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There is a tremendous literature on TCP congestion control and its modeling, and onactive queue management. We now brie
y comment on a few that motivate this paper.Flow control is posed as an optimization problem in [6] where the objective is to maximizeaggregate source utility (problem (5{6) in Section 3 below). It is solved using a penaltyfunction approach in [8, 9] and a duality approach in [11]; see also [12]. The works [7,9, 10] suggest that TCP Reno [15] can be interpreted in this optimization framework asa distributed algorithm to solve the maximization problem with a speci�c utility function.REM is originally proposed in [1] as a practical implementation of the dual algorithm of[11]. This dual algorithm consists of a link subalgorithm and a source subalgorithm. Thelink subalgorithm updates a dual variable, called price, and uses it to mark packets. Thesource subalgorithm explicitly estimates the aggregate price, aggregated over its path, fromobserved end-to-end marking probability, and uses it to adjust the source rate. In this paper,we focus on the link subalgorithm of [1] and treat it simply as an active queue managementthat interacts with TCP Reno that reacts to each mark without explicit estimation of theaggregate price. REM is proved to be globally stable in [13] using a continuous time model.We will provide in this paper a local stability proof using a discrete time model that alsoprovides insight on parameter setting.2 REM as active queue managementIn this section we describe REM and explain its key features: match rate and bu�er, and sumprices. We start by interpreting how RED answers the two questions of Section 1. For therest of the paper, unless otherwise speci�ed, by `marking' we mean either dropping a packetor setting its ECN (Explicit Congestion Noti�cation) bit [14] probabilistically.2.1 REDFirst, RED [4] measures congestion by queue length bl(t) (but see footnote below). Theupdate of this congestion measure is dictated by the bu�er process according to:bl(t+ 1) = [bl(t) + yl(t)� cl]+ (1)where [z]+ = maxfz; 0g. Here, bl(t) is the aggregate queue length at link l in period t, yl(t) isthe aggregate input rate to link l in period t, and cl is the link capacity. Second, for RED, theprobability function is a piecewise linear and increasing function of the congestion measure,as shown in Figure 1(a).11Actually the marking probability function depends on the exponentially weighted average queue lengthe(t) that is related to the instantaneous queue length byel(t+ 1) = (1�wl)e(t) +wlb(t)for some 0 < wl < 1. Averaging smoothes out the e�ect of bursty tra�c but, fundamentally in RED, queuelength is the congestion measure to which sources react. Figure 1(a) shows the original proposal in [4]. Therehave been variants of the probability function but almost all are piecewise linear. Marking in RED dependsnot only on the marking probability, but also the number of unmarked packets since the last marking; weignore such details in our discussion. 2
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y (b) REMFigure 1: Marking probability as a function of congestion measure.2.2 REM: match rate and bu�erREM [1] measures congestion by a quantity, called `price', that is decoupled from performancemeasures such as loss, queue length or delay. Instead of (1), REM explicitly controls theupdate of the price to bring about better performance. For link l, the price pl(t) in period tis updated according to:pl(t+ 1) = [pl(t) + 
l(�l(bl(t)� b�l ) + yl(t)� cl)]+ (2)where 
l > 0 and �l > 0 are small constants and [z]+ = maxfz; 0g. Here, bl(t) and b�l are theaggregate queue length at link l in period t and its target value, respectively. Hence the pricepl(t) is raised if the weighted sum of the mismatches in backlog bl(t)�b�l and in rate yl(t)�cl,weighted by �l, is positive, and reduced otherwise. Intuitively, we expect that this will drivethe mismatches to zero, yielding full utilization yl(t) = cl and stable queue bl(t) = b�l . Wewill show in Section 3 that this indeed is the case.2.3 REM: sum pricesTo embed the price in marking, a link l marks a packet that is not already marked at anupstream link with a probability that is exponential in its price, as illustrated in Figure1(b). The exponential form of the marking probability is critical in a large network, becausethe end-to-end marking