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Abstract. Most modern programming languages rely on exceptions for dealing 
with abnormal situations. Although exception handling was a significant 
improvement over other mechanisms like checking return codes, it is far from 
perfect. In fact, it can be argued that this mechanism is seriously limited, if not, 
flawed. This paper aims to contribute to the discussion by providing 
quantitative measures on how programmers are currently using exception 
handling. We examined 32 different applications, both for Java and .NET. The 
major conclusion for this work is that exceptions are not being correctly used as 
an error recovery mechanism. Exception handlers are not specialized enough 
for allowing recovery and, typically, programmers just do one of the following 
actions: logging, user notification and application termination. To our 
knowledge, this is the most comprehensive study done on exception handling to 
date, providing a quantitative measure useful for guiding the development of 
new error handling mechanisms.  
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1   Introduction 

In order to develop robust software, a programming language must provide the 
programmer with primitives that make it easy and natural to deal with abnormal 
situations and recover from them. Robust software must be able to perceive and deal 
with the temporary disconnection of network links, disks that are full, authentication 
procedures that fail and so on.  

Most modern programming languages like C#, Java or Python rely on exceptions 
for dealing with such abnormal events. Although exception handling was a significant 
improvement over other mechanisms like checking return codes, it is far from perfect. 
In fact, it can be argued that the mechanism is seriously limited if not even flawed as 
a programming construct. Problems include: 

• Programmers throw generic exceptions which make it almost impossible 
to properly handle errors and recover for abnormal situations without 
shutting down the application. 

• Programmers catch generic exceptions, not proving proper error handling, 
making the programs continue to execute with a corrupt state (especially 
relevant in Java). On the other hand, in some platforms, programmers do 



not catch enough exceptions making applications crash even on minor 
error situations (especially relevant in C#/.NET). 

• Programmers that try to provide proper exception handling see their 
productivity seriously impaired. A task as simple as providing exception 
handling for reading a file from disk may imply catching an dealing with 
tens of exceptions (e.g. FileNotFoundException, 
DiskFullException, SecurityException, IOException, 
etc.). As productivity decreases, cost escalates, programmer’s motivation 
diminishes and, as a consequence, software quality suffers. 

• Providing proper exception handling can be quite a challenging and error 
prone task. Depending on the condition, it may be necessary to enclose 
try-catch blocks within loops in order to retry operations; in some cases it 
may be necessary to abort the program or perform different recovery 
procedures. Bizarre situations, like having to deal with being thrown an 
exception while trying to close a file on a catch of a finally block, are not 
uncommon. Dealing with such issues correctly is quite difficult, error 
prone, not to say, time consuming. 

To make things interesting, the debate about error handling mechanisms in 
programming languages has been recently fuelled with the launch of Microsoft’s 
.NET platform.  

Currently, the Java Platform and the .NET platform constitute the bulk of the 
modern development environments for commercial software applications. Curiously, 
Microsoft opted to have a different exception handling approach than in Java. In .NET 
the programmer is not forced to declare which exceptions can occur or even deal with 
them. Whenever an exception occurs, if unhandled, it propagates across the stack until 
it terminates the application. On the other hand, in Java, in most cases, the 
programmer is forced to declare which exceptions can occur in its code and explicitly 
deal with exceptions that can occur when a method is called. The rational for this is 
that if the programmer is forced to immediately deal with errors that can occur, or re-
throw the exception, the software will be more robust. I.e. the programmer must be 
constantly thinking about what to do if an error occurs and acknowledge the 
possibility of errors.  

On the .NET’s camp, the arguments for not having checked exceptions that are 
normally used are [1]: 

• Checked exceptions interfere with the programmers’ productivity since 
they cannot concentrate in business logic and are constantly forced to 
think about errors. 

• Since the programmer is mostly concentrated in writing business logic 
and not dealing with errors, it tends to shut-up exceptions, which actually 
makes things worse. (Corrupt state is much more difficult to debug and 
correct than a clean exception that terminates an application.) 

• Errors should be “exonerated” by exhaustive testing. I.e. a sufficiently 
accurate test suite should be able to expose dormant exceptions, and 
corresponding abnormal situations. For the problems that remain latent, it 
is better that they appear as a clean exception that terminates the 
application than having them being swallowed in a generic catch 
statement which leads to corrupt state. 



Obviously, both camps cannot be 100% right. But, overall, the important message 
is that in order to develop high-quality robust software, in a productive way, new 
advances in error handling are needed. The existing mechanisms are not adequate nor 
suffice. 
This paper aims to contribute to the discussion by providing quantitative measures on 
how programmers are currently using exception handling. We examined 32 different 
applications, both for Java and .NET, covering 4 different software categories 
(libraries; stand-alone applications; servers; and applications running on servers). 
Overall, this corresponds to 3,410,294 lines of source code of which 137,720 are 
dedicated to exception handling. For this work, we have examined and processed 
18,589 try blocks and corresponding handlers. To our knowledge, this is the most 
comprehensive study done to date on exception handling. 

The data presented on this paper is important to guide the development of new 
mechanisms and approaches to exception handling. Other results will help e.g. justify 
the feasibility of using existent methodologies, like applying Aspect Oriented 
Programming (AOP) to implement exception handlers as advices. 

The rest of this paper is organized as follows: Section 2 discusses related work; 
Section 3 describes the application set used in this study; Section 4 explains the 
methodology used in the analysis; Section 5 presents the results of the tests and 
observations about their significance; finally, Section 6 concludes the paper. 

2   Related Work 

Since the pioneering work of John B. Goodenough in the definition of a notation for 
exception handling [2] and Flaviu Cristian in defining its usage [3], the programming 
language constructs for handling and recovering from exceptions have not changed 
much. Nevertheless, programming languages designers have always suggested 
different approaches for implementing these mechanisms. 

