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Recent progress in landslide
dating: A global overview
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Abstract
Recent progress of dating techniques has greatly improved the age determination of various types of land-
slides. Since the turn of the 21st century, the number of dated landslides throughout the world has increased
several fold and the introduction of modern dating methods (e.g. cosmic ray exposure dating) has enabled the
dating of new landslide features and elements. Based on the analysis of >950 dated landslides (of which 734
have been dated since the year 2000), it is clear that the predominant traditional strategies have continued to
rely on the radiocarbon method; however, there is a remarkable trend of using cosmic ray exposure
techniques for dating both the accumulation (e.g. landslide boulders) and the depletion (e.g. landslide scarps)
parts of landslides. Furthermore, an increasing number of slope failures is determined by a multi-dating
approach, which enables the verification of particular dating methods. Although coherent regional landslide
chronologies are still relatively scarce in comparison with extensive databases of fluvial, glacial and/or eolian
landforms, they offer important insights into temporal landslide distribution, long-term landslide behavior
and their relationships with paleoenvironmental changes. The most extensive data sets exist for the mountain
areas of North America (Pacific Coast Ranges), South America (Andes), Europe (Alps, Scottish Highlands,
Norway, Carpathians and Apennines), the Himalaya-Tibet orogeny and the Southern Alps of New Zealand.
Dated landslides in the plate interiors are lacking, especially in South America, Africa and Australia. Despite
the fact that some dating results are well correlated with major regional and continental-scale changes in the
seismic activity, moisture abundance, glacier regimes and vegetation patterns, some of these results contra-
dict previously established straightforward hypotheses. This indicates the rather complex chronological
behavior of landslides, reflecting both intrinsic (e.g. gradual stress relaxation within a rock mass) and external
factors, including high-magnitude earthquakes or heavy rainfalls.
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I Introduction

The determination of age represents an important

step towards understanding the causes, frequency

and hazards connected with landslides (Coromi-

nas and Moya, 2008; Lang et al., 1999). Dated

landslides might serve as significant paleocli-

matic (e.g. Bookhagen et al., 2005) and/or paleo-

sesmic (e.g. Aylsworth et al., 2000) proxies, and

they are often the basis for paleoenvironmental

landscape reconstructions (Borgatti et al.,

2007), estimations of catchment-scale erosion

rates (Antinao and Gosse, 2009) and regional
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geomorphic interpretations (Hewitt et al., 2011).

Knowledge about the temporal occurrence of

landslides in a given area may also help to deci-

pher the recent and future responses of slope

instabilities to climate change (Borgatti and Sol-

dati, 2010; Huggel et al., 2011; Stoffel and Hug-

gel, 2012).

Since the turn of the 21st century, there has

been marked progress in the precision, accuracy

and availability of geochronological techniques

(Walker, 2005). As many new geochronological

methods (e.g. AMS radiocarbon and cosmo-

genic exposure age dating) have become routine

during the last decade, there has been a substan-

tial increase in the number of dated landslides

throughout the world. However, extensive

regional landslide chronologies are still

extremely scarce and are limited to only a few

regions in contrast to the widespread regional

or continental-scale databases of dated fluvial,

glacial and/or eolian sediments and landforms

(e.g. Halfen and Johnson, 2013; Hughes et al.,

2013; Macklin et al., 2012). This fact is partly

related to difficulties in landslide dating (e.g. a

chronic lack of datable elements, frequent

small-scale reactivations masking the main for-

mative landslide events) and to the general les-

ser attractiveness of landslides for study by

Quaternary scientists. Landslides are not as

robust paleoclimate proxies as fluvial, glacial

and/or eolian sediments which reflect

regional-scale changes in moisture and tem-

perature regimes. Indeed, the origin of slope

failures is often connected with site-specific

intrinsic factors (e.g. gradual rock strength

degradation; Kemeny, 2003) without a link to

any obvious regionally relevant climatic or seis-

mic triggers (e.g. Hancox et al., 1999).

Based on a review of >950 dated landslides

throughout the world, this paper aims to outline

advances in landslide dating since the beginning

of the new millennium, i.e. since the book of

Matthews et al. (1997) and the paper of Lang

et al. (1999), which provided systematic intro-

duction to the dating of mass movements.

During this period, the vast majority of land-

slide dating has been performed. Therefore, for

the first time we can reliably evaluate the long-

term behavior of various types of mass move-

ments and can give them an absolute chronolo-

gical framework. The main concern of this

review is to evaluate the dating of terrestrial

landslides on timescales of�102 years, i.e. with

a particular focus on prehistoric mass move-

ments datable mostly by radiometric tech-

niques. Therefore, this paper only marginally

discusses methods that are based on the analysis

of historical sources, lichenometric and dendro-

geomorphic techniques, i.e. classic dating meth-

ods with a timespan that is limited to the last few

centuries (Lang et al., 1999). The technical

background of specific dating techniques (e.g.

Optical Stimulated Luminescence, Cosmic Ray

Exposure Dating) has been the recent focus of

numerous comprehensive studies (e.g. Fuchs

and Lang, 2009; Gosse and Phillips, 2001;

Stokes, 1999); therefore, this paper does not

provide further insight into the geochronologi-

cal methods themselves. The principal aims are

as follows: (1) to describe the recent trends in

using various landslide dating techniques and

strategies; (2) to provide a regional overview

of dated landslides throughout the world; and

(3) to outline the main implications of new

chronological findings for understanding the

spatiotemporal behavior of slope failures.

II Landslide dating: classic
approaches and recent trends

1 Summary of landslide dating methods

The basic characteristics and categorization of

landslide dating methods have been presented

in several previous studies (e.g. Corominas and

Moya, 2008; Jibson, 1996, 2009; Lang et al.,

1999) (Figure 1). Therefore, we provide only a

brief description of the most important tech-

niques and include only the most representative

references. When distinguishing between abso-

lute and relative dating, the traditional view
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implies that absolute dating produces computed

numerical ages, whereas relative dating implies

only the order of events (Walker, 2005).