probability for a packet that traverses multiple congested links fromsource to destination then becomes exponentially increasing in the sum of the link prices atall the congested links in its path. Precisely, suppose a packet traverses links l = 1; 2; : : : ; Lthat have prices pl(t) in period t. Then the marking probability ml(t) at link l in period t is:ml(t) = 1� ��pl(t) (3)where � > 1 is a constant. The end-to-end marking probability for the packet is then:1� LYl=1(1�ml(t)) = 1� ��Pl pl(t)The path congestion measurePl pl(t) can be easily estimated by sources from the fraction oftheir own packets that are marked, and can potentially be used to design their rate adaptation.3



2.4 ImplementationIt is usually easier to measure queue length than rates in practice. When the target b� isnonzero, we can bypass the measurement of rate mismatch xl(t)� cl in the price update (2).Notice that xl(t)�cl is the rate at which the queue length grows when the bu�er is nonempty.Hence we can approximate this term by the change in backlog, bl(t + 1) � bl(t). Then theupdate rule (2) becomes:pl(t+ 1) = [pl(t) + 
l(bl(t + 1)� (1� �l)bl(t)� �lb�)]+ (4)i.e., the price is updated based only on the current and previous queue lengths.The update rule (4) contrasts sharply with RED. As the number of sources increases, themarking probability should grow so as to increase the intensity of congestion signal. SinceRED uses queue length to determine the marking probability, this means that the meanqueue length must steadily increase as the number of sources increases. In contrast, theupdate rule (4) uses queue length to update a price which is then used to determine themarking probability. Hence, under REM, the price steadily increases while the mean queuelength is stabilized around the target b�l , as the number of sources increases. This is illustratedin the simulation results below.3 Local asymptotic stabilityREM as an active queue management is de�ned by the price update rule (2) (or (4)) andthe marking probability function (3). The price update rule determines the macroscopicbehavior of REM. Marking is only a mechanism through which this congestion measure isfed back to the sources for them to set their rates. It introduces random 
uctuations aroundthe macroscopic behavior determined by the price update rule.The behavior of REM as described by (2) depends also on how the source rates in yl(t)are adjusted, i.e., on the model of TCP Reno. In this section, we present an analytical modelof REM and prove that it is asymptotically stable, i.e., it converges locally to an equilibriumwhere rates are matched to network capacity and bu�ers are stabilized around their targetvalues.3.1 ModelFor our purposes a network is a set of links with �nite capacities cl; l = 1; : : : ; L. It is sharedby a set of sources. A source s, s = 1; : : : ; S, attains a utility Us(xs) when it transmits at ratexs � 0. We assume that Us are strictly concave increasing and continuously di�erentiable.Routing of source s is de�ned by the L� S routing matrix A = [als] such thatals = � 1 if link l is in path of s0 otherwiseDenote x = (xs; s = 1; : : : ; S)T . The primal problem is to choose source rates x so as tomaxx�0 Xs Us(xs) (5)subject to Ax � c (6)4



Constraint (6) says that the aggregate source rate does not exceed the capacity. A uniqueoptimal rate vector exists since the objective function is strictly concave in x and the feasibleset is compact. Associated with each link l is a dual variable pl(t) we call price. Followingthe notation of [13], let y(t) = (yl(t); l = 1; : : : ; L) represent the aggregate source rates atlinks l at time t, and q(t) = (qs(t); s = 1; : : : ; S) represent the path prices that are fed backto sources s at time t:y(t) = Ax(t) and qT (t) = pT (t)A (7)It is argued in [10] that (the congestion avoidance algorithm of) TCP Reno can be inter-preted as carrying out a smoothed version of the following rate adjustment:xs(t) = �U 0s��1 (qs(t)); s = 1; : : : ; S (8)with speci�c utility functions that depend on the queue management schemes, DropTail, REDor REM. Here (U 0s)�1 is the inverse of the derivative of the utility function Us (exists sinceUs is strictly concave). As a model of TCP source algorithm, (8) is undoubtedly simpli�ed.It does not model timeouts and slow-starts; moreover the 
