, and the goal of the assembly process is to order the fragmentssuch that the result is one contiguous sequence of overlapping fragments. Onereasonable result ordering that accounts for all the high overlap scores wouldbe the ordering of: f1; f6; �f5; �f10; �f4; �f9; �f2; f7; �f3; f8The hypothesis followed in the assembly process is that fragments with ahigh degree of similarity of their sequences (a high overlap strength) likelycome from the same area of the DNA (see [Kececioglu and Myers, (1995)],



GENETIC ALGORITHMS FOR DNA SEQUENCING
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10f1 M M H M Mf2 M M M M Hf3 M M Mf4 M M M M H Lf5 M M Mf6 H M M L Mf7 M M Mf8 M M Mf9 M H M H L M Mf10 M L M MTable 1: Table of Relative Similarity Scores for Example Frag-ments. H { High degree of overlap; M { Medium degree; L {Low degree.[Hunkapiller, Kaiser, Koop, and Hood, (1991)] or [Waterman, (1995)] for moreinformation on the classic approach to DNA sequence assembly). The implica-tions and validity of this hypothesis is addressed brie
y in Myers [Myers, (1994)].The DNA fragment assembly problem as it is formulated here is NP-hard.A problem is NP-complete (which stands for non-deterministic polynomialtime complete) if it satis�es both of the following conditions:1. The solution to the problem can be veri�ed in an amount of time thatgrows as a polynomial in the size of the problem:T ime(n) = c1 � nk + c2Thus, the amount of computation time required to verify a solution toa problem of size n is a kth-order polynomial. This k is required to beindependent of n. So, if one happened to guess the right answer, it would



R.J. PARSONS & M.E. JOHNSONtake at worst a polynomial amount of time to verify that the guess wascorrect. The time to make the guess is assumed to be linear in the sizeof the problem.2. It is possible to encode all other problems in the class of NP problemsas an instance of this problem.A problem is NP-hard if it is known only to satisfy the second of these twoconditions.The DNA sequence assembly problem resembles the better-known NP-hardproblem, the Traveling Salesperson Problem (TSP). Brie
y, an instance of TSPhas a set of cities and distances between all pairs of cities. The objective isto �nd a tour of the cities that visits all cities exactly once and traverses theminimum total distance. By associating fragments with cities and the inverseof pairwise overlap strengths with the distances, the DNA fragment assemblyproblem can be seen as a TSP instance. There are crucial di�erences betweenTSP and fragment assembly that disallow many of the heuristic approachesto TSP. First, although the graph can be considered complete, many of theoverlaps are zero. The overlap strengths do not satisfy the triangle inequality.Additional complications arise as inconsistent overlap information is possibledue either to repeated sequences in the DNA itself or errors in the determina-tion of the sequence of the fragment.Since the sequence assembly problem is NP-hard, heuristic approachesare needed to solve an instance of the problem in reasonable time. Simu-lated annealing [Churchill, Burks, Eggert, Engle, and Waterman, (1993)]hasbeen used for this problem as well as for the closely related physical map-



GENETIC ALGORITHMS FOR DNA SEQUENCINGping problem [Goldstein and Waterman, (1987)]. Here we describe a geneticalgorithm approach to the fragment assembly problem. The genetic algo-rithm is implemented within the context of the Genesis genetic algorithmpackage [Grefenstette, (1984)]. Our modi�cations to Genesis to support thenew operators are all written in the C programming language, as is the Gen-esis package itself. Genesis is available on the Internet; our modi�cations areavailable on request.We use �ve realistically sized data sets, referred to as POBF, AMCG, Seto,MSeto and MSeto2 to demonstrate the performance of the approach. The �rstdata set, POBF, is a human apolopoprotein with accession number M15421 inGenBank [Carlsson, Darnfors, Olofsson, and Bjursell, (1986)], which is 10089bases long. The data set AMCG is the initial 40% (20,100) of the bases fromLAMCG, the complete genome of bacteriophage lambda, accession numbersJ02459 and M17233 [Sanger, Coulson, Hill, and Petersen, (1982)]. The Setodata set is an experimental data set made available for testing sequencingalgorithms [Seto, Koop, and Hood, (1993)]. This data set represents 34,475bases of consensus sequence. The data sets referred to here as MSeto andMSeto2 respectively are 752 and 743 fragment subsets of the Seto data set.When we analyzed the Seto set, we found 86 fragments that did not have sig-ni�cant similarity to the published consensus sequence based on our similaritymetric. We removed these fragments from the data set, since they can notbe properly placed using only this similarity information. Initially, we onlyremoved the 77 fragments with similarity less than 10. The data sets have177, 352, 829, 752 and 743 fragments respectively.



