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Abstract

We consider multiple-antenna systems that are limited by the area and geometry of
antenna arrays. Given these physical constraints, we determine the limit to the num-
ber of spatial degrees of freedom available and find that the commonly used statistical
multi-input multi-output model is inadequate. Antenna theory is applied to take into
account the area and geometry constraints, and define the spatial signal space so as to
interpret experimental channel measurements in an array-independent but manageable
description of the physical environment. Based on these modeling strategies, we show
that for a spherical array of effective aperture A in a physical environment of angular
spread |Ω| in solid angle, the number of spatial degrees of freedom is A|Ω| for unpo-
larized antennas and 2A|Ω| for polarized antennas. Together with the 2WT degrees of
freedom for a system of bandwidth W transmitting in an interval T , the total degrees
of freedom of a multiple-antenna channel is therefore 4WTA|Ω|.

1 Introduction

In multiple-antenna channels, the channel capacity grows linearly with the number of spatial

degrees of freedom, which is therefore a key performance measure. A fundamental question

arises: given an area limitation on the transmit and receive antenna arrays, what is the

intrinsic number of degrees of freedom available in the channel? Statistical multi-input multi-

output (MIMO) models are insufficient to answer this question. Early results [1, 2] focus on
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the model where the fading is i.i.d. across all antenna pairs, and show that the number of

degrees of freedom is the minimum of the number of transmit and receive antennas. Packing

more antennas in a given area will, however, make the fading correlated and therefore cannot

increase the capacity indefinitely. This is analogous to the waveform channel where given

the bandwidth constraint W and transmission interval T , increasing the number of time

samples will also not increase the capacity indefinitely. The available degrees of freedom

is fundamentally limited to 2WT . In this paper, we will demonstrate that the physical

constraints of antenna arrays and propagation environment put forth a deterministic limit

to the spatial degrees of freedom underlying the statistical MIMO approach.

Let us review the reasoning involved to derive the 2WT formula [3, Ch. 8]. In waveform

channels, the transmit and receive signals are represented either in the time domain as wave-

forms or in the frequency domain as spectra. The mapping between these two representations

is the Fourier transform. The waveform is then approximately time-limited to [−T/2, T/2]

and its spectrum is frequency-limited to [−W,W ]. The dimension of the subspace satisfying

these two physical constraints gives the number of degrees of freedom, 2WT . To demon-

strate an analogous result for multiple-antenna channels, the corresponding spatial signal

domains and the mappings between them are required which is based on electromagnetic

theory considerations.

In this paper, we incorporate antenna theory with experimental channel modeling to

obtain a mathematical model that allows us to derive a more fundamental limit to the spatial

degrees of freedom given a constraint on the areas of the transmit and receive antenna arrays.

Physically, there are two signal domains of interest: the array domain used to describe the

excitation current distributions and the wavevector domain (also known as angular domain)

to describe the radiated field patterns. The mapping between them depends on the geometry

of the antenna array as it imposes different boundary conditions on the set of Maxwell

equations. In the case of linear arrays, the mapping between the array and wavevector

domains is the familiar Fourier transform, same as the time/frequency counterparts. The

mappings for circular and spherical arrays are however different. The current distribution

(in array domain) is then limited by the size of the antenna array while the scattering of the

physical environment limits the amount of radiated field (in wavevector or angular domain)

reaching the receiver. In the urban and indoor environments, transmitter-receiver separation

is typically comparable to the size of channel objects, so propagation paths are no longer

discrete but are more appropriately analyzed as clusters, as illustrated in Figure 1. The

scattering in the physical environment is then characterized by the number of these clusters

and the solid angles subtended. We will show that for a spherical array of effective aperture

A in an environment with scattering clusters spanning over a total solid angle of |Ω|, the

number of degrees of freedom is A|Ω|. When polarization is taken into account, the signal
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Figure 1: Illustrates the clustering of transmitted and received signals. The scattering

intervals are Ωt = Ωt,1 ∪ Ωt,2 ∪ · · · and Ωr = Ωr,1 ∪ Ωr,2 ∪ · · · .

space becomes a set of vector fields. The number of degrees of freedom is shown to be 2A|Ω|.
The degree-of-freedom formula gives insight on the number of antennas that should be

put on the given transmit and receive areas so as to optimize the trade-off between capacity

and cost. As the number of RF/analog chains scales linearly with the number of antennas

and the complexity in digital baseband increases at least quadratically [4, 5], it is of great

incentive to use the optimal number of antennas given the physical environment and the

shape of wireless device. We will ascertain that 2A|Ω| number of antennas suffices.