uid model must be interpretedas the average over an appropriate period of the intrinsically oscillatory window trajectoryof TCP Reno. Nonetheless, the qualitative conclusion of the stability theorem in the nextsubsection is con�rmed by detail packet-level simulations in the following sections.In summary, we model REM by the nonlinear discrete-time system (2), (1), (7) and (8).We next prove that this system is locally asymptotically stable. In [13], a continuous-timemodel of REM is considered and an elegant Lyapunov argument is used to establishes globalasymptotic stability.3.2 StabilityLet x� = (x�s; s = 1; : : : ; S)T be the unique solution of the primal problem (5{6). We will makethe following simplifying assumptions: rank(A) = L, 
l = 
 and �l = � for all l = 1; : : : ; L.By the �rst assumption, the inequality constraint (6) becomes an equality constraint and itis easy to see that there exists a unique p� = (p�l ; l = 1; : : : ; L)T such thatx�s = �U 0s��1 (q�s) and y�l = cl (9)In this case, the di�erence system (2), (1), (7) and (8) has a �xed point �p�b��, where b� =(b�l ; l = 1; : : : ; L)T are the target backlogs.The next theorem says that REM (without marking) matches rate and bu�er. Theimportant point to note is that the equilibrium queue lengths and source rates are independentof the number of sources or their topology. This is con�rmed by the simulation results in thenext sections.Theorem 1 Assume that rank(A) = L, 
l = 
 and �l = � for all l = 1; : : : ; L. Supposep�l > 0 and b�l > 0 for l = 1; : : : ; L. Then, provided that 0 < � < 1 and 
 > 0 is su�cientlysmall, �p�b�� is asymptotically stable, i.e., for some � > 0, if 



�p(0)b(0)� � �p�b��



 < � thenlimt!1 p(t) = p�; limt!1 b(t) = b�; and limt!1 y(t) = c5



We apply the indirect Lyapunov method for di�erence systems to prove the above theorem(see, e.g., [5]). Consider a di�erence systemu(t+ 1) = Mu(t) + f(u(t)) (10)where M is a square matrix and limu!0 kf(u)kkuk = 0. Then the origin is a �xed point of (10).The origin is an asymptotically stable �xed point if and only if the spectral radius ofM is lessthan 1, i.e., all the eigenvalues ofM is located inside the unit circle. First we will linearize thedi�erence system around the �xed point �p�b��. Next we will show that when 
 is su�cientlysmall, the spectral radius of the coe�cient matrix of the linear part is less than 1. An upperbound on 
 that guarantees convergence is 2=!L where !L is the largest eigenvalue of apositive de�nite matrix determined by the routing matrix and utility functions; see below.The assumption p� > 0 in the theorem means that we only include bottleneck links in ourmodel.Proof. Since we assume p� > 0 and b� > 0, (2) and (1) can be rewritten as( pl(t+ 1)� p�l = pl(t)� p�l + 
�(bl(t)� b�l ) + 
(yl(t)� cl)bl(t+ 1)� b�l = bl(t)� b�l + yl(t)� cl (11)Obviously, the only nonlinear term �p(t)b(t)�) is yl(t)� cl.Consider the �rst order Taylor expansion of (U 0s)�1 (qs) at qs = q�s :�U 0s��1 (qs) = �U 0s��1 (q�s) + �(U 0s)�1�0 (q�s )(qs � q�s ) + rs(qs)= �U 0s��1 (q�s) + 1U 00s (x�s)(qs � q�s ) + rs(qs)where we have limqs!q�s rs(qs)qs�q�s = 0. Therefore,yl(t) = SXs=1 alsxs(t)= SXs=1 als �U 0s��1 (qs(t))= SXs=1 als �U 0s��1 (q�s) + SXs=1 als � 1U 00s (x�s)(qs(t)� q�s) + rs(qs(t))�By (9) we havecl = SXs=1 alsx�s = SXs=1 als �U 0s��1 (q�s )Henceyl(t)� cl = SXs=1 als 1U 00s (x�s)(qs(t)� q�s) + Rl(p(t))6



where Rl(p(t)) =Ps als(qs(t)). Furthermore,qs(t)� q�s = LXk=1(pk(t)� p�k)aksTherefore,SXs=1 als 1U 00s (x�s)(qs(t)� q�s ) = LXk=1 SXs=1(pk(t)� p�k)aks 1U 00s (x�s)als (12)Denote �s = �1U 00s (x�s) and de�ne the diagonal matrixB = diag(�1; � � � ; �S)Then the right hand side of (12) is the l-th component of �ABAT (p(t)� p�). Therefore,yl(t)� cl = ��ABAT (p(t)� p�)�l + Rl(p(t)) (13)where [�]l stands for the l-th component of the given vector. Now we can rewrite (11) in theform of (10) as follows:(p(t+ 1)� p� = (I � 
ABAT )(p(t)� p�) + 
�(b(t)� b�) + 
R(p(t))b(t+ 1)� b� = �ABAT (p(t)� p�) + (b(t)� b�) + R(p(t))where we have kR(p)kkp�p�k ! 0 when p! p�. The coe�cient matrix of the linear part is�I � 
ABAT 
�I�ABAT I �We use Q to denote this matrix and show that the spectral radius �(Q) < 1 provided that
 > 0 is small enough and 0 < � < 1. We havedet(�I �Q) = det �(�� 1)I + 
ABAT �
�IABAT (�� 1)I�= det � I 0(
�)�1(�� 1)I I� � det �(�� 1)I + 
ABAT �
�IABAT (�� 1)I�= det � (�� 1)I + 
ABAT �
�I(
�)�1(�� 1)2I + (��1(�� 1) + 1)ABAT 0 �Since 
� > 0, det(�I � Q) = 0 is equivalent todet �(�� 1)2I + (