The most frequent absolute dating methods

comprise radiometric techniques involving

radiocarbon (14C), Cosmic Ray Exposure (CRE),

Optically Stimulated Luminescence (OSL),

Thermoluminescence (TL) and Uranium-series

(234U/230Th) dating (Figure 1). For timescales

comprising the last few centuries, dendrochrono-

logic (tree ring-based) techniques are also used.

Radiocarbon dating has the longest tradition in

the field of absolute landslide dating (since the

work of Stout, 1969) and allowed performing

of most extensive regional landslide chronolo-

gies (e.g. Borgatti and Soldati, 2010). CRE dat-

ing is emerging, particularly in the last decade,

and enables the determination of landslide by

dating both of the accumulation parts of land-

slides (Ballantyne et al., 2014a) and head scarps

with bedrock exposures (Le Roux et al., 2009).

The applications of OSL, TL and Uranium-

series techniques have far more limitations in the

process of landslide dating (Li et al., 2008;

Prager et al., 2008; Thomas and Murray, 2001).

Theoretically, all of these methods may be used

to determine the minimum, maximum or the

event ages (sensu Lang et al., 1999, and Coromi-

nas and Moya, 2008) depending on whether a

datable landslide element is located on (e.g.

Uranium-series dating of speleothems covering

a landslide scarp; Pánek et al., 2009), below

(e.g. OSL dating of fine-grained alluvia buried

by a landslide lobe; Sewell and Campbell,

2005) or is mixed with the landslide body (e.g.
14C dating of tree stems entrained in landslide

material; Friele and Clague, 2004). Dendrochro-

nologic techniques and their role in mass move-

ment dating (mainly rockfalls, debris flows and

earthflows) have been recently highlighted by

numerous reviews (Stoffel, 2010; Stoffel and

Bollschweiler, 2008; Stoffel et al., 2013; Trapp-

mann and Stoffel, 2013). In some cases, tree

rings allow for the determination of landslide

reactivations with subannual precision (Lopez

Saez et al., 2012), making this approach the most

accurate and precise in the field of absolute dat-

ing methods of mass movements. The specific

Figure 1. Major dating methods used for landslide age determinations. Some potential improvements in the
effective dating ranges are outlined.
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category of techniques that provide the numeri-

cal ages of landslide events are those that rely

on historical sources, such as press archives, old

maps or aerial photographs (Domı́nguez Cuesta

et al., 1999; Raška et al., 2014).

Most of the approaches for relative dating are

based on rock weathering (e.g. weathering rinds,

Schmidt Hammer rebound values or rock varnish

microlaminations (Clark and Wilson, 2004; Dou-

glass et al., 2005; Mills, 2005; Orwin, 1998;

Whitehouse, 1983), soil-development indices

(Migoń et al., 2014; Mills, 2005; Terhorst et al.,

2009) and lichenometry (Bajgier-Kowalska,

2008; Bull, 2003; Bull et al., 1994). All of these

methods are related to datable elements that are

located on the landslide surface and, therefore,

express the minimum age of the slope failure

(Lang et al., 1999). Some studies have focused

on the calibration of relative dating results against

certain absolute ages making them semi-

quantitative methods (Aa et al., 2007; Bajgier-

Kowalska, 2008; Bull, 2003; Whitehouse,

1983). However, such data are usually spatially

limited and, even in such circumstances, their

relevance is often subject to doubt (Smith et al.,

2012). Among the techniques standing between

absolute and relative dating methods is tephro-

chronology, which provides the minimum or

maximum age constraints for a given landslide,

depending on the particular tephra layer (deter-

mined, for example, by 40Ar/39Ar dating or

fission-track dating of glass within tephra), which

overlies or underlies the landslide body (Her-

manns and Schellenberger, 2008; Hermanns

et al., 2000; Mercier et al., 2013; Moreiras,

2006). The specific category represents palynolo-

gical, carpological and paleontological methods,

but they are rarely used without the support of

radiometric data (Dowell and Hutchinson, 2010).

2 How do we actually determine
landslide age?

As mentioned above, there are numerous possi-

ble absolute and relative dating methods that are

theoretically applicable to mass movements

(Corominas and Moya, 2008; Lang et al.,

1999), but only a few of them have been applied

to the determination of landslide age in practice

(Figure 2). Some promising techniques (e.g. the

Alpha Recoil Track technique) proposed by

Lang et al. (1999) have probably never been

used in the context of landslide dating. How-

ever, even some well-established techniques

(e.g. OSL, TL or lichenometry) seem to be

applicable only in very specific circumstances.

Figure 2A shows the proportion of particular

methods used for dating 734 landslides and their

reactivations, which were published between

the years 2000 and 2013. For comparison, we

also separately display the landslides (178

cases), which were dated before this period. In

spite of the fact that 14C dating (characterized

by increasing importance of the AMS tech-

nique) still dominates (~75% of the dated land-

slides), there is a clear tendency indicating the

increasing popularity of the CRE method, with

~18% of the dated landslides published between

the years 2000 and 2013. The use of other dating

techniques, from which only the OSL,
234U/230Th and tephrochronology are notable,

reaches merely ~7% in the whole data set of

dated landslides (Figure 2A). Before 2000, only

a negligible fraction of landslides (~0.01%) was

dated using CRE and other methods (Figure

2A).

Another important implication is related to

the statistics of the most frequently used datable

landslide materials and features (Figure 2B).

Taking into account the whole history, most dat-

ing concerned landslide material itself, predo-

minantly admixtured organics (40%), followed

by elements located on the landslide surface

(16%), CRE dating of landslide debris (13%),

sediments of landslide-dammed lakes (10%),

materials located below the landslide body

(10%) and landslide-related turbidites and

minerogenic deposits within adjacent reservoirs

(7%). The CRE dating of landslide scarps repre-

sents a rather negligible fraction (3%) of the
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dated landslide elements, but this strategy

seems to be very promising for the age determi-

nation of rock slope failures, and its percentage

will certainly rise in the near future.

3 New techniques – new challenges

Emergence of new dating techniques combined

with improved precision and the effective dat-

ing ranges of certain frequently used radio-

metric methods have fostered substantial

challenges for the determination of landslide

ages. Some examples of these trends are sum-

marized in Table 1.