In addition, the wavevector domain provides an appropriate coordinate to describe the

physical position of other users. Extending the mathematical model to multiuser environ-

ments is straightforward. If the users are cooperative and relay signals, the channel solid

angles will likely increase and so does the spatial degrees of freedom. On the other hand,

if the users are non-cooperative and create interference instead, it can be encapsulated as a

decrease in the channel solid angles. It turns out that the optimal number of antennas is

different in both channels.

Recent works such as [6, 7, 8] also bring in the array and wavevector domains as a mean

to relate the scattering of physical environment to the fading correlation among antennas on

unpolarized linear arrays. In [6], the physical environment is characterized by the number

of propagation paths in the wavevector domain, and the spatial degrees of freedom is the

minimum of the numbers of propagation paths, transmit antennas and receive antennas.
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Though the number of propagation paths that can be resolved, depends on the area of the

transmit and receive arrays, [6] does not take this into account. Therefore, it does not answer

our question of number of degrees of freedom per unit area. In [7, 8], the physical environment

is also modeled as clusters but in a statistical manner. The decrease in fading correlation

with increasing antenna spacing is investigated. It gives an intuitive explanation on how

the capacity of linear arrays increases with increasing antenna spacing in different scattering

environments. However, if the transmit and receive areas are constrained, then increasing

the antenna spacing will reduce the number of antennas and hence will likely decrease the

capacity. It is this physical constraint that is the focus of this paper. Furthermore, we

use a deterministic signal space approach to look at the scattering in physical environments

instead of statistical approaches.

Finally, we have applied the mathematical model to study the degrees of freedom on linear

arrays in [9]. Independent works such as [10, 11, 12] also consider the physical constraint of

antenna arrays. The first two use statistical approaches while the latter focuses on channel

modeling for numerical analysis.

The paper is organized as follows. Section 2 presents the system model. Section 3

derives the spatial degrees of freedom. Section 4 elaborates the physical insight of the

main results. Section 5 extends the model from point-to-point to multiuser environments.

Section 6 elucidates the optimal number of antennas. Finally, we will conclude this paper in

Section 7.

The following notation will be used in this paper. We will use boldface calligraphic letters

for electromagnetic entities (E ,J , · · · ), boldface capital letters for matrices (C,H, · · · ) and

boldfaced small letters for vectors (p,q, · · · ). For a given vector p, p̂ is a unit vector denoting

its direction and p denotes its magnitude. i denotes square root of −1. ∇p× denotes the curl

operation with respect to p. I is the identity matrix. (·)∗, (·)† and E[·] denote conjugate,

conjugate-transpose and expectation operations respectively. For a set S, |S| denotes its

Lebesgue measure. �n, Cn and Cn×m denote the set of n-dimensional real numbers, n-

dimensional complex numbers and n×m complex matrices. �x� gives the smallest interger

equal to or greater than x. (x)+ denotes max{0, x}.

2 System Models

We consider continuous arrays which are composed of an infinite number of antennas sep-

arated by infinitesimal distances. This eliminates the need to specify a prior the number

of antennas and their relative positions on the arrays. Each antenna is composed of three

orthogonal dipoles oriented along Euclidean directions ê1, ê2 and ê3 as pictured in Figure 2.

This antenna topology is often referred as a tripole where arbitrarily polarized electric fields
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Figure 2: A tripole antenna.

can be generated. In a frequency non-selective fading channel, the transmit and receive

signals at a particular time are related by

y(q) =

∫
C(q,p)x(p) dp + z(q) (1)

The transmit signal x(·) is a vector field on R3, a function that assigns each point p ∈ R3 of

the transmit array to a polarized vector x(p) ∈ C3. Similarly, y(·) is the receive vector field.

