
Research Journal of Applied Sciences, Engineering and Technology 6(1): 119-122, 2013
ISSN: 2040-7459; e-ISSN: 2040-7467
© Maxwell Scientific Organization, 2013
Submitted: October 30, 2012 Accepted: December 21, 2012 Published: June 05, 2013

Corresponding Author: Yuanyuan Shang, College of Information Engineering, Capital Normal University, Beijing 100048,

China
119

An FPGA Implementation of the Natural Logarithm Based on CORDIC Algorithm

Shaowei Wang, Yuanyuan Shang, Hui Ding, Chen Wang and Junming Hu

College of Information Engineering, Capital Normal University, Beijing 100048, China

Abstract: In digital signal and image processing, it’s very common to calculate the value of certain transcendental
functions, such as natural logarithmic function. This study introduces the basic principles of the mode of calculation
of the hyperbolic systems by using the CORDIC algorithm, then analyses the Field-Programmable Gate Array
(FPGA) CORDIC core processing unit in detail. The biggest advantage of the CORDIC algorithm is that its circuit
structure is very simple, using only adder and shifter. It is very suitable for FPGA implementation. Based on the
iterative algorithm, a FPGA implementation of the natural logarithmic function has been designed. The pipelined-
FPGA architecture can achieve a high computational speed, for completing a computation only requires one clock
cycle. The relative error values are below 10-4, which can satisfy the accuracy requirements.

Keywords: CORDIC, field-programmable gate array, natural logarithmic, pipelined

INTRODUCTION

The natural logarithmic function is widely used in

image processing and digital signal processing. For
example, to solve some questions in the physical setting
of logarithmic imaging processes, Michel and Jean-
Charles (1995) used the Logarithmic Image Processing
(LIP) model, known to be a compatible mathematical
framework. After recalls on the model, that study
presents two images transforms: one performs an
optimal enhancement and stabilization of the overall
dynamic range and the other does of the mean dynamic
range. What’s more, a new method based on gray-
natural logarithm ratio bilateral filtering is presented for
image smoothing in Guannan Chen’s work (Guannan
et al., 2008). Therefore, the study of its hardware
implementation is necessary. The logarithm is widely
implemented with: Table lookup method, Taylor series
expansion method and linear approximation method.
With the improvement of the accuracy requirements,
the table lookup method will consume a lot of
resources. Taylor series expansion method will use the
multiplier. As precision requirements increase, the
demand of the multiplier will become larger. However,
the number of multipliers in the FPGA is relatively
limited. Linear approximation method can’t meet the
high precision requirements.

The biggest advantage of the CORDIC algorithm is
its circuit structure is very simple, using only adder and
shifter. As a hardware efficient algorithm, it is
particularly suitable for FPGA implementation. In order
to avoid the complexity of the circuit, the idea of the
CORDIC algorithm is that decompose the rotation

operation into successive basic rotations and every
rotation only be realized with add-and-shift operations.

CORDIC ALGORITHM PRINCIPLE

The CORDIC (Coordinate Rotation Digital

Computer) algorithm was first introduced by Volder
(1959). It is efficient to compute the values of
trigonometric functions, such as sin, cos, sinh, cosh,
tan. It was later extended to logarithmic, hyperbolic and
other functions by Walther (1971). The CORDIC
algorithm contains the circumference systems, linear
systems, hyperbolic systems, three kinds of rotation
system. In a variety of rotation system is divided into
the rotation mode and vector mode. To calculate the
value of the natural logarithm, it should be the
operating mode of the vector model in the hyperbolic
system.

Iterative rotations: The function x2 - y2 = 1 is a flat
hyperbolic function, its parametric form is (1):

),(,
)sinh(
)cosh(

∞−∞∈




=
=

t
ty
tx (1)

And, the matrix equation form is (2):


















=



+
+





+
+

1

1

1

1

2

2

2

2

12

12

12

12

cosht
sinht

sinht
cosh

cosht
sinht

sinht
cosh

)cosh(t
)sinh(t

)sinh(t
)cosh(

tt

t
t

t
tt

 (2)

Res. J. Appl. Sci. Eng. Technol., 6(1): 119-122, 2013

120

From vector (x1, y1) to another vector (x2, y2)
hyperbolic rotation defined as follows:

[]

[]








+
=+=

+
=+=

)tanh()cosh(
)cosh()sinh(

)tanh()cosh(
)sinh()cosh(

11

112

11

112

txyt
tytxy

tyxt
tytxx

 (3)

Its iterative form:

















