
Exception Handling: A Field Study in Java and .NET

Bruno Cabral, Paulo Marques

CISUC, Department of Informatics Engineering,

University of Coimbra, Portugal
{bcabral, pmarques}@dei.uc.pt

Abstract. Most modern programming languages rely on exceptions for dealing
with abnormal situations. Although exception handling was a significant
improvement over other mechanisms like checking return codes, it is far from
perfect. In fact, it can be argued that this mechanism is seriously limited, if not,
flawed. This paper aims to contribute to the discussion by providing
quantitative measures on how programmers are currently using exception
handling. We examined 32 different applications, both for Java and .NET. The
major conclusion for this work is that exceptions are not being correctly used as
an error recovery mechanism. Exception handlers are not specialized enough
for allowing recovery and, typically, programmers just do one of the following
actions: logging, user notification and application termination. To our
knowledge, this is the most comprehensive study done on exception handling to
date, providing a quantitative measure useful for guiding the development of
new error handling mechanisms.

Keywords: Exception Handling Mechanisms, Programming Languages.

1 Introduction

In order to develop robust software, a programming language must provide the
programmer with primitives that make it easy and natural to deal with abnormal
situations and recover from them. Robust software must be able to perceive and deal
with the temporary disconnection of network links, disks that are full, authentication
procedures that fail and so on.

Most modern programming languages like C#, Java or Python rely on exceptions
for dealing with such abnormal events. Although exception handling was a significant
improvement over other mechanisms like checking return codes, it is far from perfect.
In fact, it can be argued that the mechanism is seriously limited if not even flawed as
a programming construct. Problems include:

• Programmers throw generic exceptions which make it almost impossible
to properly handle errors and recover for abnormal situations without
shutting down the application.

• Programmers catch generic exceptions, not proving proper error handling,
making the programs continue to execute with a corrupt state (especially
relevant in Java). On the other hand, in some platforms, programmers do

not catch enough exceptions making applications crash even on minor
error situations (especially relevant in C#/.NET).

• Programmers that try to provide proper exception handling see their
productivity seriously impaired. A task as simple as providing exception
handling for reading a file from disk may imply catching an dealing with
tens of exceptions (e.g. FileNotFoundException,
DiskFullException, SecurityException, IOException,
etc.). As productivity decreases, cost escalates, programmer’s motivation
diminishes and, as a consequence, software quality suffers.

• Providing proper exception handling can be quite a challenging and error
prone task. Depending on the condition, it may be necessary to enclose
try-catch blocks within loops in order to retry operations; in some cases it
may be necessary to abort the program or perform different recovery
procedures. Bizarre situations, like having to deal with being thrown an
exception while trying to close a file on a catch of a finally block, are not
uncommon. Dealing with such issues correctly is quite difficult, error
prone, not to say, time consuming.

To make things interesting, the debate about error handling mechanisms in
programming languages has been recently fuelled with the launch of Microsoft’s
.NET platform.

Currently, the Java Platform and the .NET platform constitute the bulk of the
modern development environments for commercial software applications. Curiously,
Microsoft opted to have a different exception handling approach than in Java. In .NET
the programmer is not forced to declare which exceptions can occur or even deal with
them. Whenever an exception occurs, if unhandled, it propagates across the stack until
it terminates the application. On the other hand, in Java, in most cases, the
programmer is forced to declare which exceptions can occur in its code and explicitly
deal with exceptions that can occur when a method is called. The rational for this is
that if the programmer is forced to immediately deal with errors that can occur, or re-
throw the exception, the software will be more robust. I.e. the programmer must be
constantly thinking about what to do if an error occurs and acknowledge the
possibility of errors.

On the .NET’s camp, the arguments for not having checked exceptions that are
normally used are [1]:

• Checked exceptions interfere with the programmers’ productivity since
they cannot concentrate in business logic and are constantly forced to
think about errors.

• Since the programmer is mostly concentrated in writing business logic
and not dealing with errors, it tends to shut-up exceptions, which actually
makes things worse. (Corrupt state is much more difficult to debug and
correct than a clean exception that terminates an application.)

• Errors should be “exonerated” by exhaustive testing. I.e. a sufficiently
accurate test suite should be able to expose dormant exceptions, and
corresponding abnormal situations. For the problems that remain latent, it
is better that they appear as a clean exception that terminates the
application than having them being swallowed in a generic catch
statement which leads to corrupt state.

Obviously, both camps cannot be 100% right. But, overall, the important message
is that in order to develop high-quality robust software, in a productive way, new
advances in error handling are needed. The existing mechanisms are not adequate nor
suffice.
This paper aims to contribute to the discussion by providing quantitative measures on
how programmers are currently using exception handling. We examined 32 different
applications, both for Java and .NET, covering 4 different software categories
(libraries; stand-alone applications; servers; and applications running on servers).
Overall, this corresponds to 3,410,294 lines of source code of which 137,720 are
dedicated to exception handling. For this work, we have examined and processed
18,589 try blocks and corresponding handlers. To our knowledge, this is the most
comprehensive study done to date on exception handling.

The data presented on this paper is important to guide the development of new
mechanisms and approaches to exception handling. Other results will help e.g. justify
the feasibility of using existent methodologies, like applying Aspect Oriented
Programming (AOP) to implement exception handlers as advices.

The rest of this paper is organized as follows: Section 2 discusses related work;
Section 3 describes the application set used in this study; Section 4 explains the
methodology used in the analysis; Section 5 presents the results of the tests and
observations about their significance; finally, Section 6 concludes the paper.

2 Related Work

Since the pioneering work of John B. Goodenough in the definition of a notation for
exception handling [2] and Flaviu Cristian in defining its usage [3], the programming
language constructs for handling and recovering from exceptions have not changed
much. Nevertheless, programming languages designers have always suggested
different approaches for implementing these mechanisms.

Several studies have been conducted over the years for validating the options taken
in each different implementation. For instance, Alessandro Garcia, et al. did a
comparative study on exception handling (EH) mechanisms available developing
dependable software [4]. Alessandro’s work consisted in a survey of exception
handling approaches in twelve object-oriented languages. Each programming
language was analyzed in respect to ten technical aspects associated with EH
constructs: exception representation; external exceptions in signatures; separation
between internal and external exceptions; attachment of handlers to program
constructs (e.g. to statements, objects, methods, etc.); dynamism of handler binding;
propagation of exceptions ; continuation of the flow control (resumption or
termination); clean-up actions; reliability checks; and concurrent exception handling.
After the evaluation of all the programming languages in terms of exception
mechanisms, the major conclusion of the study was that “none of the existing
exception mechanisms has so far followed appropriate design criteria” and
programming language designers are not paying enough attention to properly
supporting error handling in programming languages.