The system response C(·, ·) is a 3 × 3 complex integral kernel where its domain is the set

of transmit vector fields and its range is the set of receive vector fields. The matrix C(q,p)

gives the channel gain and polarization between the transmit position p and receive position

q. The vector field z(·) is the additive noise.

The system response can be decomposed into three responses:

C(q,p) =

∫∫
Ar(q, κ̂)H(κ̂, k̂)At(k̂,p) dk̂dκ̂ (2)

where At(·, ·), Ar(·, ·) and H(·, ·) are 3 × 3 complex integral kernels. The transmit array

response At(·, ·) maps the excitation current distribution to the radiated field pattern. Simi-

larly, the receive array response Ar(·, ·) maps the incident field pattern to the induced current

distribution. The channel response H(κ̂, k̂) gives the channel gain and polarization between

the transmit direction k̂ and receive direction κ̂ (see Figure 1). We will next model these

responses.

2.1 Array Responses

From Maxwell equations, the electric field E(·) due to the current density J (·) satisfies [13]

(−∇p ×∇p ×+ k2
0

)E(p) = ik0ηJ (p)

where k0 = 2π/λ, λ is the wavelength and η is the intrinsic impedance. The inverse map is

E(k) =

∫
G(k,p) J (p) dp

for some integral kernel G(·, ·). The kernel G(·, ·) is often referred as the Green function in

electromagnetic theory where it is commonly derived with a given coordinate system. As we
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Figure 3: A transmitting continuous array.

want to investigate the effect of array geometry in addition to array size, a coordinate-free

version is derived in Appendix A and is given by

G(k,p) =
iηei2πr/λ

2λr

[
(I− r̂r̂†) +

i

2πr/λ
(I− 3r̂r̂†)− 1

(2πr/λ)2
(I− 3r̂r̂†)

]
(3)

where r = k − p. It has three terms: far-field, intermediate-field and near-field. Only the

far-field term corresponds to the radiated field as it falls off inversely as the distance apart

r, and hence its power follows the inverse square law. The power of the remaining two

terms falls off much faster than r−2 (r−4 and r−6 respectively) so they do not contribute to

electromagnetic radiation.

Consequently, the transmit array response is given by

At(k̂,p) =
iηei2πr

2λ2r

(
I− r̂r̂†

)
, p ∈ Vt (4)

and r = d0k̂−p (see Figure 3) where d0 is the reference distance and Vt denotes the transmit

space. In the expression, both position vector p and reference distance d0 are normalized to

a wavelength. The reference distance d0 is chosen such that d0 � p for all position vector

p ∈ Vt, the far-field region. Then, we have the following approximations:

1/r ≈ 1/d0, r ≈ d0 − k̂†p, and r̂ ≈ k̂

and the array response can be approximated by

At(k̂,p) ≈ iηei2πd0

2λ2d0

(
I− k̂k̂†) exp(−i2πk̂†p), p ∈ Vt (5)

The dyad I−k̂k̂† is a 3×3 rank 2 matrix and constrains the oscillation direction of the radiated

field to be perpendicular to its propagation direction. The propagation term exp(−i2πk̂†p)
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Frequency (GHz) No. of Clusters Cluster Angle (◦)

USC UWB [15] 0 – 3 2 – 5 37

Intel UWB [16] 2 – 8 1 – 4 11 – 17

Spencer [17] 6.75 – 7.25 3 – 5 25.5

COST 259 [18] 24 3 – 5 18.5

Table 1: Summary of indoor spatial channel measurements.

relates the propagation direction k̂ of the radiated field to the excitation position p on the

array. By the reciprocity theorem for antennas [14], the receive array response is

Ar(q, κ̂) ≈ −iη∗e−i2πd0

2λ2d0

(
I− κ̂κ̂†) exp(i2πκ̂†q), q ∈ Vr (6)

for all normalized position vector q of the receive space Vr and incident field from direction

κ̂.

