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Abstract: In digital signal and image processing, it’s very common to calculate the value of certain transcendental 
functions, such as natural logarithmic function. This study introduces the basic principles of the mode of calculation 
of the hyperbolic systems by using the CORDIC algorithm, then analyses the Field-Programmable Gate Array 
(FPGA) CORDIC core processing unit in detail. The biggest advantage of the CORDIC algorithm is that its circuit 
structure is very simple, using only adder and shifter. It is very suitable for FPGA implementation. Based on the 
iterative algorithm, a FPGA implementation of the natural logarithmic function has been designed. The pipelined-
FPGA architecture can achieve a high computational speed, for completing a computation only requires one clock 
cycle. The relative error values are below 10-4, which can satisfy the accuracy requirements. 
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INTRODUCTION 

 
The natural logarithmic function is widely used in 

image processing and digital signal processing. For 
example, to solve some questions in the physical setting 
of logarithmic imaging processes, Michel and Jean-
Charles (1995) used the Logarithmic Image Processing 
(LIP) model, known to be a compatible mathematical 
framework. After recalls on the model, that study 
presents two images transforms: one performs an 
optimal enhancement and stabilization of the overall 
dynamic range and the other does of the mean dynamic 
range. What’s more, a new method based on gray-
natural logarithm ratio bilateral filtering is presented for 
image  smoothing  in  Guannan Chen’s work (Guannan 
et al., 2008). Therefore, the study of its hardware 
implementation is necessary. The logarithm is widely 
implemented with: Table lookup method, Taylor series 
expansion method and linear approximation method. 
With the improvement of the accuracy requirements, 
the table lookup method will consume a lot of 
resources. Taylor series expansion method will use the 
multiplier. As precision requirements increase, the 
demand of the multiplier will become larger. However, 
the number of multipliers in the FPGA is relatively 
limited. Linear approximation method can’t meet the 
high precision requirements. 

The biggest advantage of the CORDIC algorithm is 
its circuit structure is very simple, using only adder and 
shifter. As a hardware efficient algorithm, it is 
particularly suitable for FPGA implementation. In order 
to avoid the complexity of the circuit, the idea of the 
CORDIC algorithm is that decompose the rotation 

operation into successive basic rotations and every 
rotation only be realized with add-and-shift operations.  

 
CORDIC ALGORITHM PRINCIPLE 

 
The CORDIC (Coordinate Rotation Digital 

Computer) algorithm was first introduced by Volder 
(1959). It is efficient to compute the values of 
trigonometric functions, such as sin, cos, sinh, cosh, 
tan. It was later extended to logarithmic, hyperbolic and 
other functions by Walther (1971). The CORDIC 
algorithm contains the circumference systems, linear 
systems, hyperbolic systems, three kinds of rotation 
system. In a variety of rotation system is divided into 
the rotation mode and vector mode. To calculate the 
value of the natural logarithm, it should be the 
operating mode of the vector model in the hyperbolic 
system. 
 
Iterative rotations: The function x2 - y2 = 1 is a flat 
hyperbolic function, its parametric form is (1): 
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And, the matrix equation form is (2): 
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From vector (x1, y1) to another vector (x2, y2) 
hyperbolic rotation defined as follows: 
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Its iterative form: 
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The basic idea of the CORDIC algorithm is that not 

directly use the tanh t operator, but to select a series of 
special parameter t1 satisfy tanh ti = 2-i for hyperbolic 
rotation. So multiplied by the operator tanh ti becomes 
multiplied by the operator 2-i. That is a simple shift 
operation.  
Then add direction control factor di: 
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zi is defined to keep track of the parameter that has 
been changed: 
 

iiii tdzz −=+1                                         (6) 
 

Set the initial vector (x1, y1). After N iterations, 
becomes: 
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Parallel pipelined CORDIC: The CORDIC rotator is 
normally operated in one of two modes. The first called 
rotation, rotates the unit vector and then gradually 
iteration vector endpoints along the hyperbolic 
convergence on the parameter t ((x, y) = cosh t, sinh t)) 
point. The second mode called vectoring, rotes the input 
vector (rcosht, rsinht) to the x axis and gradually 
converges to (r, 0). Of solving practical problems is 
performed through cooperation and competition among 
them.  
Rotation mode: 
 

011 =→= +Nztz  
 
if zi<0 di = -1, else +1 

Vectoring mode: 
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if yi<0 di = +1, else +1 
In vectoring mode the rotation produces: 
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When z1 = 0 , then: 
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Thus: 
 

12ln += Nzt                            (10) 
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If the initial input x1 = t + 1, y1 = t - 1 satisfy the 

convergence conditions, the input range is very limited. 
So how to increase the effective range of the input data 
is an important problem. The calculation shows that 
tanh-1 12 = 0.9999999999244972, so [-12, 12] can 
make the domain of the function close to (-1, 1), the 
complete domain of the function of x. y1/x1 can also be 
infinitely close to 1. 