Due to the introduction of new techniques,

especially CRE, and to the fact that their use has

become routine over the last decade, the number

of datable elements within landslide bodies has

substantially increased. This trend has gener-

ated new challenges; now it is possible to pro-

vide reliable time constraints for the types of

mass movements, for which absolute age deter-

mination was previously impossible or very dif-

ficult. The classic examples include sackung-

type slope failures, which are represented by

short-travelled, mountain-scale deformations

that usually enable only limited possibilities for

traditional 14C dating. If this method is used,

these sites (e.g. organic-infilled depressions

behind anti-slope scarps) can only be sampled

by trenching (Agliardi et al., 2009; McCalpin

and Irvine, 1995; McCalpin et al., 2011), which

is extremely difficult, if not unrealistic, in

remote mountain terrains. The application of

CRE dating in such circumstances is logistically

much simpler and only requires the presence of

relatively unweathered bedrock-exposing

scarps. Furthermore, the CRE dating of sackung

scarps not only provides information about

exposure ages (Hippolyte et al., 2006; Lebourg

et al., 2014; Sanchez et al., 2010), but the dating

of multiple samples along vertical profiles on

Figure 2. Using individual dating methods and landslide elements for timing landslides. (A) The proportion of
individual methods used for landslide dating in studies before and after the year 2000. (B) The landslide
elements and associated features and materials used for landslide age determination across the history of
mass movement dating. Note that the statistics do not include relative dating methods and
dendrogeomorphology.
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Table 1. Examples of recent trends influencing the progress of landslide dating.

Improvement/
progress Examples

Implications for
landslide dating Main references

Availability of new
radiometric
methods

Mainly in-situ exposure
dating by cosmogenic
radionuclides 10Be, 26Al,
36Cl, 21Ne and 3He

Age determination of a
wider spectrum of mass
movements (e.g. rock
slope failures, deep-
seated slope failures),
reconstruction of slip-
rates on landslide scarps
and sackung faults,
extension of regional
databases of dated
landslides

Hermanns et al. (2001);
Hewitt et al. (2011);
Hippolyte et al. (2009,
2012); Le Roux et al.
(2009); McIntosh and
Barrows (2011); Penna
et al. (2011); Zerathe
et al. (2014)

Dating method
precision

Improvements in the CRE
and OSL techniques,
increased availability of
local production rates of
cosmogenic
radionuclides, wider use
of AMS 14C dating, wiggle
matching for 14C dating

Inferring landslide
chronologies with a
higher resolution,
possibility of dating of still
younger (�102 yrs) mass
movement events

Akçar et al. (2012);
Ballantyne et al. (2014a);
Brooks (2013);
Geertsema and Clague
(2006); Merchel et al.
(2014)

Effective
radiometric
method dating
range

Introduction of thermally
transferred OSL (TT-
OSL)

Age determination of very
old (�105–106yrs) slope
failures, incorporation of
slope failures into long-
term geomorphic
reconstructions

Ryb et al. (2013)

New dating
strategies

234U/230Th (and 14C) dating
of secondary calcareous
cement and speleothems
within both landslide
accumulations and
depletion zones, 14C and
thermoluminescence
dating of material within
shear surfaces; a multi-
dating approach

Age determination of a
wider spectrum of mass
movements (e.g. rock
slope failures affecting
carbonate rocks), dating
the pre-failure stages of
rockslides and rock ava-
lanches (e.g. dating of spe-
leothems within crevice-
type caves or calcite veins
infilling landslide cracks)

Baroň et al. (2013); Dong
et al. (2014); Ostermann
and Sanders (2009);
Pánek et al. (2009); Prager
et al. (2009); Urban et al.
(2013); Zhang et al.
(2011)

Implementation of
paleoseismic
techniques to
mass movement
research

Trenching within depletion
zones (e.g. anti-slope
scarps of sackung-type
slope deformations) and
accumulation parts of
landslides and the appli-
cation of particular
radiometric methods
(mainly 14C AMS and
OSL)

Age determination of a
wider spectrum of mass
movements (esp.
sackung-type slope
deformations) and the
reconstruction of their
deformation phases and
slip rates

Agliardi et al. (2009);
Carbonel et al. (2013);
Demoulin et al. (2003);
Gutiérrez et al. (2008,
2010, 2012a, 2012b);
Gutiérrez-Santolalla et al.
(2005); Lee et al. (2009);
McCalpin and Hart (2003);
McCalpin et al. 2011);
Pánek et al. (2011b)
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scarps might also reveal the slip rates of individ-

ual sackung faults (Hippolyte et al., 2009,

2012). For the Séchilienne landslide (French

Alps), such an approach was even extended to

constrain the continuous evolution of ~30 m

high head scarp (Le Roux et al., 2009). The

application of three vertical profiles containing

22 10Be-dated samples on a subvertical scarp

revealed a complex evolution of slope failure,

involving both the continuous displacement of

a major landslide body since ~6.4 ka BP and a

secondary rockfall from the rock face (Le Roux

et al., 2009).

One of the most indisputable improvements

in the application of the CRE technique is the

timing of large (>106 m3) catastrophic rock-

slides and rock avalanches, especially those that

are situated in arid mountain ranges with limited

applicability for traditional 14C dating. There

have been many discussions about the potential

ages of such failures, but most of these features

have remained undated up to the turn of the new

millennium (Hewitt, 1999). Presently, there is

an available increased data set of dated rock

avalanches from the Andes (Antinao and Gosse,

2009; Fauqué et al., 2009; Hermanns et al.,

2001, 2004; Penna et al., 2011), Himalayas

(Dortch et al., 2009; Hewitt et al., 2011;

Mitchell et al., 2007), Pamir (Yuan et al.,

2013) and Tien Shan (Sanhueza-Pino et al.,

2011) mountain ranges.