Several studies have been conducted over the years for validating the options taken 
in each different implementation. For instance, Alessandro Garcia, et al. did a 
comparative study on exception handling (EH) mechanisms available developing 
dependable software [4]. Alessandro’s work consisted in a survey of exception 
handling approaches in twelve object-oriented languages. Each programming 
language was analyzed in respect to ten technical aspects associated with EH 
constructs: exception representation; external exceptions in signatures; separation 
between internal and external exceptions; attachment of handlers to program 
constructs (e.g. to statements, objects, methods, etc.); dynamism of handler binding; 
propagation of exceptions ; continuation of the flow control (resumption or 
termination); clean-up actions; reliability checks; and concurrent exception handling. 
After the evaluation of all the programming languages in terms of exception 
mechanisms, the major conclusion of the study was that “none of the existing 
exception mechanisms has so far followed appropriate design criteria” and 
programming language designers are not paying enough attention to properly 
supporting error handling in programming languages. 



Saurabh Sinha and Mary Jean Harrold performed an extensive analysis of 
programs with exception handling constructs and discussed their effects on analysis 
techniques such as control flow, data flow, and control dependence [5]. In the 
analysis, the authors also presented techniques to create intraprocedural and 
interprocedural representations of Java programs that contain EH constructs and an 
algorithm for computing control dependences in their presence. Using that work, the 
authors performed several studies and showed that 8.1% of the methods analyzed 
used some kind of exception mechanism and that these constructs had an important 
influence in control-dependence analysis. 

R. Miller and A. Tripathi identified several problems in exception handling 
mechanisms for Object-Oriented software development [6]. In their work, it is shown 
that the requirements of exception handling often conflict with some of the goals of 
object-oriented designs, such as supporting design evolution, functional 
specialization, and abstraction for implementation transparency. Being specific: 
object-oriented programming does not support a complete exception specification 
(extra information may be needed for the exception context not supported by an 
object interface); state transitions are not always atomic in exception handling; 
exception information needs to be specific, but functions can be overloaded to have a 
different meaning in different situations; the exception handling control flow path is 
different from the normal execution path and is up to the programmer to differentiate 
both of them. Thus, the modification of object-oriented frameworks for adaptation to 
exception handling can have the following effects in terms of: Abstraction, change of 
abstraction levels and the usage of partial states; Encapsulation, the exception context 
may leak information that reveals or allows the access to the exception signaler 
private data; Modularity, design evolution may be inhibited by exception 
conformance; Inheritance anomalies may occur when a language does not support 
exception handling augmentation in a modular way. 

Martin P. Robillard and Gail C. Murphy in their article on how to design “robust 
Java programs with exceptions”, classified exceptions as a global design problem and 
discussed the complexity of exception structures [7]. In their work, the authors 
pointed that the lack of information about how to design and implement with 
exceptions lead to complex and spaghetti-like exception handling code. The main 
factors that contribute to the difficulty of designing exception structures are the global 
flow of exceptions and the emergence of unanticipated exceptions. To help control 
these factors, the authors refined an existent software compartmenting technique for 
exception design and report about its usage in the rewriting of three Java programs 
and the consequent improvements they observed. 

More recently, due to a new AOP approach to EH, two interesting studies were 
published emphasizing the separation of concerns in error handling code writing 
[8][9]. Martin Lippert and Cristina Lopes rewrote a Java application using AspectJ. 
Their objective was to provide a clear separation between the development of 
business code and exception handling code. This was achieved by applying error 
handling code as an advice (in AOP terminology) [10]. With this approach they also 
obtained a large reduction in the amount of exception handling code present in the 
application. Some of the results presented show that without aspects, the amount of 
code for exceptions is almost 11% of all the code; with aspects it represents only 
2.9%. Lippert’s paper also accounts the total number of catch blocks in the code and 



the most common exception classes used as parameters for these catch statements. 
One of the measures they present to support their AOP approach is the reduction of 
the number of different handlers effectively written for each one of the most 
commonly used exception classes. For the top 5 classes were implemented between 
90.0% and 96.5% less handlers. F. Filho and C. Rubira conducted a similar study but 
they were not so enthusiastic in their results. The authors presented four metrics to 
evaluate the AOP approach to exception handling: separation of concerns; coupling 
between components and depth of inheritance tree; cohesion in the access to fields by 
pairs of method and advice; and dimension (size and number) of code. The work 
reports that the improvements of using AOP do not represent a substantial gain in any 
of the presented metrics showing that reusing handlers is much more difficult than is 
usually advertised. Handler reuse depends of the type of exceptions being handled, on 
what the handler does, the amount of contextual information needed; and what the 
method raising the exception returns and what the throws clause actually specifies.  

The objective of this study is different from its predecessors. It does not target the 
quality of the mechanisms available in programming languages but the usage that 
programmers make of them. The emphasis is on understanding how programmers 
write exception handling code, how much of the code of an application is dedicated to 
error recovery and identifying possible flaws in their usage. 

3   Workbench 

The target platforms of this study were the .NET and Java environments, as well as 
the C# and Java programming languages. 
Selecting a set of applications for the study was quite important. The code present in 
the applications had to be representative of common programming practices on the 
target platforms. Also, care had to be taken so that these would be “real world” 
applications developed for production use (i.e. not simply prototypes or beta 
versions). This was so in order not to bias the results towards immature applications 
where much less care with error handling exists.  Finally, in order to be possible to 
perform different types of analyses, both the source code and the binaries of the 
applications had to be available.  

Globally, we analyzed 32 applications divided into two sub-sets of 16 .NET 
programs and 16 Java programs. Each one of these sub-sets was organized in four 
categories accordingly to their nature:  

• Libraries: software libraries providing a specific application-domain API. 
• Applications running on servers (Server-Apps): Servlets, JSPs, ASPs 

and related classes. 
• Servers: server programs. 
• Stand-alone applications: desktop programs. 