=









+

+

+

+

1

1i

i1

1
1

tanht

tanht
1

cosh
i

i
i

i

i

y
x

t
y
x (4)

The basic idea of the CORDIC algorithm is that not

directly use the tanh t operator, but to select a series of
special parameter t1 satisfy tanh ti = 2-i for hyperbolic
rotation. So multiplied by the operator tanh ti becomes
multiplied by the operator 2-i. That is a simple shift
operation.
Then add direction control factor di:





+=
+=

−
+

−
+

)2(cosh
)2(cosh

1

1

i
i

iiii

i
i

iiii

xdyty
ydxtx (5)

zi is defined to keep track of the parameter that has
been changed:

iiii tdzz −=+1 (6)

Set the initial vector (x1, y1). After N iterations,
becomes:


























•







=









−

−

−

−

=+

+ ∏

1

1
1

1
1

1

N

N

11

1

1
2d

2d
1

....
1
2d

2d
1

cosh

y
x

t
y
x

N

N

N

i
i

N

N

 (7)

Parallel pipelined CORDIC: The CORDIC rotator is
normally operated in one of two modes. The first called
rotation, rotates the unit vector and then gradually
iteration vector endpoints along the hyperbolic
convergence on the parameter t ((x, y) = cosh t, sinh t))
point. The second mode called vectoring, rotes the input
vector (rcosht, rsinht) to the x axis and gradually
converges to (r, 0). Of solving practical problems is
performed through cooperation and competition among
them.
Rotation mode:

011 =→= +Nztz

if zi<0 di = -1, else +1

Vectoring mode:

)(tanh0 1

1
11 x

yttdzz i

N

i
iN

−

=
+ =≈−=→= ∑

if yi<0 di = +1, else +1
In vectoring mode the rotation produces:

tanh

0

1

11
11

1

2
1

2
11






















+=

=
−=

−
+

+

+

x
yzz

y
yxKx

N

N

NN (8)

When z1 = 0 , then:

)1,1(ln
2
1ln

2
1

1

1
ln

2
1)(tanh

11
11

11

1

1

1

1

1

11
1

−=+==







−
+

=


















−

+
== −

+

tytxt
yx
yx

x
y
x
y

x
yzN (9)

Thus:

12ln += Nzt (10)

∞→=≤







∑
=

− N,118.1tanh
11

11
N

i
itx

y (11)

807.0
max1

1 ≈
x
y (12)

If the initial input x1 = t + 1, y1 = t - 1 satisfy the

convergence conditions, the input range is very limited.
So how to increase the effective range of the input data
is an important problem. The calculation shows that
tanh-1 12 = 0.9999999999244972, so [-12, 12] can
make the domain of the function close to (-1, 1), the
complete domain of the function of x. y1/x1 can also be
infinitely close to 1.

By including additional iterations for negative
indexes i can increase the data valid input range (Hu
et al., 1991):
For i≤0









−−=
−+=
−+=

−−
+

−
+

−
+

)21(tanh
)2(1ydyy
)21(

21

1

2i
iii1i

2
1i

i
iii

i
iii

dzz

ydxx
 (13)

For i>0

Res. J. Appl. Sci. Eng. Technol., 6(1): 119-122, 2013

121

Table 1: The floating-point form of t i and its hexadecimal form
n Floating-point form Hexadecimal form

-5 2.7706 3FF4
-4 2.4221 37E9
-3 2.0716 2FD1
-2 1.7170 27A2
-1 1.3540 1F41
 0 0.9730 1675
 1 0.5493 0CAE
 2 0.2554 05E5
 3 0.1257 02E7
 4 0.0626 0172
 5 0.0313 00B9
 6 0.0156 005C
 7 0.0078 002E
 8 0.0039 0017
 9 0.0020 000B
 10 0.0010 0006
 11 0.0005 0003
 12 0.0002 0001
 13 0.0001 0000
 14 0.0001 0000
 15 0.0000 0000
 16 0.0000 0000

Fig. 1: A basic unit in the pipelined structure









−−=
−+=
−+=

−−
+

−
+

−
+

)21(tanh
)2(1ydyy
)21(

21

1

2i
iii1i

2
1i

i
iii

i
iii

dzz

ydxx
 (14)

 ∑

=

−−− −

+−=
0

1
max 2tanh)21(tanh

1

wi

iit (15)

When w = -5, it can satisfy the requirements of the

input range, so we can start iteration from n = -5, the
first formula of iteration (13) has been used when n is
less than or equal to 0 by, otherwise the second formula
of iteration (14) has been used. The amount of shift of
each level of iteration unit is fixed, when the input data
is 16 bits, 22 iterations structure can be used, the

sequences of iterative shift are (7, 6, 5, 4, 3, 2, 1, 2
16). And ti is the change parameter for each iterative
equation. The floating-point form of ti and its
hexadecimal form have been showed in the following
Table 1.

