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Control of mutual spatial coherence of temporal
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We analyze reflexive photorefractive coupling of an information-bearing beam carrying several distinct spa-
tiotemporal features, with emphasis on the coupling-induced change in the mutual spatial coherence. We
formulate equations describing evolution of the mutual correlation functions between different features and
discuss their solutions both in the full two-dimensional case and in the limit leading to a one-dimensional
description of the reflexive coupling geometry.  1996 Optical Society of America
1. INTRODUCTION
Recent papers have shown that reflexive photorefractive
coupling, in which a light beam consisting of several spa-
tiotemporal features interacts with a copy of itself in a
photorefractive medium, can be used to modify the infor-
mation content of the lig coherence of spatially identical
beams,1,3 to ensure single-frequency oscillation in pho-
torefractive ring-resonator circuits,5,6 and also (allowing
for a path-length difference between the two beams in
Fig. 1) to obtain frequency narrowing of a laser line.7

Previous analysis of reflexive coupling was based
mostly on one-dimensional models. A recent paper4 ana-
lyzed manipulation of the intensity of selected features
and modification of their spatial overlap. Changes in the
coherence properties of the interacting features have been
analyzed in the framework of a one-dimensional model1

and, in the limit of spatially constant pumping beams, of
a two-dimensional model.2,3 The present paper is aimed
at discussing aspects of the reflexive coupling geometry
pertinent to a change of the spatial coherence properties
of the interacting temporal features in the framework of a
two-dimensional model and at establishing the transition
to the one-dimensional limit.

Consider an information-bearing laser beam with car-
rier frequency v and wave number k consisting of N spa-
tiotemporal features (signals):

Esr, td ­
NP

j­1
cj stdej srdexpfiskz 2 vtdg . (1)

This beam is divided by a beam splitter into two beams:

E6 ­
NP

j­1
cj stde6

j srd , (2)

which interact in a photorefractive medium (see Fig. 1).
We refer below to beams E1 and E2 as gain and loss
beams, respectively, in accordance with the direction of
energy transfer in Fig. 1. Each feature in the initial
0740-3224/96/010041-09$06.00 
beam [Eq. (1)] is the image ej srd with the time dependence
cj std. We assume that the average intensity of each
feature does not depend on time and that the features
are temporally orthogonal in the photorefractive medium.
Temporal orthogonality means that the product of any
two different temporal amplitudes averaged over times
comparable with or larger than the characteristic relaxa-
tion time t of the photorefractive medium is equal to zero:Rt

2` dt0cist0 dcp
j st0 dexpfst0 2 tdytg ­ di,j . Temporal orthog-

onality of the features implies that the photorefractive
medium does not respond to the interference pattern that
is due to any pair of different temporal components of
beams E1 and E2 and that these components do not in-
teract directly with each other. The steady-state grating
written in the photorefractive medium by the beams (2)
is formed only by features with the same temporal depen-
dencies:

Gsrd ­
G

2IT

NX
j­1

e1
j srde2p

j srd , (3)

where G is the nonlinear coupling coefficient and IT srd ­PN
j­1 sje1

j srdj2 1 je2
j srdj2d is the total local intensity in the

medium.
Despite the fact that each temporal signal interacts di-

rectly only with itself, the total grating [Eq. (3)] couples
all of them. One reason is that the amount of nonlinear
coupling experienced by each signal is affected by the in-
tensities of all the other signals because of the presence
of the total intensity in the denominator of expression (3).
The second reason is that a signal may scatter off the grat-
ing written by another pair of signals if those signals are
(partially) spatially correlated. This indirect coupling re-
sults in changes in both the intensities and the spatial co-
herence properties of the temporal features at the output,
as is shown below.

The structure of the paper is as follows: Section 2 we
start with dynamical equations for multifrequency two-
1996 Optical Society of America
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Fig. 1. Photorefractive reflexive coupling geometry.

beam coupling in a photorefractive medium. We then
review briefly the formalism of transverse correla-
tion functions used to describe statistical properties of
information-carrying (speckled) beams and formulate
equations governing the evolution of partially spatially
correlated temporal features in terms of mutual correla-
tion functions. In Section 3 we discuss parameters that
determine the geometry of interaction in the case of full
or partial overlap of the interacting beams inside the
nonlinear medium. We show that general equations for
partially spatially correlated temporal features can, un-
der certain assumptions, be cast in a diagonalized form,
corresponding to a set of spatially uncorrelated fields, by
means of a unitary transformation. Section 4 is devoted
to the analysis of asymptotic properties of solutions of the
previously formulated equations, and numerical results
are given in Section 5. Section 6 is a summary.