2.2 Clustered Channel Response

Recent indoor channel measurements show that physical paths are clustered around the

transmit and receive directions as illustrated in Figure 1. In indoor environment, clustering

can be the result of reflection from walls and ceilings, scattering from furniture, diffraction

from door-way openings, and transmission through soft partitions. Table 1 summaries the

measurement results in the literature. They show that the number of clusters ranges from 1 to

5, and the cluster azimuth/elevation angles vary from 10◦ to 30◦. In general, the clustering

phenomenon occurs when the transmitter-receiver separation is comparable to the size of

channel objects and is typical in the indoor and urban environments.

Following the ray-tracing model in [19] and grouping the paths into clusters as in [18],

yields the channel response

H(κ̂, k̂) =
1√
Nl

M∑
i=1

∑
j∈Si

Γjδ(κ̂− κ̂j)δ(k̂− k̂j) (7)

where Γj denotes the attenuation and polarization on the jth path, Si denotes the set of

propagation paths in the ith cluster and Nl is the total number of these paths. The response

has the desired property of array-independent; however, there is an arbitrary number of

paths in each cluster and hence lessens its analytical tractability. As the channel response

is sandwiched between the array responses, a common practice is to smooth out the channel

response by the array responses; however, the characteristics of the channel are then mixed

up with that of antenna arrays.
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Instead, we zoom out the granularity of the channel description and characterize the

channel by the set of cluster boundaries. Reference to Figure 1, Ωt being the union of Ωt,i’s,

is the angular interval subtended by the scattering clusters being illuminated by the transmit

array. Similarly, Ωr is the scattering interval as observed from the receive array1. Then, the

channel response satisfies

H(κ̂, k̂) 
= 0 only if (κ̂, k̂) ∈ Ωr × Ωt (8)

To make sure the well-conditionedness of H(·, ·), we assume that (1)
∫ ‖H(κ̂, k̂)‖2 dκ̂ 
= 0

for all k̂ ∈ Ωt and
∫ ‖H(κ̂, k̂)‖2 dk̂ 
= 0 for all κ̂ ∈ Ωr; (2) the point spectrum (set of

eigenvalues) of H(·, ·) excluding 0 is infinite; and (3) ‖H(κ̂, k̂)‖2 
= 0⇒ rank
(
H(κ̂, k̂)

)
= 3

for all (κ̂, k̂) ∈ Ωr × Ωt.

Define the channel solid angles as

|Ωt| =
∫

Ωt

sin θ dθdφ and |Ωr| =
∫

Ωr

sin θ dθdφ (9)

which are the solid angles subtended by the scattering clusters as viewed from the transmitter

and receiver respectively. At the transmitter (receiver), |Ωt| (|Ωr|) is the area of projection of

the scattering clusters onto the unit sphere enclosing the transmit (receive) array as pictured

in Figure 4. For example, in the ideal fully-scattered environment the channel solid angle is

4π, the surface area of a unit sphere.

3 Main Results

Now, the system response in the far-field region can be approximated by

C(q,p) ≈ η2

4λ4d2
0

∫
Ωr

∫
Ωt

a∗(κ̂,q)
(
I− κ̂κ̂†)H(κ̂, k̂)

(
I− k̂k̂†)a(k̂,p) dk̂dκ̂, (q,p) ∈ Vr × Vt

(10)

where

a(k̂,p) = exp(−i2πk̂†p) (11)

As H(κ̂, k̂) is well-conditioned in Ωr×Ωt, the spatial degrees of freedom will be constrained

by the integral kernels:

a∗(κ̂,q)
(
I− κ̂κ̂†), (κ̂,q) ∈ Ωr × Vr and

(
I− k̂k̂†)a(k̂,p), (k̂,p) ∈ Ωt × Vt

For unpolarized antennas, it is equivalent to studying the kernel

a(k̂,p), (k̂,p) ∈ Ω× V (12)

1Note that the clusters illuminated by the transmit array need not be the same as those observed from
the receive array.
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where V can be the transmit or receive spaces, and Ω is the corresponding scattering interval.

