
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997 679

Quantum Neural Networks (QNN’s): Inherently
Fuzzy Feedforward Neural Networks

Gopathy Purushothaman and Nicolaos B. Karayiannis,Member, IEEE

Abstract—This paper introduces quantum neural networks
(QNN’s), a class of feedforward neural networks (FFNN’s) in-
herently capable of estimating the structure of a feature space in
the form of fuzzy sets. The hidden units of these networks develop
quantized representations of the sample information provided by
the training data set in various graded levels of certainty. Unlike
other approaches attempting to merge fuzzy logic and neural
networks, QNN’s can be used in pattern classification problems
without any restricting assumptions such as the availability of
a priori knowledge or desired membership profile, convexity of
classes, a limited number of classes, etc. Experimental results
presented here show that QNN’s are capable of recognizing
structures in data, a property that conventional FFNN’s with
sigmoidal hidden units lack.

Index Terms—Fuzzy classification, multilevel partitions, mul-
tilevel transfer functions, quantum neural networks, quantum
neurons, uncertainty.

I. INTRODUCTION

FEEDFORWARD neural networks (FFNN’s) have been a
natural choice as trainable pattern classifiers and adaptive

controllers because of their function approximation capability
and generalization ability [4], [7], [9], [12], [18], [20], [26].
The function approximation capability allows them to form
arbitrary nonlinear discriminant surfaces while the generaliza-
tion ability allows them to respond consistently to data they
were not trained with. These properties have resulted in FFNN
classifiers and controllers being used in many applications [7],
[15], [18].

In order to perform successfully in complex environments
where many ill-defined and uncertain factors are encountered,
human reasoning employs linguistic hedges, rules-of-thumb
experience, intuition, and other heuristics [32]. Fuzzy inference
systems such as fuzzy controllers and fuzzy pattern classifiers
designed to incorporate these aspects of human reasoning in
a qualitative manner have found many successful applications
in pattern recognition [2], [14], [19], control [27], and other
practical prediction and inferencing problems [29].

Many recent studies have focussed on developing systems
capable of operating in complex uncertain environments by
merging fuzzy and neural-network techniques [2], [10], [11],
[13], [16]–[18], [20], [28]. Such hybrid systems can be clas-
sified into two classes:Class 1) Fuzzy inference systems that
incorporate the learning and generalization abilities of FFNN’s

Manuscript received December 8, 1995; revised August 12, 1996 and
December 22, 1996.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Houston, Houston, TX 77204-4793 USA.

Publisher Item Identifier S 1045-9227(97)02765-3.

by using the FFNN paradigm within a general computational
scheme [2], [8], [13] andClass 2) FFNN’s that incorporate
the imprecision and linguistic data handling abilities of fuzzy
systems by using fuzzy set-theoretic learning rules [2], [10],
[11], [16], [20], [28]. While the second class of hybrid systems
possess the main advantages of the FFNN paradigm like
function approximation ability, these properties have been
proved only in some cases for Class 1 implementations.
Even in these cases, some restrictions apply; for example,
the premisemay be required to be convex for the function
approximation property to be true [13]. Thus the very flexible
functionality of FFNN’s is to some extent lost in these
implementations. Nevertheless, Class 1 implementations are
useful for identifying a complete fuzzy inference system
because in Class 2 implementations the different modules of
a fuzzy inference system (such as the premise, the rule-base,
the defuzzification or output function, etc.) cannot be identified
separately. This is due to the distributed nature of processing
in FFNN’s [7], [26].

Class 2 implementations could be useful in applications that
do not require the identification of the subsystems of a fuzzy
inference system but demand good generalization, such as
pattern classification. This dichotomy between interpretability
and generalization ability arises due to differences in the goals
of modeling [3]. Moreover, a Class 2 implementation can also
be used as part of a Class 1 implementation. As an example, an
FFNN trained to generate the premise can be used as the first
stage of any fuzzy inferencing system. In the rest of this paper,
only Class 2 implementations are considered and, therefore,
the discussion is restricted to pattern classifiers.

The first step in studying Class 2 hybrid systems is to
analyze to what extent a typical FFNN trained in the conven-
tional manner has the ability to function as a (Class 2) fuzzy
system by itself. Suppose an FFNN is trained with example
data that assign incremental regions of the feature space to
one particular class only. In practical situations, such training
sets may contain overlapping classes of data. The fundamental
question is whether the trained FFNN is capable of identifying
by itself the uncertainty present in the training set by forming
gradual or “fuzzy” boundaries between the classes instead of
forming sharp or “crisp” boundaries that divide the feature
space into disjoint areas. In this context, several studies have
investigated the ability of FFNN’s trained with exemplars to
generalize and divide the feature space with gradual or “fuzzy”
boundaries instead of sharp or “crisp” boundaries [2], [10],
[11], [16], [18], [20]–[23], [28]. These investigations have
revealed the apparent limitations of FFNN’s for detecting and

1045–9227/97$10.00 1997 IEEE

680 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

identifying the uncertainty present in a training set. In order
to overcome these limitations, several approaches have been
taken to design FFNN classifiers capable of partitioning a
feature space consisting of overlapping classes of data with
imprecise boundaries. Keller and Hunt [16] incorporated fuzzy
logic principles into the development of learning algorithms
for FFNN classifiers. The input to the network was formed
by the feature vectors of the training data set. The “desired
output” vector was computed from the membership functions
chosen heuristically for each pattern class. These membership
functions give a measure of the extent to which a certain
training pattern belongs to each class. Pal and Mitra [20]
trained multilayered FFNN’s to function as fuzzy classi-
fiers for data sets consisting of overlapping classes of data.
The input vector to the network was formed by mapping
the actual -dimensional feature vector to a -dimensional
space, with each component of the actual feature vector
being mapped to three fuzzy sets representinghigh, medium,
and low values in its domain. This allowed the network to
handle uncertain information as well as to take linguistic
inputs. The “desired output” for training the network was
computed from membership functions chosena priori for each
pattern class. In both these training schemes, the membership
functions have to be estimated or chosena priori. Therefore
in these schemes the trained network is capable of handling
imprecise (and linguistic) inputs, but does not necessarily
perform an estimation (generalization) task. However, model-
free estimation of the input–output relationship is one of the
main imports of the neural processing paradigm [2], [18].
Takagi and Hayashi [28] used FFNN’sper seas estimators of
fuzziness. In their approach, the training data were preclustered
and labeled for supervised training. Therefore, this approach
may not be valid when the classes of data are closely spaced
or overlap in practical situations [6].