2. GENERAL EQUATIONS
Paraxial evolution of the slowly varying amplitudes e6

i

[Eq. (2)] in the photorefractive medium is governed by
the equations√

≠

≠l1

2
i

2k
D',1

!
e1

i ­
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√
NX

j­1
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j e2p
j

!
e2

i , (4a)√
≠

≠l2

2
i
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D',2

!
e2

i ­ 2
G

2IT

√
NX

j­1

e1p
j e2

j

!
e1

i , (4b)

where l6 are directions of propagation of beams E6, D',6

are Laplace operators acting on coordinates perpendicular
to these directions, and the coupling constant G has been
assumed real.

Solution of Eqs. (4) requires specification of all input
field distributions. In the case of image-bearing (speck-
led) beams these distributions are often unknown, and the
beams may be characterized only in terms of their statisti-
cal properties. The standard procedure in this case is to
derive from Eqs. (4) a set of statistically averaged equa-
tions for transverse correlation functions of the beams.
Below we recall this procedure, using a textbook example8

of the free propagation of an image-bearing (speckled)
beam esr', zd, governed by the equation√

≠

≠z
2

i
2k

Dr'

!
esr', zd ­ 0 . (5)

The transverse two-point correlation function
E sr',1, r',2, zd ; kepsr',1, zdesr',2, zdl, where k. . .l means
a statistical (ensemble) average, obeys the equation
following directly from Eq. (5):"

≠

≠z
2

i
2k

sDr',2 2 Dr',1 d

#
E sr',1, r',2, zd ­ 0 . (6)

Introduction of new coordinates r ­ r',2 2 r',1, R ­
sr',1 1 r',2dy2 casts Eq. (6) into the form√

≠

≠z
2

i
k

≠2

≠r≠R

!
E sr, R, zd ­ 0 . (7)

Consider the boundary condition for Eq. (7) of the form

E sr',1, r',2, 0d

­ exp

"
2
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or, equivalently,

E sr, R, 0d ­ exp

√
2

R2

2d2
2

r2

r
2
eff

2 ik
rR
f

!
,

r22
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c 1 s1y4dd22 , (8)

representing a beam that at z ­ 0 is characterized by the
total diameter d, the transverse correlation radius rc, and
a finite radius of curvature owing to its passage through
a lens of focal length f.

Solution of Eq. (7) with boundary condition (8) yields

E sr, R, zd ­ gszdexp

"
2gszd

√
R2

2d2
1

r2

r
2
eff

!

2 i
k
2

rR
d

dz
ln gszd

#
, (9)

where gszd21 ­ f1 2 2zf 21 1 z2sf 22 1 l22
d dg, ld ­ kreffdy2.

According to Eq. (9) the evolution along the coordinate z
of the diameter and the characteristic correlation radius
of the beam are determined by the value of the diffrac-
tion length ld. If we take d ­ 0.5 mm, rc ­ 10 mm,
and l ­ 0.5 mm, then ld ø 30 mm. In typical photore-
fractive experiments the nonlinear medium interaction
length lint is approximately 2–5 mm, i.e., lint ,, ld. As-
suming also that lint ,, f , this circumstance allows us
to neglect diffraction effects in averaged equations for
quadratic combinations of the fields e1

i and e2
i . Nonlin-

ear interaction between the beams [Eqs. (4)] along with
diffraction also changes both rc and d. For reasonable
values of the nonlinearity this can change the value of
ld two or three times (not orders of magnitude), so we
may assume that if lint ,, ld at the input to the nonlinear
medium this inequality holds throughout it. Physically
under these conditions the beam as a whole looks well de-
fined and collimated inside the interaction region, though
the characteristic diffraction length of a single speckle
may be short compared with the size of the nonlinear
medium.

In what follows, we work with average intensities and
mutual correlation functions E

1
i,j srd ­ ke1p

i srde1
j srdl and
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E
2
i,j srd ­ ke2p

i srde2
j srdl. Equations for these functions fol-

low directly from Eqs. (4) and have the form

≠

≠l1

E 1
i,j srd ­

G

2IT

NX
l­1

sE 1
i,lE

2
l,j 1 E 2

i,lE
1
l,j d , (10a)

≠

≠l2

E 2
i,j srd ­ 2

G

2IT

NX
l­1

sE 2
i,lE

1
l,j 1 E 1

i,lE
2
l,j d , (10b)

IT ­
NX

l­1

sE 1
l,l 1 E 2

l,ld . (10c)

In deriving Eqs. (10) for the mutual correlation
functions we used the approximation ke1p

i e1
j e2p

l e2
k l ø

ke1p
i e1

j l ke2p
l e2

k l, neglecting higher-order terms propor-
tional to the ratio rcyd ,, 1. We also neglected
the transverse Laplacians based on our analysis of
Eqs. (5)–(9) and assuming that lint ,, ld, lint ,, f . Note
that the neglect of the diffraction effects in Eq. (10) is
possible because the ensemble averaging removes fine
speckle structure, leaving only large transverse scales
of the order of the diameter of the beam. If we work
with the first of Eqs. (4), all diffraction effects should be
retained.

