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Quantum Neural Networks (QNN’s): Inherently
Fuzzy Feedforward Neural Networks

Gopathy Purushothaman and Nicolaos B. Karayianmisnber, IEEE

Abstract—This paper introduces quantum neural networks by using the FFNN paradigm within a general computational
(QNN’s), a class of feedforward neural networks (FFNN's) in- scheme [2], [8], [13] andClass 3 FFNN’s that incorporate
herently capable of estimating the structure of a feature space in the imprecision and linguistic data handling abilities of fuzzy

the form of fuzzy sets. The hidden units of these networks develop b ina f h ic | . | 21 10
quantized representations of the sample information provided by SYSt€MS by using fuzzy set-theoretic learning rules [2], [10],

the training data set in various graded levels of certainty. Unlike [11], [16], [20], [28]. While the second class of hybrid systems
other approaches attempting to merge fuzzy logic and neural possess the main advantages of the FFNN paradigm like

networks, QNN’s can be used in pattern classification problems fynction approximation ability, these properties have been

without any restricting assumptions such as the availability of - .04 only in some cases for Class 1 implementations.
a priori knowledge or desired membership profile, convexity of

classes, a limited number of classes, etc. Experimental resultsEVENn in these cases, some restrictions apply; for example,
presented here show that QNN's are capable of recognizing the premisemay be required to be convex for the function
structures in data, a property that conventional FFNN’s with  approximation property to be true [13]. Thus the very flexible
sigmoidal hidden units lack. functionality of FFNN's is to some extent lost in these
Index Terms—Fuzzy classification, multilevel partitions, mul- implementations. Nevertheless, Class 1 implementations are
tilevel transfer functions, quantum neural networks, quantum useful for identifying a complete fuzzy inference system
neurons, uncertainty. because in Class 2 implementations the different modules of
a fuzzy inference system (such as the premise, the rule-base,
|. INTRODUCTION the defuzzification or output function, etc.) cannot be identified

EEDFORWARD neural networks (FFNN's) have been geparately. This is due to the distributed nature of processing

natural choice as trainable pattern classifiers and adaptm FPNN's [7], [26]

IV . : : o
: . S . I 2 implementation I ful in lications that
controllers because of their function approximation capabilit Class plementations could be useful in applications tha

and generalization ability [4], [7], [2], [12], [18], [20], [26]. do not require the identification of the subsystems of a fuzzy

The function approximation capability allows them to fomllnference system but demand good generalization, such as

. . S . . gattern classification. This dichotomy between interpretability
arbitrary nonlinear discriminant surfaces while the generaliza- o . . . .
and generalization ability arises due to differences in the goals

tion ability allows them to respond consistently to data the : . .

. ; . i f modeling [3]. Moreover, a Class 2 implementation can also
were not trained with. These properties have resulted in FF used as part of a Class 1 implementation. As an example. an
classifiers and controllers being used in many applications [ S P pleme . pe,
[15], [18] FNN trained to generate the premise can be used as the first

' ' t%tage of any fuzzy inferencing system. In the rest of this paper,

In order to perform successfully in complex environmen ly Class 2 implementations are considered and, therefore
where many ill-defined and uncertain factors are encounter g,y ) < 1mp . o ' ’
e discussion is restricted to pattern classifiers.

h i I linguistic h les-of-th
uman reasoning employs linguistic hedges, rules-of-thu The first step in studying Class 2 hybrid systems is to

experience, intuition, and other heuristics [32]. Fuzzy inference | h ical EENN trained in th
systems such as fuzzy controllers and fuzzy pattern classifigf'yze to what extent a typica trained In the conven-

designed to incorporate these aspects of human reasonin qHaI msnn_er rl}assthe ability tOFEJSEItiQn as_ a((jCIqshs 2) fuzzly
a qualitative manner have found many successful applicati gtem by itself. Suppose an FFNN Is trained with example
in pattern recognition [2], [14], [19], control [27], and othefdata that assign incremental regions of the feature space to
practical prediction and inferencing problems [29]. one particular class only. In practical situations, such training
Many recent studies have focussed on developing systeﬁ%s r_nay_contain overlappi_ng classes _Of data. The f_unda_m(_antal
capable of operating in complex uncertain environments [Gy€Stion is whether the trained FENN is capable of identifying
merging fuzzy and neural-network techniques [2], [10], [1113'y itself the uncertainty present in the training set by forming
[13], [16]-[18], [20], [28]. Such hybrid systems can be claddradual or “fuzzy” boundaries between the classes instead of
sified into two classesClass ) Fuzzy inference systems thaf@rming sharp or “crisp” boundaries that divide the feature

incorporate the learning and generalization abilities of FFNN&Pace into disjoint areas. In this context, several studies have
investigated the ability of FFNN'’s trained with exemplars to
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identifying the uncertainty present in a training set. In order  tor lies in the boundary between overlapping classes,
to overcome these limitations, several approaches have been the QNN will assign it partially to all classes whose

taken to design FFNN classifiers capable of partitioning a  overlapping boundaries include this feature vector. If
feature space consisting of overlapping classes of data with there is no uncertainty regarding the classification of a
imprecise boundaries. Keller and Hunt [16] incorporated fuzzy  certain feature vector, the QNN will assign it to the class
logic principles into the development of learning algorithms indicated by the training set.

for FFNN classifiers. The input to the network was formed 2) The ability to approximate any membership profile ar-
by the feature vectors of the training data set. The “desired bitrarily well from the sample data. The QNN does not

output” vector was computed from the membership functions  depend orae priori knowledge or a desired membership

chosen heuristically for each pattern class. These membership profile that are required by most existing methods. The
functions give a measure of the extent to which a certain  ability of feedforward neural models to approximate un-

training pattern belongs to each class. Pal and Mitra [20] known functions is exploited in rendering this classifier

trained multilayered FFNN's to function as fuzzy classi- capable of estimating by itself the uncertainty in the

fiers for data sets consisting of overlapping classes of data. sample data in terms of membership values.