In summary, fuzzy FFNN classifiers are developed in the
existing approaches either by explicitly training FFNN’s to
learn membership values estimateda priori, or by training
FFNN’s in the conventional manner and interpreting the
response of the FFNN as being fuzzy in itself. The for-
mer approaches do not necessarily exploit the generalization
ability of FFNN’s, while the latter approaches assume that
FFNN’s are inherently fuzzy classifiers. In order to overcome
these problems, Ishibuchi and Tanaka [11] have proposed
an approximate pattern classification method for two-class
discrimination problems based on their possibility–necessity
analysis [10]. In this approach, each feature vector is classified
as eithernecessarilyor possiblybelonging to a class. In other
words, the fuzzy boundary generated by their approximate
classifier encodes only two levels of uncertainty. Further, their
approach uses two independent FFNN’s and combines their
responses to solve a two-class discrimination problem.

This paper introduces thequantum neural network(QNN),
a computational tool for fuzzy classification that combines the
advantages of neural modeling and fuzzy-theoretic principles.
The salient features of the QNN are the following.

1) The ability to autonomously detect the presence of
uncertainty in the sample data and adaptively learn to
quantify the existing uncertainty. If the feature vec-

tor lies in the boundary between overlapping classes,
the QNN will assign it partially to all classes whose
overlapping boundaries include this feature vector. If
there is no uncertainty regarding the classification of a
certain feature vector, the QNN will assign it to the class
indicated by the training set.

2) The ability to approximate any membership profile ar-
bitrarily well from the sample data. The QNN does not
depend ona priori knowledge or a desired membership
profile that are required by most existing methods. The
ability of feedforward neural models to approximate un-
known functions is exploited in rendering this classifier
capable of estimating by itself the uncertainty in the
sample data in terms of membership values.

3) The ability to detect and quantify uncertainty in the
sample data without any restricting assumptions about
the number of classes, the number of uncertainty levels
in the data, the convexity of the classes, etc.

Section II briefly reviews a recent theoretical investigation
which showed the limitations of FFNN’s for fuzzy classifi-
cation [24]. Section III introduces the concept of multilevel
partitioning of the feature space and proposes QNN’s as an
alternative neural architecture capable of generating multilevel
partitions between any number of classes. Section IV presents
learning algorithms for updating the internal parameters of
QNN’s. Section V presents an experimental evaluation of
QNN’s and compares their performance with that of conven-
tional FFNN’s. Section VI contains concluding remarks.

II. L IMITATIONS OF CONVENTIONAL

FFNN’s FOR FUZZY CLASSIFICATION

This section outlines the results of a previous rigorous theo-
retical study on the capacity of FFNN’s for fuzzy classification
[24]. Consider a network with inputs, output units, and
one layer of hidden units. Let
be the weight vector connecting theth hidden unit to the
inputs and be the weight vector
connecting the th output unit to the hidden units. Let be
the matrix with the vectors as its columns and the
matrix with the vectors as its columns. Let the transfer
function of the hidden units be the sigmoidal function

. A conventional FFNN may be defined as the function
, which maps to

, such that

where and is the th coordinate function
.

Consider a data set of feature vectors , where is
a compact metric subspace of . Suppose

are known classes of feature vectors in the feature
space . Conventionally, FFNN’s are trained using sample
data to function as pattern classifiers by giving feature vectors
belonging to theth class as the input and adjusting the weights
to obtain a response of “1” from theth output unit and a
response of “0” from the other output units. This procedure is

PURUSHOTHAMAN AND KARAYIANNIS: QUANTUM NEURAL NETWORKS 681

repeated for all the feature vectors belonging to all the classes
in one training epoch.

The performance of the FFNN classifier trained in this
manner is clearly influenced by the training algorithm and
its architecture. Suppose the FFNN is trained to assign each
feature vector to only one class. If the training algorithm is
efficient and the architecture is optimal (i.e., it has a sufficient
number of hidden units), then the FFNN will learn a close
approximation to a discriminant function which minimizes the
number of incorrect classifications [4], [9], [12], [25]. The
discriminant function learned by the FFNN trained conven-
tionally from sample data defines the boundaries between the
classes of the feature space. In a recent study, the authors
attempted to quantify how sharp or “crisp” these boundaries
are [24]. In practice, an FFNN is not required to be trained
till the output values saturate, i.e., till they become “1” or
“0” [10], [16], [20], [28]. Therefore, an FFNN has learned to
consistently partition the feature spaceof a given data set if
for and if

otherwise, where . Usually,
for symmetry and simplicity, the value ofmay be taken to be
0.5. Suppose the FFNN is trained until it satisfies the condition

(1)

for some . It is obvious that if the network has learned
to consistently partition the feature space, then it satisfies the
condition (1). This termination criterion is based on a global
measure of how well the network has learned to function as
a classifier. The quantity measures the “goodness-
of-fit” the network achieves for the function it is trained to
learn. The parameter is the amount of training that the
network is subjected to in order to achieve this goodness-
of-fit. The parameter comprehensively models the training
and learning aspects of the FFNN classifier in the following
manner: Suppose that in the ideal situation where the optimal
architecture size can be estimated and an efficient training
algorithm can be used, the value ofis set to one. In this case,
the training process is guaranteed to terminate in finite time
and the FFNN learns the discriminant function that minimizes
the number of incorrect classifications [25]. In practice,
takes a value less than one in order to accommodate for
the suboptimality of the architecture and deficiencies of the
learning algorithm. Finally, if the value of is closer to zero,
then the network is only minimally trained or not trained at
all. In other words, the parameteris a quantitative measure
of all design factors affecting the classifier performance.