(�� 1) + 
�)ABAT� = 0 (14)Recall that A is an L�S matrix with rank(A) = L, B is a diagonal matrix and the diagonalentries are positive. Therefore, ABAT is an L� L positive de�nite matrix. Hence let0 < !1 � !2 � � � � � !Lbe the eigenvalues of ABAT and de�ne� = diag(!1; � � � ; !L)7



Then (14) is equivalent todet �(�� 1)2I + (
(�� 1) + 
�)�� = 0which in turn is equivalent to a group of quadratic equations:(�� 1)2 + 
!l(�� 1) + 
�!l = 0; l = 1; 2; � � � ; LThis yields� = 1+ �
!l �q
2!2l � 4
�!l2 ; l = 1; 2; � � � ; LIf 
2!2l � 4
�!l � 0, then, since � < 1 and 
!l > 0, we havej�j2 = �1� 
!l2 �2 + 4
�!l � 
2!2l4 = 1� (1� �)
!l < 1If 
2!2l � 4
�!l > 0, then1� 
!l < � < 1 (15)If we set 0 < 
 � 2!L then (15) gives that j�j < 1.Now we have shown that the spectral radius of Q is less than 1 provided 0 < � < 1 and0 < 
 � 2!L , where !L is the largest eigenvalue of ABAT . In this case, �p�b�� is asymptoticallystable. That y(t)! c follows from (9) and the assumption that U 0s are continuous.4 PerformanceIn this section we present results from ns-2 simulations to compare the performance ofReno/DropTail, Reno/REM and Reno/RED. We will present simulations with homogeneoussources over a single (bottleneck) link and over multiple links, and with sources with di�erentpropagation delays over a single link. In each case, we consider the dynamic situation wheresources are activated successively during simulation, from 20 sources to 500 sources over aperiod of 800 secs (see details for each case below). All simulations use a packet size of1Kbytes, and a bandwidth capacity of 64Mbps (8 pkts/ms) and bu�er capacity of 120Kbytes(120 pkts) at each link.Two sets of parameters are used for RED. The �rst set, referred to as RED(20:80), hasa minimum queue threshold min th = 20 packets, a maximum queue threshold max th =80 packets, and max p = 0.1. The second set, referred to as RED(10:30), has a minimumqueue threshold min th = 10 packets, a maximum queue threshold max th = 30 packets, andmax p = 0.1. The parameter values of REM are � = 1:001, � = 0:1, 
 = 0:001, b� = 20packets. We study their behavior both with packet marking and with dropping, according tothe probability determined by the link algorithm.8
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Figure 2: Single-link performance of Reno/DropTail, Reno/RED, Reno/REM.9



4.1 Single linkThe link is shared by 320 Reno sources with the same round trip propagation delay of 80ms.20 sources are initially active at time 0 and every 50s thereafter, 20 more sources activateuntil all 320 sources are active. We compare the performance of Reno with DropTail, Renowith REM and Reno with RED. The results are shown in Figure 2.The left panel compares the performance of REM with DropTail. As time increases on thex-axis, the number of sources increases (from 20 to 320) and the window size decreases (fromaround 32 packets to around 2 packets). The y-axis illustrates the performance, goodput, lossrate, and mean queue length, in each period (in between the introduction of new sources).Goodput is the ratio of the number of nonduplicate packets received at all destinations perunit time and the link capacity. Loss rate is the ratio of the number of packets due to bu�erover
ow to the number of packets sent in that period. REM with ECN marking achieves ahigher goodput than DropTail at all window sizes while REM with dropping has a highergoodput only when the window size is large (> 5pkts). Interestingly, the loss rate is about thesame under REM with dropping as under DropTail. The loss rate under REM with markingis nearly zero regardless of the number of sources (not shown). As the number of sourcesgrows, REM, either with dropping or with marking, stabilizes the mean queue around thetarget b� = 20 packets whereas the mean queue under DropTail steadily increases.The right panel compares the performance of RED with DropTail. The goodput forRED(10:30) is upper bounded by the goodput for DropTail, so is RED(20:80) with dropping.The goodput for RED(20:80) with marking is comparable to that for DropTail. The lossrate (due to bu�er over