The input vector to the network was formed by mapping 3) The ability to detect and quantify uncertainty in the

the actualn-dimensional feature vector to #n-dimensional sample data without any restricting assumptions about
space, with each component of the actual feature vector the number of classes, the number of uncertainty levels
being mapped to three fuzzy sets representiigd, medium in the data, the convexity of the classes, etc.

and low values in its domain. This allowed the network to Section Il briefly reviews a recent theoretical investigation
handle uncertain information as well as to take linguistighich showed the limitations of FFNN's for fuzzy classifi-
inputs. The “desired output” for training the network wasgation [24]. Section Ill introduces the concept of multilevel
computed from membership functions chosepriori for each partitioning of the feature space and proposes QNN'’s as an
pattern class. In both these training schemes, the membersfiiernative neural architecture capable of generating multilevel
functions have to be estimated or chosepriori. Therefore partitions between any number of classes. Section IV presents
in these schemes the trained network is capable of handliggrning algorithms for updating the internal parameters of
imprecise (and linguistic) inputs, but does not necessarityNN’s. Section V presents an experimental evaluation of
perform an estimation (generalization) task. However, mod&y\N’s and compares their performance with that of conven-

free estimation of the input—output relationship is one of thfonal FFNN'’s. Section VI contains concluding remarks.

main imports of the neural processing paradigm [2], [18].

Takagi and Hayashi [28] used FFNNxer seas estimators of II. LIMITATIONS OF CONVENTIONAL

fuzziness. In their approach, the training data were preclustered FENN'’S EOR FUzzY CLASSIFICATION

and labeled for supervised training. Therefore, this approach_, . . . . :

may not be valid when the classes of data are closely spacea—hIS section outlines th_e results of ,a Previous rigorous theo—
or overlap in practical situations [6]. retical study on the capacity of FFNN's for fuzzy classification

In summary, fuzzy FFNN classifiers are developed in tf{g‘”' Consider a ’?et‘”"”‘ Witmi inpl%ts,no output units, and
existing approaches either by explicitly training FFNN'’s t ne rllayer .Ofﬁh hidden units. I_‘etvj = r[:}éilci Ujm-:w“jmf]}
learn membership values estimatadpriori, or by training € the weight vector connecting ttyéh hidden unit to the

FFNN's in the conventional manner and interpreting th&PUts andw; = [wir, wiz, -, win, ] be the weight vector
response of the FFNN as being fuzzy in itself. The forQOhneCt'r_1g thath output unit to th_e hidden units. L&t be
mer approaches do not necessarily exploit the generalizatmﬁ r_natr!x with the vectorsy; as its columns anGV the
ability of FFNN's, while the latter approaches assume th atrl_x with the _vectorsyi as its cqlumr_ls. Let th_e transfer
FFNN's are inherently fuzzy classifiers. In order to overco nction of the h|_dden units be the S|gm0|QaI functipnR — .
these problems, Ishibuchi and Tanaka [11] have propos 1]. A ponventlonal '.:FNN may be defined as the il;unctlon
an approximate pattern classification method for two-clads @ *" — R™. which mapsx = [y, 23, -+, 2" 10
discrimination problems based on their possibility—necesst (V. 9, W;x), such that

analysis [10]. In this approach, each feature vector is classified U ni .
as eithemecessarilyor possiblybelonging to a class. In other ILN(V, 9, W;x) = sz‘jg Zvﬂwl +wjo | +wio Vi
words, the fuzzy boundary generated by their approximate j=1 =1

classifier encodes only two levels of uncertainty. Further, th@fi!herevjo, wio € R, Vj,, andIl; is theith coordinate function
approach uses two independent FFNN's and combines thgir . gRr. — R.
responses to solve a two-class discrimination problem. Consider a data set at feature vectors € X, whereX is
This paper introduces thguantum neural networtQNN),  a compact metric subspace®f'. Suppos&,Cs, - - - ,Cn. C
a computational tool for fuzzy classification that combines the are n, known classes of feature vectors in the feature
advantages of neural modeling and fuzzy-theoretic principlegpacer’. Conventionally, FFNN's are trained using sample
The salient features of the QNN are the following. data to function as pattern classifiers by giving feature vectors
1) The ability to autonomously detect the presence bElonging to theth class as the input and adjusting the weights
uncertainty in the sample data and adaptively learn to obtain a response of “1” from th&h output unit and a
quantify the existing uncertainty. If the feature vecresponse of “0” from the other output units. This procedure is
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repeated for all the feature vectors belonging to all the classgsThen it can be shown that tie norm of this gradient has

in one training epoch the theoretical lower bound given by
The performance of the FFNN classifier trained in this n
manner is clearly influenced by the training algorithm and Gl = cllp— ql| -M (@)

its architecture. Suppose the FFNN is trained to assign each N

feature vector to only one class. If the training algorithm j¢heréc and M are positive constants. Suppose that the FFNN
efficient and the architecture is optimal (i.e., it has a sufficielit trained withn > 0. As |lp — q|| — 0, i.e., the classes are
number of hidden units), then the FFNN will learn a clos&°Ming clos_er tqgether or their overlapping increases, the norm
approximation to a discriminant function which minimizes th8f the gradient increases. In other words, the network forms
number of incorrect classifications [4], [9], [12], [25]. The2n increasingly sharp or “crisp” boundary fis — qf| — 0.
discriminant function learned by the FFNN trained conven-Nis implies that such an FENN loses its ability to function
tionally from sample data defines the boundaries between fe@ fuzzy classifier for data sets consisting of overlapping or
classes of the feature space. In a recent study, the autHofSely spaced classes of feature vectors.

attempted to quantify how sharp or “crisp” these boundaries

are [24]. In practice, an FFNN is not required to be trained  lll. THE QUANTUM NEURAL NETWORK (QNN)

till the output values saturate, i.e., till they become “1” or The FFNN creates its internal representations from the
“0” [10], [16], [20], [28]. Therefore, an FFNN has learned tosample information provided by the training data. In the
consistently partition the feature spacé a given data set if remainder of this paper, training from sample data means that
for i = 1,2,---,n,, ILN(x) € [0,1] andILAN(x) > v if if a training vector belongs to thith class, theth output unit

x € C;, ILN (x) < v otherwise, wherey € (0, 1). Usually, s required to respond with “1” while the response of all the
for symmetry and simplicity, the value gfmay be taken to be other output units is required to be “0.” In order to function as
0.5. Suppose the FFNN is trained until it satisfies the conditigizzy classifier, the FFNN must use the sample information as
a mere reference for creating the internal representations. Thus,