We consider the following decomposition (equivalent to singular value decomposition on

finite-dimensional matrices):

a(k̂,p) =
∑

n

σnηn(k̂)ξ∗n(p), (k̂,p) ∈ Ω× V (13)

where {σn} is a sequence of non-negative numbers (singular values), and
{
ηn(·)} and

{
ξn(·)}

are orthonormal sets satisfying
∫

Ω

ηn(k̂)η∗m(k̂) dk̂ =

∫
V
ξn(p)ξ∗m(p) dp = δnm (14)

The σn, ηn(·) and ξn(·) are related by

∫
a(k̂,p)ξn(p) dp = σnη(k̂) (15)

The subspace spanned by
∫
a(k̂,p)ξn(p) dp for all n corresponding to significant σn’s, gives

the set of radiated field patterns that are array-limited to V and approximately wavevector-

limited to Ω. The number of significant singular values gives the dimension of this subspace.

The minimum of the dimensions of the transmit and receive subspaces yields the spatial

degrees of freedom for unpolarized antennas. For polarized antennas, we consider the 3× 3

integral kernel (
I− k̂k̂†) a(k̂,p), (k̂,p) ∈ Ω× V (16)
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instead. To ease the understanding, we consider linear arrays first, then followed by circular

and spherical arrays.

3.1 Unpolarized Linear Arrays

In spherical coordinates, the propagation direction k̂ can be expressed as

k̂ =




sin θ cosφ

sin θ sin φ

cos θ




and 0 ≤ θ < π, 0 ≤ φ < 2π. Assume Ω is separable over the elevation (θ) and azimuth (φ)

directions, that is, Ω = Θ×Φ. Consider a linear array of length 2L oriented along the z-axis

and centered at the origin. Then, the integral kernel a(·, ·) in Equation (12) becomes

a(cos θ, pz) = exp(−i2πpz cos θ) (17)

and corresponds to the Fourier transform, same as the mapping between the time and fre-

quency domains in waveform channels.

In waveform channels, transmitted signals will be first bandlimited to [−W,W ] and then

time-limited to [−T/2, T/2]. If s(t) is the transmitted signal, then the received signal will

be

r(t) =



∫ W

−W
exp(i2πft)S(f) df, t ∈ [−T/2, T/2]

0, otherwise

where S(f) is the Fourier transform of s(t). This operation is equivalent to that performed

by the kernel

exp(−i2πft), (t, f) ∈ [−T/2, T/2]× [−W,W ] (18)

It can be decomposed into a sum of shifted sinc dyads

exp(−i2πft) =
∞∑

n=−∞
sinc

[
2W

(
t− n

2W

)]
e−iπnf/W , (t, f) ∈ [−T/2, T/2]× [−W,W ] (19)

As most of the energy of the sinc function is concentrated within ±1/2W , so when T �
1/(2W ), we can make the following approximations:

exp(−i2πft) ≈
WT∑

n=−WT

sinc
[
2W

(
t− n

2W

)]
e−iπnf/W , (t, f) ∈ [−T/2, T/2]× [−W,W ] (20)

and ∫ T/2

−T/2

2W sinc
[
2W

(
t− n

2W

)]
sinc

[
2W

(
t− m

2W

)]
dt ≈ δnm, |n|, |m| ≤WT (21)
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Compared to the decomposition defined in Equation (13)–(14), the number of significant

singular values is 2WT for WT � 1. The subspace spanned by{√
2W sinc

[
2W

(
t− n

2W

)]
: n = 0, · · · ,±WT

}
(22)

gives the set of frequency-limited and approximately time-limited waveforms. Cast onto the

integral kernel for linear arrays, yields

a(cos θ, pz) =
∞∑

n=−∞
sinc

[
2L

(
cos θ − n

2L

)]
e−iπnpz/L, (cos θ, pz) ∈ Ωθ × [−L,L] (23)

where Ωθ =
{
cos θ : θ ∈ Θ

}
. The array-limited sinc functions have a resolution of 1/(2L)

over Ωθ. Therefore, the dimension of the array-limited and approximately wavevector-limited

subspace is 2L|Ωθ| for L|Ωθ| � 1.

Now, we justify the approximation made in Equation (20)–(21), and hence justify the

2L|Ωθ| formula. Slepian et al. [20, 21, 22] showed that the integral kernel for waveform

channels (Equation (18)) can be decomposed into

exp(−i2πft) =
∞∑

n=0

σnϕn(t)Ψn(f), (t, f) ∈ [−T/2, T/2]× [−W,W ]

and the orthonormal sets
{
ϕn(·)} and

{
Ψn(·)} are the prolate spheroidal wave functions.