Saurabh Sinha and Mary Jean Harrold performed an extensive analysis of
programs with exception handling constructs and discussed their effects on analysis
techniques such as control flow, data flow, and control dependence [5]. In the
analysis, the authors also presented techniques to create intraprocedural and
interprocedural representations of Java programs that contain EH constructs and an
algorithm for computing control dependences in their presence. Using that work, the
authors performed several studies and showed that 8.1% of the methods analyzed
used some kind of exception mechanism and that these constructs had an important
influence in control-dependence analysis.

R. Miller and A. Tripathi identified several problems in exception handling
mechanisms for Object-Oriented software development [6]. In their work, it is shown
that the requirements of exception handling often conflict with some of the goals of
object-oriented designs, such as supporting design evolution, functional
specialization, and abstraction for implementation transparency. Being specific:
object-oriented programming does not support a complete exception specification
(extra information may be needed for the exception context not supported by an
object interface); state transitions are not always atomic in exception handling;
exception information needs to be specific, but functions can be overloaded to have a
different meaning in different situations; the exception handling control flow path is
different from the normal execution path and is up to the programmer to differentiate
both of them. Thus, the modification of object-oriented frameworks for adaptation to
exception handling can have the following effects in terms of: Abstraction, change of
abstraction levels and the usage of partial states; Encapsulation, the exception context
may leak information that reveals or allows the access to the exception signaler
private data; Modularity, design evolution may be inhibited by exception
conformance; Inheritance anomalies may occur when a language does not support
exception handling augmentation in a modular way.

Martin P. Robillard and Gail C. Murphy in their article on how to design “robust
Java programs with exceptions”, classified exceptions as a global design problem and
discussed the complexity of exception structures [7]. In their work, the authors
pointed that the lack of information about how to design and implement with
exceptions lead to complex and spaghetti-like exception handling code. The main
factors that contribute to the difficulty of designing exception structures are the global
flow of exceptions and the emergence of unanticipated exceptions. To help control
these factors, the authors refined an existent software compartmenting technique for
exception design and report about its usage in the rewriting of three Java programs
and the consequent improvements they observed.

More recently, due to a new AOP approach to EH, two interesting studies were
published emphasizing the separation of concerns in error handling code writing
[8][9]. Martin Lippert and Cristina Lopes rewrote a Java application using AspectJ.
Their objective was to provide a clear separation between the development of
business code and exception handling code. This was achieved by applying error
handling code as an advice (in AOP terminology) [10]. With this approach they also
obtained a large reduction in the amount of exception handling code present in the
application. Some of the results presented show that without aspects, the amount of
code for exceptions is almost 11% of all the code; with aspects it represents only
2.9%. Lippert’s paper also accounts the total number of catch blocks in the code and

the most common exception classes used as parameters for these catch statements.
One of the measures they present to support their AOP approach is the reduction of
the number of different handlers effectively written for each one of the most
commonly used exception classes. For the top 5 classes were implemented between
90.0% and 96.5% less handlers. F. Filho and C. Rubira conducted a similar study but
they were not so enthusiastic in their results. The authors presented four metrics to
evaluate the AOP approach to exception handling: separation of concerns; coupling
between components and depth of inheritance tree; cohesion in the access to fields by
pairs of method and advice; and dimension (size and number) of code. The work
reports that the improvements of using AOP do not represent a substantial gain in any
of the presented metrics showing that reusing handlers is much more difficult than is
usually advertised. Handler reuse depends of the type of exceptions being handled, on
what the handler does, the amount of contextual information needed; and what the
method raising the exception returns and what the throws clause actually specifies.

The objective of this study is different from its predecessors. It does not target the
quality of the mechanisms available in programming languages but the usage that
programmers make of them. The emphasis is on understanding how programmers
write exception handling code, how much of the code of an application is dedicated to
error recovery and identifying possible flaws in their usage.

3 Workbench

The target platforms of this study were the .NET and Java environments, as well as
the C# and Java programming languages.
Selecting a set of applications for the study was quite important. The code present in
the applications had to be representative of common programming practices on the
target platforms. Also, care had to be taken so that these would be “real world”
applications developed for production use (i.e. not simply prototypes or beta
versions). This was so in order not to bias the results towards immature applications
where much less care with error handling exists. Finally, in order to be possible to
perform different types of analyses, both the source code and the binaries of the
applications had to be available.

Globally, we analyzed 32 applications divided into two sub-sets of 16 .NET
programs and 16 Java programs. Each one of these sub-sets was organized in four
categories accordingly to their nature:

• Libraries: software libraries providing a specific application-domain API.
• Applications running on servers (Server-Apps): Servlets, JSPs, ASPs

and related classes.
• Servers: server programs.
• Stand-alone applications: desktop programs.

The complete list of applications is shown in Table 1.

Table 1. Applications listed by group.

SmartIRC4NET IRC library

Report.NET PDF generation library

Mono (corlib) Open-source CLR implementation

Li
br

ar
ie

s

NLog Logging library

UserStory.Net Tool User Story tracking in Extreme
Programming projects

PhotoRoom ASP.NET web site for managing on-line photo
albums

SharpWebMail ASP.NET webmail application that is written
in C#

Se
rv

er
-A

pp
s

SushiWiki WikiWikiWeb like Web application

NeatUpload Allows ASP.NET developers to stream files to
disk and monitor progress

Perspective Wiki engine

Nhost Server for .Net objects

Se
rv

er
s

DCSharpHub Direct connect file sharing hub

Nunit Unit-testing framework for all .NET languages

SharpDevelop IDE for C# and VB.NET projects

AscGen Application to convert images into high
quality ASCII text

.N
ET

St
an

d-
al

on
e

SQLBuddy SQL scripting tool for use with Microsoft SQL
Server and MSDE

Thought River Commons General purpose library

Javolution Real-time programming library

JoSQL SQL for Java Objects querying

Li
br

ar
ie

s

Kasai Authentication and authorization framework

Exoplatform Corporate portal and Enterprise Content
Management

GoogleTag Library Google JSP Tag Library

Xplanner Project planning and tracking tool for Extreme
Programming

Ja
va

Se
rv

er
-A

pp
s

Mobile platform
Banks and mobile operators software for SMS
and MMS services in cellular networks (not
open-source)

Jboss J2EE application server

Apache Tomcat Servlet container

JCGrid Tools for grid-computing
Se

rv
er

s

Berkeley DB High performance, transactional storage
engine

Compiere ERP software application with integrated
CRM solutions

J-Ftp Graphical Java network and file transfer client

Columba Email Client

Ja
va

St
an

d-
al

on
e

Eclipse Extensible development platform and IDE

4 Methodology

The test applications were analyzed at source code level (C# and Java sources) and at
binary level (metadata and bytecode/IL code) using different processes.