LN, X) = ! Z - ! Z (ILN(x) — ) it should not encode the sample informataucuratelyinto the
mne (1=7) xx€C; internal representations. Such an exact or faithful encoding of

the sample information results in the FFNN memorizing the
+1 Z (v = ILNx) | > 1 “crispness” in the training data set. But dmh_erentlyfuzzy
architecture should be capable of generalizing the sample
(1) information into various graded levels of certainty over the
entire feature space. This may be possible if the architecture
for somen € [0, 1]. Itis obvious that if the network has learneds capable of creating graded internal representations from the
to consistently partition the feature space, then it satisfies #@mnple information. The QNN is proposed in this section as an
condition (1). This termination criterion is based on a globarchitecture capable of allowing the sample information to be
measure of how well the network has learned to function agcoded into certain levels (grades) of certainty/uncertainty
a classifier. The quantitZ; (A, ') measures the “goodness-only.
of-fit” the network achieves for the function it is trained to
learn. The parameten is the amountof training that the A Training FFNN's for Fuzzy Classification
network is subjected to in order to achieve this goodness—ConSider the feature spack consisting ofn. classes
of-fit. The parameter; comprehensively models the trainingFOr the ith class considef)ﬂ((i) subsetslgi» c ;‘)\’ Vi — '
and learning aspects of the FFNN classifier in the following . ' KG) o J » V=
manner: Suppose that in the ideal situation where the optima. - - K(¢), such that J;_)" I; = X'. Suppose that all the
architecture size can be estimated and an efficient trainifggture vectors in the subsEtcan be assigned to thh class
algorithm can be used, the valuespfs set to one. In this case, With approximately the same membership value. Tief)
the training process is guaranteed to terminate in finite tini@Presents the number of levels of uncertainty in assigning
and the FFNN learns the discriminant function that minimizé§ature vectors to théh class. Lety; > 75 > -+ > 7j ;) >
the number of incorrect classifications [25]. In practiee, Vi ;41 be @ set of nonnegative real numbers for each
takes a value less than one in order to accommodate forﬁtilevel partitionon the feature spac&’ is defined as the
the suboptimality of the architecture and deficiencies of tlwllection of then, discrete fuzzy sets
learning algorithm. Finally, if the value of is closer to zero, . .
then the network is only minimally trained or not trained at Pi= Z pi(x)/x, Vi=1,2,---,m,
all. In other words, the parameteris a quantitative measure . xxCA
of all design factors affecting the classifier performance. with KG) ‘
The main result of the study shows that the topology of the . Y+ Vi1
feature space influences the ability of FFNN's to function as pa(x) = Z 2
fuzzy classifiers in the following manner: In a given data set,
let the feature vectop be in theith class and the vectay whered’(x) = 1 if x € I} and §i(x) = 0 otherwise. In the
not be in theith class. Let7; be the gradient of the responseabove,:;(x) is the membership value of the feature vector
of the ¢th output unit evaluated at some point betwgeand x to the ith classC,;. The value ofp;(x) for the feature

x:x¢ZC;

()

=1
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vector x depends on which subsé;? of the feature space The parametef is independent of the amount of training

it belongs to. For example, i belongs to a subsdf which and is dependent only on the fine structure of the “multilevel

is a region of the feature space that lies far away from tpartitions” defined by the subseI§ and membership values

center of theith class, thenu;(x) = (v;, +7;4,)/2 is very +;. Thus inequality (4) shows that by independently varying

small. A multilevel partition is therefore a particular type of, the gradient of the network response can be kept as small

membership function, where the membership of the featuss required. Therefore, it follows from (2) and (4) that fuzzy

vectors is discrete valued over the feature space. It can fmtitioning of the feature space can be achieved if the FFNN is

shown that the class of multilevel partitions can approximateained to multilevel partition the feature space by satisfying

arbitrary real-valued membership functions to any degree thie termination criterion (3) instead of being trained in the

accuracy [21]. Finally, multilevel partitions may be consideredonventional manner, that is, by satisfying the termination

as a generalization of the possibility—necessity classificatiariterion (1).

scheme proposed by Ishibuchi and Tanaka [10]. In practice, there is no guarantee that, in practice, an FFNN
When a conventional FFNN is trained with a sample dateained with sample data will satisfy the stringent termination

set, some termination criteria are used to test if learnimgiterion (3). This suggests the need for an alternative feed-

is satisfactory. The termination criterion (1) presented iorward neural model that is capable of generating by itself a

the previous section can be used to check if the FFN&bnsistent multilevel partition of the feature space. This model

has learned to consistently partition the feature space. isndescribed in detail in the following section.

a similar manner, a conventional FFNN can be defined to

have learned taconsistently multilevel partition the feature

spaceof a given data set if for each = 1,2,---,n,, and B. Quantum Neuron

for j = 1,2,---, K(3), ILN(x) > ~5; if x € I5;_; and  The aforementioned objectives can be accomplished by

ILN(x) < 75, if x € I5;. Then the following termination constructing a multilayered neural network so that whenever

criterion can be used to test if the FFNN has learned the network forms a partition between closely spaced classes,

consistently multilevel partition the feature space [21]: the partition truly represents the imprecision at the boundary
10! ‘ between the classes. The previous section shows that the
2 i: 22: Z <HiN(X) —7§j> partitions between closely spaced classes must be at least
mno = = i Voi—1 = Vaj multilevel, with the fine structure of the levels representative

of the uncertainty present in the data lying at the boundary
<’7§j _ Hﬂ\/(x)) between these classes. One simple way of incorporating the
+ —————= ] +2>n>0. (3) ability to form consistent multilevel partitions in the hidden
xx€El}, layer is to create hidden unit partitions with the property
a(.)lj- “spreading-out” over regions of uncertainty in the feature
space and “collapsing-in” over regions of certainty. If all the
hidden unit transfer functions have the ability to form “graded”

) ) @ ) . partitions instead of the crisp linear partitions, then these
Vi and Vj. Let (pEj)’q(j)) be an ordered pair of featurepayitions can be “collapsed-in” or “spread-out” as required,
vectors such thap ) € I’ and qg.)) ¢ Ii. Then, from the using a suitable algorithm. Such an algorithm will not require
definition of a multilevel partition abovmgf.) belongs to the that the fuzzy measures on the feature space be known, but
9 will be a general procedure for learning the imprecision and