R.J. PARSONS & M.E. JOHNSON3. The Basics of Genetic AlgorithmsGenetic algorithms are a method of solving problems inspired by the prin-ciples of natural selection. Originally proposed by Holland [Holland, (1975)] inthe seventies, genetic algorithms have experienced a resurgence in popularityand use [Forrest, (1993), Goldberg, (1989)]. In its simplest form, a geneticalgorithm operates over a population of binary strings, termed individuals. A�tness function, usually whatever function is to be optimized, assigns a �t-ness to each individual in the population. An individual represents a potentialsolution to the problem or a setting of the function values. Each individualcompetes with the others in the population based on its �tness. Thus, thesurvival of a solution depends on its �tness relative to the �tness of other indi-viduals currently in the population. Research on the behavior of genetic algo-rithms shows that this process exploits the presence of good \building blocks"{ partial solutions that contribute positively to the �tness of an individual {by allocating an exponentially increasing number of trials to individuals withgood building blocks.Two primary search operators traditionally appear in genetic algorithms:crossover and mutation. The crossover operator combines two individuals inthe population and creates two new individuals that each contain some portionof the genetic material of the parents. The mutation operator randomly alterssome part of an individual to create a new individual. The selection mechanismdetermines which individuals move into the next generation and which die o�.The basic selection mechanism uses the ratio of the �tness of the individual tothe average �tness of the population to determine the expected value of the



GENETIC ALGORITHMS FOR DNA SEQUENCINGnumber of copies of that individual that will appear in the next generation.These general types of operators perform di�erent roles in the evolution ofsolutions in a genetic algorithm. The crossover operator is considered to focuson exploiting the information existing in a population. In contrast, the muta-tion operator's role is exploring parts of the space not yet visited. The selectionmechanism focuses the search to those areas that seem to have high �tness.Tuning a genetic algorithm requires balancing the forces of these operators toallow good solutions to evolve and 
ourish. The operators work together tocombine good building blocks from di�erent individuals to construct betterand larger building blocks.The genetic algorithm described here di�ers from the traditional geneticalgorithm in several respects. First, solutions consist of a permutation of thefragments. The simplest way to represent a permutation is using the list offragment identi�ers; this is the representation used here. This representation,though, necessitates the use of either specialized operators or some mechanismto penalize illegal solutions since the operators are not closed over the space ofpermutations. We chose to use specialized operators. Additionally, we use twospecialized macro-operators that were designed to overcome de�ciencies in theclasses of solutions found. Thus, there are four operators: edge-recombinationcrossover; swap, which acts as our mutation operator; transposition; and in-version.The �tness function used is analogous to that for TSP. We determine pair-wise the similarity among all fragments to determine to what degree theyoverlap [Churchill, Burks, Eggert, Engle, and Waterman, (1993)]. This value