The main result of the study shows that the topology of the
feature space influences the ability of FFNN’s to function as
fuzzy classifiers in the following manner: In a given data set,
let the feature vector be in the th class and the vector
not be in the th class. Let be the gradient of the response
of the th output unit evaluated at some point betweenand

. Then it can be shown that the norm of this gradient has
the theoretical lower bound given by

(2)

where and are positive constants. Suppose that the FFNN
is trained with . As , i.e., the classes are
coming closer together or their overlapping increases, the norm
of the gradient increases. In other words, the network forms
an increasingly sharp or “crisp” boundary as .
This implies that such an FFNN loses its ability to function
as a fuzzy classifier for data sets consisting of overlapping or
closely spaced classes of feature vectors.

III. T HE QUANTUM NEURAL NETWORK (QNN)

The FFNN creates its internal representations from the
sample information provided by the training data. In the
remainder of this paper, training from sample data means that
if a training vector belongs to theth class, theth output unit
is required to respond with “1” while the response of all the
other output units is required to be “0.” In order to function as
fuzzy classifier, the FFNN must use the sample information as
a mere reference for creating the internal representations. Thus,
it should not encode the sample informationaccuratelyinto the
internal representations. Such an exact or faithful encoding of
the sample information results in the FFNN memorizing the
“crispness” in the training data set. But aninherently fuzzy
architecture should be capable of generalizing the sample
information into various graded levels of certainty over the
entire feature space. This may be possible if the architecture
is capable of creating graded internal representations from the
sample information. The QNN is proposed in this section as an
architecture capable of allowing the sample information to be
encoded into certain levels (grades) of certainty/uncertainty
only.

A. Training FFNN’s for Fuzzy Classification

Consider the feature space consisting of classes.
For the th class, consider subsets

, such that . Suppose that all the
feature vectors in the subsetcan be assigned to theth class
with approximately the same membership value. Then
represents the number of levels of uncertainty in assigning
feature vectors to theth class. Let

be a set of nonnegative real numbers for each. A
multilevel partitionon the feature space is defined as the
collection of the discrete fuzzy sets

with

where if and otherwise. In the
above, is the membership value of the feature vector

to the th class . The value of for the feature

682 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

vector depends on which subset of the feature space
it belongs to. For example, if belongs to a subset which
is a region of the feature space that lies far away from the
center of the th class, then is very
small. A multilevel partition is therefore a particular type of
membership function, where the membership of the feature
vectors is discrete valued over the feature space. It can be
shown that the class of multilevel partitions can approximate
arbitrary real-valued membership functions to any degree of
accuracy [21]. Finally, multilevel partitions may be considered
as a generalization of the possibility–necessity classification
scheme proposed by Ishibuchi and Tanaka [10].

When a conventional FFNN is trained with a sample data
set, some termination criteria are used to test if learning
is satisfactory. The termination criterion (1) presented in
the previous section can be used to check if the FFNN
has learned to consistently partition the feature space. In
a similar manner, a conventional FFNN can be defined to
have learned toconsistently multilevel partition the feature
spaceof a given data set if for each , and
for if and

if . Then the following termination
criterion can be used to test if the FFNN has learned to
consistently multilevel partition the feature space [21]:

(3)

Suppose a conventional FFNN learns to consistently par-
tition the feature space of the data set by satisfying the
above termination criterion with the intervals

and . Let be an ordered pair of feature

vectors such that and . Then, from the

definition of a multilevel partition above, belongs to the

class with membership value and belongs
to with a different membership value. Let the norm

be the distance of separation between the two
feature vectors. Consider all pairs of feature vectors such that
one feature vector belongs to the classwith membership
value , and the other belongs to with a

different membership value. Let
be the maximum distance of separation between all such pairs
of feature vectors in theth class. Then is the
maximum distance of separation of all such pairs of vectors
lying across the boundaries of all the classes in the given
data set. Let be the norm of the gradient of the
network response evaluated at a point between and
and averaged over alland . Then it can be shown that
has the theoretical lower bound given by

(4)

where and are positive constants [21], [24].

The parameter is independent of the amount of training
and is dependent only on the fine structure of the “multilevel
partitions” defined by the subsets and membership values

. Thus inequality (4) shows that by independently varying
, the gradient of the network response can be kept as small

as required. Therefore, it follows from (2) and (4) that fuzzy
partitioning of the feature space can be achieved if the FFNN is
trained to multilevel partition the feature space by satisfying
the termination criterion (3) instead of being trained in the
conventional manner, that is, by satisfying the termination
criterion (1).

In practice, there is no guarantee that, in practice, an FFNN
trained with sample data will satisfy the stringent termination
criterion (3). This suggests the need for an alternative feed-
forward neural model that is capable of generating by itself a
consistent multilevel partition of the feature space. This model
is described in detail in the following section.

B. Quantum Neuron

The aforementioned objectives can be accomplished by
constructing a multilayered neural network so that whenever
the network forms a partition between closely spaced classes,
the partition truly represents the imprecision at the boundary
between the classes. The previous section shows that the
partitions between closely spaced classes must be at least
multilevel, with the fine structure of the levels representative
of the uncertainty present in the data lying at the boundary
between these classes. One simple way of incorporating the
ability to form consistent multilevel partitions in the hidden
layer is to create hidden unit partitions with the property
of “spreading-out” over regions of uncertainty in the feature
space and “collapsing-in” over regions of certainty. If all the
hidden unit transfer functions have the ability to form “graded”
partitions instead of the crisp linear partitions, then these
partitions can be “collapsed-in” or “spread-out” as required,
using a suitable algorithm. Such an algorithm will not require
that the fuzzy measures on the feature space be known, but
will be a general procedure for learning the imprecision and
uncertainty in the data set. This motivates the study of hidden
units with multilevel transfer functions.

Suppose the multilevel hidden unit has discretestates
or levels. Then its transfer function can be written as a
superposition of sigmoidal functions, each shifted by

. The output of this multilevel unit can be written as
, where is a sigmoid

function. The step widths of the multilevel transfer func-
tion, which may be called thequantum intervals, will be
representative of discrete localized cells in the feature space
consisting of feature vectors with approximately the same
level of uncertainty as to their membership to the classes in
the data set. These quantum intervals are determined by the
“jump-positions” . Unlike the step widths, the step heights
need not be learned through independent parameters. This is
because several sigmoids can be shifted to the same location
and added together to give steps of desired heights, to an
approximation. This approximation reduces the total number
of parameters to be learned by almost one-third. Finally, it will

PURUSHOTHAMAN AND KARAYIANNIS: QUANTUM NEURAL NETWORKS 683

be clear from Section V that in practice this approximation
works well.