()
classC; with membership valugy; +7j..1)/2 andqu) belongs ncertainty in the data set. This motivates the study of hidden
to C; with a different membership value. Let te, norm nits with multilevel transfer functions.
||P8»)) - qE?)II be the distance of separation between the two syppose the multilevel hidden unit has discretestates
feature vectors. Consider all pairs of feature vectors such that|evels Then its transfer function can be written as a
one feature vector belongs to the clagswith membership syperposition ofn, sigmoidal functions, each shifted by
value (v; + 7j;1)/2, and the other belongs t6; with a ¢ The output of this multilevel unit can be written as
different membership value. Leb; = max; ||p8.)) - qE;.))H (1/ns) > r:, sem(vix — 67), where sgm(-) is a sigmoid
be the maximum distance of separation between all such pdirsction. The step widths of the multilevel transfer func-
of feature vectors in théth class. ThenD = max; D; is the tion, which may be called thguantum intervals will be
maximum distance of separation of all such pairs of vectorgpresentative of discrete localized cells in the feature space
lying across the boundaries of all the classes in the givennsisting of feature vectors with approximately the same
data set. Let||G|| be theL, norm of the gradient of the level of uncertainty as to their membership to the classes in

network response evaluated at a point betwp]‘ and qg?) the data set. These quantum intervals are determined by the

7 7
Y25 T V2541

Suppose a conventional FFNN learns to consistently p
tition the feature space of the data s€tby satisfying the
above termination criterion with the interval$ —~i,, =6,

and averaged over alland;j. Then it can be shown thg(7(| ‘Jlump-positions”6”. Unlike the step widths, the step heights
has the theoretical lower bound given by need not be learned through independent parameters. This is
because several sigmoids can be shifted to the same location
G| > <cl77562>9_ M (4) and added together to give steps of desired heights, to an

approximation. This approximation reduces the total number
wherecy, co and M are positive constants [21], [24]. of parameters to be learned by almost one-third. Finally, it will
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be clear from Section V that in practice this approximation ~
works well. Ik
The QNN consists of; inputs, one layer of,;, multilevel 1.00
hidden units, andch,, output units. The output units can be
linear or sigmoidal. Let the synaptic weight connecting the
¢th output unit to thejth hidden unit bew;;. Let the synaptic
weight connecting thgth hidden unit to theéth input bev;;.
Let xx = [T1 gy T2 ks Ty k|T, VE = 1,--+,m, be them 0.50 -
feature vectors of the data sét. Then the input to theth
hidden unit from thesth feature vector ig; , = "7 viizik
with ¢, = 1, Vk. Therefore, the response of thth hidden
unit for the kth feature vector can be written as

0.751

0.25 1

e 1 - 000 P R
hjge=— Y b= — > sem(By(hjx —65))  (5) j j j 0;
S r=1 S =1

where sgm(7) = 1/(1 4 exp(—7)) is a sigmoid function,
Br is a slope factorg]’s define the jump positions in the
transfer function, and., is the number of levels or sigmoids
in the hidden unit. Fig. 1(a) plots the responftg@C of a four-
level quantum neuron as a function of its inpyt.. Fig. 1(b) 1.00
demonstrates the generation of unequal step heights through
simple shifting. Each%,k is one elemental fuzzy partition.
Similarly, the input to theth output unit from thecth feature
vector isg; x = Y. wijhyx With hoy = 1, Vk. Therefore,
the response of théh output unit for thekth feature vector 0.50
can be written as

. _ [sem(B,(7ix)) Iif the ith output unit is sigmoidal
Yik = {?Lk if the ith output unit is linear

(6)

The essential difference between adding more sigmoidal 0.00
hidden units and having multilevel hidden units is clear from
(5). The linear partition generated by an additional hidden unit —
has all the degree of freedom to align itself along any direction ks
on the feature space. On the other hand, the sigmoids within (b)
multilevel hldden_ unit transfer function can o_nIy _“Spreadl_:ig. 1. A multilevel transfer function with (a) equal step heights (b) unequal
out” or “collapse-in” parallel to each other. This differencatep heights.
is further explained in Section V.

S

j,k

0.75 1

0.25 1

sequentially for eaclk [15]. Each feature vectax, is given

as the input to the QNN and the synaptic weights are adjusted

so that £ is minimized. This can be achieved laglapting
The learning of the QNN parameters is considered in tws} changing each synaptic weight by an amount proportional

steps. The synaptic weights need to be updated first in orgigrthe gradient of£}, with respect to that particular synaptic

to train the QNN to consistently partition the feature space Weight [15]. The update equation for the synaptic weigpj

the given data set. Simultaneously, the uncertainty presenicthnecting thesth output unit to thejth hidden unit is derived
the feature space must be learned through the adaptationpofppendix A as

the parameterg”.

IV. A GRADIENT-DESCENTBASED
LEARNING ALGORITHM FOR THE QNN

Wpj,k = Wpj k—1 + aég7kilj7k (8)
A. Updating the Weights in QNN
Letyr = [y1x Y21 -+ Yn, k]’ be the desired output vector
for the kth input feature vectoky, wherey; , = 11if x;, € C;

wherewy,; 1.1 andw,,; » are the values ab,; before and after
the adaptation for théth input, «« is the learning rate and

andy;;, =0 if x3 & Ci. Let 95 = [J1x G2 Inoi]” be 3 6 (1—1 SN A o =
: k1, o o (L= 1) Wk — i) 115 = 52 ( Bo (T 1
the actual output vector. A gradient-descent-based algorithﬁﬁ,kz{éyyf’i(g g”’k)(yp’k yp’k)if gp”f:;g@(/ )
for learning the synaptic weights of the QNN can be derived Pk Ipik Pk = Op ke ©)
by minimizing the quadratic error function The update equation for the synaptic weight connecting the

1 Qe sth hidden unit to theyth input is derived in Appendix A as

Ep =g > Wik — Gix)? (7)
i=1 Vsq,k = Vsq,k—1 + a/3}L62L7kxq,k (10)
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wherev,q ,—1 andwv,, i are the values of,, before and after
the adaptationg is the learning rate, and