To perform the source code analysis two parsers were generated using antlr [11],
for C#, and javacc [12] for Java. These parsers were then modified to extract all the
exception handling code into one text file per application. These files were then
manually examined to build reports about the content of exception handlers.

The source code of all application was examined with one exception. Due to the
huge size of Mono, only its “corlib” module was processed.

The parsers were also used to identify and collect information about try blocks
inside loops (i.e. detect try statements inside while and do..while loops). This is so
because normally this type of operations corresponds to retrying a block of code that
has raised an exception in order to recover from an abnormal situation.

The main objective of this article is to understand how programmers use the
exception handling mechanisms available in programming languages. Nevertheless,
the analysis of the applications source code is not enough by itself when trying to
distinguish between the exceptions that the programmer wants to handle and the
exceptions that might occur at runtime. This is so because the generated IL
code/bytecode can produce more (and different) exceptions than the ones that are
declared in the applications source code by means of throw and throws
statements.

To perform the analysis of the .NET assemblies and of the Java class files two
different applications were developed: one for .NET and another for Java. The first
one used the RAIL assembly instrumentation library [13] to access assembly metadata
and IL code and extract all the information about possible method exceptions,
exception handlers and exception protection blocks. The second application targeted
the Java platform and used the Javassist bytecode engineering library [14] to read
class files and extract exception handler information.

All data was stored on a relational database for easy statistical treatment.

Table 2. List of Assemblies and Java Packages analyzed.

.NET Java
Meebey.SmartIrc4net.dll
Reports.dll
mscorlib.dll
NLog.dll
rq.dll (UserStory)
PhotoRoom.dll
SharpWebMail.dll
SushiWiki.dll
Brettle.Web.NeatUpload.dll
Perspective.dll
nhost.exe
DCSharpHub.exe
nunit.core.dll
SharpDevelop.exe
Ascgen dotNET.exe
SqlBuddy.exe

ThoughRiverCommons (all)
Javolution (all)
JoSQL (all)
org.manentia.kasai
Exoplatform (all)
GoogleTagLibrary (all)
XPlanner (all)
Mobile platform (all)
JBoss (all)
org.apache
JCGrid (all)
Berkeley DB (all)
org.compiere
net.sf.jftp
org.columba
org.eclipse

For each application only one file (.NET) or package (and sub-packages) of classes
(Java) was analyzed. Table 2 shows the names of the files and packages that were
used in this study. The criterion followed to select these targets was the size of the
files and their relevance in the implementation of the application core.

5 Results

In the following subsections we will present the results of this study, drawing some
observations about their significance.

Nevertheless, we should caution that although the number of applications that were
used was relatively large (32), it is not possible to generalize the observations to the
whole .NET/Java universe. For that, it would be necessary to have a very significant
number of applications, possible consisting in hundreds programs. Even so, due to the
care taken in selecting the target applications, we believe that the results allow a
relevant glimpse into current common programming practices in exception handling.

5.1 Error Handling Code in Applications

One important metric for understanding current error handling practices is the
percentage of source code that is used in that task. For gathering this metric, we
compared the number of lines of code inside all catch and finally handlers to the total
number of lines of the program. The results are shown in Figure 1.

It is quite visible that in Java there is more code dedicated to error handling than in
.NET. This difference can be explained by the fact that in Java it is compulsory to
handle or declare all exceptions a method may throw, thus increasing the total amount
of code used for error handling. Curiously, there is an exception to this pattern. In the

Server Application group, the difference is almost non-existent. To explain this result
we examined the applications’ source code. For this class of applications, both in Java
and .NET, programmers wrote quite similar code. Meaning that they expect the same
kind of errors (e.g. database connections loss, communication problems, missing data,
etc.) and they use the same kind of treatment (the most common handler action in this
type of applications is logging the error).

3,33%

7,05%

3,11%
3,36% 3,43%

2,23%

1,62%

5,99%

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

8,00%

Libraries Server Apps Servers Stand-Alone

Java

.NET

Fig. 1. Amount of error handling code.

One surprising result is that the total amount of code dedicated to exception

handling is much less than what would be expected. This is even more surprising in
Java where using exceptions is almost mandatory even in small programs. Our results
show that the maximum amount of code used for error handling was 7% in the
Servers group. Overall, the result is 5% for Java, with a 2% standard deviation, and
3% for .NET, with a standard deviation of 1%. It should be noted the applications
used in this study are quite mature, being widely used. We reason that the effort
dedicated to writing error protection mechanisms is not as high as expected, even for
highly critical applications like servers. The forceful of declaring and catching
checked exceptions in Java effectively increases (almost doubles) the amount of error
handling code written, even though it is still represents a small fraction of all the code
of an application. The critical issue is that normally error handling code is being used
more to alert the user, to abort the applications or to force them to continue their
execution, than to actually recover from existing errors.

5.2 Code in Exception Handlers

Apart from measuring the amount of the code that deals with errors, to find out how
programmers use exception handling mechanisms, it is important to know what kind
of actions are performed when an error occurs.

To be able to report on this subject we had to inspect sets of ten thousand lines of
application source code. As a matter of fact, we covered all the handlers (catch and
finally) in all the applications except for JBoss and Eclipse. For these two, due to their
dimension, only 10% of the 96,405 lines of code existing inside of exception handlers
were examined. Even so, they are representative of the rest.

Table 3. Description of the Handler’s actions categories.