To formulate a boundary-value problem completely we
should supplement Eqs. (10) by the boundary conditions
specifying input values E 6

i,j srdin for all 1 # i, j # N . The
diagonal terms here si ­ jd give averaged intensity distri-
butions of the input beams, whereas nondiagonal terms
determine the degree of spatial correlation between dif-
ferent temporal components, with nonzero values mean-
ing that the corresponding components are partially
correlated.

Along with correlation functions E
6
i,j we use the nor-

malized correlation functions hi,j , defined as

h6
i,j ­

E
6
i,j srd

fE 6
i,isrdE 6

j ,j srdg1/2
. (11)

Integral properties of the beams will be characterized by
their input and output powers and integrated correlation
functions P 6,insoutd

i,j , before (in) and after (out) the inter-
action region, and also by the normalized integrated cor-
relation functions (overlaps) H 6,insoutd

i,j determined by the
relations

P 6,insoutd
i,j ­

Z
dr',6E

6,insoutd
i,j , (12a)

H 6,insoutd
i,j ­

P 6,insoutd
i,j

fP6,insoutd
i,i P 6,insoutd

j ,j g1/2
. (12b)

Note in conclusion that Eqs. (10) have the set of con-
servation integrals

P 1,in
i,j 1 P 2,in

i,j ­ P 1,out
i,j 1 P 2,out

i,j , 1 # i, j # N . (13)

3. INTERACTION GEOMETRY AND
DIAGONALIZATION OF EQUATIONS
Solutions of Eqs. (10) depend on the value of the cou-
pling constant G, the nonlinear medium length L, the
characteristic diameters of the beams d, and the angle
u between them or, more precisely, on some combination
of these parameters. Indeed, Eqs. (10) can always be
transformed into a new system of coordinates in which
beams e1

i and e2
i propagate along two perpendicular

axes.9 If the angle between the beams equal u so that
≠y≠l6 ­ cossuy2ds≠y≠xd 6 sinsuy2ds≠y≠yd, then transition
to the new system of coordinates sx0, y 0 d

x0 ­ x sinsuy2d 1 y cossuy2d ,

y 0 ­ x sinsuy2d 2 y cossuy2d , (14)

results in the transformations ≠y≠l1 ! ≠y≠x0, ≠y≠l2 !

≠y≠y 0, and G ! Gysin u. Transverse dimensions of
the beams remain the same; the boundaries of the
nonlinear medium x ­ 6Ly2 are transformed into
x0 1 y 0 ­ 6L sinsud. All geometrical effects are deter-
mined uniquely by the parameter d ­ L sinsudyd, which
is the relative displacement of beams e1

i and e2
i across

the length of the nonlinear medium. If d .. 1 the
rhombus-shaped beam overlap region lies completely in-
side the nonlinear medium, corresponding to a fully two-
dimensional situation. The opposite case, d ,, 1, when
the rhombus is mostly outside, may be characterized
as the one-dimensional limit. In the one-dimensional
case the nonlinearity is characterized by the product
GLycossuy2d. In the full two-dimensional case it may be
taken as 3Gdysinsud, this combination being the distance
between the 10% intensity points of a Gaussian beam
with diameter d crossing at the angle u (the choice of
10% points and the ensuing multiplicand 3 are somewhat
arbitrary).

Because of their relatively complex structure Eqs. (10)
do not permit immediate insight into the evolution of de-
grees of mutual correlation among different temporal fea-
tures with the exception of the case when all different
temporal components are mutually spatially uncorrelated
at the input to the interaction region: E 6

i,j srdin ­ 0 for all
i fi j . Direct inspection of Eqs. (10) then reveals that
these components remain uncorrelated throughout the
interaction region no matter what the interaction geome-
try (the angle between the beams, full or partial intersec-
tion of the beams inside the crystal, and so on). Hence
we are left with only N pairs of diagonalized equations
for E

6
i,is1 # i # N d, with different indices coupled only

through the common total intensity IT in the denomi-
nators. In the one-dimensional case these equations are
solvable trivially. For the two- or three-dimensional case
one in general needs to resort to numerics, but even then
the diagonalized equations are more transparent physi-
cally than the general system of Eqs. (10) for partially
correlated fields.