The QNN consists of inputs, one layer of multilevel
hidden units, and output units. The output units can be
linear or sigmoidal. Let the synaptic weight connecting the
th output unit to the th hidden unit be . Let the synaptic

weight connecting theth hidden unit to theth input be .
Let be the
feature vectors of the data set. Then the input to the th
hidden unit from the th feature vector is
with . Therefore, the response of theth hidden
unit for the th feature vector can be written as

(5)

where is a sigmoid function,
is a slope factor, ’s define the jump positions in the

transfer function, and is the number of levels or sigmoids
in the hidden unit. Fig. 1(a) plots the response of a four-
level quantum neuron as a function of its input . Fig. 1(b)
demonstrates the generation of unequal step heights through
simple shifting. Each is one elemental fuzzy partition.
Similarly, the input to theth output unit from the th feature
vector is with . Therefore,
the response of theth output unit for the th feature vector
can be written as

if the th output unit is sigmoidal
if the th output unit is linear

(6)
The essential difference between adding more sigmoidal

hidden units and having multilevel hidden units is clear from
(5). The linear partition generated by an additional hidden unit
has all the degree of freedom to align itself along any direction
on the feature space. On the other hand, the sigmoids within
multilevel hidden unit transfer function can only “spread-
out” or “collapse-in” parallel to each other. This difference
is further explained in Section V.

IV. A GRADIENT-DESCENT-BASED

LEARNING ALGORITHM FOR THE QNN

The learning of the QNN parameters is considered in two
steps. The synaptic weights need to be updated first in order
to train the QNN to consistently partition the feature space of
the given data set. Simultaneously, the uncertainty present in
the feature space must be learned through the adaptation of
the parameters .

A. Updating the Weights in QNN

Let be the desired output vector
for the th input feature vector , where if
and if . Let be
the actual output vector. A gradient-descent-based algorithm
for learning the synaptic weights of the QNN can be derived
by minimizing the quadratic error function

(7)

(a)

(b)

Fig. 1. A multilevel transfer function with (a) equal step heights (b) unequal
step heights.

sequentially for each [15]. Each feature vector is given
as the input to the QNN and the synaptic weights are adjusted
so that is minimized. This can be achieved byadapting
or changing each synaptic weight by an amount proportional
to the gradient of with respect to that particular synaptic
weight [15]. The update equation for the synaptic weight
connecting the th output unit to the th hidden unit is derived
in Appendix A as

(8)

where and are the values of before and after
the adaptation for theth input, is the learning rate and

if
if

(9)
The update equation for the synaptic weight connecting the
th hidden unit to the th input is derived in Appendix A as

(10)

684 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

where and are the values of before and after
the adaptation, is the learning rate, and

(11)

B. Updating the Quantum Intervals

The QNN must be first trained to recognize the occurrence
of transitions between classes. The synaptic weights of the
QNN must be updated to enable the network to learn the class
boundaries on the feature space. At this point, the hidden unit
partitions may not have a one-to-one correspondence with the
decision space partitions. Some hidden unit partitions may
even pass right through the “central tendencies” of classes.
However, each decision space boundary is a linear superpo-
sition of many hidden unit partitions, partially or completely.
The objectives of this algorithm are 1) to selectively “collapse-
in” the multilevel transfer functions of the hidden units whose
partitions do not form class boundaries or pass through the
central tendencies of classes and 2) to selectively “spread-out”
the transfer functions of the hidden units whose partitions lie
in the neighborhood of a class boundary [24].

It is proposed in this paper that the quantum intervals can
be learned by minimizing theclass-conditional variances[6]
at the outputs of the hidden units. It is expected that such
updating of will help create steps of different heights
according to the concentration of feature vectors belonging
to different classes lying at the class boundaries.

The variance of the output of theth hidden unit for the
th class is given by

where

(12)

and denotes the cardinality of . The adaptation of the
parameters is based on the minimization of the objective
function formed by summing over all the classes and all
the hidden units, i.e.,

(13)

The update equation for is derived in Appendix B as

(14)

where is the learning rate, ,
and .

TABLE I
ALGORITHM FOR TRAINING THE QNN

The network is trained in a sequence ofadaptation cycles.
Each adaptation cycle involves the adaptation of all the internal
parameters of the network, that is, the synaptic weights and the
locations of the shifted and superimposed sigmoid functions
of the hidden units. Since the criterion employed for updating
the parameters is based on all the input vectors from the
training set, are updated after the presentation of all the
inputs to the network and the corresponding adaptation of the
synaptic weights. The algorithm is summarized in Table I.

The algorithms proposed in this paper are based on gradient
descent. Nevertheless, any other algorithm that facilitates fast
learning or minimizes the occurrence of local minima can also
be used for updating the synaptic weights and the quantum
intervals, according to necessity and the nature of the data
sets [15]. Since the main aim of this paper is to demonstrate
the capacity of the architecture, all the experiments in the
following section were performed using the simple gradient-
descent-based algorithms derived in this section. Therefore,
the learning time or convergence rate in all the following
experiments are mentioned as the number of training epochs
required for the sum-squared error to reach a certain minimum
value. These convergence rates are comparable to those of
any other gradient-descent-based algorithm applied to similar
problems [15].

PURUSHOTHAMAN AND KARAYIANNIS: QUANTUM NEURAL NETWORKS 685

Fig. 2. A simple two-class data set.

V. EXPERIMENTAL RESULTS

This section presents experiments designed to demonstrate
that 1) the partitions of the feature space generated by con-
ventional FFNN’s are crisp and 2) the partitions of the feature
space generated by QNN’s are fuzzy and intuitive. This is
achieved by explicitly viewing the decision spaces of the
FFNN and the QNN. These experiments are performed with
several data sets specifically chosen to clearly demonstrate
these properties without compromising the complexity present
in actual data sets.