Although not used as CRE dating, other

methods are also increasingly available and/or

have recently exhibited improved technical

progress in the timing of landslides. The intro-

duction of thermally transferred OSL (TT-OSL)

dating might significantly extend the chronolo-

gical range of classical OSL technique to �106

years, as was illustrated by Ryb et al. (2013) in

an example of landslides from Israel. The boom

of AMS 14C dating is partly responsible for

the contemporary widespread application of

trenching for unravelling the displacement his-

tory of sackungen and deep-seated landslides

(e.g. Carbonel et al., 2013; Gori et al., 2014;

Gutiérrez et al., 2008, 2010, 2012a, 2012b;

Gutiérrez-Santolalla et al., 2005; McCalpin

et al., 2011). This is because typically only

small charcoals that are only datable with the

AMS method are available in sedimentary

sequences behind rotated blocks and sackung-

related anti-slope scarps. Other promising dat-

ing methods involve 234U/230Th, which can be

applied to several landslide materials and fea-

tures (e.g. speleothems covering head scarps

or calcite cements in rockslide deposits (Pánek

et al., 2009; Prager et al., 2009; Sanders et al.,

2010). As was suggested by Pánek et al.

(2009), 234U/230Th-dated speleothems covering

the walls of head scarps and gravitational

trenches might provide reliable time constraints

for the evolution of rock slope failures in karst

areas. However, more utilization of U/Th-series

dating is expected for carbonate-lithic mass

movement deposits (Ostermann and Sanders,

2009; Sanders et al., 2010). An example of a

Fernpass rockslide (Northern Calcareous Alps,

Austria) indicated that the age of 234U/230Th-

dated calcareous cement (4.15+0.1 ka) from

rockslide debris was well correlated with the

in-situ 36Cl exposure age of a rockslide scarp

(4.1+1.3 ka) and with AMS radiocarbon dated

backwater deposits that were sampled behind a

rockslide barrier (3.38–3.08 ka) (Prager et al.,

2009). This has a major implication for dating

other carbonate rock slope failures that are lack-

ing datable organic remains.

4 Some limitations and problematic issues
of dating approaches

The extensive data set of landslide-related

radiometric ages that have been published in the

last decades enables the evaluation of the relia-

bility of particular dating techniques and the

importance of various datable landslide ele-

ments needed for establishing the timing of

landslides. The primary problems with particu-

lar dating methods were previously stated by

Lang et al. (1999), but an analysis of the
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expanded contemporary database of dated

landslides could pinpoint these issues more

specifically.

A discussion is required about the interpreta-

tion of radiocarbon dating of organics that are

mixed within the slide mass, which represents

the most common strategy, by far, of landslide

dating. Some authors argue that the dating of

such organic remnants provides direct evidence,

i.e. the event age of the mass movements

(Corominas and Moya, 2008; Lang et al.,

1999; Prager et al., 2008). However, the

majority of studies presenting the dates of

multiple organic remnants (e.g. several tree

stumps) within a single generation of land-

slides reveal that the ages are seldom statisti-

cally confident and, therefore, that they

reflect the entrainment of older organic rem-

nants during the transport of landslide debris

over various substrates (Brooks, 2013; Jerz

and Poschinger, 1995; Orwin et al., 2004;

Pánek et al., 2013b; Poschinger and Haas,

1997). Dufresne et al. (2010) noted that dated

organic remnants could differ by even several

thousand years within a single landslide dia-

micton, especially when the landslide enters

a wetland area containing peat bog sequences

with fossil organics. In such circumstances,

and with the exception of a few specific

situations (e.g. in-situ tree stumps buried by

landslide material; Van Dissen et al., 2006),

the age of organic material embedded within

a landslide matrix should always be consid-

ered (similarly to elements overlaid by land-

slides) as a proxy for the maximum age of

landslide events.

Similar implications are also shown in the

CRE ages of landslide debris, which could

reveal both overestimated ages for individual

boulders (in the case of nuclide inheritance from

older rock surfaces) and underestimated ages (in

the case of post-depositional toppling, erosion

or exhumation of boulders). Despite the fact

that most published studies present coherent

populations of ages for individual landslide

accumulations, where single outliers can be

eliminated by simple statistical treatment

(Ballantyne et al., 2014a; Dortch et al., 2009;

Hewitt et al., 2011; Ivy-Ochs et al., 2009;

Mitchell et al., 2007; Yuan et al., 2013), some

cases indicate that the exposure age variations

of boulders within particular landslide accumu-

lations might exceed 104–105 years (Antinao

and Gosse, 2009; Sanhueza-Pino et al., 2011;

Sewell et al., 2006). Therefore, special care

should be applied to determine whether varia-

tions of ages within the dated population of

boulders reveal successive generations of slope

failures or rather erroneously selected sampling

sites. Obvious problems also remain concerning

the exposure dating of landslide scarps because

these are the subject of very dynamic post-

emplacement processes (e.g. rockfalls, topples).

In such cases, distinguishing between the main

formative events and the secondary collapses

requires the statistical evaluation of large popu-

lations of dated samples (Martin et al., 2014;

Recorbet et al., 2010).

5 Multi-dating approach

As mentioned above, uncertainties in the timing

of landslide events could be solved using a

multi-dating approach, i.e. combining several

independent methods and/or datable landslide

elements to determine the timing of a particular

slope failure as reliably as possible (e.g. Dong

et al., 2014; Friele and Clague, 2004; Prager

et al., 2009; Sanhueza-Pino et al., 2011; Sewell

and Campbell, 2005). Despite being still rela-

tively rare, such studies are of a high methodical

value because they provide the most reliable

time constraints of individual landslides and

represent an important verification of particular

dating strategies (Table 2). In this respect, we

particularly need to discuss approaches that

focus on elements inferring the minimum age

of landslides – especially peat bogs on top

of landslide bodies and lakes behind landslide

barriers (e.g. Geertsema and Schwab, 1997;
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Margielewski, 2006; Mercier et al., 2013; Pánek

et al., 2013b). Both often represent the only pos-

sibility for dating of internally non-fragmented

rotational and translational slides (Lang et al.,

1999). When results are compared from combi-

nations of dating overlying peat bogs and/or

dammed lakes with other independent

approaches, we see that the majority of results

are (if not statistically indistinguishable) similar

on decennial to centennial timescales (Table 2).