Below we show that Eqs. (10) can always be cast in
the diagonalized form discussed above at the cost of the
following additional assumption. Assume that all input
quadratic combinations for beams E 6 can be represented
in the form

E 6
i,j srdin ­ ai,j f 6srd , (15)

where ai,j are complex constants and f 6 are some func-
tions. In the reflexive coupling geometry they obey
the relation

R
drf 1srd ­ R

R
drf 2srd, where R is the
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power ratio of the gain/loss beams. Condition (15) means
that, statistically, all temporal components are beams
with identical spatial envelopes (but possibly different
fine structures) and at the input are characterized by
coordinate-independent normalized mutual correlation
functions h6

i,j [Eq. (11)]. Note also that, because of the
presence of the total intensity in the denominators of
Eqs. (10), only the relative intensities of interacting fea-
tures matter. This means that without loss of generality
the functions f 6 may be normalized in such a way thatR

drf 1srd ­ Rys1 1 Rd and
R

drf 2srd ­ 1ys1 1 Rd, and
so diagonal elements of the matrix â [Eq. (15)] are par-
tial powers of temporal features obeying the relationPN

l­1 al,l ­ 1.
Introduce new fields ẽ6

i such that

ẽ6
i ­

P
j

Ti,je6
j , (16)

where T̂ is a unitary matrix. Unitarity of T̂ means that
the expression for the grating in new variables ẽ6 retains
the form of Eq. (3). Now require that the new fields be
spatially uncorrelated at the input to the interaction re-
gion: kẽ1

i ẽ1p
j lin ­ kẽ2

i ẽ2p
j lin ­ 0 for i fi j . This condition

results in the equations
P

l ke6p
i e6

l linTj ,l ­ kjẽ6
j j2linTj ,i.

Taking into account Eq. (15) and the fact that at the in-
put all quadratic combinations of the fields ẽ1 are chara-
cterized by the same coordinate dependence f 1srd [and of
ẽ2 by the same dependence f 2srd], we may pull these co-
ordinate dependencies out and get the following equation:

âtj ­ ljtj , 1 # j # N , tj ­ sTj ,1, . . . , Tj ,N d ,

(17)

where kjẽ6
j j2lin ­ lj f 6srd.

Equation (17) is the equation for eigenvectors and
eigenvalues of matrix â. Inasmuch as the matrices Ê 6

in ,
and consequently â, are Hermitian, such vectors exist
and constitute an orthonormal set. These eigenvectors
form the rows of the unitary matrix T̂ .

We showed by introducing the new set of fields ẽ6

[Eq. (16)] that the system of equations for partially spa-
tially correlated fields (10) can be cast in the diagonal
form:

≠

≠l1

I 1
i srd ­

G

IT
I 1

i I 2
i , (18a)

≠

≠l2

I 2
i srd ­ 2

G

IT
I 1

i I 2
i , (18b)

IT ­
NX

l­1

sI 1
l 1 I 2

l d , (18c)

where 1 # i # N and I 6
i ­ kẽ6p

i ẽ6
i l. The input boundary

conditions for Eqs. (18) are

I 6
i sind ­ lif6srd , (19)

where li are the eigenvalues of Eq. (17) and the functions
f 6 are determined by relations (15). Once solutions of
Eqs. (18) are known, quadratic combinations of the origi-
nal fields can be found from the relations
E 6
i,j ­

P
l

I 6
l srdTl,iTp

l,j . (20)

Note in conclusion that the above diagonalization proce-
dure, though trivial in principle, for large N can be carried
out only numerically. Analytical formulas are available
for small values of N. Thus for N ­ 2 one gets

l1,2 ­ 1/2sa1,1 1 a2,2 6 sd , (21a)

T1,1 ­ 2T2,2 ­

"
1
2

1
sa1,1 2 a2,2d

2s

# 1/2

, (21b)

T1,2 ­ T2,1 ­

"
1
2

2
sa1,1 2 a2,2d

2s

# 1/2

, (21c)

where s ­ fsa1,1 2 a2,2d2 1 4ja1,2j2g1/2 (recall that a2,1 ­
a

p
1,2).