A. A Simple Two-Class Data Set

Consider the simple two-class data set shown in Fig. 2.
This figure shows two classes of data sets represented as the
“circles” and the “crosses.” An intuitive interpretation of a
normal physical object space whose features are represented
in this data set will be the following: at the extreme left,
maximum certainty that the data points belong to class 1; at the
extreme right, maximum certainty that the data points are in
class 2; in the middle, maximum uncertainty as to which class
the data points belong to. A more refined description of the
structure in this feature space is encoded into the membership
function shown in Fig. 2.

In the first experiment, a Bayesian classifier was designed
to minimize the probability of incorrect classification. This
resulted in one of the four linear discriminant functions

shown in Fig. 2, depending on the parameters
of the distributions. For each of the resulting classifiers,
the number of classification errors on this data set was the
minimum possible value of three.

In the second experiment, a conventional FFNN was trained
to function as the classifier for this data set. This FFNN was
designed with one input, one hidden unit, and two output units.
Though this design is highly redundant, it serves to explain the
function of the network components with ease. The network
was trained using the error backpropagation (EBP) algorithm
[26], with a learning rate of 7 and no momentum. The
training was terminated when the sum-squared error reduced
to 1 or at the 100 000th cycle, whichever was earlier.
The responses of both output units are shown in Fig. 3(a).

(a)

(b)

Fig. 3. Response of the FFNN classifier for the two-class data with (a) a
single hidden unit and (b) three hidden units.

The following inferences can be made: The transition of the
response curves from one state to the next occurs at the
location of shown in Fig. 2. This is consistent with the
well-known result that the conventional FFNN classifier is
a minimum probability of error classifier [25]. Sinceat the
transition point the feature vectors belonging to the two classes
are close to each other, the transition is rather abrupt.

A conventional FFNN with one input, three hidden units,
and two output units was also trained on this data set. The
response of this FFNN is shown in Fig. 3(b). The response
of the first output unit for the four “circles” in the extreme
left is greater than 0.5. The response of the first output unit
for the “circle” in the extreme right is also greater than 0.5.
Therefore, the response of the first output unit is greater than
0.5 for these five circles. This FFNN misclassifies only the
two circles located on the -axis at 6 and 9. This experiment
demonstrates that varying the number of hidden units only
results in the overfitting of the data and does not have the
desired effect of producing graded responses.

A QNN with one input, one multilevel hidden unit, and two
output units was trained on the data set of Fig. 2. In the first
experiment, a two-level hidden unit was used. The synaptic

686 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

(a)

(b)

Fig. 4. Response of the QNN classifier for the two-class data with (a) a
two-level hidden unit and (b) a nine-level hidden unit.

weights in the network were updated using the algorithm
derived in Section IV, with a learning rate of 7 . The
hidden unit was tuned to learn the quantum intervals with
a learning rate of 1 . In either case no momentum
was provided. Fig. 4(a) shows the response of this QNN.
These response curves are to be compared with the intuitive
responses sketched in Fig. 2. Since only two levels were
used in the hidden unit of this QNN, this response encodes
only three degrees of certainty. In order to realize a finer
representation of the imprecision in this data set, the next
experiment was performed on a QNN with nine levels in
the hidden unit. The response of this QNN is shown in
Fig. 4(b). It is clear that if the QNN is expected to respond
with many degrees of certainty, then the two extremes have
to be assigned the two “very certain” categories. In the
middle, corresponding to a maximum uncertainty, the network
response has to be approximately 0.5. Fig. 4(b) clearly shows
all these characteristics.

In Fig. 4(b), the QNN has divided the feature space into
two fuzzy sets and has estimated the membership functions
for these two sets. Often membership functions on the feature
space of a data set are defined by dividing each component

Fig. 5. Fuzzy sets of the feature space estimated by the QNN.

Fig. 6. A three-class hybrid data set.

axis of the feature space into three fuzzy sets representinghigh,
medium, andlow values, or into a finer partition of five fuzzy
sets representingvery high, high, medium, low, andvery low
values [18], [19]. Consider a one-dimensional feature space as
an extrapolation of the data set shown in Fig. 2, i.e., a feature
space generated by periodically repeating the data set in Fig. 2.
The response of the QNN with nine levels in the hidden unit
is shown in Fig. 5. This figure shows the feature space divided
into five fuzzy sets representingvery high, high, medium, low,
and very low values.

B. A Three-Class Hybrid Data Set

Consider a three-class data set on a two-dimensional feature
space shown in Fig. 6. This data set is “hybrid” because it
consists of both overlapping and nonoverlapping classes of
data. This means that the network receives information that is
mixed, i.e., on one part of the feature space there is certainty
as to the state of the nature while on another part there is
uncertainty. The “circles” form the first class, the “crosses”
form the second class and the “triangles” form the third class.

PURUSHOTHAMAN AND KARAYIANNIS: QUANTUM NEURAL NETWORKS 687

(a)

(b)

(c)

Fig. 7. Response of the FFNN for (a) the circles, (b) the crosses, and (c)
the triangles.

Each class consists of 20 data points. The circles are well
separated from the crosses and triangles. The crosses and the
triangles have considerable overlapping among themselves.
Again, an intuitive interpretation of this data set will be the
following: The part of the feature space to the left of the
plane is predominantly “circles” and the part of
the feature space to the right of this plane is clearly not
“circles.” The extreme top portion of the feature space to the
right of is certainly “crosses,” and the extreme
bottom region of this part of the feature space is certainly
“triangles.” However, toward the middle of the feature space
in the plane , there is uncertainty as to whether
this region represents the “crosses” or the “triangles.” But,
there is no uncertainty as to the fact that this region is not
representative of “circles.”

(a)

(b)

(c)

Fig. 8. Response of the QNN (a) with two-level hidden units for the circles,
(b) with two-level hidden units for the triangles, and (c) with three-level
hidden units for the traingles.