Good results particularly show radiocarbon

dated basal sequences of landslide-dammed

lakes, which excellently fit other independently

dated landslide materials and features, e.g.

organics embedded within mass movement

deposits (Geertsema and Clague, 2006; Goto

et al., 2010) or landslide boulders or scarps that

were dated by in-situ cosmogenic 10Be or 36Cl

nuclides (Claude et al., 2011; Prager et al.,

2009). This finding is of major importance for

the landslide dating practice because 10% of

realized landslide dating relies on the ages of

impounded deposits behind landslide dams.

Therefore, despite being generally categorized

as a relative dating approach (Lang et al.,

1999), more than a decade of experience shows

that the basal sequences of landslide dammed

lakes provides one of the most reliable and

accurate approximations of landslide ages (e.g.

Antognini and Volpers, 2002; Borgatti et al.,

2007; Dong et al., 2014; Geertsema and Clague,

2006; Pánek et al., 2013b). Moreover, despite

the fact that peat bogs and dammed lakes need

time to evolve after a landslide event (Lang

et al., 1999), such a delay is typically within the

errors of absolute dating techniques; i.e. 101–

103 years. This implies that in most cases, and

with the typical precision of contemporary dat-

ing techniques, carefully provided ‘minimum’

dating will return ages that are not significantly

different from dated landslide elements that are

traditionally considered to approximate ‘event

ages‘ (Corominas and Moya, 2008).

In some extreme cases, using two or more

independent radiometric techniques for the same

material could reveal major implications for a

particular geochronological technique, as was

demonstrated by Zerathe et al. (2013) who dated

two rockslides in the Maritime Alps in France

with in-situ produced 10Be and 36Cl on exposed

chert (diagenetic silica) concretions. A major dis-

crepancy was exhibited between the exposure

ages generated by both of the radionuclides and

represents the limits of 10Be cosmogenic expo-

sure dating for this type of rock material.

III Global overview of dated
landslides

A worldwide summary of the most important

studies about the absolute timing of landslides is

provided in Table 3. One important piece

of evidence indicates that the distribution of dated

landslides is highly spatially asymmetric (Figure

3). It is clear that certain relevant studies (e.g.

those published as research reports or papers in

local journals) might be omitted in this review and

a percentage of landslide dating (e.g. in the USA

and Canada) has been performed by consultants

in private studies that are not publicly available

(J. McCalpin, personal communication, 2014).

Extensive data sets are becoming available,

especially for mountain regions throughout the

world such as the high mountains of North and

South America, the European Alps, the Scottish

Highlands, Norway, the Carpathians, the Apen-

nines, the Himalaya-Tibet orogeny and the

Southern Alps of New Zealand (Table 3). How-

ever, there are virtually no data for regions out-

side the major mountain belts, like the

tablelands in the plate interiors, valleys of major

rivers incising platform areas or for coastal

areas. In fact, some of these regions are crucial

for understanding the geomorphic response

from climate change. For instance, it would be

of major paleoenvironmental significance to

infer the age of pronounced clusters of giant

landslides that are situated in contemporary arid

regions like the central Sahara (Busche, 2001)

or the Caspian Lowlands (Pánek et al., 2013a).
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Negligible dating effort has been made in

the mid-mountain areas of the tropics, the

Great Plains of the USA, Canada, Siberia,

etc. (Figure 3).

IV Major implications of dated
landslides and recent research
directions

Among the most important issues of the expand-

ing data set of chronologically constrained land-

slides are the following: (1) new insights into

the long-term evolution of mass movements;

(2) the increasing credibility of landslides as

paleoclimatic proxies; (3) rethinking the role

of landslides in paraglacial processes; (4) the

implementation of landslides in paleoseismic

reconstructions; and (5) the use of landslides

as indicators of past anthropogenic distur-

bances. The main research context of studies

dealing with the timing of mass movements

since 2000 is summarized in Figure 4.

1 Long-term evolution of landslides

The recent establishment of numerous landslide

chronologies has substantially improved the

understanding of the timescales in which vari-

ous types of mass movements operate (Table 4).

Among the most important and practical dating

issues are the reconstructed instability phases

of landslides, along with a definition of their

recurrence interval. Some of these findings are

effectively used in the evaluation of landslide

risks (Friele et al. 2008; Simpson et al., 2006).

A synthesis of landslide chronologies from

individual case studies reveals that very large

landslides (>106 m3), in particular, frequently

Figure 3. Global distribution of dated landslides (red dots) and their percentage on particular continents.

Figure 4. Main paleoenvironmental contexts of
landslide dating studies (n ¼ 205) that have been
published since 2000. The category ‘other’ involves
particular studies in which a landslide trigger is
unsolved or is highly uncertain and preparatory and
the triggering factors are complex.
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experience long and complex histories. These

involve creeping movements alternating with

episodic reactivations of deep-seated gravita-

tional slope deformations on typical timescales

of �104 years (Carbonel et al., 2013; Gori

et al., 2014; Gutiérrez et al., 2008, 2012a,

2012b; McCalpin and Hart, 2003; McCalpin

and Irvine, 1995; McCalpin et al., 2011; Moro

et al., 2012), up to ~104 years of the prolonged

activity of translational and rotational land-

slides, earthflows and debris flows with recur-

rence intervals of 101–103 years (Bertolini,

2007; Bertolini et al., 2004; Borgatti and Sol-

dati, 2010; Margielewski, 2006; Matthews

et al., 2009; Pánek et al., 2013a, 2013b; Simp-

son et al., 2006; Soldati et al., 2004; Unkel

et al., 2013) and the repeating collapse of some

slopes producing successive rock avalanches

and rockfalls divided typically by 101–103 years

(Aa et al., 2007; Blikra et al., 2006; Bøe et al.,

2004; Böhme et al., 2013; Hermanns et al.,

2006; Ocakoglu et al., 2009; Ostermann and

Sanders, 2009; Prager et al., 2008). Of special

importance are data about the history of slope

instabilities preceding recent catastrophic fail-

ures. For instance, the catastrophic August

2009 Hsiao-lin landslide in Taiwan was pre-

ceded by at least 21 ka of loose slope debris

accumulation and four stages of slope instability

(Hsieh et al., 2012). In a similar way, Pánek

et al. (2011a) stated that the May 2010 Girová

catastrophic landslide (Czech Republic) was

preceded by ~7.5 ka of deep weathering of the

flysch substratum and related short-travelled

slope deformations. In such circumstances, dat-

ing is the only tool that can be used for back-

ward reconstruction of mass movements for

periods that are not covered by instrumental

monitoring measurements.