FPGA IMPLEMENTATION

Pipelined-CORDIC: In practical applications, the
natural logarithmic function calculator should be based
on the needs of the target in between running speed and
resource consumption. The pipelined-FPGA
architecture can achieve a high computational speed,
thereby greatly increasing the efficiency of the system.
In this structure, each of the shifter is determined depth.
Parameter accumulator's value as a constant direct
connection to the accumulator on, do not need storage
space and reading time. Figure 1 shows a basic unit in
the pipelined structure. The direction control factor di
defines the sign of the adder-subtractors. And ti is the
change parameter for each iterative equation. Its value
is defined from Table 1.

The inputs and outputs have the same width (16
bits). Extends the bit width can improve the accuracy of
the computation. So the data extended to 33, the highest
bit is the sign bit.

The end: z = 1/2ln (t). The results of left shift one
bit, the interception of the high 16 as a final output. The
maximum data bit is the sign bit. For the maximum
inputting value 65535, the real result is 11.0903,
corresponding to the output of FPGA is FFFF. The
remaining output divided by the corresponding value to
get the right results.

In this study, the natural logarithmic function
calculator is implemented by the FPGA chip-
EP2C35F672C8, which costs a total of 4085 logic
elements of 33216. The actual fmax is 94.18 MHz and
satisfy the design requirements.

Function simulation There is a figure of the functional
simulation for the calculator. It reflects the logic and
timing relationships of the input and output of the
calculator.

In the Fig. 2 of this simulation report, clk is a clock
signal, xi, yi, zi are the input signal and xo, yo and zo is
the output signal. It can be seen from that, the first
output data generated after 22 cycles. Then after the
rising edge of each clock will generate an output. This
reflects the superiority of the pipeline structure of
processing speed.

ANALYSIS OF RESULTS

It can be seen from the Table 2 that the natural

logarithm calculator has high accuracy for five

Res. J. Appl. Sci. Eng. Technol., 6(1): 119-122, 2013

122

Fig. 2: Simulation report

Table 2: Result analysis

t Output
CORDIC
ln (t)

Ideal
ln (t)

Relative
error

13 3B32 2.5645 2.5649 -4e-4
255 7FEA 5.5415 5.5413 2e-4
1023 9FFE 6.9308 6.9305 3e-4
12001 D8D2 9.3931 9.3927 4e-4
64555 FFA6 11.0752 11.0753 -1e-4

randomly selected input values. The relative error
values are below 10-4, which can satisfy the accuracy
requirements.

CONCLUSION

FPGA has a regular internal logic array and

connection resources, suitable for digital signal
processing tasks. Relative to the general-purpose chip
serial arithmetic, FPGA has better parallelism and
scalability. CORDIC is generally well-suited for
handheld calculators, an application for which cost is
much more important than speed. In this study, the
CORDIC algorithm principle can be applied to the fast
and accurate computation of the natural logarithm,
given CORDIC algorithm can be completed by shift
and addition operations in the FPGA. The pipelined-
FPGA architecture can achieve a high computational
speed. The relative error values are below 10-4, it
satisfies the accuracy requirements. Compared to other
hardware realization method, this calculator satisfies
the performance requirements in the aspects of

operation speed, the calculation accuracy and resource
consumption.

ACKNOWLEDGMENT

The authors wish to thank the helpful comments

and suggestions from the teachers and colleagues in No.
108 lab of College of information Engineering, Capital
Normal University.

REFERENCES

Guannan, C., Y. Kuntao, C. Rong and X. Zhiming,

2008. A gray-natural logarithm ratio bilateral
filtering method for image processing. Chin. Opt.
Lett., 6(9): 648-650-3.

Hu, X., R. Huber and S. Bass, 1991. Expanding the
range of convergence of the CORDIC algorithm.
IEEE T. Comput., 40: 13-21.

Michel, J. and P. Jean-Charles, 1995. Image dynamic
range enhancement and stabilization in the context
of the logarithmic image processing model. Signal
Process., 41(2): 225-237.

Volder, J.E., 1959. The CORDIC trigonometric
computing technique. IRE T. Electron. Comput.,
EC-8(3): 330-334.

Walther, J.S., 1971. A unified algorithm for elementary
functions. Proceeding of Spring Joint Computer
Conference, pp: 379-385.