A conventional FFNN with two inputs and three output units
was trained to consistently partition the feature space of this
data set using the EBP with a learning rate of 1 . The
number of hidden units were varied from three to eight. The
FFNN with five hidden units was found to be satisfactory in
terms of the minimum error achievable for a given number of
adaptation cycles, and the overall time required for training
the network. The decision spaces of this FFNN were plotted
in three dimensions (3-D), by taking the two features as the
and the axes and the output of the network as theaxis. The
decision space formed by the first output unit of the FFNN is
shown in Fig. 7(a). The graduatedaxis in Fig. 7(a) is located
at (10, 10) on the feature space. It is clear that the response
of the FFNN is consistent with the distribution of the data on
the feature space. The plane does not contain any
circles so the response of the first unit over this plane is almost
zero everywhere. Over the plane , the response of the
first output unit is almost 1.0 everywhere. The transition from

688 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

Fig. 9. Responses of the hidden units of the FFNN.

the state 1.0 to the state 0.0 is abrupt and therefore the network
crisply discriminates between “circles” and “not circles.” This
crisp decision-making is consistent with the distribution of the
data on the feature space because there is no overlapping of
the class “circles” with the other two classes.

Fig. 7(b) shows the decision space generated by the FFNN
for the crosses, i.e., the response of the third output unit. The
graduated axis is located at (10, 10) on the feature space.
Ideally, this unit should respond with values close to 1.0 over

, which is predominantly the region
of the feature space over which the crosses are distributed.
The response of this unit over the other three quadrants of
the feature space should be close to 0.0. Fig. 7(b) does show
these properties approximately. However, other properties that
are inconsistent with the distribution of the data on the feature
space are apparent. There are a few spurious humps in the
region of . These spurious humps indicate poor
generalization and are the result of the raw influence the hidden
unit partitions have on the decision surface [24]. It can also
be observed from Fig. 7(b) that there is sharp transition in
the response from the region of the crosses to the region
of the triangles over the plane . In addition to
abrupt discontinuities of the boundaries, there is a lack of any
structure in the overall response and the values of the response
are not consistent with the distribution of data points over

feature space. Fig. 7(c) shows the decision space generated
by the FFNN for the triangles, i.e., the output of the second
output unit. The graduated axis is located at (10, 10)
on the feature space. Again, neglecting the spurious hump
on the plane, all the other properties observed in
Fig. 7(b) can be seen preserved in this decision surface also.
In particular, it is evident that the transition in the response
from the region of the triangles to the region of the crosses
in crisp. Moreover, it is also apparent that the structure in
the feature space is not reflected in the decision surface. This
particular aspect is also explained in detail in the following
section.

In the next set of experiments, a QNN with two inputs,
five hidden units, and three output units was trained on this
data set. In the first set of experiments, the QNN consisted
of two-level hidden units. The synaptic weights were updated
with a learning rate of 1 . The hidden units were tuned
with a learning rate of 8 . The decision space for the
circles generated by the QNN is shown in Fig. 8(a). The
graduated axis is located at (10,10) on the feature space.
Fig. 8(a) demonstrates that the QNN is capable of making crisp
decisions when the input information is sufficient to make crisp
decisions. Since the class of circles does not overlap with the
other two classes, the QNN responds crisply for this class,
segmenting the feature space into two disjoint subsets, one

PURUSHOTHAMAN AND KARAYIANNIS: QUANTUM NEURAL NETWORKS 689

Fig. 10. Responses of the hidden units of the QNN.

representing “circles” and the other “no circles.” The quantum
interval learning algorithm proposed is functional since the
two-level hidden unit transfer functions forming the partition
for the circles have been selectively “collapsed-in” to make
this partition crisp. These points are further elaborated below
with figures showing the hidden unit partitions explicitly.

Fig. 8(b) and (c) show the decision space for the triangles
generated by the QNN with two and three-level hidden units,
respectively. This fuzzy partition is finer than that seen in
Fig. 8(a). Both these responses are very consistent with the
manner in which data are distributed on the feature space.
In Figs. 8(b) and (c), the response falls off sharply toward the
region of the circles and gradually, in graded steps, toward the
region of the crosses. At the extremes of the plane ,
there is certainty and this gradually transforms into maximum
uncertainty at the boundary between the crosses and the
triangles.

Consider the three-class hybrid data set shown in Fig. 6.
Fig. 9 shows the responses of all the five hidden units of the
FFNN trained over this data set. Fig. 10 shows the responses
of all the five hidden units of the corresponding QNN. It is
clear from these figures that the FFNN hidden unit partitions
are formed so as to ensure that a linear superposition of these
partitions has a value close to 1.0 over part of the feature space
and a value close to 0.0 over the rest of the feature space.

Therefore these representations lack structure. The responses
of the hidden units of the QNN have the structure of the
feature space reflected in them. These are indeed elemental
fuzzy partitions. The ideal decision space of the QNN is a
limiting sum of these elemental fuzzy partitions of the feature
space. Finally, tuning the hidden representations directly gives
an additional degree of freedom for reducing the representation
error possibly through a more efficient utilization of the hidden
units. This is clearly visible in the decision spaces of the FFNN
and the QNN.

C. A Two-Class Nonconvex Data Set

Consider the data set with two nearly concentric classes of
overlapping data shown in Fig. 11. This data set has a more
complicated structure in the feature space than the previous
data sets. Consider the boundary between these two classes to
be an annular ring enclosing most of the circles. The density
of the crosses around the periphery of this annular ring is
not uniform. The boundary between the two classes in the
upper and the right regions of the feature space is fairly
crisp due to the fact that there is high density of crosses just
outside and a high density of circles just inside the boundary.
However, the region immediately outside of the boundary at
the extreme bottom left is devoid of any crosses. This gives
rise to uncertainty at the bottom left segment of the boundary.

690 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

Fig. 11. A two-class nonconvex data set.

In the first experiment, an FFNN with two inputs and two
output units was trained to consistently partition the feature
space of this data set using the EBP with a learning rate
of . The number of hidden units were varied from
three to eight. The FFNN with five hidden units was found
to be satisfactory in terms of the minimum error achievable
for a given number of adaptation cycles, and the overall time
required for training the network. Fig. 12(a) shows the density
plot of the first output unit. The bright regions represent
response values close to 1.0 and the dark regions represent
response values close to 0.0. Fig. 12(b) shows the 3-D plot of
the same. Fig. 12(a) and (b) clearly show that the variations
in the values of the output, i.e., response values “between zero
and one,” are irrelevant and do not correspond in any way to
the distribution of the data points in the feature space. Consider
the five radially outgoing humps in the decision space. As
pointed out in the previous section, these humps are spurious
and false variations in the network response resulting from the
raw influence of the hidden unit partitions on the structure of
the decision surface. The decision surface needs to be more
or less circular. This circular surface has to be formed as a
superposition of five elemental linear partitions. Therefore, the
hidden unit partitions are organized in the manner Fig. 12(a)
indicates. Thus the variations in the output space only reflect
the linear partitions of the hidden units and not the distribution
of the data in the feature space. Decreasing the number of
hidden units to three made the learning task more difficult
and it was observed that the number of misclassifications
was seven even after 100 000 cycles of training. Increasing
the number of hidden units up to 12 was found to have no
considerable “smoothing” effect on the decision surface.