One very important geomorphic implication

of landslide dating relates to questions about the

rates of decay of morphological signatures of

landslides, i.e. the task influenced by climatic

and topographic settings, as well as the dimen-

sions of a particular landslide. While the

morphological legacy of individual ancient

landslides in arid regions may persist for periods

of 104–106 years (Balescu et al. 2007; Her-

manns et al., 2001; Nichols et al., 2006; Pinto

et al., 2008; Sanhueza-Pino et al., 2011), it

rarely exceeds 103 years in humid climatic con-

ditions (Bertolini et al., 2004; González-Dı́ez

et al., 1999; Margielewski, 2006; Pánek et al.,

2013a, 2013b, 2014; Prager et al., 2008). In

some watersheds characterized by high erosion

rates, the material of multiple landslides is com-

pletely removed even on timescales of <103

years, as was reported by Geertsema and Clague

(2006). One specific example concerns moun-

tain ranges that experienced heavy glaciation

during the Late Pleistocene. In such cases, the

maximum age of the landslide was usually lim-

ited by the Last Glacial Maximum (~23–19 ka)

(Ballantyne et al., 2014a; Blikra et al., 2006;

Prager et al., 2008) and older events are seldom

extracted from only the sedimentary records

(Starnberger et al., 2013). This has major impli-

cations for the length of regional landslide

chronologies because those from humid tempe-

rate regions are usually shorter and biased

towards younger periods of the Holocene

(Pánek et al., 2013b).

2 Landslides as paleoclimatic proxies

Although hydrometeorological events are

among the most obvious triggers of mass move-

ments (Crozier, 2010), using landslides as

paleoclimatic proxies has been rather proble-

matic for a long time due to the lack of dated

events and the insufficient precision of dating

methods. The recent enlargement of regional

landslide chronologies and new landslide dating

throughout the world are challenging for corre-

lating paleo-landslides with both broad- and

short-term climatic fluctuations. Valuable data

sets of dated landslides expressing major paleo-

climatic changes come from distinct world

regions like British Columbia (Geertsema and

Schwab, 1997), the Argentine Andes (Trauth
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and Strecker, 1999; Trauth et al., 2000, 2003),

the European Alps (Borgatti and Soldati,

2010; Borgatti et al., 2007; Prager et al., 2008;

Soldati et al., 2004; Zerathe et al., 2014), the

Apennines (Bertolini, 2007; Bertolini et al.,

2004), the Carpathians (Margielewski, 2006)

and the Himalayas (Bookhagen et al., 2005;

Dortch et al., 2009).

Some of the most convincing evidence of cli-

matically induced paleo-landslides is related to

broad (millennium) scale precipitation fluctua-

tions from territories with contrasting climatic

patterns, e.g. tropical and subtropical regions

that have experienced major shifts between

humid and arid conditions during the Late Qua-

ternary. Among the best examples are the con-

temporary arid parts of the Andes and NW

Himalayas. In the eastern Andes of NW Argen-

tina, distinct clusters of landslides (mainly rock

avalanches and rockslides) were dated to two

exceptionally humid periods (~40–25 and ~5–

4 ka BP) that were characterized by highly vari-

able climates (Trauth and Strecker, 1999;

Trauth et al., 2000, 2003). Very similar behavior

occurs in the NW Himalaya region, currently

affected by heavy rainfalls only during years

with exceptionally strong monsoons (Bookha-

gen and Burbank, 2010). Bookhagen et al.

(2005) suggested that major (>0.5 km3) rock-

slides originated here during two intensified

monsoon phases ~29–24 and 10–4 ka BP. The

validity of this assumption has been recently

confirmed by numerous other dating of large

rock avalanches in this territory that fit both age

intervals (Dortch et al., 2009; Hewitt et al.,

2011; Wang et al., 2011; Yuan et al., 2013).

On the contrary, some tropical regions reveal

more complex relationships between the preci-

pitation regime and the landslide occurrence.

Radiocarbon and OSL dating of landslides and

debris flows in Queensland, Australia, show

that they originated predominantly from arid

conditions with a lack of protective vegetation

cover between ~27 and 14 ka (Nott et al.,

2001; Thomas et al., 2007).

One of the recent advances in landslide dat-

ing is based on growing evidence that some

reconstructed landslide activity phases possibly

followed major Holocene short-term climatic

fluctuations; e.g. well-known ‘8.2’ and ‘4.2’

ka BP events (for the paleoclimatic background

see, for example, Mayewski et al., 2004; Wan-

ner et al., 2011). Based on radiocarbon and
36Cl surface exposure dating, Ostermann et al.

(2012) provided the first example of a large rock

avalanche (Obernberg valley event, Eastern

Alps), which could have been induced by a cold

‘8.2 ka BP event’. More convincing (and abun-

dant) data support the correlation of multiple

landslides with a global so-called ‘4.2 ka event’.

Zerathe et al. (2014) recently presented the

results of CRE dating for six landslides in the

Maritime Alps (France) with ages between 3.7

and 4.7 ka BP and with a probability density

curve centred at c. 4.2 ka BP. In addition to this

evidence, Zerathe et al. (2014) suggest that

numerous other dated landslides in the Alps and

their surroundings chronologically approximate

this age (e.g. data presented by Bertolini, 2007;

Dapples et al., 2002; Delunel et al., 2010; Prager

et al., 2008, 2009; Soldati et al., 2004) revealing

that a 4.2 ka event could be among the most

important chronological milestones for trigger-

ing rock slope failures in the European Alps.