The frequency-limited function Ψn(·) satisfies
∫ W

−W

Ψn(f)Ψ∗
m(f) df = δnm, and

∫ T/2

−T/2

ψn(t)ψ∗
m(t) dt = σ2

nδnm

where ψn(·) is the inverse Fourier transform of Ψn(·). Therefore, Ψn(·) contains σ2
n of its

energy within the time interval [−T/2, T/2]. Thus, the behavior of σn with n (1 > σ0 > σ1 >

· · · ≥ 0) determines the dimension of the subspace of frequency-limited and approximately

time-limited waveforms. Slepian et al. have shown that when n� 2WT , σ2
n closes to 1; and

when n� 2WT , σ2
n closes to 0. The transition occurs in an interval of n centered at 2WT

with width growing at rate ln(2WT ). Therefore, the dimension of the subspace should be

2WT + c1 ln(2WT ) + o
(
ln(2WT )

)
(24)

for WT � 1, and c1 is a constant. Cast onto linear arrays, when Ωθ contains a single interval,

the dimension of the array-limited and approximately wavevector-limited subspace is

2L|Ωθ|+ c1 ln(2L|Ωθ|) + o
(
ln(2L|Ωθ|)

)
(25)

for L|Ωθ| � 1. However, Ωθ likely contains more than one interval (see Table 1). Fortunately,

Landau et al. [23] showed that when Ωθ contains M sub-intervals, the dimension is simply

2L|Ωθ|+ c2M ln(2L|Ωθ|) + o
(
ln(2L|Ωθ|)

)
(26)
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for L|Ωθ| � 1, and c2 is a constant. Consequently, the dimension of the subspaces heuris-

tically derived based on resolvability agrees in first order with this mathematically more

rigorous approach.

3.2 Unpolarized Circular Arrays

Suppose Θ contain a single interval. If the linear array is oriented such that the scattering

cluster is at the broadside, then

|Ωθ| =
∫

Θ

d cos θ ≈
∫

Θ

dθ = |Θ|

On the other extreme, if the scattering cluster is at the endfire, then

|Ωθ| ≈
∫

Θ

θ dθ =
1

2
|Θ|2

As a result, the spatial degrees of freedom depends on the orientation of the linear array in

addition to its size and the scattering of physical environment. Figure 5 further illustrates

this dependence for Θ containing multiple sub-intervals. To achieve a viable separation of

array and channel characteristics, circular arrays are considered next.

Consider a circular array lying on the xy-plane of radius R normalized to a wavelength.
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Expressing the position vector p in spherical coordinates

p = R




sin θ′ cosφ′

sin θ′ sinφ′

cos θ′




and 0 ≤ θ′ < π, 0 ≤ φ′ < 2π, the integral kernel in Equation (12) becomes

a(φ, φ′) = exp
[−i2πR cos(φ− φ′)

]
, φ ∈ Φ (27)

As eiz cos φ =
∑∞

n=−∞ inJn(z)einφ where Jn(·) is the nth order Bessel function of the first kind

(referred as the Jacobi-Anger expansion [24]), it yields

a(φ, φ′) =

∞∑
n=−∞

inJn(2πR) einφe−inφ′
, φ ∈ Φ (28)

Obviously, the set
{

1√
2π
einφ′}

is orthonromal. If Φ = [0, 2π) (fully-scattered in the azimuth

direction), the set
{

1√
2π
einφ, φ ∈ Φ

}
is orthonormal as well and the expansion in Equation (28)

corresponds to the decomposition defined in Equation (13)–(14). Furthermore, when R �
1, Jn(2πR) ≈ 0 for |n| > 2πR [25]. Therefore, the dimension of the array-limited and

approximately wavevector limited subspace is 4πR for R� 1 and Φ = [0, 2π).