Category Description

Empty The handler is empty, is has no code and
does nothing more than cleaning the stack

Log Some kind of error logging or user
notification is carried out

Alternative/
Static
Configuration

In the event of an error or in the execution of
a finally block some kind of pre-determined
(alternative) object state configuration is
used

Throw A new object is created and thrown or the
existing exception is re-thrown

Continue
The protected block is inside a loop and the
handler forces it to abandon the current
iteration and start a new one

Return

The handler forces the method in execution
to return or the application to exit. If the
handler is inside a loop, a break action is also
assumed to belong to this category

Rollback

The handler performs a rollback of the
modifications performed inside the protected
block or resets the state of all/some objects
(e.g. recreating a database connection)

Close

The code ensures that an open connection or
data stream is closed. Another action that
belongs to this category is the release of a
lock over some resource

Assert

The handler performs some kind of assert
operation. This category is separated because
it happens quite a lot. Note that in many
cases, when the assertion is not successful,
this results in a new exception being thrown
possibly terminating the application

Delegates
(only for .NET) A new delegate is added

Others Any kind of action that does not correspond
to the previous ones

To simplify the classification of these error handling actions we propose a small set
of categories that enable the grouping of related actions. These categories are
summarized in the previous table.

Note that an exception handler may contain actions that belong to more than one
category. In fact, this is the common case. For instance, a handler can log an error,
close a connection and exit the application. These actions are represented by three
distinct categories: Log, Close and Return. Thus, in the results, this handler would be
classified in all these three categories.

Since catch and finally handlers have different purposes, we opted for doing
separate counts for each type of handler. Finally, the distribution of handler actions
for each application was calculated as a weighted average accordingly to the number
of actions found in each application. This is so that small applications do not bias the
results towards their specific error handling strategy.

The results obtained for each application group are shown in next four graphs.
The graph of Figure 2 shows the average of results by application group for .NET

catch handlers. In the four application groups 60% to 75% of the total distribution of
handler actions is composed of three categories: Empty, Log and Alternative
Configuration.

Empty handlers are the most common type of handler in Servers and the second
largest in Libraries and Stand-alone applications. This result was completely
unexpected in .NET programs since there are no checked exceptions in the CLR and,
therefore, programmers are not obliged to handle any type of exception. Checked
exceptions can sometimes lead lazy programmers to “silence exceptions” with empty
handlers only to be able to compile their applications. From the analysis of the source
code we concluded that its usage in .NET is not related with compilation but with
avoiding premature program termination on non-fatal exceptions. A typical example
is the presence of several linear protected blocks containing different ways of
performing an operation. This technique assures that if one block fails to achieve its
goal, the execution can continue to the next block without any error being generated.

Logging errors is also one of the most common actions in the handlers of all the
applications. In fact, is the most common action in Server-Apps and Stand-alone
groups? Considering web applications and desktop applications, this typically
corresponds to the generation of an error log, the notification of the user about the
occurrence of a problem and the abortion of the task. This idea is re-enforced by the
value of the Return action category in these two application groups which is the
identical and the highest of all four groups.

The number of Alternative configuration actions reports on the usage of alternative
computation or object’s state reconstruction when the code inside a protected block
fails in achieving its objective. These actions are by far the most individualized and
specialized of all. In some cases they are used to completely replace the code inside
the protected block.

In the Libraries applications group, Assert operations are the second most common
error handling action. Asserts ensure that if an error occurs, the cause of the error is
well known and reported to the user/programmer.

In Servers there is also a high distribution value for the Others category. These
actions are mainly related with thread stopping and freeing resources.

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

40,0%

45,0%

Libraries Server-Apps Servers Stand-alone

Empty Log Alternative Config Throw
Continue Return Rollback Close
Assert Delegate Others

Fig. 2. Catch handler actions count for .NET programs.

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

Libraries Server-Apps Servers Stand-alone

Empty Log Alternative Config Throw Continue
Return Rollback Close Assert Others

Fig. 3. Catch handlers’ actions count for Java programs.

0,0%

20,0%

40,0%

60,0%

80,0%

100,0%

120,0%

Libraries Server-Apps Servers Stand-Alone

Empty Log Alternative Config Throw
Continue Return Rollback Close
Assert Delegate Others

Fig. 4. Finally handlers’ actions for .NET programs.

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

Libraries Server-Apps Servers Stand-Alone

Empty Log Alternative Config Throw Continue
Return Rollback Close Assert Others
Fig. 5. Finally handlers’ actions for Java programs.

Another category of actions with some weight in the global distribution is the

Throw action. This is mainly due to the layered and component based development of
software. Layers and components usually have a well defined interface between them.
It is a fairly popular technique to encapsulate all types of exceptions into only one
type when passing an exception object between layers or software components. This
is typically done with a new throw.

Empty, Log, Alternative Configuration, Throw and Return are the actions most
frequently found in the catch handlers of .NET applications. By opposition, Continue,
Rollback, Close, Assert, Delegate and Others actions are rarely used in .NET.

Figure 3 shows the results for catch handlers in Java programs. Only in the Stand-
alone and Server-Apps groups we found some similarity with .NET. Despite this fact,
it is possible to see the same type of clustering found in .NET. The cluster of
categories that concentrate the highest distribution of values is composed by Empty,
Log, Alternative Configuration, Throw and Continue actions.

The distribution values on the Empty category surprised us once again. This value
is lower than the ones found in .NET. This suggests that the checked exception
mechanism has little or no weight on the decision of the programmer to leave an
exception handler empty: another reason must exist to justify the existence of empty
handlers besides silencing exceptions. In .NET this happen quite frequently for
building alternative execution blocks. We risk saying that in Java exception
mechanisms are no longer being used only to handle “exceptional situations” but also
as control/execution flow construct of the language. (Note that even the Java API
sometimes forces this. For instance, the detection of an end-of-file can only be done
by being thrown an exception.)

The Log actions category takes the first place for Server-apps, Server and Stand-
alone application groups and the second place in Libraries group. In this last group,
Log is only surpassed by Throw, another popular action in the Server-Apps and
Server groups. In Java, the Log and Throw actions are highly correlated. We observed
that in the majority of cases, when an object is thrown the reason why it happens is
also logged.

Return is also a common action in all the application groups. Between 7% and 15%
of all handlers terminate the method being executed, returning or not a value.