In the next experiment, a QNN with two inputs, two output
units, and five hidden units was trained with the same data
set. Each hidden unit transfer function was formed with two
sigmoids. The decision space is shown in Fig. 13(a) and (b).
The intensity variations correspond well with the distribution
of the data in the feature space. There are three levels of
certainty corresponding to the the two sigmoids in the hidden
unit transfer functions. The network response over the region
densely distributed with the crosses is close to 1.0, the response

(a)

(b)

Fig. 12. Response of the FFNN: (a) Density plot and (b) 3-D plot.

over the central region densely distributed with the circles is
close to 0.0 and the region to the bottom left corner of the
feature space that does not contain any crosses or circles has
an intermediate value close to 0.5.

VI. CONCLUSIONS

This paper introduced a new class of feedforward neural
networks called QNN’s that are capable of learning the uncer-
tainty in sample data. The main aim of the proposed method
is to obtain an approximate classification for uncertain data,
without any restricting assumptions such as the availability of
a priori information, limited number of classes of data, limited
number of levels of uncertainty in the data, convexity of the
classes, etc. In other words, the proposed method does not
assign feature vectors that lie in the boundary region between
overlapping classes of data exclusively to one particular class
only. Instead, such a feature vector is assigned partially to
all the classes whose overlapping boundaries include this
feature vector. Such an approximate decision is often an
end in itself because it is a necessary step in a hierarchical
context-based decision-making system. For example, in many

PURUSHOTHAMAN AND KARAYIANNIS: QUANTUM NEURAL NETWORKS 691

(a)

(b)

Fig. 13. Response of the QNN: (a) density plot and (b) 3-D plot.

character recognition systems, the first stage of the decision
making hierarchy is to decide approximately what each letter
of a word may be, based only on its shape. In the next stage,
based on similar decisions for all adjacent letters in the word,
and semantic correctness, the final decisions are made for all
the letters of the word [7].

The experiments with simple one-dimensional and two-
dimensional data sets showed that conventional FFNN’s are
often not capable of generalizing the information available
from samples consistently (and adequately) to function as
fuzzy classifiers. The sensitive dependence of the generaliza-
tion ability of conventional FFNN’s on the topology of the
feature space was also demonstrated. This verifies the theory
of FFNN classifiers presented in [24]. The experiments also
clearly establish the merit of the QNN as an architecture with
the ability for recognizing structures in data and organization
in the feature space. It is also apparent from the experiments
that the manner in which QNN’s perceive the structure of a
feature space is qualitatively analogous to the manner in which
human intuition and judgment assess the physical object space
represented by this feature space. The ability of QNN’s to

adaptively learn the uncertainty in the feature space comes at
the cost of an increase in the number of the parameters that
need to be learned. Specifically, for each hidden unit there is
an additional number of parameters to be updated during
each training epoch. On the average, in all the experiments
described in the previous section, the computational overhead
in terms of overall training time for these additional parameters
was about 50%.

Theoretical studies have indicated that this inadequacy of
conventional FFNN’s is due to the hidden unit functions
having just one degree of freedom (their slope) to accom-
modate for the uncertainty in the feature space [23], [24]. It
is therefore expected that radial basis functions are probably
a better substitute for sigmoidal functions to achieve this
particular function. Further research can study radial basis
function networks and compare their performance to the QNN
performance.

APPENDIX A
DERIVATION OF THE UPDATE

EQUATIONS FOR SYNAPTIC WEIGHTS

The update equation for the synaptic weight connecting
the th output unit to the th hidden unit can be obtained by
computing the derivative of with respect to as

(A1)

where and are the values of before and after
the adaptation for theth input and is the learning rate. The
derivative of with respect to can be computed using
the definition of in (6) as

(A2)

where

if
if

(A3)

and if and if . Substituting the
above equation into (A1), the update equation is obtained as

(A4)

where

if
if

(A5)

692 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

The update equation for the synaptic weight connecting the
th hidden unit to the th input can be obtained by computing

the derivative of with respect to as

(A6)

where and are the values of before and after
the adaptation and is the learning rate. The definition of
in (6) gives

(A7)

with as defined in (A3). Finally, the definition of in
(5) gives

(A8)

Substituting (A7) and (A8) in (A6), the update equation for
becomes

(A9)

where

(A10)

APPENDIX B
DERIVATION OF THE UPDATE

EQUATIONS FOR QUANTUM INTERVALS

The update equation for can be obtained by setting the
change in , say , proportional to the gradient of with
respect to as

(B1)

where is the learning rate. The definition of in
(12) gives

(B2)

The definition of in (5) gives

(B3)

where . Substituting (B2) and (B3) in
(B1) gives the update equation as

(B4)

where .

REFERENCES

[1] J. C. Bezdek,Pattern Recognition with Fuzzy Objective Function Algo-
rithms. New York: Plenum, 1981.

[2] J. C. Bezdek and S. K. Pal, Eds.,Fuzzy Models for Pattern Recognition:
Models that Search for Structures in Data. New York: IEEE Press,
1992.

[3] V. Cherkassky, J. H. Friedman, and H. Wechsler, Eds.,From Statis-
tics to Neural Networks: Theory and Pattern Recognition Applications.
Berlin: Springer-Verlag, 1994.

[4] G. Cybenko, “Approximations by superposition of sigmoidal function,”
Math. Contr., Signals, Syst., vol. 2, pp. 303–314, 1989.

[5] A. DeLuca and S. Termini, “Entropy and energy measures of a fuzzy
set,” in Advances in Fuzzy Set Theory and Applications, M. M. Gupta,
R. K. Ragade, and R. R. Yager, Eds. Amsterdam, The Netherlands:
North-Holland, 1979, pp. 321–338.