 
The complete list of applications is shown in Table 1.  



Table 1.  Applications listed by group. 

SmartIRC4NET IRC library 

Report.NET PDF generation library 

Mono (corlib) Open-source CLR implementation 

Li
br

ar
ie

s 

NLog Logging library 

UserStory.Net Tool User Story tracking in Extreme 
Programming projects 

PhotoRoom ASP.NET web site for managing on-line photo 
albums 

SharpWebMail ASP.NET webmail application that is written 
in C# 

Se
rv

er
-A

pp
s 

SushiWiki WikiWikiWeb like Web application 

NeatUpload Allows ASP.NET developers to stream files to 
disk and monitor progress 

Perspective Wiki engine 

Nhost Server for .Net objects 

Se
rv

er
s 

DCSharpHub Direct connect file sharing hub 

Nunit Unit-testing framework for all .NET languages 

SharpDevelop IDE for C# and VB.NET projects 

AscGen Application to convert images into high 
quality ASCII text 

.N
ET

 

St
an

d-
al

on
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SQLBuddy SQL scripting tool for use with Microsoft SQL 
Server and MSDE 

Thought River Commons General purpose library 

Javolution Real-time programming library 

JoSQL SQL for Java Objects querying 

Li
br

ar
ie

s 

Kasai Authentication and authorization framework 

Exoplatform Corporate portal and Enterprise Content 
Management 

GoogleTag Library Google JSP Tag Library 

Xplanner Project planning and tracking tool for Extreme 
Programming 

Ja
va

 

Se
rv

er
-A

pp
s 

Mobile platform 
Banks and mobile operators software for SMS 
and MMS services in cellular networks (not 
open-source) 

 



 
Jboss J2EE application server 

Apache Tomcat Servlet container 

JCGrid Tools for grid-computing 
Se

rv
er

s 

Berkeley DB High performance, transactional storage 
engine 

Compiere ERP software application with integrated 
CRM solutions 

J-Ftp Graphical Java network and file transfer client 

Columba Email Client 

Ja
va

 

St
an

d-
al

on
e 

Eclipse Extensible development platform and IDE 

4 Methodology 

The test applications were analyzed at source code level (C# and Java sources) and at 
binary level (metadata and bytecode/IL code) using different processes.  

To perform the source code analysis two parsers were generated using antlr [11], 
for C#, and javacc [12] for Java. These parsers were then modified to extract all the 
exception handling code into one text file per application. These files were then 
manually examined to build reports about the content of exception handlers. 

The source code of all application was examined with one exception. Due to the 
huge size of Mono, only its “corlib” module was processed. 

The parsers were also used to identify and collect information about try blocks 
inside loops (i.e. detect try statements inside while and do..while loops). This is so 
because normally this type of operations corresponds to retrying a block of code that 
has raised an exception in order to recover from an abnormal situation.  

The main objective of this article is to understand how programmers use the 
exception handling mechanisms available in programming languages. Nevertheless, 
the analysis of the applications source code is not enough by itself when trying to 
distinguish between the exceptions that the programmer wants to handle and the 
exceptions that might occur at runtime. This is so because the generated IL 
code/bytecode can produce more (and different) exceptions than the ones that are 
declared in the applications source code by means of throw and throws 
statements. 

To perform the analysis of the .NET assemblies and of the Java class files two 
different applications were developed: one for .NET and another for Java. The first 
one used the RAIL assembly instrumentation library [13] to access assembly metadata 
and IL code and extract all the information about possible method exceptions, 
exception handlers and exception protection blocks. The second application targeted 
the Java platform and used the Javassist bytecode engineering library [14] to read 
class files and extract exception handler information. 

All data was stored on a relational database for easy statistical treatment. 



Table 2.  List of Assemblies and Java Packages analyzed. 

.NET Java 
Meebey.SmartIrc4net.dll 
Reports.dll 
mscorlib.dll 
NLog.dll 
rq.dll (UserStory) 
PhotoRoom.dll 
SharpWebMail.dll 
SushiWiki.dll 
Brettle.Web.NeatUpload.dll 
Perspective.dll 
nhost.exe 
DCSharpHub.exe 
nunit.core.dll 
SharpDevelop.exe 
Ascgen dotNET.exe 
SqlBuddy.exe 

ThoughRiverCommons (all) 
Javolution (all) 
JoSQL (all) 
org.manentia.kasai 
Exoplatform (all) 
GoogleTagLibrary (all) 
XPlanner (all) 
Mobile platform (all) 
JBoss (all) 
org.apache 
JCGrid (all) 
Berkeley DB (all) 
org.compiere 
net.sf.jftp 
org.columba 
org.eclipse 

For each application only one file (.NET) or package (and sub-packages) of classes 
(Java) was analyzed. Table 2 shows the names of the files and packages that were 
used in this study. The criterion followed to select these targets was the size of the 
files and their relevance in the implementation of the application core. 

5   Results 

In the following subsections we will present the results of this study, drawing some 
observations about their significance.  

Nevertheless, we should caution that although the number of applications that were 
used was relatively large (32), it is not possible to generalize the observations to the 
whole .NET/Java universe. For that, it would be necessary to have a very significant 
number of applications, possible consisting in hundreds programs. Even so, due to the 
care taken in selecting the target applications, we believe that the results allow a 
relevant glimpse into current common programming practices in exception handling. 

5.1   Error Handling Code in Applications  

One important metric for understanding current error handling practices is the 
percentage of source code that is used in that task. For gathering this metric, we 
compared the number of lines of code inside all catch and finally handlers to the total 
number of lines of the program. The results are shown in Figure 1.  