4. ASYMPTOTIC PROPERTIES
OF SOLUTIONS
One can gain some insight into the behavior of solutions
of Eqs. (10) by analyzing their asymptotic properties.
We carry out this analysis below in the framework of a
one-dimensional model. The one-dimensional transition
in Eqs. (10), Eqs. (18), or both corresponds to the replace-
ments ≠y≠l1, ≠y≠l2 ! cossuy2d21s≠y≠xd, f 1 ! Rf sydys1 1

Rd, and f 2 ! f sydys1 1 Rd, where x and y are coordi-
nates across and along the boundaries, respectively, of the
nonlinear medium. Because of the presence of the total
intensity in the denominators of the right-hand sides of
Eqs. (10) and (18), all transverse coordinate dependencies
(which are the same at the input) factor out. This means
that the transverse coordinate distributions of the beams
do not change because of the nonlinear interaction and
that the normalized correlation functions remain constant
over the beam cross sections.

The solutions of Eqs. (10) for large values of the non-
linearity sGL ! `d are investigated best with the help of
solutions of the diagonalized Eqs. (18) that have the form4

I 1
i sx, yd ­ f syd

liR expsgixd
f1 1 R expsgixdg

, (22a)

I 2
i sx, yd ­ f syd

li

f1 1 R expsgixdg
, (22b)

where

gi ­
G

cossuy2d
li

NX
l­1

ll

. (23)

Consider first evolution of the loss beams I 2. For large
values of gix such that R expsgixd .. 1 the loss beams
become strongly depleted, and their intensities as func-
tions of coordinates decrease exponentially with the nega-
tive growth rates 2gi. Eventually a component with the
smallest value of l will become exponentially larger than
the rest, dominating in inversion formulas (20) and select-
ing only one leading term out of the sums. The modu-
lus of the normalized mutual correlation function h2

i,j

[Eq. (11)] between any two loss beams then tends to unity:
jh2

i,j j ! 1, indicating that all loss beams become com-
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pletely spatially correlated at the output. Asymptotic co-
herence properties of the gain beams I 1 are different.
According to Eqs. (22) Ii ! f sydli for gix ! `, so the rela-
tive intensities of the output gain beams remain the same
as at the input. Inversion formulas (20) then show that
the output normalized correlation functions (11) of the
gain beams coincide with their input ones. One must
note though that for intermediate values of nonlinear-
ity such that R expsgiLd # 1 the output gain beams may
become almost completely correlated, provided that the
gain/loss power ratio R is small enough. Indeed, as long
as the gain beams remain weak, i.e., R expsgiLd # 1, their
spatial evolution is described by the growth rates gi, so
a component with the largest value of l will dominate in
inversion formulas (20), resulting in all gain beams’ being
almost completely correlated at the output.

Consider now properties of solutions of Eqs. (10) in
the situation when all the input features are nearly or-
thogonal and have nearly the same intensities. If all
N temporal features are completely orthogonal and have
the same intensities, solutions of Eqs. (10) have the form
E

6
i,j ­ di,jI 6, where I 6 are given by Eqs. (22) and (23),

with li ­ 1yN , 1 # i # N :

I 1 ­
f syd
N

R expfGxyN cossuy2dg
h1 1 R expfGxyN cossuy2dgj

, (24a)

I 2 ­
f syd
N

1
h1 1 R expfGxyN cossuy2dgj

. (24b)

Consider now an arbitrary set of temporal features in
the vicinity of Eqs. (24) characterized by input normali-
zed correlation functions hin

i,j and partial intensities of
temporal features ai,i s

P
ai,i ­ 1d such that jhin

i,j j2 ,, 1yN
and jDai,ij ­ jsai,i 2 1yN dj ,, 1yN for all i, j. Solution of
Eqs. (10) in this limit gives the following expressions for
the normalized correlation functions of the loss beams h2

i,j

and the relative deviations eisxd ­ E 2
i,isx, ydyI2sx, yd 2 1

sein
i ­ NDai,id in the intensities of loss beam E

2
i,isx, yd

from I 2:

h2,out
i,j ­ F1h2,in

i,j 2 F2h2,in
i,j

e
in
i 1 e

in
j

2

2 F3

X
lfii,j

h2,in
i,l h2,in

l,j 1 . . . , (25a)

eout
i ­ F1ein

i 2 F3

"
sein

i d2 1
X
lfii

jh2,in
i,l j2

#
1 . . . , (25b)

where

F1 ­ 1 2
G̃R expsG̃d

1 1 R expsG̃d
, (26a)