When Φ ⊂ [0, 2π), the set
{
einφ, φ ∈ Φ

}
is no longer orthogonal. Still, the subspace of

array-limited radiated field patterns is spanned by

{
1√
2π
einφ : n = −2πR, · · · , 2πR}

(29)

for R� 1. Therefore, finding the number of significant singular values of a(φ, φ′), φ ∈ Φ is

equivalent to finding the dimension of the subspace of functions that are spanned by the set

in Equation (29) and contain most of their energy in Φ.

When Φ contains a single interval, Slepian [26] has shown that the subspace of functions

spanned by
{
einφ

}N−1

n=0
and contained most of their energy within Φ has a dimension of

N |Φ|/(2π) for N � 1. This is also the dimension of the subspace of index-limited and

approximately frequency-limited discrete-time sequences. The orthonormal sets is the set of

discrete prolate spheriodal wave functions. As a result, the dimension of the array-limited

and approximately wavevector-limited subspace would be 4πR · |Φ|/(2π) = 2R|Φ| for R� 1.

When Φ contains more than one sub-interval, we use the heuristic approach based on

resolvability. In linear arrays, the radiated field pattern that has the narrowest beam-width is

sinc(2L cos θ) and hence, has a resolution of 1/(2L) over Ωθ. For circular arrays, the radiated

field pattern (spanned by the set in Equation (29)) that has the narrowest beam-width is

given by

g(φ) =
2πR∑

n=−2πR

einφ =
sin(π2Rφ)

sinφ
(30)
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which is the periodic sinc (Dirichlet) function. It attains one main lobe at φ = 0 and has

zeros at multiples of 1/(2R). Therefore, the resolution of circular arrays over Φ is 1/(2R).

Hence, the dimension of the array-limited and approximately wavevector-limited subspace is

2R|Φ| for R|Φ| � 1. Still, |Φ| depends on the orientation of the plane of the circular array

so spherical arrays are considered next.

3.3 Unpolarized Spherical Arrays

Suppose the radius of the spherical array is R normalized to a wavelength. Then, the integral

kernel in Equation (12) becomes

a(k̂, p̂) = exp
{
− i2πR

[
sin θ sin θ′ cos(φ− φ′) + cos θ cos θ′

]}
, k̂ ∈ Ω (31)

As both position vector and propagation direction attain spherical geometries, the kernel

can be decomposed into a sum of dyads of spherical harmonics:

a(k̂, p̂) = 4π

∞∑
l=0

l∑
m=−l

(−i)ljl(2πR)Ylm(θ, φ)Y ∗
lm(θ′, φ′), k̂ ∈ Ω (32)

where jl(·) is the spherical Bessel function of the first kind and order l. The set of spher-

ical harmonics
{
Ylm(θ, φ)

}
is a complete orthonormal set on the surface of a unit sphere.

The proof is included in Appendix B. When Ω = [0, π)× [0, 2π) (fully scattered in the en-

tire propagation space), the decomposition agrees with that defined in Equation (13)–(14).

Furthermore, when R � 1, jl(2πR) ≈ 0 for l > 2πR [25]. Therefore, the dimension of

the array-limited and approximately wavevector-limited subspace is 4π2R2 for R � 1 and

Ω = [0, π)× [0, 2π).

When Ω ⊂ [0, π) × [0, 2π), the set
{
Ylm(θ, φ), k̂ ∈ Ω

}
is no longer orthogonal. But the

subspace of array-limited radiated field patterns is still spanned by

{
Ylm(θ, φ) : l = 0, 1, · · · , 2πR and m = −l, · · · , l

}
(33)

for R � 1. Figure 6 plots Y2m(θ, φ) for m = 0, 1, 2, in contrast to sinc functions of linear

arrays and complex exponentials of circular arrays. Now, we want to find the dimension of the

subspace of functions that are spanned by the set defined in Equation (33) and contain most

of their energy in Ω. To solve it, we reiterate the heuristic approach based on resolvability.

The spherical harmonics are separable

Ylm(θ, φ) = clmP
m
l (cos θ) eimφ

where clm =
√

2l+1
4π

(l−m)!
(l+m)!

for normalization and Pm
l (·) is the associated Legendre function.