Figure 4 illustrates the results for finally handlers in .NET. The distribution of the
several actions is different from the one found in catch handlers. Nevertheless, is
visible that the most common handler action category in .NET, for all application
groups, is Close. I.e. finally handlers, in our test suite, are mainly used to close
connections and release resources.

Alternative configuration is the second mostly used handler action in all
application groups with the exception of Libraries. A typical block of code usually
found in finally handlers is composed by some type of conditional test that enables (or
not) the execution of some predetermined configuration. In some cases, these
alternative configuration is done while resetting some state. In those cases, they were
classified as Rollback and not Alternative.

Another common category present in finally handlers of .NET applications is
Others. These actions include file deletion, event firing, stream flushing, and thread
termination, among other less frequent actions. In Server applications it is also
common to reset object’s state or rollback previously done actions.

Finally, on Stand-alone applications there are some empty finally blocks that we
can not justify since they perform no easily understandable function.

In Java applications (Figure 5) the scenario is very similar to the one found in
.NET. Close is the most significant category in all application groups. There are also
some actions classified as Others, which are similar to the ones of .NET. In Java they
have more weight in the distribution, indicating a higher programming heterogeneity
in exception handling.

Rollback and Alternative configuration actions are also used as handler actions in
Java finally handlers.

It is possible to observe that there is some common ground between application
groups in Java and .NET in what concerns exception handling. For the most part,
Empty and Log the most common actions in all catch handlers and Close is the most
used action in finally handlers.

5.3 Exception Handler Argument Classes

After identifying the list of actions performed by handlers, we concentrated on finding
out if there is some relation between catch handlers for the same type of exception
classes. For this, we developed two programs: one to process .NET’s IL code and
another to process Java bytecode. These IL code/bytecode analyzers were used to
discover what exceptions classes were most frequently used as catch statement
arguments. We opted by performing this analysis at this level and not at source code
level because it is simpler to obtain this information from assemblies or class files
metadata than from C# or Java code.

Figure 6 shows the most common classes used as argument of catch instructions
in .NET applications. The results are grouped by application type and the values
represent the weighted average of the distribution among applications of the same
group. Thus, programs with the largest number of handlers have more weight in the
final result.

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

Libraries Server-Apss Servers Stand-alone

System.Exception System.Object
System.IO.IOException System.Security.SecurityException
System.ArgumentException System.FormatException
System.InvalidCastException System.NotSupportedException
System.Net.Sockets.SocketException System.Runtime.Remoting.RemotingException
System.Xml.XmlException

Fig. 6. .NET catch’s arguments classes.

It is possible to observe that programmers prefer to use the most generic exception
classes like System.Exception and System.Object for catching exceptions.
Note that .NET, not C#, allows any type of object to be used as an exception
argument. When the argument clause of a catch statement is left empty, the compiler
assumes that any object can be thrown as an exception. This explains the large
presence of System.Object as argument.

The use of generic classes in catch statements can be related to the two of the most
common actions in handlers: Logging and Return. This means that for the largest set
of possible exceptions that can be thrown, programmers do not have particular
exception handling requirements: they just register the exception or alert the user of
its occurrence. Nevertheless, there are a lot of handlers that use more specific
exception classes. These different handlers do not have any weight by themselves in
the distribution but all the code that actually tries to perform some error recovery
operations is concentrated around these specialized handlers.

I/O related exception handlers are fairly used in Libraries and Servers. Also invalid
arguments types, number and format errors are treated as exceptions by all the
applications as shown by the presence of System.ArgumentException
handlers and System.FormatException handlers.

There are not many differences between Java and .NET in terms of catch
arguments. Figure 7 shows the results for Java. It is possible to conclude that the most
generic exception classes are the preferred ones: Exception, IOException, and
ClassNotFoundException. We tried to found out why
ClassNotFoundException is so commonly used by analyzing the source code.
For the most part, most of the handlers associated to the use of this class are empty,
just log the error or throw a new kind of exception. Others try to load a parent class of
the class not found or another completely different class. In general, these handlers
are associated with “plug-in” mechanisms or modular software components using
dynamic class loading.

Finally, we did an analysis of all the applications source code to find out what was
the distribution of handler actions by catch handler argument class for the most
commonly used classes. The results can be found in Figure 8.

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

Libraries Server-Apps Servers Stand-alone

java.lang.ClassNotFoundException java.lang.Exception
java.io.IOException java.lang.Throwable
java.sql.SQLException java.lang.InterruptedException
java.lang.CloneNotSupportedException java.awt.AWTException
java.lang.IndexOutOfBoundsException org.eclipse.jface.text.BadLocationException

Fig. 7. Java catch’s arguments classes.

The results are quite different from one type of exception class to another. Even so,
it is still possible to say that the dominant handler actions are the ones belonging to
the categories: Empty, Log, Alternative Configuration, Throw and Return.

0,0%
5,0%

10,0%
15,0%
20,0%
25,0%
30,0%
35,0%
40,0%
45,0%
50,0%

Sys
tem

.E
xc

ep
tio

n

Sys
tem

.O
bje

ct
jav

a.l
an

g.C
las

sN
otF

ou
nd

Ex..
.

jav
a.l

an
g.E

xc
ep

tio
n

jav
a.I

O.IO
Ex

ce
pti

on

Empty Log Alternative Config Throw
Continue Return Rollback Close
Assert Others Delegate

Fig. 8. Handler action distribution for the most used catch handler classes.

It is interesting to notice that in .NET catch instructions with no arguments are
directly associated with the largest number of Empty handlers.

In Java, in particular for ClassNotFoundException, alternative configuration
actions are common. This behavior is understandable if we consider that, if a class is
not found then a new one should be suggested as alternative. (This is quite common in
database applications, while loading JDBC drivers.)

5.4 Handled Exceptions

On the last section, we reported the exceptions that are used in catch statements.
Nevertheless, a catch statement can catch the specific exception that was listed or

more specific ones (i.e. derived classes). We will now discuss exception handling
code from the point of view of possible handled exceptions. As described in section 4
we used IL code/bytecode analyzers to collect all the exceptions that the applications
could throw because this information is not completely available at source code level.
I.e. the set of exceptions that an application can throw at runtime is not completely
defined by the applications source code throw and throws statements. Therefore, a
profound analysis of the compiled applications was required for gathering this
information.