ow) for RED is higher than that for DropTail and REM. The meanqueue length under all these 5 schemes steadily increases as the number of sources grows.RED(20:80) achieves a high goodput at all window sizes because it allows the average queueto grow to two thirds of bu�er capacity. By restricting the average queue to under 25% ofbu�er capacity, RED(10:30) maintains a small average queue regardless of the number ofsources, at the expense of a smaller goodput especially when the window size is large. HenceRED must choose between high goodput and low queueing delay when the window size islarge (> 7pkts). REM on the other hand is able to stabilize the average queue around itstarget of 1/6 of bu�er capacity at all times while achieving a high goodput.4.2 Multiple linksThis simulation uses the network topology shown in Figure 3 with 4 bottleneck links. Thereis a group of 100 long 
ows that go through all 4 links and a group of 100 short 
ows thatgo through each link, for a total of 500 sources. The round trip propagation delays for short
ows are 40ms and that for long 
ows is 100ms.10 sources from each group (50 total) are initially active at time 0 and every 50s thereafter,10 more sources from each group activate until all 500 sources are active. The performanceresults are shown in Figure 4. We note three features. First, the long 
ows receive muchless goodput without than with active queue management. With dropping, long 
ows receivesimilar goodput under REM or RED but the short 
ows received higher goodput underREM than RED when the window size is large (> 3pkts). Hence the aggregate goodput issigni�cantly higher under REM dropping when window size is large. With marking, REMprovides more bandwidth to the long 
ows than RED and the aggregate throughput in REM isalso typically higher. Second, packet losses due to bu�er over
ows is lowest under DropTail,higher under REM, and the highest under RED(10:30). Third, the mean queue stabilizes10
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c packets/msFigure 3: Multilink topology (only bottleneck links are shown).around the target of b� = 20pkts at all times while under RED and DropTail, it steadilyincreases as the number of sources increases. These features are consistent with what weobserved in the single link simulations.4.3 Varying propagation delaysThis simulation uses a single (bottleneck) link shared by 5 groups of 40 sources each, fora total of 200 sources. Group 1 sources each has a round trip propagation delay of 20ms,group 2 of 40ms, : : : , group 5 of 100ms. 4 sources from each group (20 total) are initiallyactive at time 0 and every 50s thereafter, 4 more sources from each group activate until all200 sources are active. The performance results are shown in Figures 5 and 6. They showthat sources that have the shortest propagation delay receive the largest bandwidth, a wellknown feature of Reno. As in the previous simulations, DropTail has the highest aggregategoodput, followed by REM, RED(20:80) and RED(10:30), the loss rate is higher for RED,and the mean queue length for REM stabilizes around the target regardless of the number ofsources while that for the other schemes steadily increases.5 Wireless TCPTCP Reno was originally designed for wireline networks where congestion is measured, andconveyed to sources, by packet losses due to bu�er over
ows. In wireless networks, however,packets are lost mainly because of bit errors, due to fading and interference, and because ofintermittent connectivity, due to hando�s. The coupling between packet loss and congestionmeasure and feedback in Reno leads to poor performance over wireless links. This is because aReno host cannot di�erentiate between losses due to bu�er over
ow and those due to wirelesse�ects, and halves its window on each loss event.Three approaches have been proposed to address this problem; see [2, 3] and referencestherein. The �rst approach hides packet losses on wireless links, so that the source onlysees congestion induced losses. This involves various interference suppression techniques,error control and local retransmission algorithms on the wireless links. The second approachinforms the source, using TCP options �elds, which losses are due to wireless e�ects, so thatthe source will not halve its rate after retransmission.11
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Figure 4: Multilink performance of Reno/DropTail, Reno/RED, Reno/REM.12
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The third approach eliminates packet losses due to bu�er over
ow [9], so that the sourceonly sees wireless losses. This violates Reno's assumption: losses no longer indicate bu�erover