It is quite visible that in Java there is more code dedicated to error handling than in 
.NET. This difference can be explained by the fact that in Java it is compulsory to 
handle or declare all exceptions a method may throw, thus increasing the total amount 
of code used for error handling. Curiously, there is an exception to this pattern. In the 



Server Application group, the difference is almost non-existent. To explain this result 
we examined the applications’ source code. For this class of applications, both in Java 
and .NET, programmers wrote quite similar code. Meaning that they expect the same 
kind of errors (e.g. database connections loss, communication problems, missing data, 
etc.) and they use the same kind of treatment (the most common handler action in this 
type of applications is logging the error).  

3,33%

7,05%

3,11%
3,36% 3,43%

2,23%

1,62%

5,99%

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

8,00%

Libraries Server Apps Servers Stand-Alone

Java

.NET

 

Fig. 1. Amount of error handling code. 
 
One surprising result is that the total amount of code dedicated to exception 

handling is much less than what would be expected. This is even more surprising in 
Java where using exceptions is almost mandatory even in small programs. Our results 
show that the maximum amount of code used for error handling was 7% in the 
Servers group. Overall, the result is 5% for Java, with a 2% standard deviation, and 
3% for .NET, with a standard deviation of 1%. It should be noted the applications 
used in this study are quite mature, being widely used. We reason that the effort 
dedicated to writing error protection mechanisms is not as high as expected, even for 
highly critical applications like servers. The forceful of declaring and catching 
checked exceptions in Java effectively increases (almost doubles) the amount of error 
handling code written, even though it is still represents a small fraction of all the code 
of an application. The critical issue is that normally error handling code is being used 
more to alert the user, to abort the applications or to force them to continue their 
execution, than to actually recover from existing errors. 



5.2   Code in Exception Handlers  

Apart from measuring the amount of the code that deals with errors, to find out how 
programmers use exception handling mechanisms, it is important to know what kind 
of actions are performed when an error occurs.  

To be able to report on this subject we had to inspect sets of ten thousand lines of 
application source code. As a matter of fact, we covered all the handlers (catch and 
finally) in all the applications except for JBoss and Eclipse. For these two, due to their 
dimension, only 10% of the 96,405 lines of code existing inside of exception handlers 
were examined. Even so, they are representative of the rest. 

Table 3.  Description of the Handler’s actions categories. 

Category Description 

Empty  The handler is empty, is has no code and 
does nothing more than cleaning the stack 

Log  Some kind of error logging or user 
notification is carried out 

Alternative/ 
Static  
Configuration  

In the event of an error or in the execution of 
a finally block some kind of pre-determined 
(alternative) object state configuration is 
used 

Throw  A new object is created and thrown or the 
existing exception is re-thrown 

Continue  
The protected block is inside a loop and the 
handler forces it to abandon the current 
iteration and start a new one 

Return  

The handler forces the method in execution 
to return or the application to exit. If the 
handler is inside a loop, a break action is also 
assumed to belong to this category 

Rollback  

The handler performs a rollback of the 
modifications performed inside the protected 
block or resets the state of all/some objects 
(e.g. recreating a database connection) 

Close  

The code ensures that an open connection or 
data stream is closed. Another action that 
belongs to this category is the release of a 
lock over some resource 

Assert  

The handler performs some kind of assert 
operation. This category is separated because 
it happens quite a lot. Note that in many 
cases, when the assertion is not successful, 
this results in a new exception being thrown 
possibly terminating the application 

Delegates  
(only for .NET)  A new delegate is added 

Others  Any kind of action that does not correspond 
to the previous ones 

 



To simplify the classification of these error handling actions we propose a small set 
of categories that enable the grouping of related actions. These categories are 
summarized in the previous table. 

Note that an exception handler may contain actions that belong to more than one 
category. In fact, this is the common case. For instance, a handler can log an error, 
close a connection and exit the application. These actions are represented by three 
distinct categories: Log, Close and Return. Thus, in the results, this handler would be 
classified in all these three categories. 

Since catch and finally handlers have different purposes, we opted for doing 
separate counts for each type of handler. Finally, the distribution of handler actions 
for each application was calculated as a weighted average accordingly to the number 
of actions found in each application. This is so that small applications do not bias the 
results towards their specific error handling strategy.  

The results obtained for each application group are shown in next four graphs. 
The graph of Figure 2 shows the average of results by application group for .NET 

catch handlers. In the four application groups 60% to 75% of the total distribution of 
handler actions is composed of three categories: Empty, Log and Alternative 
Configuration.  

Empty handlers are the most common type of handler in Servers and the second 
largest in Libraries and Stand-alone applications. This result was completely 
unexpected in .NET programs since there are no checked exceptions in the CLR and, 
therefore, programmers are not obliged to handle any type of exception. Checked 
exceptions can sometimes lead lazy programmers to “silence exceptions” with empty 
handlers only to be able to compile their applications. From the analysis of the source 
code we concluded that its usage in .NET is not related with compilation but with 
avoiding premature program termination on non-fatal exceptions. A typical example 
is the presence of several linear protected blocks containing different ways of 
performing an operation. This technique assures that if one block fails to achieve its 
goal, the execution can continue to the next block without any error being generated. 

Logging errors is also one of the most common actions in the handlers of all the 
applications. In fact, is the most common action in Server-Apps and Stand-alone 
groups? Considering web applications and desktop applications, this typically 
corresponds to the generation of an error log, the notification of the user about the 
occurrence of a problem and the abortion of the task. This idea is re-enforced by the 
value of the Return action category in these two application groups which is the 
identical and the highest of all four groups. 

The number of Alternative configuration actions reports on the usage of alternative 
computation or object’s state reconstruction when the code inside a protected block 
fails in achieving its objective. These actions are by far the most individualized and 
specialized of all. In some cases they are used to completely replace the code inside 
the protected block. 