F2 ­
G̃R expsG̃d

1 1 R expsG̃d

"
1 1

G̃R
1 1 R expsG̃d

#
, (26b)

F3 ­
G̃R expsG̃d

1 1 R expsG̃d

"
1 1

√
G̃

2

!
1 2 R expsG̃d
1 1 R expsG̃d

#
, (26c)

and G̃ ­ GLyN cossuy2d.
Coherence properties at the gain port are described by

the same relations [(25) and (26)] under the replacements
G ! 2G and R ! R21. Solutions (25) show the possibil-
ity of asymptotic orthogonalization of partially correlated
features in the reflexive coupling geometry at the loss
port. Indeed, the leading terms in Eqs. (25) are propor-
tional to the function F1, so the requirement that F1 ­ 0
results in je

out
i j , je

in
i j and jh2,out

i,j j , jh2,in
i,j j. This require-

ment selects the value of G̃ ­ G̃orth, determined from the
equation

sG̃orth 2 1dexpsG̃orthd ­ 1yR . (27)

Equation (27) shows that the value of G̃orth is not de-
pendent on the exact spatiotemporal characteristics of
the beam and ensures uniform convergence of any set of
temporal features at the loss port to the completely or-
thogonal set [Eqs. (24)], provided that the input set of suf-
ficiently close to being orthogonal. When there are only
two spatiotemporal features, perfect orthogonalization is
always possible for arbitrary input correlations.4 Note
also [Eq. (26)] the replacements G ! 2G and R ! R21,
and the equation F s1d ­ 0 has no solution.

5. NUMERICAL RESULTS
Properties of solutions of Eqs. (10) and (18) for arbi-
trary values of nonlinearity and boundary conditions
are illustrated by several numerical examples below.
Figures 2–4 represent typical solutions of Eqs. (10) for
N ­ 2 in the full two-dimensional and Figs. 5 and 6 in
the one-dimensional cases, respectively. The boundary
conditions are chosen of the form

E
1,in
1,1 ­

q1R
s1 1 Rd

f syd , E
1,in
2,2 ­

q2R
s1 1 Rd

f syd , (28a)

E
1,in
1,2 ­ H in

1,2
p

q1q2
R

s1 1 Rd
f syd , (28b)

E
2,in
1,1 ­

q1

s1 1 Rd
f sxd , E

2,in
2,2 ­

q2

s1 1 Rd
f sxd , (28c)

E
2,in
1,2 ­ H in

1,2
p

q1q2
1

s1 1 Rd
f sxd , (28d)

where f sjd ­ 1y
p

p exps2j2d and qi ­ ai,i si ­ 1, 2d are
relative intensities of temporal features 1 and 2 sq1 1 q2 ­
1d, H is their initial degree of overlap s0 # jH j # 1d,
and R is the gain/loss beams’ power ratio. In the full
two-dimensional case (Figs. 2–4) d .. 1, so the beam
overlap region lies inside the nonlinear medium; in the
one-dimensional limit (Figs. 5 and 6) d ­ 0.3, and the
overlap region is mostly outside. For both cases q1 ­
0.6, q2 ­ 0.4, H in

1,2 ­ 0.7, and R ­ 0.5.
Figure 2(a) shows powers P 1,out

1,1 and P 1,out
2,2 of tempo-

ral features 1 and 2 at the gain port and their integrated
correlation function P 1,out

1,2 (solid curves) versus nonlinear-
ity and also the modulus of the overlap H 1,out

1,2 between
temporal features 1 and 2 at the gain port [Pi,j and Hi,j

are determined by relations (12)]. Figure 2(b) shows the
same for the loss port.

Figure 3(a) shows output intensity distributions E
1,out
1,1

and E
1,out
2,2 of temporal features 1 and 2 at the gain port

and the correlation function E
1,out
1,2 for the case when

the beam overlap region lies entirely inside the medium
and for the value of nonlinearity 3Gdysinsud ­ 7.5.
Figure 3(b) shows the same for the loss port.
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(a)

(b)
Fig. 2. Integral output characteristics of temporal features 1
and 2 at (a) the gain and (b) the loss ports as functions of non-
linearity for d .. 1. The solid curves correspond to Pout

1,1 , P out
2,2 ,

and Pout
1,2 ; the dashed curve, to jH out

1,2 j.

Figure 4 shows normalized output correlation functions
[Eq. (11)] h1,out

1,2 and h2,out
1,2 for temporal features 1 and 2

at gain and loss ports, respectively, for the conditions of
Fig. 3.