TABLE |
ALGORITHM FOR TRAINING THE QNN

Sk_< Sl

B. Updating the Quantum Intervals

The QNN must be first trained to recognize the occurrence
of transitions between classes. The synaptic weights of the
QNN must be updated to enable the network to learn the class
boundaries on the feature space. At this point, the hidden unit
partitions may not have a one-to-one correspondence with the
decision space partitions. Some hidden unit partitions may
even pass right through the “central tendencies” of classes.
However, each decision space boundary is a linear superpo-
sition of many hidden unit partitions, partially or completely.
The objectives of this algorithm are 1) to selectively “collapse-
in” the multilevel transfer functions of the hidden units whose
partitions do not form class boundaries or pass through the
central tendencies of classes and 2) to selectively “spread-out”

o Select a, ag, B, Bo-
;,k)) Z efjkwis. (ll) Randomly initialize the weights and 67 for j = 1,2,..., nyand r=1,2,... . n,.
i Update the synaptic weights:
Fork=1,2,...,m
Forj=1,2,...,n4

Rk = Yo vii Tk

B2y 2 sgm(Bulhye — 67))

hig o nl PR
Fore=1,2,...,n,:

ik — X0 ws Ry

) sgm(Bo(¥:x)) 1if the ith output unit is sigmoidal

Yik = ik if the ¢th output unit is linear
For:=1,2,...,n

. (yir — Ui p)¥ix(1 — i) i the ith output unit is sigmoidal
Eok (yik — Bik) if the ¢th output unit is linear
Forj=1,2,...,npandi=1,2,... ,n,:

wi; — wi; +a e;—’yk iL]"k
For j =1,2,...,n,

6;’,19 — (nlf SR R (1 = AT i € wy;
Forj=1,2,...,npand [ =1,2,...,n

v vt o B by

the transfer functions of the hidden units whose partitions li@)pdate the quantum intervals:

in the neighborhood of a class boundary [24].

Fork=1,2,...,m:

It is proposed in this paper that the quantum intervals can Forj=1,2,....n

be learned by minimizing thelass-conditional varianceff]
at the outputs of the hidden units. It is expected that such
updating of ; will help create steps of different heights

hig — Siovii Tk

h;,k — X ng(ﬂh(ﬁ],k - 6;))
hjg — X A,

Vig < h]k(l - h]k)

according to the concentration of feature vectors belonging g, ;_; o

to different classes lying at the class boundaries.
The variance of the output of theth hidden unit for the

mth class(C,, is given by

where

Xy X ECon

(hign) — e Zxk.xkecm Rk
(Ve « g Tl Vik
For k=1,2,...,m
Forg=1,2,...,npand r =1,2,...,n,:
0 — 6+ i_: et Exexpecm((haen) — hq,k)(<";,c,,.> - "]T,k)

The network is trained in a sequenceaafaptation cycles

(12) Each adaptation cycle involves the adaptation of all the internal

parameters of the network, that is, the synaptic weights and the
locationss; of the shifted and superimposed sigmoid functions

and|Cy,| denotes the cardinality af,,. The adaptation of the of the hidden units. Since the criterion employed for updating
parameters); is based on the minimization of the objectivehe parameters; is based on all the input vectors from the
function formed by summing . over all the classes and alltraining set,¢: are updated after the presentation of all the

the hidden units, i.e.,

Np Mo

PP

p—l m=1

N No

S5 0D DD SRR ER WY

p—l m=1xp:xp €Cp,

The update equation fat; is derived in Appendix B as

AH; _ ﬁh Z Z quk)

m=1xy:xECpn
X (<l/(I7C'm> - Vq,k)

1

1 1 S — S
whereay is the learning ratep; o ) = 7 2, x,cc,. Yok

andvg , = hg (1= h3 ).

inputs to the network and the corresponding adaptation of the
synaptic weights. The algorithm is summarized in Table I.

The algorithms proposed in this paper are based on gradient
descent. Nevertheless, any other algorithm that facilitates fast
learning or minimizes the occurrence of local minima can also
be used for updating the synaptic weights and the quantum
intervals, according to necessity and the nature of the data
sets [15]. Since the main aim of this paper is to demonstrate
the capacity of the architecture, all the experiments in the
following section were performed using the simple gradient-
descent-based algorithms derived in this section. Therefore,
the learning time or convergence rate in all the following
experiments are mentioned as the number of training epochs
required for the sum-squared error to reach a certain minimum
value. These convergence rates are comparable to those of
any other gradient-descent-based algorithm applied to similar
problems [15].
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1.2
V. EXPERIMENTAL RESULTS 1 [ e Classt
i x  Class2
i 1 1 i 1.0 Response of output unit - j«=="""7""""
This section presents experiments designed to demonstrate |7 Response of ot ni 2

that 1) the partitions of the feature space generated by con- .
ventional FFNN's are crisp and 2) the partitions of the featurg ,; R RETTLE R e
space generated by QNN's are fuzzy and intuitive. This i€ os
achieved by explicitly viewing the decision spaces of thet os
FFNN and the QNN. These experiments are performed wit§
several data sets specifically chosen to clearly demonstrate 0
these properties without compromising the complexity present |

in actual data sets. I
-0.1
A. A Simple Two-Class Data Set R T R
Consider the simple two-class data set shown in Fig. 2. Input Space
This figure shows two classes of data sets represented as the (b)

“circles” and. the “(?rosses-" An intuitive interpretation of &y 3 Response of the FENN classifier for the two-class data with (a) a
normal physical object space whose features are represeniggle hidden unit and (b) three hidden units.

in this data set will be the following: at the extreme left,

maximum certainty that the data points belong to class 1; at ﬂljﬁe following inferences can be made: The transition of the

extreme right, maximum certainty that the data points are in
" . . . . response curves from one state to the next occurs at the

class 2; in the middle, maximum uncertainty as to which class™" . . : .
cation of d; shown in Fig. 2. This is consistent with the

the data points belong to. A more refined description of tH& . e
P 9 P ll-known result that the conventional FFNN classifier is

structure in this feature space is encoded into the membersh
function shown in Fig 2p a%minimum probability of error classifier [25]. Sincd the