In the Libraries applications group, Assert operations are the second most common 
error handling action. Asserts ensure that if an error occurs, the cause of the error is 
well known and reported to the user/programmer. 

In Servers there is also a high distribution value for the Others category. These 
actions are mainly related with thread stopping and freeing resources. 
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Fig. 2. Catch handler actions count for .NET programs. 
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Fig. 3. Catch handlers’ actions count for Java programs. 
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Fig. 4. Finally handlers’ actions for .NET programs. 
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Another category of actions with some weight in the global distribution is the 

Throw action. This is mainly due to the layered and component based development of 
software. Layers and components usually have a well defined interface between them. 
It is a fairly popular technique to encapsulate all types of exceptions into only one 
type when passing an exception object between layers or software components. This 
is typically done with a new throw. 

Empty, Log, Alternative Configuration, Throw and Return are the actions most 
frequently found in the catch handlers of .NET applications. By opposition, Continue, 
Rollback, Close, Assert, Delegate and Others actions are rarely used in .NET. 

Figure 3 shows the results for catch handlers in Java programs. Only in the Stand-
alone and Server-Apps groups we found some similarity with .NET. Despite this fact, 
it is possible to see the same type of clustering found in .NET. The cluster of 
categories that concentrate the highest distribution of values is composed by Empty, 
Log, Alternative Configuration, Throw and Continue actions.  

The distribution values on the Empty category surprised us once again. This value 
is lower than the ones found in .NET. This suggests that the checked exception 
mechanism has little or no weight on the decision of the programmer to leave an 
exception handler empty: another reason must exist to justify the existence of empty 
handlers besides silencing exceptions. In .NET this happen quite frequently for 
building alternative execution blocks. We risk saying that in Java exception 
mechanisms are no longer being used only to handle “exceptional situations” but also 
as control/execution flow construct of the language. (Note that even the Java API 
sometimes forces this. For instance, the detection of an end-of-file can only be done 
by being thrown an exception.) 

The Log actions category takes the first place for Server-apps, Server and Stand-
alone application groups and the second place in Libraries group. In this last group, 
Log is only surpassed by Throw, another popular action in the Server-Apps and 
Server groups. In Java, the Log and Throw actions are highly correlated. We observed 
that in the majority of cases, when an object is thrown the reason why it happens is 
also logged. 

Return is also a common action in all the application groups. Between 7% and 15% 
of all handlers terminate the method being executed, returning or not a value. 



Figure 4 illustrates the results for finally handlers in .NET. The distribution of the 
several actions is different from the one found in catch handlers. Nevertheless, is 
visible that the most common handler action category in .NET, for all application 
groups, is Close. I.e. finally handlers, in our test suite, are mainly used to close 
connections and release resources. 

Alternative configuration is the second mostly used handler action in all 
application groups with the exception of Libraries. A typical block of code usually 
found in finally handlers is composed by some type of conditional test that enables (or 
not) the execution of some predetermined configuration. In some cases, these 
alternative configuration is done while resetting some state. In those cases, they were 
classified as Rollback and not Alternative. 

Another common category present in finally handlers of .NET applications is 
Others. These actions include file deletion, event firing, stream flushing, and thread 
termination, among other less frequent actions. In Server applications it is also 
common to reset object’s state or rollback previously done actions. 

Finally, on Stand-alone applications there are some empty finally blocks that we 
can not justify since they perform no easily understandable function.  

In Java applications (Figure 5) the scenario is very similar to the one found in 
.NET. Close is the most significant category in all application groups. There are also 
some actions classified as Others, which are similar to the ones of .NET. In Java they 
have more weight in the distribution, indicating a higher programming heterogeneity 
in exception handling. 

Rollback and Alternative configuration actions are also used as handler actions in 
Java finally handlers. 

It is possible to observe that there is some common ground between application 
groups in Java and .NET in what concerns exception handling. For the most part, 
Empty and Log the most common actions in all catch handlers and Close is the most 
used action in finally handlers. 

5.3   Exception Handler Argument Classes 

After identifying the list of actions performed by handlers, we concentrated on finding 
out if there is some relation between catch handlers for the same type of exception 
classes. For this, we developed two programs: one to process .NET’s IL code and 
another to process Java bytecode. These IL code/bytecode analyzers were used to 
discover what exceptions classes were most frequently used as catch statement 
arguments. We opted by performing this analysis at this level and not at source code 
level because it is simpler to obtain this information from assemblies or class files 
metadata than from C# or Java code.  

Figure 6 shows the most common classes used as argument of catch instructions 
in .NET applications. The results are grouped by application type and the values 
represent the weighted average of the distribution among applications of the same 
group. Thus, programs with the largest number of handlers have more weight in the 
final result.  
 



0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

Libraries Server-Apss Servers Stand-alone

System.Exception System.Object
System.IO.IOException System.Security.SecurityException
System.ArgumentException System.FormatException
System.InvalidCastException System.NotSupportedException
System.Net.Sockets.SocketException System.Runtime.Remoting.RemotingException
System.Xml.XmlException  

Fig. 6. .NET catch’s arguments classes. 

It is possible to observe that programmers prefer to use the most generic exception 
classes like System.Exception and System.Object for catching exceptions. 
Note that .NET, not C#, allows any type of object to be used as an exception 
argument.  When the argument clause of a catch statement is left empty, the compiler 
assumes that any object can be thrown as an exception. This explains the large 
presence of System.Object as argument. 

The use of generic classes in catch statements can be related to the two of the most 
common actions in handlers: Logging and Return. This means that for the largest set 
of possible exceptions that can be thrown, programmers do not have particular 
exception handling requirements: they just register the exception or alert the user of 
its occurrence. Nevertheless, there are a lot of handlers that use more specific 
exception classes. These different handlers do not have any weight by themselves in 
the distribution but all the code that actually tries to perform some error recovery 
operations is concentrated around these specialized handlers. 