By including additional iterations for negative 
indexes i can increase  the  data  valid input range (Hu 
et al., 1991): 
For i≤0 
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For i>0 
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Table 1: The floating-point form of t i  and its hexadecimal form 
n Floating-point form Hexadecimal form 

-5 2.7706 3FF4 
-4 2.4221 37E9 
-3 2.0716 2FD1 
-2 1.7170 27A2 
-1 1.3540 1F41 
 0 0.9730 1675 
 1 0.5493 0CAE 
 2 0.2554 05E5 
 3 0.1257 02E7 
 4 0.0626 0172 
 5 0.0313 00B9 
 6 0.0156 005C 
 7 0.0078 002E 
 8 0.0039 0017 
 9 0.0020 000B 
 10 0.0010 0006 
 11 0.0005 0003 
 12 0.0002 0001 
 13 0.0001 0000 
 14 0.0001 0000 
 15 0.0000 0000 
 16 0.0000 0000 
 

 
 
Fig. 1: A basic unit in the pipelined structure 
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When w = -5, it can satisfy the requirements of the 

input range, so we can start iteration from n = -5, the 
first formula of iteration (13) has been used when n is 
less than or equal to 0 by, otherwise the second formula 
of iteration (14) has been used. The amount of shift of 
each level of iteration unit is fixed, when the input data 
is 16 bits, 22 iterations structure can be used, the 

sequences of iterative shift are (7, 6, 5, 4, 3, 2, 1, 2 .... 
16). And ti is the change parameter for each iterative 
equation. The floating-point form of ti and its 
hexadecimal form have been showed in the following 
Table 1. 

 
FPGA IMPLEMENTATION 

 
Pipelined-CORDIC: In practical applications, the 
natural logarithmic function calculator should be based 
on the needs of the target in between running speed and 
resource consumption. The pipelined-FPGA 
architecture can achieve a high computational speed, 
thereby greatly increasing the efficiency of the system. 
In this structure, each of the shifter is determined depth. 
Parameter accumulator's value as a constant direct 
connection to the accumulator on, do not need storage 
space and reading time. Figure 1 shows a basic unit in 
the pipelined structure. The direction control factor di 
defines the sign of the adder-subtractors. And ti is the 
change parameter for each iterative equation. Its value 
is defined from Table 1. 

The inputs and outputs have the same width (16 
bits). Extends the bit width can improve the accuracy of 
the computation. So the data extended to 33, the highest 
bit is the sign bit. 

The end: z = 1/2ln (t). The results of left shift one 
bit, the interception of the high 16 as a final output. The 
maximum data bit is the sign bit. For the maximum 
inputting value 65535, the real result is 11.0903, 
corresponding to the output of FPGA is FFFF. The 
remaining output divided by the corresponding value to 
get the right results.  

In this study, the natural logarithmic function 
calculator is implemented by the FPGA chip-
EP2C35F672C8, which costs a total of 4085 logic 
elements of 33216. The actual fmax is 94.18 MHz and 
satisfy the design requirements. 
 
Function simulation There is a figure of the functional 
simulation for the calculator. It reflects the logic and 
timing relationships of the input and output of the 
calculator. 

In the Fig. 2 of this simulation report, clk is a clock 
signal, xi, yi, zi are the input signal and xo, yo and zo is 
the output signal. It can be seen from that, the first 
output data generated after 22 cycles. Then after the 
rising edge of each clock will generate an output. This 
reflects the superiority of the pipeline structure of 
processing speed. 

 
ANALYSIS OF RESULTS 

 
It can be seen from the Table 2 that the natural 

logarithm calculator has high accuracy for five 
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Fig. 2: Simulation report 
 
Table 2: Result analysis 

t Output 
CORDIC   
ln (t) 

Ideal  
ln (t) 

Relative 
error 

13 3B32 2.5645 2.5649 -4e-4 
255 7FEA 5.5415 5.5413 2e-4 
1023 9FFE 6.9308 6.9305 3e-4 
12001 D8D2 9.3931 9.3927 4e-4 
64555 FFA6 11.0752 11.0753 -1e-4 
 
randomly selected input values. The relative error 
values are below 10-4, which can satisfy the accuracy 
requirements.  

 
CONCLUSION 

 
FPGA has a regular internal logic array and 

connection resources, suitable for digital signal 
processing tasks. Relative to the general-purpose chip 
serial arithmetic, FPGA has better parallelism and 
scalability. CORDIC is generally well-suited for 
handheld calculators, an application for which cost is 
much more important than speed. In this study, the 
CORDIC algorithm principle can be applied to the fast 
and accurate computation of the natural logarithm, 
given CORDIC algorithm can be completed by shift 
and addition operations in the FPGA. The pipelined-
FPGA architecture can achieve a high computational 
speed. The relative error values are below 10-4, it 
satisfies the accuracy requirements. Compared to other 
hardware realization method, this calculator satisfies 
the performance requirements in the aspects of 

operation speed, the calculation accuracy and resource 
consumption. 
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