3 Landslides and paraglacial concepts

Glacial debuttressing was long considered to be

a primary factor leading to the genesis of some

of the largest rock slope failures in the degla-

ciated mountain ranges (Cruden and Hu, 1993;

Seijmonsbergen et al., 2005). However, recent

studies have revealed more complex temporal

relationships between rock slope stability and

deglacial unloading, rock mass strength degrada-

tion, glacio-isostatic crustal uplift and climatic

changes following glacial retreat (Ballantyne,

2002; Ballantyne and Stone, 2013; McColl,

2012; McColl and Davies, 2013). The main mes-

sage from numerous recently dated landslides
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throughout formerly glaciated mountains is that

the reaction of rock slopes to deglacial unloading

is only rarely immediate (Cossart et al., 2008;

Hippolyte et al., 2012) and that the typical

delay between glacial retreat and rock slope

collapse at a particular site is on the order of

hundreds to thousands of years (Ballantyne

et al., 2014a; Bigot-Cormier et al., 2005; Dortch

et al., 2009; Fauqué et al., 2009; Hermanns and

Longva, 2012; Hewitt et al., 2011; Ivy-Ochs

et al., 2009; Mercier et al., 2013; Prager et al.,

2008). Based on the unique chronology of 31

CRE dated rock slope failures in Scotland and

NW Ireland, Ballantyne et al. (2014a) demon-

strated that despite 95% of failures originating

within ~5.4 ka after deglaciation, only 29%
of them immediately followed the retreat of

the ice sheet. Prager et al. (2008) stated that the

temporal distribution of large rockslides in the

European Alps is more or less uniform through-

out the Late Glacial and Holocene and, therefore,

rejected earlier assumptions that the major driv-

ing factor in the genesis of large rock slope fail-

ures was paraglacial debuttressing (e.g. Abele,

1969).

To sum it up, deglaciation is a crucial factor

in the destabilization of mountain slopes, but

rather than through direct debuttressing it influ-

ences slope stability as follows: (1) through gra-

dual stress release and fracture propagation

leading to slope collapse after several centuries

or millennia (Ballantyne et al., 2013, 2014a,

2014b; Prager et al., 2008); and/or (2) through

seismic activity accompanying glacio-isostatic

crustal rebound, which usually occurs in the

most intensive first millennia after deglaciation

(Ballantyne et al., 2013, 2014a, 2014b; Mercier

et al., 2013). Despite recent pronounced steps

towards better understanding of the temporal

behavior of landslides in deglaciated areas,

more mass movement dating with a precisely

determined chronology of ice retreat in various

types of mountain landscapes is necessary for

establishing a more universal paraglacial model

of rock slope failures.

4 Paleoseismic implications of dated
landslides

Because only moderate and strong earthquakes

(with Mw~5–6 or larger) are able to generate

major slope failures (Jibson, 2009; Keefer,

1984), some established landslide chronologies

might serve as valuable paleoseismic records.

However, despite the fact that earthquakes are

among the most frequent triggers of mass move-

ments, interpretation of the seismic origin of a

particular fossil landslide remains a challenge.

Studies focusing on landslide dating with rela-

tion to ancient earthquakes can be generally

categorized as follows: (1) those using a specific

spatiotemporal pattern of dated landslides as

paleoseismic proxies (e.g. Aylsworth et al.,

2000; Brooks, 2013; Jacoby et al., 1992; Kojima

et al., 2014; Schuster et al., 1992); and (2) those

attributing dated landslides to known (usually

historic) seismic events (Becker and Davenport,

2003; Goto et al., 2010; Merchel et al., 2014).

The major problem with fossil landslides as

paleoseismic proxies is that their earthquake

trigger is often stated tentatively and, in each

case, the non-seismic process could also have

produced the observed features (Jibson, 2009).

Such a risk can be partly overcome by careful

spatiotemporal analysis of the available chrono-

logical data sets. Landslides revealing nearly

identical (overlapping) ages and spatially clus-

tered in the vicinity of active faults are consid-

ered to be the most reliable indicators of

paleo-earthquake events. In this respect, studies

attributing fossil landslides to seismic events

vary between those where paleoseismic evi-

dence is very strong (e.g. Aylsworth et al.,

2000; Brooks, 2013; Matmon et al., 2005; Rinat

et al., 2014) to those presenting paleo-earth-

quake(s) as only one of the possible triggers

(e.g. Hermanns et al., 2001; Pánek et al.,

2012; Yuan et al., 2013). The former group is

represented, for example, by papers from the

Ottawa valley in Quebec involving dating land-

slides in sensitive clays. Aylsworth et al. (2000)

Pánek 19

 at PENNSYLVANIA STATE UNIV on May 17, 2016ppg.sagepub.comDownloaded from 

http://ppg.sagepub.com/


provided radiocarbon dating of 15 closely situ-

ated landslides with ages clustered around

~5.12 cal ka BP. A similar tendency for tem-

poral clustering of landslides was reported by

Brooks (2013) for the stretch of the Ottawa Val-

ley, west of Ottawa city. An extremely large

landslide (~0.6 km3) in the Quyon Valley was

dated by AMS radiocarbon at 0.98–1.06 cal ka

BP and excellently fits the ages of another nine

landslides that are situated as much as 40 km

apart. Based on the unequivocal temporal clus-

tering and historical analogues (e.g. the

earthquake-induced 5 February 1663 Colombier

landslide; Cauchon-Voyer et al., 2011), these

multiple reactivations of sensitive-clay land-

slides in the Ottawa Valley are attributed to the

>Mw~6.1 earthquakes that occurred along the

Western Quebec Seismic Zone (Aylsworth

et al., 2000; Brooks, 2013). The second group

represents numerous studies, in which the main

arguments for the paleoseismic origin of land-

slides are their extraordinary size and the

mechanism and location of the near active faults

(e.g. the fault-bounded marginal slope of the

mountains; Balescu et al. 2007). Many dated

rock avalanches situated along the Alpine fault

(New Zealand) probably originated due to

major earthquakes (e.g. Barth, 2014; Chevalier

et al., 2009; Dufresne et al., 2010), but verifica-

tion of their seismic origin requires other inde-

pendent high-resolution paleoseismological

data or limiting equilibrium back analysis of

slope failures (Crozier, 1992).