In the first experiment, a Bayesian classifier was designHGnSition point the feature vectors belonging to the two classes

to minimize the probability of incorrect classification. Thi€'€ close to each other, the transition is rather abrupt.
resulted in one of the four linear discriminant functiols A conventional FENN with one input, three hidden units,

i = 1,2,3,4 shown in Fig. 2, depending on the parameter%md two output units was also trained on this data set. The
of the distributions. For each of the resulting classifieréeSPonse of this FENN is shown in Fig. 3(b). The response

the number of classification errors on this data set was tAgthe first output unit for the four “circles” in the extreme
minimum possible value of three. left is greater than 0.5. The response of the first output unit
In the second experiment, a conventional FFNN was trainff the “circle” in the extreme right is also greater than 0.5.
to function as the classifier for this data set. This FFNN waderefore, the response of the first output unit is greater than
designed with one input, one hidden unit, and two output unif5 for these five circles. This FFNN misclassifies only the
Though this design is highly redundant, it serves to explain th&o circles located on th&l-axis at 6 and 9. This experiment
function of the network components with ease. The netwoglemonstrates that varying the number of hidden units only
was trained using the error backpropagation (EBP) algorithi@sults in the overfitting of the data and does not have the
[26], with a learning rate of ¥10~2 and no momentum. The desired effect of producing graded responses.
training was terminated when the sum-squared error reduceds QNN with one input, one multilevel hidden unit, and two
to 1x10~2 or at the 100000th cycle, whichever was earlienutput units was trained on the data set of Fig. 2. In the first
The responses of both output units are shown in Fig. 3(&xperiment, a two-level hidden unit was used. The synaptic
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two-level hidden unit and (b) a nine-level hidden unit. 10 8 6 -4 -2 0 2 4 6 8 10

) ) . . Fig. 6. A three-class hybrid data set.
weights in the network were updated using the algorithm

derived in Section IV, with a learning rate ofx20—2. The . ) .
hidden unit was tuned to learn the quantum intervals wifidS Of the feature space into three fuzzy sets represenighg

a learning rate of £10~2. In either case no momentummMedium andlow values, or into a finer partition of five fuzzy

was provided. Fig. 4(a) shows the response of this QNRELS representingery high high, medium low, andvery low

These response curves are to be compared with the intuitfdues [18], [19]. Consider a one-dimensional feature space as
responses sketched in Fig. 2. Since only two levels we?8 extrapolation of the Qatg set shown.m Fig. 2, i.e., gfegture
used in the hidden unit of this QNN, this response encodgRace generated by periodically repeating the data set in Fig. 2.

only three degrees of certainty. In order to realize a find'® résponse of the QNN with nine levels in the hidden unit
representation of the imprecision in this data set, the né_§tshown in Fig. 5. This figure shows the feature space divided

experiment was performed on a QNN with nine levels fitC five fuzzy sets representingry high high, mediumlow,

the hidden unit. The response of this QNN is shown iAnd very low values.

Fig. 4(b). It is clear that if the QNN is expected to respond )

with many degrees of certainty, then the two extremes halBe A Three-Class Hybrid Data Set

to be assigned the two “very certain” categories. In the Consider a three-class data set on a two-dimensional feature

middle, corresponding to a maximum uncertainty, the netwosipace shown in Fig. 6. This data set is “hybrid” because it

response has to be approximately 0.5. Fig. 4(b) clearly showensists of both overlapping and nonoverlapping classes of

all these characteristics. data. This means that the network receives information that is
In Fig. 4(b), the QNN has divided the feature space intmixed, i.e., on one part of the feature space there is certainty

two fuzzy sets and has estimated the membership functiaass to the state of the nature while on another part there is

for these two sets. Often membership functions on the featunecertainty. The “circles” form the first class, the “crosses”

space of a data set are defined by dividing each componé@énin the second class and the “triangles” form the third class.
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Fig. 8. Response of the QNN (a) with two-level hidden units for the circles,
(b) with two-level hidden units for the triangles, and (c) with three-level
hidden units for the traingles.

Fig. 7. Response of the FFNN for (a) the circles, (b) the crosses, and (c)
the triangles. A conventional FFNN with two inputs and three output units

was trained to consistently partition the feature space of this

data set using the EBP with a learning rate of10=2. The
Each class consists of 20 data points. The circles are wellmber of hidden units were varied from three to eight. The
separated from the crosses and triangles. The crosses and=tHgN with five hidden units was found to be satisfactory in
triangles have considerable overlapping among themselviesms of the minimum error achievable for a given nhumber of
Again, an intuitive interpretation of this data set will be thedaptation cycles, and the overall time required for training
following: The part of the feature space to the left of théhe network. The decision spaces of this FFNN were plotted
planex = —2.0 is predominantly “circles” and the part ofin three dimensions (3-D), by taking the two features asithe
the feature space to the right of this plane is clearly nand they axes and the output of the network as thaexis. The
“circles.” The extreme top portion of the feature space to thdecision space formed by the first output unit of the FFNN is
right of x = —2.0 is certainly “crosses,” and the extremeshown in Fig. 7(a). The graduatedhxis in Fig. 7(a) is located
bottom region of this part of the feature space is certainbt (—10,—10) on the feature space. It is clear that the response
“triangles.” However, toward the middle of the feature spaasf the FFNN is consistent with the distribution of the data on
in the planex > —2.0, there is uncertainty as to whethethe feature space. The plane> —2.0 does not contain any
this region represents the “crosses” or the “triangles.” Butjrcles so the response of the first unit over this plane is almost
there is no uncertainty as to the fact that this region is noéro everywhere. Over the plane< —2.0, the response of the
representative of “circles.” first output unit is almost 1.0 everywhere. The transition from
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Fig. 9. Responses of the hidden units of the FFNN.
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the state 1.0 to the state 0.0 is abrupt and therefore the netwiaéture space. Fig. 7(c) shows the decision space generated
crisply discriminates between “circles” and “not circles.” Thidy the FFNN for the triangles, i.e., the output of the second
crisp decision-making is consistent with the distribution of theutput unit. The graduated axis is located at-{10, —10)
data on the feature space because there is no overlappin@mfthe feature space. Again, neglecting the spurious hump
the class “circles” with the other two classes. on thez < —2.0 plane, all the other properties observed in
Fig. 7(b) shows the decision space generated by the FF¥l. 7(b) can be seen preserved in this decision surface also.
for the crosses, i.e., the response of the third output unit. Theparticular, it is evident that the transition in the response
graduated: axis is located at{10,—10) on the feature space.from the region of the triangles to the region of the crosses
Ideally, this unit should respond with values close to 1.0 ovér crisp. Moreover, it is also apparent that the structure in
{z > —2.0} n {y > 0.0}, which is predominantly the regionthe feature space is not reflected in the decision surface. This
of the feature space over which the crosses are distributpdrticular aspect is also explained in detail in the following
The response of this unit over the other three quadrants safction.
the feature space should be close to 0.0. Fig. 7(b) does shown the next set of experiments, a QNN with two inputs,
these properties approximately. However, other properties tfiae hidden units, and three output units was trained on this
are inconsistent with the distribution of the data on the featudata set. In the first set of experiments, the QNN consisted
space are apparent. There are a few spurious humps in ehéwo-level hidden units. The synaptic weights were updated
region of z < —2.0. These spurious humps indicate poowith a learning rate of £10~2. The hidden units were tuned
generalization and are the result of the raw influence the hiddeith a learning rate of 810~2. The decision space for the
unit partitions have on the decision surface [24]. It can alsircles generated by the QNN is shown in Fig. 8(a). The
be observed from Fig. 7(b) that there is sharp transition graduated: axis is located at (16;10) on the feature space.
the response from the region of the crosses to the regiBiy. 8(a) demonstrates that the QNN is capable of making crisp
of the triangles over the plang > —2.0. In addition to decisions when the inputinformation is sufficient to make crisp
abrupt discontinuities of the boundaries, there is a lack of adgcisions. Since the class of circles does not overlap with the
structure in the overall response and the values of the respoaseer two classes, the QNN responds crisply for this class,
are not consistent with the distribution of data points oveegmenting the feature space into two disjoint subsets, one
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Fig. 10. Responses of the hidden units of the QNN.