Figures 5(a) and 5(b) are identical to Figs. 2(a) and 2(b)
and show output powers and integrated correlation func-
tions at the gain point [Figs. 2(a) and 5(a)] and the loss
port [Figs. 2(b) and 5(b)] but in the case when the beam
overlap region lies mostly outside the medium sd ­ 0.3d.
For the one-dimensional limit we do not present spatial
distributions of intensities (corresponding to those given
in Fig. 3). The normalized output correlation functions
at the gain and the loss ports, given by Fig. 6 (analogous
to Fig. 4), are more interesting.

Figures 2 and 5 demonstrate that the correlation func-
tions and overlaps at the gain and the loss ports evolve
quite differently at functions of nonlinearity. The over-
lap between the temporal features at the gain port re-
mains more or less the same, whereas that at the loss
port passes through zero. This behavior is easy to ex-
plain. Indeed, it follows from Eqs. (20) and (21) that
E 2

1,2srd / I 2
1 srd 2 I 2

2 srd and hence P 2
1,2 / P 2

1 2 P 2
2 , where

P1,s2d are the powers of mutually orthogonal loss beams.
Suppose that l2 # l1, i.e., that P 2,in

2 # P 2,in
1 ; then the

loss beam corresponding to a larger value of l loses en-
ergy faster, and for large nonlinearities its output power
becomes less than that of the other beam. This is par-
ticularly easy to see from formulas (22) and (23), which
describe evolution of the system in the framework of the
one-dimensional model. For large nonlinearities the in-
put and the output differences P1 2 P2 have different
signs, so for some value of nonlinearity the output differ-

(a)

(b)
Fig. 3. Output intensity distributions and correlation functions
of temporal features 1 and 2: (a) the gain port sE 1,out

1,1 , E
1,out
2,2 ,

E
1,out
1,2 d and (b) the loss port sE 2,out

1,1 , E
2,out
2,2 , E

2,out
1,2 d for d .. 1

and 3Gdysinsud ­ 7.5.

Fig. 4. Output normalized correlation functions h
1,out
1,2 and

h
2,out
1,2 for d .. 1 and 3Gdysinsud ­ 7.5.
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(a)

(b)
Fig. 5. Integral output characteristics of temporal features 1
and 2 at (a) the gain and (b) the loss ports as functions of non-
linearity for d ­ 0.3. The solid curves correspond to Pout

1,1 , P out
2,2 ,

and Pout
1,2 ; the dashed curve, to jH out

1,2 j.

Fig. 6. Output normalized correlation functions h1,out
1,2 and

h2,out
1,2 for d ­ 0.3 and GLycossuy2d ­ 7.4.

ence P1 2 P2 is exactly equal to zero. This corresponds
to zero overlap between beams e2

1 and e2
2 at the output.

Figures 3 and 4 show that in the case when the beams
overlap fully inside the nonlinear medium their initially
Gaussian distributions become distorted at the output.
This distortion corresponds to the intensity distributions
of the gain and loss beams shifting outward (loss beams in
the minus x and gain beams in the minus y directions) and
repelling each other.10 At the very moderate values of
nonlinearity corresponding to Figs. 3 and 4 the amount of
this shift is small, but the effect becomes very pronounced
for higher values of nonlinearity. The normalized mu-
tual correlation functions at both ports become strongly
inhomogeneous over the beams’ cross sections. At the
wings of the loss beams, jh2

1,2jout ! 1 (Fig. 4). This fea-
ture is in agreement with our previous arguments about
weak loss beams’ becoming completely correlated. The
same happens with the gain beams (Fig. 4, curve h1

1,2) but
only at one edge (positive y) where small-intensity gain
beams cross large-intensity loss beams. On the opposite
side (negative y) the gain beams pass through the region
of strongly depleted loss beams, and the level of nonlin-
earity is not enough to make them completely correlated.

Figures 5 and 6 correspond to the case when the beam
overlap region lies mostly outside the nonlinear medium.
This is the one-dimensional limit when partial derivatives
in Eqs. (10) and (18) may be replaced by one common
derivative in the direction perpendicular to the nonlin-
ear medium boundaries. Figure 6 shows that the nor-
malized correlation functions remain constant over the
beams’ cross sections except in the wings, meaning that
the transverse coordinate distributions of the beams do
not change because of the nonlinear interaction. Despite
the different behavior of local correlation functions in
Figs. 4 and 6 the integral characteristics of the interaction
(Figs. 2 and 5) for the two limits are remarkably similar,
showing that the one-dimensional model may be a good
approximation even for a two-dimensional interaction
geometry.