5.4.1 Exception Universe
In Java, thanks to the checked exception mechanism, we are able to discover and
locate all the exceptions that an application can throw by analyzing its bytecode and
metadata. To know what exceptions may be thrown by a method it is necessary to
know:

• All the exceptions that the bytecode instructions of a method may raise
accordingly to the Java specs [15]

• All the exception classes declared in the throws statement of the
methods being called

• All the exceptions that are produced inside a protected block and are
caught by one of its handlers

• All the exception classes in the method own throws statement
In .NET this is a more difficult task because there are no checked exceptions. To

discover what exceptions a method may raise is necessary to know:
• All the exceptions that can be raised by each one of the IL instructions

accordingly to the ECMA specs of the CLR [16]
• All the exceptions that the method being called may raise
• All the exception classes present in explicit throw statements
• All the exceptions that are produced inside a protected block and are not

caught by one of its handlers
When we started to work on which exceptions could occur in .NET and Java, the

results of the analysis were quite biased. This happened because:
• Almost all instructions can raise one or more exceptions, accordingly to

CLR ECMA specs and Java specs, making the total number of exceptions
reported grow very fast and the occurrence of other types of exceptions
not directly associated with instructions almost irrelevant;

• In most cases, the exceptions that each low-level instruction could
actually throw would not indeed occur since some code in the same
method would prevent it (e.g. an explicit program termination if a
database driver was not found, thus making all
ClassNotFoundException exceptions for that class irrelevant).
Since it is not possible to detect this code automatically, although the
results could be correct, the analysis would not reflect the reality of the
running application or the programming patterns of the developer.

To obtain meaningfully results we decided to perform a second analysis not using
all the data from the static analysis of bytecode and IL code instructions. In particular,
we filtered a group of exceptions that are not normally related to the program logic,

and that the programmer should not normally handle, considering the rest. The list of
exceptions that were filtered (i.e. not considered) is shown in Table 4.

Table 4. Java and .NET exception classes for bytecode and IL code instructions.

JAVA .NET
java.lang.NullPointerException System.OverflowException
java.lang.IllegalMonitorStateException System.Security.SecurityException
java.lang.ArrayIndexOutOfBoundsException System.ArithmeticException
java.lang.ArrayStoreException System.NullReferenceException
java.lang.NegativeArraySizeException System.DivideByZeroException
java.lang.ClassCastException System.Security.VerificationException
java.lang.ArithmeticException System.StackOverflowException
 System.OutOfMemoryException
 System.TypeLoadException
 System.MissingMethodException
 System.InvalidCastException
 System.IndexOutOfRangeException
 System.ArrayTypeMismatchException
 System.MissingFieldException
 System.InvalidOperationException

5.4.2 Results for handled exceptions
Being aware of the complete list of exceptions that an application can raise and of the
complete list of handlers and protected blocks, it is possible to find out which are the
most commonly handled exception types. The results for .NET applications are shown
in Figure 9; the values represent the average of results by application group where
every application had a different weigh in the overall result according to the total
number of results that they provided. It is possible to observe that the results are very
different from application group to application group. For instance, in the Libraries
group, the most commonly handled exceptions are ArgumentNullException
and ArgumentException, resulting from bad parameter use in method
invocations. In the remaining three groups the number one exception type is
Exception, this can be a symptom of the existence of a larger and more differentiated
set of exceptions that can occur. If many different exceptions can occur it is viable to
assume that the most generalized type (i.e. Exception, IOException, etc.)
becomes the most common one.

Seeing exception types like HttpException, MailException,
SmtpException and SocketException in this top ten list and observing a
distribution with such variations from application group to application group, we are
confident to say that the type of exceptions that an application can raise and, in
consequence, handle is strictly related with the application nature.

There is a mismatch between the type of classes used as arguments to catch
instructions and the classes of the exceptions that are handled, i.e. throw statements
use the exception classes that best fit the situation (exception) but the handlers that
will eventually “catch” these exceptions use general exception classes like .Net’s and
Java’s Exception as their arguments.

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

Libraries Server-Apps Servers Stand-alone

System.Exception System.Net.Sockets.SocketException
System.Web.HttpException System.ArgumentNullException
System.ArgumentException System.ExecutionEngineException
DotNetOpenMail.MailException OpenSmtp.Mail.SmtpException
System.ApplicationException System.ArgumentOutOfRangeException

Fig. 9. Most commonly handled exception types in .NET.

In Java, as in .NET, there is a large spectrum of exception types being handled.

The results for Java are illustrated in Figure 10. The huge distinction helps to
differentiate IOException as the most “caught” exception type in all application
groups. It is also possible to observe that the exception types are tightly related to the
applications. For instance in Stand-alone applications, three of the exception classes
are from Eclipse. Due to its size Eclipse carries a large weight in its application group
results and, as we are able to observe, its “private” exceptions are present in this top
ten.

0,0%
5,0%

10,0%
15,0%

20,0%
25,0%
30,0%

35,0%
40,0%

45,0%
50,0%

Libraries Server-Apps Servers Stand-alone

java.io.IOException java.security.cert.CertificateEncodingException
java.lang.InterruptedException java.net.SocketException
java.lang.NumberFormatException org.eclipse.core.runtime.CoreException
org.eclipse.jface.text.BadLocationException org.eclipse.jdt.core.JavaModelException
java.lang.Exception javax.jcr.RepositoryException
Fig. 10. Most commonly handled exceptions in Java.

5.4.3 Call Stack Levels Analysis
The analysis of the applications bytecode and IL code allows us to discover the
number of levels in the call stack that an exception travels before it is caught by some
handler. Note that an exception is caught if the catch argument class is the same of the
exception or a super-class of it.

One result that we can directly associate with the checked exceptions mechanism is
the difference in the number of levels that an exception covers before it is caught by
some handler in Java and .NET.

In Figure 11 it is possible to observe that in Java almost 80% of the exceptions are
caught one level up from where they are generated, 15% two levels up, 5% three
levels up and all the remaining are caught as high as five levels. On the other hand, in
.NET, exceptions can cover up to seventeen levels and the distribution of the
exceptions per levels covered is much sparser than in Java. The .NET programmer is
not forced to catch exceptions and, as a result, exceptions can be caught much later in
the call stack and most of times by exception handlers with general catch arguments.