representing “circles” and the other “no circles.” The quantuifherefore these representations lack structure. The responses
interval learning algorithm proposed is functional since thef the hidden units of the QNN have the structure of the
two-level hidden unit transfer functions forming the partitiofieature space reflected in them. These are indeed elemental
for the circles have been selectively “collapsed-in” to makieizzy partitions. The ideal decision space of the QNN is a
this partition crisp. These points are further elaborated beldimiting sum of these elemental fuzzy partitions of the feature
with figures showing the hidden unit partitions explicitly.  space. Finally, tuning the hidden representations directly gives
Fig. 8(b) and (c) show the decision space for the triangles additional degree of freedom for reducing the representation
generated by the QNN with two and three-level hidden unitsfror possibly through a more efficient utilization of the hidden
respectively. This fuzzy partition is finer than that seen ianits. This is clearly visible in the decision spaces of the FFNN
Fig. 8(a). Both these responses are very consistent with #ed the QNN.
manner in which data are distributed on the feature space.
In Figs. 8(b) and (c), the response falls off sharply toward tife A Two-Class Nonconvex Data Set
region of the circles and gradually, in graded steps, toward theConsider the data set with two nearly concentric classes of
region of the crosses. At the extremes of the plane —2.0, overlapping data shown in Fig. 11. This data set has a more
there is certainty and this gradually transforms into maximusomplicated structure in the feature space than the previous
uncertainty at the boundary between the crosses and tlaa sets. Consider the boundary between these two classes to
triangles. be an annular ring enclosing most of the circles. The density
Consider the three-class hybrid data set shown in Fig. . the crosses around the periphery of this annular ring is
Fig. 9 shows the responses of all the five hidden units of thet uniform. The boundary between the two classes in the
FFENN trained over this data set. Fig. 10 shows the responsgmper and the right regions of the feature space is fairly
of all the five hidden units of the corresponding QNN. It i€risp due to the fact that there is high density of crosses just
clear from these figures that the FFNN hidden unit partitiommutside and a high density of circles just inside the boundary.
are formed so as to ensure that a linear superposition of thékevever, the region immediately outside of the boundary at
partitions has a value close to 1.0 over part of the feature spalce extreme bottom left is devoid of any crosses. This gives
and a value close to 0.0 over the rest of the feature spadee to uncertainty at the bottom left segment of the boundary.
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Fig. 11. A two-class nonconvex data set.

In the first experiment, an FFNN with two inputs and two
output units was trained to consistently partition the feature
space of this data set using the EBP with a learning rate
of 1 x 10~2. The number of hidden units were varied from
three to eight. The FFNN with five hidden units was found
to be satisfactory in terms of the minimum error achievable
for a given number of adaptation cycles, and the overall time
required for training the network. Fig. 12(a) shows the density
plot of the first output unit. The bright regions represent
response values close to 1.0 and the dark regions represent
response values close to 0.0. Fig. 12(b) shows the 3-D plot of
the same. Fig. 12(a) and (b) clearly show that the variations
in the values of the output, i.e., response values “between zero
and one,” are irrelevant and do not correspond in any way to
the distribution of the data points in the feature space. Consider (b)
the five radially outgoing humps in the decision space. Ay. 12. Response of the FFNN: (a) Density plot and (b) 3-D plot.
pointed out in the previous section, these humps are spurious
and false variations in the network response resulting from the
raw influence of the hidden unit partitions on the structure @fer the central region densely distributed with the circles is
the decision surface. The decision surface needs to be mglisse to 0.0 and the region to the bottom left corner of the
or less circular. This circular surface has to be formed asféature space that does not contain any crosses or circles has
superposition of five elemental linear partitions. Therefore, thg intermediate value close to 0.5.
hidden unit partitions are organized in the manner Fig. 12(a)
indicates. Thus the variations in the output space only reflect
the linear partitions of the hidden units and not the distribution
of the data in the feature space. Decreasing the number offhis paper introduced a new class of feedforward neural
hidden units to three made the learning task more difficutetworks called QNN's that are capable of learning the uncer-
and it was observed that the number of misclassificatiotainty in sample data. The main aim of the proposed method
was seven even after 100000 cycles of training. Increasiizgto obtain an approximate classification for uncertain data,
the number of hidden units up to 12 was found to have maithout any restricting assumptions such as the availability of
considerable “smoothing” effect on the decision surface. a priori information, limited number of classes of data, limited