R.J. PARSONS & M.E. JOHNSONis their overlap score, w[f1; f2]. For individual P = p1; p2; : : : ; pn, the �tness iscomputed as follows: n�1Xi=1 w[fpi; fpi+1] (1)The edge-recombination crossover operator was speci�cally designed forproblems such as the DNA Sequence Assembly Problem that exploit adja-cency information in the formation of high-quality solutions. TSP is anotherproblem in this class, while job shop scheduling is not. Edge recombination is acomplicated operator; a detailed explanation of the operator implemented hereappears in [Starkweather, McDaniel, Mathias, Whitley, and Whitley, (1991)].In general, this crossover attempts to preserve adjacencies in the parents, andin particular, those adjacencies that are common to both parents. When nei-ther of those options is possible, a random selection is made. This operator isappropriate for the sequence assembly problem since the building blocks of agood fragment ordering consist of a set of fragments that are related to eachother by the similarity metric and should therefore be adjacent to one another.The swap operator randomly selects two locations in the permutation andswaps the values. Transposition and inversion are a form of mutation operatorin that they operate on one individual. These operators both a�ect individualsbased on contigs. A contig is a region of an individual such that all adjacentfragments in the region have a non-zero overlap score. A contig representsa portion of the solution that forms a contiguous stretch of base pairs. Theinversion operator randomly selects a contig and inverts the fragment orderingin the contig. The transposition operator selects two contigs at random andswitches their position in the individual.



GENETIC ALGORITHMS FOR DNA SEQUENCINGTo help ameliorate the convergence problems, we use sigma scaling and anelitist strategy. Under the elitist strategy, the best individual encountered sofar is always retained in the population. Sigma scaling controls convergenceby limiting the number of new copies of an individual in the next generation.The parameters required for a genetic algorithm with this con�guration ofoperators include the rate of application of the four operators and the popu-lation size. We undertook this use of experimental design to discover how toimprove the performance of the genetic algorithm.4. Summary of Previous WorkGenetic algorithms have been applied to many di�erent optimization prob-lems, including parameter/function optimization and combinatorial optimiza-tion problems. Permutation problems such as job shop scheduling and the trav-eling salesman problem raise di�cult representation and operator design issues.The obvious representation for a permutation, an ordered list of elements in thepermutation, is not readily manipulated by the traditional crossover and mu-tation operators. Problems occur as there are a signi�cant number of infeasiblesolutions (combinations that are not permutations) and the operators are notclosed over feasible solutions. In our prior work, we used both the sorted-orderrepresentation with the standard operators and the straightforward represen-tation with specialized operators [Parsons, Forrest, and Burks, (1995)]. Thiswork indicated that the specialized operators were essential to achieve goodperformance for the DNA Sequence Assembly Problem. However, we hadlimited success scaling that algorithm to problems larger than 10kb.



R.J. PARSONS & M.E. JOHNSONLater in the text, we present Table 5, which summarizes the previous resultsof the genetic algorithm on the larger data sets considered here. The geneticalgorithm was able to �nd the correct solution to the 10kb data set, althoughthe number of trials required did not indicate that the process scaled well forlarger data sets. The previous best results for the 20kb and Seto data setssupported that concern. While the 13 contig solution is not a terrible one, thesolution of the Seto set is not much improved over a random solution. Clearly,if the genetic algorithm was to contribute to problems of realistic size, theperformance on these data sets had to be understood.5. Experimental Design for Genetic AlgorithmsGenetic algorithm experiments have the same basic 
avor as generic al-gorithms { namely, a set of independent variables to tweak the system andan outcome or performance measure to assess performance. The independentvariables here are the algorithm tuning parameters (crossover, swap, trans-position and inversion) as mentioned in the previous sections and includegenerally several operator application rates and population size. Previouswork [17] had indicated that non-standard settings for the operator applica-tion rates would likely be required. Population size is a curious parameterin the mix in that it governs the rate of expenditures of computing resourcesin the investigation. Initially, we install this size at a �xed value and subse-quent to �ne-tuning the operator application rates, we decreased this char-acteristic for further savings. \Performance" has perhaps been inadvertentlyintimated to be total execution time to achieving the optimum for a given