To balance this last statement we should note,
though, that stretching the similarity between the two-
dimensional case and the one-dimensional limit too far
may sometimes be dangerous. In the case of the beam
overlap region’s lying inside the nonlinear medium the
interaction changes both the spatial profiles of the beams
and their local correlation functions (Figs. 3 and 4). On
the contrary, in the one-dimensional limit all transverse
dependencies factor out. Hence one may expect differ-
ences when these distortions are relatively large (large
nonlinearities) and when the input correlation functions
are coordinate dependent. To illustrate this point, let
us consider solutions of Eqs. (10) with boundary condi-
tions that are similar to those of Eqs. (28), except that
the input mutual correlation functions are taken to be
coordinate dependent:

E
1,in
1,2 ­ signsyd

p
q1q2

R
s1 1 Rd

f syd ,

E
2,in
1,2 ­ signsxd

p
q1q2

1
s1 1 Rd

f sxd (29)

[notation is as in Eqs. (28)]. Boundary conditions (29)
correspond to beams that are orthogonal at the input (the
overlap integral is equal to zero) but nevertheless cor-
related. Figure 7 shows the moduli of the output over-
laps H out

1,2 of temporal features 1 and 2 at the gain port
(curve H 1

1,2) and the loss port (curve H 2
1,2) as functions of

nonlinearity in the case when the beams fully cross in-
side the nonlinear medium. Initially orthogonal beams
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Fig. 7. Moduli of the output overlaps at the gain and the loss
ports in the case of orthogonal but correlated input beams.
The beam overlap region lies inside the nonlinear medium,
q1 ­ 0.6, q2 ­ 0.4, H ­ 1, and R ­ 0.1.

Fig. 8. Orthogonalization of five temporal features: average
output degree of mutual coherence as the function of the number
of interactions sR ­ 0.5, GL ­ 7.3d.

become strongly spatially overlapped at the output. The
same output overlaps in the one-dimensional limit would
remain zero.

One of the interesting features of the reflexive cou-
pling geometry is its ability to correlate or orthogonalize
partially overlapping temporal features. In general this
requires processing the beam in several reflexive coupling
geometries (several photorefractive crystals). Thus, to
orthogonalize the features, the beam emerging at the loss
port of the first reflexive coupling geometry (first crystal)
should be sent to a second crystal. The beam emerging
at the loss port of the second reflexive coupling geometry
is sent to a third crystal, and so on. The nonlinear-
ity and the gain/loss beams power ratio in each crystal
are adjustable parameters chosen to ensure convergence
of this procedure to a set of completely orthogonal tempo-
ral features. Figure 8 shows three examples of orthog-
onalization of five temporal features sN ­ 5d by use of a
succession of reflexive coupling geometries as discussed
above. We obtained the curves by solving Eqs. (10)
numerically in the one-dimensional limit. Initial in-
tensities and complex degrees of mutual correlation were
generated randomly for each of the plots. The abscissa
shows the number of interactions (crystals) with crystal
number zero corresponding to initial conditions. The or-
dinate is the average degree of output correlation at the
loss port h ­ f1yNsN 2 1dg

P
ifij jh2,out

i,j j2. The value of
GL for all crystals was kept the same and set equal to
G̃orthN ø 7.3 [see Eq. (27)] for the chosen gain/loss power
ratio R ­ 0.5. Use of different values of GL and R in
different crystals based on detailed information about
initial intensities and the mutual degrees of overlap in
each particular case would permit achievement of more
rapid convergence to the final orthogonal state. On the
other hand, Fig. 8 shows that using the value G̃orth may
be a good choice when there exists no a priori knowledge
about the pictorial information carried by the beam.

6. SUMMARY
Photorefractive reflexive coupling is a two-beam mixing
process of an information-bearing beam carrying sev-
eral spatiotemporal features with a copy of itself in a
photorefractive medium. It allows one to manipulate in-
formation carried by the beam by changing both the rela-
tive intensities and the degrees of mutual coherence of
the features. We formulated general equations describ-
ing the photorefractive coupling geometry in terms of mu-
tual transverse correlation functions of the features and
discussed the parameters that affect the interaction ge-
ometry in the case of full or partial overlap of the inter-
acting beams inside the nonlinear medium. We showed
that general nonlinear equations for partially spatially
correlated features can be diagonalized under certain as-
sumptions. This implies the existence of a unitary trans-
formation from the initial set of input features to their
combinations that remain spatially uncorrelated through-
out the interaction region. We analyzed asymptotic co-
herence properties of the reflexive coupling geometry in
several limiting cases. Coherence properties for arbi-
trary values of the nonlinearity and boundary conditions
were illustrated by numerical solutions corresponding to
both the full two-dimensional case and the limit leading
to a one-dimensional description of the geometry.
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