I/O related exception handlers are fairly used in Libraries and Servers. Also invalid 
arguments types, number and format errors are treated as exceptions by all the 
applications as shown by the presence of System.ArgumentException 
handlers and System.FormatException handlers.  

There are not many differences between Java and .NET in terms of catch 
arguments. Figure 7 shows the results for Java. It is possible to conclude that the most 
generic exception classes are the preferred ones: Exception, IOException, and 
ClassNotFoundException. We tried to found out why 
ClassNotFoundException is so commonly used by analyzing the source code. 
For the most part, most of the handlers associated to the use of this class are empty, 
just log the error or throw a new kind of exception. Others try to load a parent class of 
the class not found or another completely different class. In general, these handlers 
are associated with “plug-in” mechanisms or modular software components using 
dynamic class loading. 

Finally, we did an analysis of all the applications source code to find out what was 
the distribution of handler actions by catch handler argument class for the most 
commonly used classes. The results can be found in Figure 8.  
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Fig. 7. Java catch’s arguments classes. 

The results are quite different from one type of exception class to another. Even so, 
it is still possible to say that the dominant handler actions are the ones belonging to 
the categories: Empty, Log, Alternative Configuration, Throw and Return. 

0,0%
5,0%

10,0%
15,0%
20,0%
25,0%
30,0%
35,0%
40,0%
45,0%
50,0%

Sys
tem

.E
xc

ep
tio

n

Sys
tem

.O
bje

ct
jav

a.l
an

g.C
las

sN
otF

ou
nd

Ex..
.

jav
a.l

an
g.E

xc
ep

tio
n

jav
a.I

O.IO
Ex

ce
pti

on

Empty Log Alternative Config Throw
Continue Return Rollback Close
Assert Others Delegate

 
Fig. 8. Handler action distribution for the most used catch handler classes. 

It is interesting to notice that in .NET catch instructions with no arguments are 
directly associated with the largest number of Empty handlers. 

In Java, in particular for ClassNotFoundException, alternative configuration 
actions are common. This behavior is understandable if we consider that, if a class is 
not found then a new one should be suggested as alternative. (This is quite common in 
database applications, while loading JDBC drivers.) 

5.4   Handled Exceptions 

On the last section, we reported the exceptions that are used in catch statements. 
Nevertheless, a catch statement can catch the specific exception that was listed or 



more specific ones (i.e. derived classes). We will now discuss exception handling 
code from the point of view of possible handled exceptions. As described in section 4 
we used IL code/bytecode analyzers to collect all the exceptions that the applications 
could throw because this information is not completely available at source code level. 
I.e. the set of exceptions that an application can throw at runtime is not completely 
defined by the applications source code throw and throws statements. Therefore, a 
profound analysis of the compiled applications was required for gathering this 
information. 

5.4.1   Exception Universe 
In Java, thanks to the checked exception mechanism, we are able to discover and 
locate all the exceptions that an application can throw by analyzing its bytecode and 
metadata. To know what exceptions may be thrown by a method it is necessary to 
know: 

• All the exceptions that the bytecode instructions of a method may raise 
accordingly to the Java specs [15] 

• All the exception classes declared in the throws statement of the 
methods being called 

• All the exceptions that are produced inside a protected block and are 
caught by one of its handlers 

• All the exception classes in the method own throws statement 
In .NET this is a more difficult task because there are no checked exceptions. To 

discover what exceptions a method may raise is necessary to know: 
• All the exceptions that can be raised by each one of the IL instructions 

accordingly to the ECMA specs of the CLR [16] 
• All the exceptions that the method being called may raise 
• All the exception classes present in explicit throw statements 
• All the exceptions that are produced inside a protected block and are not 

caught by one of its handlers 
When we started to work on which exceptions could occur in .NET and Java, the 

results of the analysis were quite biased. This happened because: 
• Almost all instructions can raise one or more exceptions, accordingly to 

CLR ECMA specs and Java specs, making the total number of exceptions 
reported grow very fast and the occurrence of other types of exceptions 
not directly associated with instructions almost irrelevant; 

• In most cases, the exceptions that each low-level instruction could 
actually throw would not indeed occur since some code in the same 
method would prevent it (e.g. an explicit program termination if a 
database driver was not found, thus making all 
ClassNotFoundException exceptions for that class irrelevant). 
Since it is not possible to detect this code automatically, although the 
results could be correct, the analysis would not reflect the reality of the 
running application or the programming patterns of the developer. 

To obtain meaningfully results we decided to perform a second analysis not using 
all the data from the static analysis of bytecode and IL code instructions. In particular, 
we filtered a group of exceptions that are not normally related to the program logic, 



and that the programmer should not normally handle, considering the rest. The list of 
exceptions that were filtered (i.e. not considered) is shown in Table 4. 

Table 4.  Java and .NET exception classes for bytecode and IL code instructions. 

JAVA .NET 
java.lang.NullPointerException System.OverflowException 
java.lang.IllegalMonitorStateException System.Security.SecurityException 
java.lang.ArrayIndexOutOfBoundsException System.ArithmeticException 
java.lang.ArrayStoreException System.NullReferenceException 
java.lang.NegativeArraySizeException System.DivideByZeroException 
java.lang.ClassCastException System.Security.VerificationException 
java.lang.ArithmeticException System.StackOverflowException 
 System.OutOfMemoryException 
 System.TypeLoadException 
 System.MissingMethodException 
 System.InvalidCastException 
 System.IndexOutOfRangeException 
 System.ArrayTypeMismatchException 
 System.MissingFieldException 
 System.InvalidOperationException 
 

5.4.2   Results for handled exceptions 
Being aware of the complete list of exceptions that an application can raise and of the 
complete list of handlers and protected blocks, it is possible to find out which are the 
most commonly handled exception types. The results for .NET applications are shown 
in Figure 9; the values represent the average of results by application group where 
every application had a different weigh in the overall result according to the total 
number of results that they provided. It is possible to observe that the results are very 
different from application group to application group. For instance, in the Libraries 
group, the most commonly handled exceptions are ArgumentNullException 
and ArgumentException, resulting from bad parameter use in method 
invocations. In the remaining three groups the number one exception type is 
Exception, this can be a symptom of the existence of a larger and more differentiated 
set of exceptions that can occur. If many different exceptions can occur it is viable to 
assume that the most generalized type (i.e. Exception, IOException, etc.) 
becomes the most common one. 