In the next experiment, a QNN with two inputs, two outpubumber of levels of uncertainty in the data, convexity of the
units, and five hidden units was trained with the same datksses, etc. In other words, the proposed method does not
set. Each hidden unit transfer function was formed with twassign feature vectors that lie in the boundary region between
sigmoids. The decision space is shown in Fig. 13(a) and (la}erlapping classes of data exclusively to one particular class
The intensity variations correspond well with the distributioonly. Instead, such a feature vector is assigned partially to
of the data in the feature space. There are three levelsatif the classes whose overlapping boundaries include this
certainty corresponding to the the two sigmoids in the hiddéeature vector. Such an approximate decision is often an
unit transfer functions. The network response over the regiend in itself because it is a necessary step in a hierarchical
densely distributed with the crosses is close to 1.0, the responseatext-based decision-making system. For example, in many

VI. CONCLUSIONS
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adaptively learn the uncertainty in the feature space comes at
the cost of an increase in the number of the parameters that
need to be learned. Specifically, for each hidden unit there is
an additionaln; number of parameters to be updated during
each training epoch. On the average, in all the experiments
described in the previous section, the computational overhead
in terms of overall training time for these additional parameters
was about 50%.

Theoretical studies have indicated that this inadequacy of
conventional FFNN’s is due to the hidden unit functions
having just one degree of freedom (their slope) to accom-
modate for the uncertainty in the feature space [23], [24]. It
is therefore expected that radial basis functions are probably
a better substitute for sigmoidal functions to achieve this
particular function. Further research can study radial basis
function networks and compare their performance to the QNN
@ performance.

APPENDIX A
DERIVATION OF THE UPDATE
EQUATIONS FOR SYNAPTIC WEIGHTS

The update equation for the synaptic weight; connecting
the pth output unit to thejth hidden unit can be obtained by
computing the derivative oF) with respect tow,; as

Mo ~
w w o O o E (y 7 )aylk
pj.k = Wpjk—1 = = o i,k = Jik )
Iwp; im1 Iwp;

(A1)

wherewy,; 1.1 andw,,; » are the values ab,,; before and after

() the adaptation for th&th input and« is the learning rate. The

Fig. 13. Response of the QNN: (a) density plot and (b) 3-D plot. derlvat|_ve_ .Ofyi’k )NIth_ respect toij can be CompUted using
the definition ofy; 5 in (6) as

OYi x

character recognition systems, the first stage of the decision 5
Wpj

making hierarchy is to decide approximately what each letter

of a word may be, based only on its shape. In the next stage,

based on similar decisions for all adjacent letters in the wonfhere

and semantic correctness, the final decisions are made for all ) ) L _

the letters of the word [7] :g; p = {Bo yz,k(l - yz,k) If QZ,k:S_gIn(ﬁo(yz,k)) (A3)
The experiments with simple one-dimensional and two- 1 it Jik =5ip-

dimensional data sets showed that conventional FFNN’s are o o o

often not capable of generalizing the information availab@ddp = 1 if ¢ = p andé;, = 0 if ¢ # p. Substituting the

from samples consistently (and adequately) to function §80ve equation into (A1), the update equation is obtained as

fuzzy classifiers. The sensitive dependence of the generaliza- N

tion ability of conventional FFNN's on the topology of the Wy k — Wpjk—1 = Q€p 1l (A4)

feature space was also demonstrated. This verifies the theory

of FFNN classifiers presented in [24]. The experiments als¢here

clearly establish the merit of the QNN as an architecture with

the ability for recognizing structures in data and organizatiqn X

in the feature space. It is also apparent from the experimenft)’s R N

that the manner in which QNN's perceive the structure of 7 Wp k= Up) Up,

= G 3 ik Oip (A2)

feature space is qualitatively analogous to the manner in which Bop. k(1! = ['0p.0) (Up.k —Tp.k) I Gp.x =s8m(30 (Tp.1))
human intuition and judgment assess the physical object space (¥p,x —¥p,x) if Gk =Tp k-

represented by this feature space. The ability of QNN'’s to (A5)
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The update equation for the synaptic weight connecting the The definition ofﬁqyk in (5) gives

sth hidden unit to theyth input can be obtained by computing

the derivative ofE;, with respect tov,, as ek _ = - %
003 ns £ 003
OF 8 B
Vsq,k — VUsq,k—1 = _a—k = az Yik — yz k ay = _ﬁh Z h )61’5 = fl_}l/q’k (BS)
S r=1 3
(AG) wherev:, = hi, (1 — h3,). Substituting (B2) and (B3) in

(B1) glves the update equatlon as

wherev,g ,—1 andv,, ; are the values of,, before and after
the adaptation and is the learning rate. The definition ¢f x
in (6) gives

np

zk§ :wU

ayzk —

o (A7)

N

> >

m=1xp:X €Cn,

—he ) (Vi) = van)

(B4)

1
where (12 . ) = o D oxpixi €Con Yk

with 7, , as defined in (A3). Finally, the definition d;  in
(5) gives

(1]
(2]

Oh .
v,

— ﬁh

Zh

S r=1

h;1)6jstqr.  (A8)

3
Substituting (A7) and (A8) in (A6), the update equation for[ ]

vsq Decomes

[4]
Vsq,k — Vsq,k—1 = a/3}L6£L7kxq,k (A9) [5]
where [6]
, 1 Ns . Mo ) [7]
di=|— > ohI(1- > e i, (A10)
5 r=1 i=1

(8]
APPENDIX B

DERIVATION OF THE UPDATE

[
EQUATIONS FOR QUANTUM INTERVALS

The update equation faf; can be obtained by setting theyio]
change 92, say A2, proportional to the gradient @& with

respect tod; as [11]
s oG 12
Aeq = —040 893 [ ]
- - . (13]
=—as > N ((hge,) = ha)
m=1xp:Xx € Cm Hé%
INhecn)  Ohgu (B1)
a0 a0 [16]
where «y is the learning rate. The definition qﬁq,cm> in  [17]
(12) gives (18]
7 (19]
I hqgc..) 1 8hq k
! = B2
a0 [C] Z o6s - (82) [20]
X Xp € Con q
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