ow. Congestion must be measured and fed back using a di�erent mechanism. REMdecouples packet loss from congestion measure, and can be used to nearly eliminate bu�erover
ow. ECN can be used to feed back this congestion measure. Then a Reno host onlyretransmits on detecting a loss and halves its window when seeing a mark.We now present results from ns-2 simulations to illustrate the e�ectiveness of this ap-proach. We present two sets of results, one using a Bernoulli error model and the other aburst error model. Both sets of simulations give qualitatively the same conclusions about therelative performance of RED and REM that are consistent with wireline simulations in thelast section.5.1 Bernoulli error modelThe simulation is conducted for a single wireless link that has a bandwidth capacity of2Mbps and a bu�er capacity of 100 packets. It loses a packet with a constant probability of1% independently of all other packets. A small packet size of 382 bits is chosen to mitigatethe e�ect of random loss. This wireless link is shared by 100 NewReno sources (an improvedversion of Reno) with the same round trip propagation delay of 80ms. 20 sources are initiallyactive at time 0 and every 50s thereafter, 20 more sources activate until all 100 sources areactive. We compare the performance of NewReno (with DropTail), NewReno with RED andNewReno with REM. The parameters of RED and REM have the same values as in theprevious section.With active queue management, ECN bit is set to 1 in ns-2 so that packets are proba-bilistically marked according to RED or REM. Packets are dropped only when they arrive ata full bu�er. We modify NewReno so that it halves its window when it receives a mark ordetects a loss through timeout, but retransmits without halving its window when it detectsa loss through duplicate acknowledgment.Figure 7(a) shows the goodput within each period under the four schemes. It shows
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networks: REM and RED(20:80) are able to maintain a high goodput (between 90% and96%), regardless of the number of sources, while RED(10:30) has a lower goodput (between82% and 95%). As the number of sources increases, the mean queue stabilizes under REMwhile it steadily increases under DropTail and RED. This phenomenon also manifests itselfin the cumulative packet losses shown in Figure 7(b): loss is the heaviest with NewReno,negligible with RED(10:30) and REM, and moderate with RED(20:80).Figure 8 shows the performance when the error probability is varied from 0% to 10%.The same wireless link as in the previous simulation is shared by 32 sources for a durationof 100sec. Figure 8(a) shows the link utilization, the ratio of the total number of packetstransmitted by the link during the entire simulation duration and the link capacity. Figure8(b) shows the last sequence number simulated and is a measure of goodput. As expected,
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Figure 9: Burst error model: goodput (%)
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same qualitative conclusions as previous simulations. Marking markedly improves goodputand loss. RED(20:80) and REM have higher goodput than RED(10:30) but RED(10:30) hasa lower mean queue length.5.3 RemarkA challenge with this approach is its application in a heterogeneous network where some,but not all, routers are ECN capable. Routers that are not ECN capable continue to rely ondropping to feed back congestion. Reno hosts that adapt their rates only based on marks runthe risk of overloading these routers. A possible solution is for routers to somehow indicatetheir ECN capability, possibly making use of one of the two ECN bits proposed in [14]. Thismay require that all routers are at least ECN-aware. A host reacts to marks only if all routersin its path are ECN capable, but reacts to loss as well, like a conventional Reno host, if itspath contains a router that is not ECN-capable.6 ConclusionWe have proposed a new active queue management scheme, REM, that attempts to matchrate and bu�er to target values regardless of the number of sources. This achieves highutilization with negligible loss and delay. We have proved its stability around the equilibriumand presented extensive simulation results to illustrate its performance in the face of largepropagation delays.References[1] Sanjeewa Athuraliya and Steven Low. Optimization 
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