GENETIC ALGORITHMS FOR DNA SEQUENCINGproblem. In fact, this could be a desirable yield/dependent variable de�nition{ however, the characteristics of our problem suggest otherwise. Once the ge-netic algorithm approaches an optimal solution (as evidenced by diminishedimprovements of the �tness function), the \end-game" problem emerges (see[Bohachevsky, Johnson, and Stein, (1992)]). It is not productive to pursue im-provements using a genetic algorithm at that stage, but rather one should usea problem speci�c strategy such as a hillclimbing algorithm. To �nesse thisdi�culty, we opted to use the best value of the �tness function achieved for aspeci�ed expenditure of resources, measured by the total number of trials.Initial interest focused on the four operators with two-level high and lowrates given in Table 1. We used a fairly small population size of 500 andintended to report the performance measure as of one million trials. Theproblem chosen was the 10kb POBF data set, heretofore the largest prob-lem solved under the conventional parameter settings. Intuitively, it seemsquite conceivable that speci�cation of one of the operator values could impacthow another operator a�ects performance. Hence, we had concerns aboutpotential interactions among the operator rates. Combining these concernswith our computing resource constraints (a Sparc workstation), we opted fora replicated 24 full factorial design with rates speci�ed in Table 1. We hadthe ability to observe results of the full factorial design as they were producedso the run-order was set to be a half-fraction, the other half-fraction and thenthe replicates of the design. Although this constitutes what appears to be ablocking e�ect, the reality is that randomness arises solely from the randomnumber generator so we could ignore this blocking contributor.



R.J. PARSONS & M.E. JOHNSONOur initial concerns about interactions turned out to be unfounded and infact, only two of the four operator application rates (crossover and swap) hadstrong e�ects. Lower rates of each seemed to be desirable which suggesteda steepest ascent search with these two variables with the other two ratese�ectively inert. However, the variance of the performance was lower with thehigher rate of transposition, so that dictated its setting. For the time being,we focused attention solely on the rates for the crossover and swap operators.Table 3 gives the performance of the genetic algorithm for the replicated fullfactorial design. We then positioned a central composite design centered at amutation rate of 3.2% and a crossover rate of 26.8%. We were very pleasedto discover that there was a substantial region of crossover and swap valuesover which the genetic algorithm achieved good performance Figure 2 showsthis mesa at a low rate for inversion and the high rate for transposition. Thedegree to which the performance plummets is striking.The \optimal" region of good performance rates for crossover and swapare counter-intuitive. Historically, genetic algorithms were assumed to derivemost of their power from the crossover operator, but set at a level much higherthan that observed here. Of course, this preliminary result needed to be tem-pered until these rates were tested on larger problems. However, before doingso, we did some investigation of the population size. Population size is theresource driver in genetic algorithms a�ecting the number of evaluations ofthe �tness function. More speci�cally, the population size and the number ofgenerations determine the number of �tness function evaluations for a givenrun { de�ned here as the number of trials. Large population sizes can reduce
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Figure 2: Fitness Response. Other parameters for all runs:Population size 500, 1 million trials, 2,100 generations, SigmaScaling 2.0, and Elitist Strategy.
the number of generations required to produce convergence at the expense ofincreased memory requirements. Small population sizes could limit the diver-sity of the population and thus, could adversely a�ect the e�cacy of crossoverto contribute to the optimization. Premature convergence is a typical problemwhen the population size is too small, since the rate at which the superior in-dividuals in a population reproduce quickly reduces the representation in thepopulation of competing but potentially bene�cial individuals.We studied the performance of the genetic algorithm on the data set usedabove, varying the population sizes. The results are shown in part in Table 4.The table focuses on �tness function values only, as this is an appropriate
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Cross. Trans. Swap InversionRate Rate Rate RateHigh .5 .38 .14 .38Low .3 .28 .04 .28Table 2: Rates for Full Factorial Experimental Design onPOBF data set. Parameters for all runs: Population size 500, 1million trials, 2,100 generations, Sigma Scaling 2.0, and ElitistStrategy.