Seeing exception types like HttpException, MailException, 
SmtpException and SocketException in this top ten list and observing a 
distribution with such variations from application group to application group, we are 
confident to say that the type of exceptions that an application can raise and, in 
consequence, handle is strictly related with the application nature. 

There is a mismatch between the type of classes used as arguments to catch 
instructions and the classes of the exceptions that are handled, i.e. throw statements 
use the exception classes that best fit the situation (exception) but the handlers that 
will eventually “catch” these exceptions use general exception classes like .Net’s and 
Java’s Exception as their arguments. 
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Fig. 9. Most commonly handled exception types in .NET. 
 
In Java, as in .NET, there is a large spectrum of exception types being handled. 

The results for Java are illustrated in Figure 10. The huge distinction helps to 
differentiate IOException as the most “caught” exception type in all application 
groups. It is also possible to observe that the exception types are tightly related to the 
applications. For instance in Stand-alone applications, three of the exception classes 
are from Eclipse. Due to its size Eclipse carries a large weight in its application group 
results and, as we are able to observe, its “private” exceptions are present in this top 
ten. 
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Fig. 10. Most commonly handled exceptions in Java. 

5.4.3   Call Stack Levels Analysis 
The analysis of the applications bytecode and IL code allows us to discover the 
number of levels in the call stack that an exception travels before it is caught by some 
handler. Note that an exception is caught if the catch argument class is the same of the 
exception or a super-class of it. 



One result that we can directly associate with the checked exceptions mechanism is 
the difference in the number of levels that an exception covers before it is caught by 
some handler in Java and .NET. 

In Figure 11 it is possible to observe that in Java almost 80% of the exceptions are 
caught one level up from where they are generated, 15% two levels up, 5% three 
levels up and all the remaining are caught as high as five levels. On the other hand, in 
.NET, exceptions can cover up to seventeen levels and the distribution of the 
exceptions per levels covered is much sparser than in Java. The .NET programmer is 
not forced to catch exceptions and, as a result, exceptions can be caught much later in 
the call stack and most of times by exception handlers with general catch arguments. 

In .NET, 5% of the exceptions are caught before they cover any level in the call 
stack. This result is unexpected and could only be explained by a detailed analysis of 
the IL code in the assemblies and of the source code of the programs. At first we 
thought that this could be the result of some code tangling at compile time but the 
analysis showed that the exceptions were originated in throw instructions inside the 
protected blocks of methods. Programmers raised these exceptions to pass the 
execution flow from the current point in the method to code inside a handler – i.e. 
they use exceptions as a flow control construct. 
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Fig. 11. Call stack levels for caught exceptions. 

5.4.4   Handler size 
Another interesting measure that we withdraw from the analysis of assemblies IL 
code and metadata was related with handler’s code size or, more precisely, the count 
of opcodes inside a handler. This analysis could only be conducted in .NET because 
the metadata in the assemblies clearly identifies the begin and end instructions for 
each handler while in Java only the information about the beginning of a handler is 
available. To discover where a handler finishes we would have to do a static flow 
control analysis and find the join point in the code after the first instruction in the 
handler, which is outside of the scope of this paper. 

The graph in Figure 12 shows that the largest set of handlers in Server-Apps, 
Servers and Stand-alone applications groups have 8 IL Code instructions. In the 
Libraries group more than 40% of the handlers have 3 instructions. The second 
largest set of handlers in all groups has 5 instructions. Obviously, there are bigger 



handlers but their number is so low that we excluded them from the graph to improve 
its reading. 

These results made us curious about what was happening in these handlers and 
what were the instructions in question. We analyzed all the IL code in all the handlers 
and found some interesting facts: 

• In the 526 handlers with size 8, 500 (95%) invoked a Dispose() 
method in some object; from this 500 there were two major sets of 
handlers with the exact same opcodes, one with 329 elements and the 
other with 166; the remaining 5 handlers were different between them; 
these handlers were all Finally handlers.  

• In the set of handlers with 5 instructions there were 194 elements; 74 
disposed of some object; 24 created and throwed a new exception; 36 
stored some value. 

• 484 of the 498 handlers of size 3 were Finally handlers; 426 handlers had 
exactly the same opcodes and were responsible for closing a database 
connection; other 34 handlers also had the same code and invoked a 
Finalize method in some object. 

• The largest set of handlers with size 2 was empty handlers in the source 
code and its actions consisted in cleaning the stack and returning; others 
rethrowed the exception, and the rest called some Assert method. 

These lead us to the conclusion that many of the handlers with few instructions are 
very similar between them and that the majority are Finally handlers that do some 
kind of method dispose or connection closing. 
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Fig. 12. Handlers size in number of IL code instructions for .NET. 

5.4.5   Types of handlers 
Knowing that the majority of the handlers with few instructions were finally blocks 
we tried to discover which was the relation between the total number of protected 
blocks, the total number of catch handlers and the total number of finally handlers. 