[6] R. O. Duda and P. E. Hart,Pattern Classification and Scene Analysis.
New York: Wiley, 1973.

[7] D. Hammerstrom, “A digital VLSI architecture for real-world appli-
cations,” in An Introduction to Neural and Electronic Networks, S. F.
Zornetzer, J. L. Davis, C. Lau, and T. McKenna, Eds. New York:
Academic, 1995.

[8] S. Horikawa, T. Furuhashi, and Y. Uchikawa, “On fuzzy modeling using
fuzzy neural networks with the backpropagation algorithm,”IEEE Trans.
Neural Networks, vol. 3, pp. 801–806, 1992.

[9] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,”Neural Networks, vol. 2, pp.
359–366, 1989.

[10] H. Ishibuchi, R. Fujioka, and H. Tanaka, “Possibility and necessity
pattern classification using neural networks,”Fuzzy Sets Syst., vol. 48,
pp. 331–340, 1992.

[11] H. Ishibuchi and H. Tanaka, “Approximate pattern classification using
neural networks,” inFuzzy Logic: State of the Art, R. Lowern and M.
Roubens, Eds. Dordrecht, The Netherlands: Kluwer, 1993.

[12] Y. Ito, “Extension of approximation capability of three layered neural
networks to derivatives,” inProc. IEEE Int. Conf. Neural Networks,
1993, pp. 653–658.

[13] J. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”
IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 665–685, 1993.

[14] A. Kandel,Fuzzy Expert Syst.Boca Raton, FL: CRC, 1992.
[15] N. B. Karayiannis and A. N. Venetsanopoulos,Artificial Neural Net-

works: Learning Algorithms, Performance Evaluation and Applications.
Boston, MA: Kluwer, 1993.

[16] J. M. Keller and D. J. Hunt, “Incorporating fuzzy membership functions
into the perceptron algorithm,”IEEE Trans. Pattern Anal. Machine
Intell., vol. 7, pp. 693–699, 1985.

[17] J. M. Keller, R. R. Yager, and H. Tahani, “Neural network implemen-
tation of fuzzy logic,”Fuzzy Sets Syst., vol. 45, pp. 1–12, 1992.

[18] B. Kosko,Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1992.

[19] S. K. Pal and D. K. Dutta Majumder, FuzzyMathematical Approach to
Pattern Recognition. New York: Wiley, 1986.

[20] S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets, and classifi-
cation,” IEEE Trans. Neural Networks, vol. 3, pp. 683–697, 1992.

PURUSHOTHAMAN AND KARAYIANNIS: QUANTUM NEURAL NETWORKS 693

[21] G. Purushothaman, “Fuzzy neural processing for pattern recognition,”
Master’s thesis, Detp. Electr. Computer Eng., Univ. Houston, TX, Dec.
1994.

[22] G. Purushothaman and N. B. Karayiannis, “Feedforward neural architec-
tures for membership estimation and fuzzy classification,” inIntelligent
Engineering Systems Through Artificial Neural Networks, C. H. Dagliet
al., Eds. New York: ASME Press, 1994, pp. 235–240.

[23] , “On the capacity of feedforward neural networks for fuzzy
classification,” in Intelligent Engineering Systems Through Artificial
Neural Networks, C. H. Dagli et al., Eds. New York: ASME Press,
1995, pp. 253–258.

[24] G. Purushothaman and N. B. Karayiannis, “On the capacity of feed-
forward neural networks for fuzzy classification,” submitted toIEEE
Trans. Syst., Man. Cybern.

[25] D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W.
Suter, “The multilayer perceptron as an approximation to a Bayes
optimal discriminant function,”IEEE Trans. Neural Networks, vol. 1,
pp. 296–298, 1990.

[26] D. E. Rumelhart and J. L. McClelland,Parallel Distributed Processing.
Cambridge, MA: MIT Press, 1986.

[27] M. Sugeno,Industrial Applications of Fuzzy Control. New York: El-
sevier, 1985.

[28] H. Takagi and I. Hayashi, “NN-driven fuzzy reasoning,”Int. J. Approx-
imate Reasoning, vol. 5, no. 3, pp. 191–212, 1991.

[29] T. Terano, K. Asai, and M. Sugeno,Fuzzy Systems Theory and Its
Applications. New York: Academic, 1991.

[30] L. A. Zadeh, “Fuzzy sets,”Inform. Contr., vol. 8, pp. 338–353, 1965.
[31] , “Outline of a new approach to the analysis of complex systems

and decision processes,”IEEE Trans. Syst., Man, Cybern., vol. 3, pp.
28–44, 1973.

[32] L. A. Zadeh, K. S. Fu, K. Tanaka, and M. Shimura, Eds.,Fuzzy Sets and
Their Applications to Cognitive and Decision Processes. New York:
Academic, 1975.

Gopathy Purushothamanreceived the B.E. degree
from the University of Madras, India, in 1989,
the M.Tech. degree from the Indian Institute of
Technology, Kanpur, in 1990, and the M.S. degree
from the University of Houston, TX, in 1994, in
electrical and computer engineering. He is presently
a Ph.D. candidate in the Department of Electrical
and Computer Engineering at the University of
Houston.

Since 1993, he has been a Research and Teach-
ing Assistant in the Department of Electrical and

Computer Engineering at the University of Houston. From 1991 to 1992
he was a Lecturer in Electrical and Computer Engineering at the College
of Engineering, Pondicherry, India. His research interests include neural
networks, psychophysics and neurodynamics of vision, and applications of
neural networks and fuzzy logic.

Mr. Purushothaman is a corecipient of a Theoretical Development Award
for a paper presented at the Artificial Neural Networks in Engineering ’94
Conference. He also received the Urvish Medh Memorial Award from the
Department of Electrical and Computer Engineering, University of Houston,
in 1995, the Jawaharlal Nehru Memorial Award from the Government of
India in 1990, and the University of Madras Gold Medal in 1989. He is a
Life Member of the Indian Society for Technical Education.

Nicolaos B. Karayiannis (S’85-M’91), for a photograph and biography, see
this issue, p. 518.