Crossover Transposition Mutation Inversion FitnessRate Rate Rate Rate Value.5 .38 .14 .38 45,281 44,207.5 .38 .14 .28 43,892 43,950.5 .38 .04 .38 46,739 46,755.5 .38 .04 .28 45,565 45,589.5 .28 .14 .38 43,439 44,438.5 .28 .14 .28 44,798 43,026.5 .28 .04 .38 43,866 45,830.5 .28 .04 .28 44,250 46,906.3 .38 .14 .38 48,891 49,173.3 .38 .14 .28 49,191 51,601.3 .38 .04 .38 52,495 52,193.3 .38 .04 .28 52,671 52,378.3 .28 .14 .38 50,393 51,618.3 .28 .14 .28 50,492 52,212.3 .28 .04 .38 53,107 49,795.3 .28 .04 .28 53,116 52,261Table 3: Results for Full Factorial Experimental Design onPOBF data set. Parameters for all runs: Population size 500, 1million trials, 2,100 generations, Sigma Scaling 2.0, and ElitistStrategy.



GENETIC ALGORITHMS FOR DNA SEQUENCINGmeasure of the quality of the optimization process itself. For each populationsize, several intermediate �tness function values and the �nal value after onemillion trials are recorded.The tests on population size indicated, for this data set, that a popu-lation size comparable to the number of fragments in the data set was themost e�ective value when considering total number of function evaluations,reproducibility of results, and population diversity. This result is somewhatsurprising, when one considers the growth rate of the space of permutationsand the fact that the individuals grow at a rate of nlogn. Additionally, thedata indicates that there is a minimum population size below which the geneticalgorithm can not e�ectively function, due presumably to a loss of diversityin the population. The conventional wisdom of genetic algorithms indicates
Pop Fitness Fitness Fitness Fitness FitnessSize Value Value Value Value Value20k 240k 500k 740k 1mil1000 11,320 36,079 46,188 50,307 51,946400 19,836 45,864 50,621 53,069 54,622200 18,540 48,802 52,964 55,046 55,96650 38,439 52,194 55,202 56,134 56,64710 41,343 49,972 51,762 52,997 53,483Table 4: Population Size Tests for POBF data set. Parame-ters for all runs: Crossover rate .1, Swap Rate .04, Transposi-tion Rate .38, Inversion Rate .28, Sigma Scaling 2.0, and ElitistStrategy.



R.J. PARSONS & M.E. JOHNSONthat this minimum level should be much larger for a problem of this size |1416 bits per individual | based solely on the number of low level buildingblocks. The next challenge was to see if these results generalized to larger anddi�erent data sets.6. Results Generalization and the Seto Data SetPreviously, the genetic algorithm was unable to solve the data sets thatwere larger than 10kb. Using the same parameter settings found for the 10kbdata set and a population size only slightly larger than the number of frag-ments, we ran the genetic algorithm on the other large data sets describedabove. Table 5 summarizes the previous results for the three data sets de-scribed here and the results obtained using the new parameter settings.The results presented in this table represent improvements in several as-pects of the performance of the genetic algorithm although they also raisesome issues. The number of function evaluations (trials) required to �nd thecorrect solution for the POBF data was reduced by an order of magnitudeand the number of generations by a factor of 4 through the use of appropriateparameter settings and the smaller population size. For the AMCG data set,a smaller number of trials resulted in the correct solution using the adjustedparameter settings.The results for the Seto set are most striking. While 27 contigs is nota reasonable answer, it is a dramatic improvement over the previous bestsolution we had obtained. As we were analyzing this solution, we realizedthat there were a large number of fragments that, according to our similar-
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DataSet DataSet Population Number Number NumberName Size Size Generations Trials ContigsPOBF 177 1500 13,000 5,900,000 1200 3393 500,117 1AMCG 352 2500 5,600 2,300,000 13400 6,786 2,000,021 1Seto 829 2500 547 1,200,176 125900 9,045 6,000,265 27900 17,548 11,000,354 15MSeto 752 N/A N/A N/A N/A775 14,003 8,000,54 5775 37,623 21,500,393 1MSeto2 743 N/A N/A N/A N/A775 9,624 5,500,544 7Table 5: Comparison of Genetic Algorithm Results. Firstline for a data set is result from prior work. Lines below useCrossover Rate .1, Swap Rate .04, Transposition Rate .38, In-version Rate .28, Sigma Scaling 2.0, and Elitist Strategy.