In .NET, 5% of the exceptions are caught before they cover any level in the call
stack. This result is unexpected and could only be explained by a detailed analysis of
the IL code in the assemblies and of the source code of the programs. At first we
thought that this could be the result of some code tangling at compile time but the
analysis showed that the exceptions were originated in throw instructions inside the
protected blocks of methods. Programmers raised these exceptions to pass the
execution flow from the current point in the method to code inside a handler – i.e.
they use exceptions as a flow control construct.

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

.NET
Java

Fig. 11. Call stack levels for caught exceptions.

5.4.4 Handler size
Another interesting measure that we withdraw from the analysis of assemblies IL
code and metadata was related with handler’s code size or, more precisely, the count
of opcodes inside a handler. This analysis could only be conducted in .NET because
the metadata in the assemblies clearly identifies the begin and end instructions for
each handler while in Java only the information about the beginning of a handler is
available. To discover where a handler finishes we would have to do a static flow
control analysis and find the join point in the code after the first instruction in the
handler, which is outside of the scope of this paper.

The graph in Figure 12 shows that the largest set of handlers in Server-Apps,
Servers and Stand-alone applications groups have 8 IL Code instructions. In the
Libraries group more than 40% of the handlers have 3 instructions. The second
largest set of handlers in all groups has 5 instructions. Obviously, there are bigger

handlers but their number is so low that we excluded them from the graph to improve
its reading.

These results made us curious about what was happening in these handlers and
what were the instructions in question. We analyzed all the IL code in all the handlers
and found some interesting facts:

• In the 526 handlers with size 8, 500 (95%) invoked a Dispose()
method in some object; from this 500 there were two major sets of
handlers with the exact same opcodes, one with 329 elements and the
other with 166; the remaining 5 handlers were different between them;
these handlers were all Finally handlers.

• In the set of handlers with 5 instructions there were 194 elements; 74
disposed of some object; 24 created and throwed a new exception; 36
stored some value.

• 484 of the 498 handlers of size 3 were Finally handlers; 426 handlers had
exactly the same opcodes and were responsible for closing a database
connection; other 34 handlers also had the same code and invoked a
Finalize method in some object.

• The largest set of handlers with size 2 was empty handlers in the source
code and its actions consisted in cleaning the stack and returning; others
rethrowed the exception, and the rest called some Assert method.

These lead us to the conclusion that many of the handlers with few instructions are
very similar between them and that the majority are Finally handlers that do some
kind of method dispose or connection closing.

0%

10%

20%

30%

40%

50%

60%

2 3 4 5 6 7 8 9 11 12 13 15

Libraries

Server-Apps

Servers

Stand-alone

Fig. 12. Handlers size in number of IL code instructions for .NET.

5.4.5 Types of handlers
Knowing that the majority of the handlers with few instructions were finally blocks
we tried to discover which was the relation between the total number of protected
blocks, the total number of catch handlers and the total number of finally handlers.

The data in Table 5 shows that for the 1565 protected blocks found in the .NET
applications there are 1630 handlers; 1144 protected bocks (73%) have finally
handlers; but only 29% have catch handlers. On Java there are 18389 handlers
distributed by 17024 protected blocks; 8109 protected blocks (48%) have finally
handlers; 9402 (55%) have catch handlers.

Table 5. Number of protected blocks, catch handlers and finally handlers.

Protected Blocks Handlers Protected Blocks with
Finally Handlers

Protected Blocks with
Catch Handlers

.NET 1565 1630 1144 450
Java 17024 18389 8109 9402

In our test set of applications, .NET programmers use much more finally handlers,

relatively to the total number of handlers, than Java programmers.
In the graph of Figure 13 it is possible to see that Java applications have higher

maximum values of catch handlers per protected block, the average number of catch
blocks per try block is almost identical in all the application groups for the two
platforms and has the approximate value of one. The standard deviation values are
also very low meaning that the largest number of protected blocks has only one catch
handler.

0

1

2

3

4

5

6

7

8

.NET Java .NET Java

Max #Catch p/ Try Average #Catch p/ Try

Libraries
Stand-alone
Servers
Server-Apps

Fig. 13. Number of catch handlers per protected block.

5.4.6 Checked vs. Unchecked Exceptions
As mentioned before, the checked exceptions mechanism influences the way Java
programmers use the exception detection and handling language constructs. But
programmers can, alternatively, use unchecked exceptions in Java. For instance, there
are some libraries specialized in using only unchecked exceptions (e.g. Java NIO).

In the programs that were analyzed, we compared the number of catch
instructions that have an unchecked exception class as argument with the total number
of catch instructions. The results are displayed in Table 6. It is possible to observe
that except for the Stand-Alone application group, where the usage reaches 36.7%, for
the remaining groups, values are very low, never exceeding 9%. Nevertheless,
unchecked exceptions are indeed being used and, besides their extensive usage by
some dedicated libraries, they are largely used to report on underlying system errors.

Table 6. Usage of Unchecked exceptions in Java catch handlers.

 Unchecked
Libraries 8,90%
Servers 8,50%
Stand-Alone 36,70%
Server-Apps 6,50%

5.4.7 Retry functionality
Neither Java or .NET have nothing like a “retry” block functionality that would
enable the programmer to execute a try block in a cycle until it succeeds or reaches a
certain condition. Other languages like Smalltalk [17] or Eiffel [18] have this kind of
construct.

In Java and .NET, if a programmer wants to mimic this functionality he has to
insert a protected block inside a cycle, for instance, insert a try block inside a while or
do-while cycle.

Using source code parsers for accounting the number of protected blocks found
inside cycles or loops we were able to obtain the total number of these occurrences. In
Java we found 1082 cases and in .NET 16.

This analysis can be considered as some sort of blind analysis because we do not
know if the programmer really intended to do a “retry”. Nevertheless, 6% of all catch
handlers were inside loops and if the programmer really intended to do a “retry”,
which seams to be the most reasonably reason, that would be a fairly interesting result
to justify the addition of this functionality to both languages.