Due to the increasing precision of radio-

metric dating (especially AMS radiocarbon and

CRE techniques), it has also been possible to

reliably attribute specific slope failures to par-

ticular historical earthquakes, and thus to extend

knowledge about their coseismic geomorphic

consequences. One of the most striking exam-

ples of such an approach was provided by

Becker and Davenport (2003), who dated

organic macro-remains buried by numerous

fallen blocks in the epicentral area of the AD

1356 Basel earthquake. The results indicate

that, altogether, 11 boulders scattered through-

out the area fell within a short time interval

between AD 1210 and 1450, i.e. giving strong

evidence that a given earthquake triggered the

rockfalls (Becker and Davenport, 2003). As

recently presented by Merchel et al. (2014),

CRE dating also provides sufficiently precise

data for the correlation of landslides with histor-

ical earthquakes. Using a large data set (n¼ 30)

of 36Cl exposure dating of bedrock surfaces and

boulders, Merchel et al. (2014) correlated Veliki

vrh rock avalanche (Eastern Alps, Slovenia)

with a devastating January 1348 earthquake that

took place along the recent Austria/Slovenia

border.

5 Landslides induced by human activity

Although the direct influence of anthropogenic

activity on mass movements (especially shallow

landslides) is well understood (Barnard et al.,

2001; Montgomery et al., 2000; Van Den Eec-

khaut et al., 2007), there are very few dated

landslides that can be directly attributed to his-

toric or prehistoric anthropogenic disturbances.

Some of the oldest evidence of possibly human-

induced landslides was reported from Tasmania

(McIntosh et al., 2009), where intensive erosion

accompanying landslides and colluvial aggra-

dation at approximately 35 ka corresponds with

massive forest clearance due to human coloni-

zation. In a similar way, continuous deforesta-

tion since ~3.7 ka in the Western Swiss Alps

was likely one of the factors contributing to the

acceleration of earthflows dated to ~3.5 ka

(Dapples et al., 2002). Other examples of possi-

ble prehistoric human-induced landslides (since

the Neolithic Period) come from the Polish

Western Carpathians (Margielewski, 2006).

Concerning historically younger examples,

Glade (2003) used sedimentary evidence in

New Zealand as a record of land-use change

since the 1840s (colonization by European set-

tlers) that caused a major increase in shallow

landslide frequency.
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Despite the fact that documented examples of

dated human-induced fossil landslides are rare,

it is challenging to test the importance of prehis-

toric and historic human disturbances (of differ-

ent magnitudes) as accelerators of various types

of mass movements. Indeed, such changes are

well recorded in fluvial sediments (e.g. Knox,

2006; Kukulak, 2003; Shi et al., 2002; Stacke

et al., 2014). We can expect regional-scale

slope destabilizations, especially in regions that

have experienced major anthropogenic changes,

e.g. human colonization that has taken place in

formerly pristine landscapes (e.g. in some Med-

iterranean regions, North America). It would be

a challenge to focus future landslide dating on

some of these regions.

VI Concluding remarks

Mass movements, alongside fluvial and glacial

processes, play a major role in sculpturing

mountain areas. In such a context, it is surpris-

ing that the number of dated landslides is still

low in comparison with other landscape ele-

ments. Despite this drawback, the quantity of

studies related to the timing of landslides has

substantially increased since the beginning of

the 21st century, and it is clear that this trend

will continue in the coming years. Thanks to this

progress, our knowledge about the chronologi-

cal framework of slope instabilities has made

great strides over the last two decades. Further-

more, the introduction of new dating techniques

and the improving availability, precision and

effective time range of geochronological meth-

ods brings new opportunities for dating mass

movements. In sum, we see the main value of

the recent progress in landslide dating as fol-

lows: (1) the improvement of knowledge about

the absolute timing of various landslides types

operating in diverse topographic, tectonic

and climatic settings; (2) the widening of the

spectrum of mass movement types, which could

be routinely dated; and (3) the introduction

of landslides into wider paleoenvironmental

reconstructions. The most scientifically sound

information provides extensive and coherent

regional landslide chronologies, involving land-

slides with similar types and magnitudes. Such

data sets are becoming available for many

mountain regions throughout the world, such

as the high mountains of North and South Amer-

ica, the European Alps, the Scottish Highlands,

Norway, the Carpathians, the Apennines, the

Himalaya-Tibet orogeny and the Southern Alps

of New Zealand. However, the majority of these

regions are characterized by similar topography,

tectonics and climate history, which limits our

understanding of the temporal behavior of land-

slides into relatively narrow environmental set-

tings. We call especially for extension of the

focus of landslide dating into areas outside

major mountain belts, such as continental

plate interiors, hilly landscapes and coastal

areas. Indeed, many of these regions (often char-

acterized by prevailing contemporary slope sta-

bility) contain pronounced clusters of giant

fossil landslides whose origins remain enigmatic.
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Costa CH and González Dı́az EF (2007) Age constraints

and paleoseismic implication of rock-avalanches in the

Northern Patagonian Andes, Argentina. Journal of

South American Earth Sciences 24: 48–57.

Crozier MJ (1992) Determination of paleoseismicity from

landslides. In: Bell DH (ed.) Landslides: Proceedings

of the Sixth International Symposium, Christchurch,

New Zealand. Rotterdam: Balkema, 1173–1180.

Crozier MJ (2010) Deciphering the effect of climate

change on landslide activity: A review. Geomorphology

124: 260–267.

Cruden D and Hu XQ (1993) Exhaustion and steady state

models for predicting landslide hazards in the Canadian

Rocky Mountains. Geomorphology 8: 279–285.

Dapples F, Oswald D and Raetzo H (2002) Holocene

landslide activity in the western Swiss Alps – a con-

sequence of vegetation changes and climate oscilla-

tions. In: Rybar J, Stemberk J and Wagner P (eds) 1st

European Conference on Landslides, Prague, Czech
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