The data in Table 5 shows that for the 1565 protected blocks found in the .NET 
applications there are 1630 handlers; 1144 protected bocks (73%) have finally 
handlers; but only 29% have catch handlers. On Java there are 18389 handlers 
distributed by 17024 protected blocks; 8109 protected blocks (48%) have finally 
handlers; 9402 (55%) have catch handlers. 



Table 5.  Number of protected blocks, catch handlers and finally handlers. 
 

Protected Blocks Handlers Protected Blocks with 
Finally Handlers 

Protected Blocks with 
Catch Handlers 

.NET 1565 1630 1144 450 
Java 17024 18389 8109 9402 

 
In our test set of applications, .NET programmers use much more finally handlers, 

relatively to the total number of handlers, than Java programmers. 
In the graph of Figure 13 it is possible to see that Java applications have higher 

maximum values of catch handlers per protected block, the average number of catch 
blocks per try block is almost identical in all the application groups for the two 
platforms and has the approximate value of one. The standard deviation values are 
also very low meaning that the largest number of protected blocks has only one catch 
handler. 
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Fig. 13. Number of catch handlers per protected block. 

5.4.6   Checked vs. Unchecked Exceptions 
As mentioned before, the checked exceptions mechanism influences the way Java 
programmers use the exception detection and handling language constructs. But 
programmers can, alternatively, use unchecked exceptions in Java. For instance, there 
are some libraries specialized in using only unchecked exceptions (e.g. Java NIO). 

In the programs that were analyzed, we compared the number of catch 
instructions that have an unchecked exception class as argument with the total number 
of catch instructions. The results are displayed in Table 6. It is possible to observe 
that except for the Stand-Alone application group, where the usage reaches 36.7%, for 
the remaining groups, values are very low, never exceeding 9%. Nevertheless, 
unchecked exceptions are indeed being used and, besides their extensive usage by 
some dedicated libraries, they are largely used to report on underlying system errors. 



Table 6.  Usage of Unchecked exceptions in Java catch handlers. 

 Unchecked 
Libraries 8,90% 
Servers 8,50% 
Stand-Alone 36,70% 
Server-Apps 6,50% 

5.4.7   Retry functionality 
Neither Java or .NET have nothing like a “retry” block functionality that would 
enable the programmer to execute a try block in a cycle until it succeeds or reaches a 
certain condition. Other languages like Smalltalk [17] or Eiffel [18] have this kind of 
construct. 

In Java and .NET, if a programmer wants to mimic this functionality he has to 
insert a protected block inside a cycle, for instance, insert a try block inside a while or 
do-while cycle. 

Using source code parsers for accounting the number of protected blocks found 
inside cycles or loops we were able to obtain the total number of these occurrences. In 
Java we found 1082 cases and in .NET 16. 

This analysis can be considered as some sort of blind analysis because we do not 
know if the programmer really intended to do a “retry”. Nevertheless, 6% of all catch 
handlers were inside loops and if the programmer really intended to do a “retry”, 
which seams to be the most reasonably reason, that would be a fairly interesting result 
to justify the addition of this functionality to both languages. 

5.5   Making Exception Handling Work. 

The results discussed in the previous sections show that programmers, most of the 
time, do not use exception handling mechanisms correctly or, at least, they do not use 
them for error recovery. These practices lead to a decrease in software quality and 
dependability. It is clear that in order to develop high-quality robust software, in a 
highly productive way, new advances are needed. Some authors have already started 
looking for new approaches. In our line of work we are currently approaching the 
problem by trying to create automatic exception handling for the cases where “benign 
exception handling actions” can be defined (e.g. compressing a file on a disk full 
exception). In general, we are trying to free the programmer from the task of writing 
all the exception handling code by hand, forcing the runtime itself to automatically 
deal with the problems whenever possible. A complete description of the technique is 
out of scope of this paper, but the interested reader can refer to [19] for a discussion 
of the approach. 



6   Conclusion 

This article aimed to show how programmers use the exception handling mechanisms 
available in two modern programming languages, like C# and Java. And, although we 
have detailed the results individually for both platforms and found some differences, 
in the essential results are quite similar. To our knowledge, this is the most extensive 
study done on exception handling by programmers in both platforms.  

We discovered that the amount of code used in error handling is much less than 
what would be expected, even in Java where programmers are forced to declare or 
handle checked exceptions. 

More important is the acknowledgment that most of the exception classes used as 
catch arguments are quite general and do not represent specific treatment of errors, as 
one would expect. We have also seen that these handlers most of the times are empty 
or are exclusively dedicated to log, re-throw of exceptions or return, exit the method, 
or program. On the other hand, the exception objects “caught” by these handlers are 
from very specific types and closely tied to application logic. This demonstrates that, 
although programmers are very concerned in throwing the exception objects that best 
fit a particular exceptional situation, they are not so keen in implementing handling 
code with the same degree of specialization. 

These results lead us to the conclusion that, in general, exceptions are not being 
correctly used as an error handling tool. This also means that if the programming 
community at large does not use them correctly, probably it is a symptom of a serious 
design flaw in the mechanism: exception constructs, as they are, are not fully 
appropriate for handling application errors. Work is needed on error handling 
mechanisms for programming languages. Exception handlers are not specific enough 
to deal with the detail of the occurring errors; the most preferable behavior is logging 
the problem or alerting the user about the error occurrence and abort the on-going 
action. Empty handlers, used to “silence” exceptions, will frequently hide serious 
problems or encourage bad utilization of programming language error handling 
constructs. 

Some of the problems detected, like the duplication of code between handlers, and 
the mingling of business code with exceptions handling code, among other problems 
are still to be tackled and represent an important research target. 

We now know, at least for this set of applications, what type of exceptions 
programmer prefer to handle and what type of exceptions are commonly caught. In 
the future we would like to extend our analysis to running software, actually 
accounting what type of exceptions do really occur and how this relates to the code 
programmers are forced to write for error handling. 
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