5.5 Making Exception Handling Work.

The results discussed in the previous sections show that programmers, most of the
time, do not use exception handling mechanisms correctly or, at least, they do not use
them for error recovery. These practices lead to a decrease in software quality and
dependability. It is clear that in order to develop high-quality robust software, in a
highly productive way, new advances are needed. Some authors have already started
looking for new approaches. In our line of work we are currently approaching the
problem by trying to create automatic exception handling for the cases where “benign
exception handling actions” can be defined (e.g. compressing a file on a disk full
exception). In general, we are trying to free the programmer from the task of writing
all the exception handling code by hand, forcing the runtime itself to automatically
deal with the problems whenever possible. A complete description of the technique is
out of scope of this paper, but the interested reader can refer to [19] for a discussion
of the approach.

6 Conclusion

This article aimed to show how programmers use the exception handling mechanisms
available in two modern programming languages, like C# and Java. And, although we
have detailed the results individually for both platforms and found some differences,
in the essential results are quite similar. To our knowledge, this is the most extensive
study done on exception handling by programmers in both platforms.

We discovered that the amount of code used in error handling is much less than
what would be expected, even in Java where programmers are forced to declare or
handle checked exceptions.

More important is the acknowledgment that most of the exception classes used as
catch arguments are quite general and do not represent specific treatment of errors, as
one would expect. We have also seen that these handlers most of the times are empty
or are exclusively dedicated to log, re-throw of exceptions or return, exit the method,
or program. On the other hand, the exception objects “caught” by these handlers are
from very specific types and closely tied to application logic. This demonstrates that,
although programmers are very concerned in throwing the exception objects that best
fit a particular exceptional situation, they are not so keen in implementing handling
code with the same degree of specialization.

These results lead us to the conclusion that, in general, exceptions are not being
correctly used as an error handling tool. This also means that if the programming
community at large does not use them correctly, probably it is a symptom of a serious
design flaw in the mechanism: exception constructs, as they are, are not fully
appropriate for handling application errors. Work is needed on error handling
mechanisms for programming languages. Exception handlers are not specific enough
to deal with the detail of the occurring errors; the most preferable behavior is logging
the problem or alerting the user about the error occurrence and abort the on-going
action. Empty handlers, used to “silence” exceptions, will frequently hide serious
problems or encourage bad utilization of programming language error handling
constructs.

Some of the problems detected, like the duplication of code between handlers, and
the mingling of business code with exceptions handling code, among other problems
are still to be tackled and represent an important research target.

We now know, at least for this set of applications, what type of exceptions
programmer prefer to handle and what type of exceptions are commonly caught. In
the future we would like to extend our analysis to running software, actually
accounting what type of exceptions do really occur and how this relates to the code
programmers are forced to write for error handling.

Acknowledgments. This investigation was partially supported by the Portuguese
Research Agency – FCT, through a scholarship (DB/18353/98), and by CISUC (R&D
Unit 326/97).

References

1. E. Gunnerson. C# and exception specifications. Microsoft, 2000. Available online at:
http://discuss.develop.com/archives/wa.exe?A2=ind0011A&L=DOTNET&P=R32820

2. J. B. Goodenough. Exception handling: issues and a proposed notation. In Communications
of the ACM, 18, 12 (December 1975), ACM Press.

3. F. Cristian. Exception Handling and Software Fault Tolerance. In Proceedings of FTCS-25,
3, IEEE, 1996 (reprinted from FTCS-IO 1980, 97-103).

4. A. Garcia, C. Rubira, A. Romanovsky, and J. Xu. A Comparative Study of Exception
Handling Mechanisms for Building Dependable Object-Oriented Software. In Journal of
Systems and Software, 2, November 2001, 197-222.

5. S. Sinha, and M. Harrold. Analysis and Testing of Programs with Exception-Handling
Constructs. In IEEE Transactions on Software Engineering, 26, 9 (SEPTEMBER 2000),
IEEE.

6. R. Miller and A. Tripathi. Issues with exception handling in object-oriented systems. In
Proceedings of ECOOP’97, LNCS 1241, Springer-Verlag, June 1997, 85–103.

7. M. P. Robillard, G. C. Murphy. Designing robust JAVA programs with exceptions. In
Proceedings of the 8th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 25, 6 (November 2000), ACM Press, 2000.

8. M. Lippert, and C. Lopes. A Study on Exception Detection and Handling Using Aspect-
Oriented Programming. In Proceedings of the 22nd International Conference on Software
Engineering, Ireland 2000, ACM Press, 2000.

9. F. Filho, C. Rubira, and A. Garcia. A Quantitative Study on the Aspectization of Exception
Handling. In Workshop on Exception Handling in Object-Oriented Systems (held in
ECOOP 2005), Glasgow, Scotland, July 2005.

10. T. Elrad, R. E., Filman, and A. Bader. Aspect-Oriented Programming. In Communications
of the ACM, ACM Press, New York, USA, October 2001, Vol.44 (10), 29-32. ISSN 0001-
0782.

11. T. Parr. ANTLR – Another Tool for Language Recognition. University of San Francisco,
2006. Available online at: http://www.antlr.org/.

12. Javacc - Java Compiler Compiler. Available online at: https://javacc.dev.java.net/.
13. B. Cabral, P. Marques, L. Silva. RAIL: Code Instrumentation for .NET. In Proceedings of

the 2005 ACM Symposium On Applied Computing (SAC'05), ACM Press, Santa Fé, New
Mexico, USA, March 2005.

14. S. Chiba. Load-Time Structural Reflection in Java. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP’00), Springer-Verlag, LNCS 1850,
Sophia Antipolis and Cannes, France, June 2000.

15. J. Gosling, B. Joy, G. Steele, G. Bracha. The JAVA Language Specification. Sun
Microsystems, Inc, Mountain View, California, U.S.A., 2000. ISBN 0-201-31008-21.

16. ECMA International. Standard ECMA-335 Common Language Infrastructure (CLI). ECMA
Standard, 2003. Available online at: http://www.ecma-
international.org/publications/standards/ecma-335.htm.

17. A. Goldberg , and D. Robson. Smalltalk-80: the language and its implementation, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, 1983.

18. B. Meyer. Eiffel: the Language. Prentice-Hall, Inc, Upper Saddle River, NJ, USA, 1992.
ISBN 0-13-247925-7.

19. B. Cabral, P. Marques. Making Exception Handling Work. In Proceedings of the Workshop
on Hot Topics in System Dependability (HotDep’06), USENIX, Seattle, USA, November
2006.