R.J. PARSONS & M.E. JOHNSONity metric [Churchill, Burks, Eggert, Engle, and Waterman, (1993)], did notmatch the parent sequence to any signi�cant degree. Since our �tness func-tion is driven only by the overlap information from this similarity metric andthese fragments did not have signi�cant overlaps, we removed them from thedata set. At this stage, we identi�ed 77 fragments that had a similarity metricof less than 10 with the �nal parent consensus, giving us a data set with 752fragments.The MSeto data set is the Seto data set with these 77 fragments men-tioned above removed. The 5 contig solution presented above is very closeto a correct solution. In fact, a simple greedy algorithm could convert thissolution to the correct one. Genetic algorithms are best at getting close tothe right solution, but do not tend to make the �ne adjustments necessaryto move from a near-optimal to an optimal solution. This behavior is consis-tent with the behavior of simulated annealing, another stochastic optimizationtechnique [Bohachevsky, Johnson, and Stein, (1992), Johnson, (1988)]. As inthe case of simulated annealing, other algorithms, such as a hillclimbing algo-rithm, can be used to make these �ne adjustments.However, the solutions represent another challenge for the genetic algo-rithm; they contain defects that are not correctable, except by the relativelyunlikely event of a swap operation. The discrepancies occur because lowerquality, yet statistically signi�cant overlaps are chosen instead of higher qual-ity overlaps (an overlap of 75 is signi�cant, but an overlap of 250 may bethe correct one). The specialized operators are currently designed to retainsigni�cant overlaps by only moving contigs. As a consequence of the above



GENETIC ALGORITHMS FOR DNA SEQUENCINGchoices, the connections between contigs can not be properly made, and thecontig isolation and stranding of fragments occurs.There are several approaches to this problem. We combined two of themin an e�ort to get to the optimal solution: relaxing the constraint on contigboundaries for the transposition and inversion operators and the addition ofa form of greedy swap. Each of these techniques is described below.While an overlap of 75-100 is clearly di�erent than random, it likely repre-sents an inappropriate placement for the fragment. Speci�cally, one of thesefragments should likely be closer to the end of the contig where it may serveas a bridge fragment joining contigs. The completely random application oftransposition and inversion proved ine�ective (and counter-productive) in ourearlier studies, prompting us to restrict application of the operator to contigs.However, this restriction means that the only mechanism available for themovement of this kind of isolated fragment to its proper location is the swap.What we chose to do instead was to introduce an additional degree of ran-domness into the transposition and inversion operator. We added a thresholdvalue for the contig boundary in conjunction with a random value. Overlapsabove that threshold were still considered within the contig. Overlaps belowthat threshold had an increasing probability of being designated as the con-tig boundary. For these preliminary experiments, we used a threshold of 100,with a 10% probability of breaking the contig at an overlap of 90 and a 90%probability at an overlap of 10.The existing swap operation randomly selects two fragments in the orderingand swapped their positions. We introduced a modi�cation to this operator,



R.J. PARSONS & M.E. JOHNSONthat only takes a�ect late in the run. Swaps late in the run are either com-pletely random as before or greedy. For the greedy swap, one fragment, i,is chosen at random, and fragment j, the fragment with the highest overlapstrength with i, is identi�ed. A cursory analysis of the neighborhood in theordering of both i and j is made to determine whether to move i next to jin the ordering or to move j next to i. There are a couple of issues withan operator like this. First, it is important to delay the application of thisoperator until later in the run, since otherwise the genetic algorithm may beled too early into local minima. Second, it proved critical to examine theneighborhood surrounding the fragments to determine which move to make.The selection of when to begin the greedy swap and how often to apply it arecurrently ad hoc. As with the previous modi�cation, more parameters havebeen introduced into the optimization process.These changes allowed us to �nd a single contig solution of the MSeto dataset, building from the population which produced the 5 contig solution. Withthis new operator con�guration, we returned to the Seto data set and produceda 15 contig solution, again building on our previously evolved population. Inexamining this solution, we realized that there were more fragments that hadlow similarity to the parent with our metric. Indeed, there are 86 fragmentswith an overlap score of 13 or less with the parent sequence; the other 743have an overlap score of 86 or more. Additionally, there are 9 fragments thathave no overlap of weight greater than 100 with more than 1 other fragment.Therefore, we generated another, slightly smaller, data set with these 86 frag-ments removed. This data set, as shown in Table 5, is proceeding at a faster



GENETIC ALGORITHMS FOR DNA SEQUENCINGrate of improvement using the whole suite of modi�ed operators. The perfor-mance of the genetic algorithm with the modi�ed operators is encouraging forthe large, and therefore realistically sized, data sets.7. Towards an Understanding of Genetic AlgorithmsThe study of the population sizes has led to several questions about the ef-fects on population diversity by the various operators. In the standard geneticalgorithm, once a given position is the same in all members of the population,only the mutation operator applied at that position will allow that value tochange. This e�ect is the result of the preservation of positions by the crossoveroperator. In the operator suite designed for this problem, all operators havethe potential of altering all bit positions. Therefore, the traditional measureof convergence is not applicable. Indeed, the �gures in Table 4 demonstratethat the homogeneity metric can vary signi�cantly over the course of the run.Most of the conventional wisdom regarding population size selection derivesfrom the problems with diversity and convergence. As the population becomesless diverse, the search narrows drastically, since the individuals generated by ahomogeneous population do not di�er radically from those individuals in thatpopulation. We hypothesize that the di�erent e�ects of our operator suite andtheir impact on convergence may be what allows us to use smaller popula-tions than would otherwise be anticipated. We are exploring this question todetermine the kind of models and behavior that can be expected for geneticalgorithms applied to permutation problems. Whitley and Yoo have recentlydeveloped exact models of genetic algorithm behavior for certain of the permu-tation operators [Whitley and Yoo, (1995)]. These models are inapplicable to



R.J. PARSONS & M.E. JOHNSONthe question posed here, because they assume an in�nite population. However,their models, assuming these in�nite populations, still provide insight into theasymptotic behavior in the �nite population case.8. ConclusionsThis paper reports on signi�cant performance improvements for a geneticalgorithm applied to the problem of DNA Sequence Assembly. Speci�cally,an order of magnitude improvement was obtained on a medium-sized dataset, and larger data sets have either been solved completely or have producedworkable near-optimal solutions. These performance improvements are theresult of applying techniques from experimental design and response surfaceanalysis to the parameter settings. Additional changes in the operator suiteresulted in the solution of the realistic data sets. A better understanding ofthe nature of the performance enhancements and the operation of the geneticalgorithm in this setting is needed. We intend to explore such questions as weextend this work further.There remain the problems associated with the �tness function and prob-lem formulation. Speci�cally, it is easily shown that, in the presence of signif-icantly conserved repeat sequences, this formulation of the problem leads to aconsensus sequence that is shorter than the correct sequence. This compressionoccurs since the overlap among fragments from di�erent repeated regions is ex-tremely high, violating the hypothesis of the assembly. Myers [Myers, (1994)]has proposed an alternative formulation for the sequencing problem to addressthe problem of repeated DNA in the sequence. These issues, as well as the
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