At θ = π/2, the radiated field pattern that has the narrowest beam-width in the azimuth
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Figure 6: Plots of spherical harmonic functions.

direction, is a linear combination of Yll(π/2, φ) for l = 0, · · · , 2πR and is given by

gφ(φ) =

2πR∑
l=−2πR

eilφ =
sin(π2Rφ)

sin φ
(34)

same as circular arrays of radius R. It attains a main lobe at φ = 0 and has a beam-

width of 1/(2R). At the main lobe of gφ(φ), the radiated field pattern that has the nar-

rowest beam-width in the elevation direction, is a linear combination of Y2πR,m(θ, 0) for

m = −2πR, · · · , 2πR. Among them, the beam-width around θ = π/2 is determined by

Y2πR,m(θ, 0) for m = ±2πR and the corresponding pattern is

gθ(θ) = P 2πR
2πR (cos θ) =

(−1)2πR(2πR)!

22πR(2πR)!
(sin θ)2πR (35)

Since sinn θ ≈ 1 − n/2(π/2 − θ)2 around θ = π/2, so the beam-width of gθ(θ) is 4/(2πR).

Hence, the resolution of spherical arrays over Ω is 1
2R

4
2πR

equal to 1/(πR2). Defining the

effective aperture of a spherical array as

A = πR2 (36)

which is its area of projection onto a 2-D plane normalized to a square wavelength, the

resolution is then expressed as 1/A. Consequently, the dimension of the array-limited and

approximately wavevector-limited subspace is A|Ω| for A|Ω| � 1.

3.4 Wavevector-Aperture-Polarization Product

Suppose At and Ar denote the effective aperture of the transmit and the receive spherical ar-

rays respectively. Then, the dimensions of the array-limited and approximately wavevector-

limited subspace at the transmitter and the receiver are At|Ωt| and Ar|Ωr| respectively. The
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minimum of them gives the number of spatial degrees of freedom for unpolarized antennas

and is equal to

min
{At|Ωt|, Ar|Ωr|

}
(37)

for At|Ωt|,Ar|Ωr| � 1. We refer to this quantity as the wavevector-aperture product.

To fully utilize the scattering in physical environments, polarized antennas are need.

Now, we consider the 3× 3 integral kernel in Equation (16) instead:

(
I− k̂k̂†) a(k̂,p), (k̂,p) ∈ Ω× V (38)

This kernel maps the vectored current distribution on the array to the polarized radiated

field. The polarization matrix
(
I − k̂k̂†) is of rank 2 only. Immaterial to the rank of the

channel response H(κ̂, k̂), the rank of the system response can only be equal to or less than

2. Therefore, there is only a 2-fold increase in the dimension of the transmit and receive

subspaces, that is, 2A|Ω| for polarized spherical arrays. Consequently, the number of spatial

degrees of freedom is given by

min
{
2At|Ωt|, 2Ar|Ωr|

}
(39)

for At|Ωt|,Ar|Ωr| � 1. We refer to this quantity as the wavevector-aperture-polarization

product which gives the ultimate spatial degrees of freedom.

4 Physical Interpretations and Implications

In this section, we will elucidate the physical insights of the main results, and attempt to

bridge between antenna theory and information theory on concepts of antenna arrays.

From Power Gain to Multiplexing Gain

In antenna theory, the channel solid angles determine the amount of transmit power

captured by the receiving antennas. The larger the angles are, the more the receiving power

is. It is reflected by the path loss exponent commonly used to predict the received signal

strength and the range of coverage. But when the size of arrays and/or channel solid angles

are substantial, the transmitted power can be splitted up to support parallel data streams.

Figure 7 gives a pictorial description on how the antenna array resolves the channel solid

angles and creates parallel spatial channels. Thus, the array size and the channel solid angle

crucially determine the transition from a pure power gain perspective as in the antenna

theory to the spatial multiplexing gain considered in information theory.

Measure of Scattering

The wavevector domain provides an appropriate coordinate to describe the scattering

of radio waves by physical objects in the environment. The total solid angles subtended
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Figure 7: Illustrate the wavevector-aperture product. The shaded circle is of area 1/A. The

number of these circles used to fill up the channel solid angles gives the spatial degrees of

freedom (times a factor of 2 for polarization).

by these objects, |Ωt| and |Ωr|, reflect the amount of channel resources. In the statistical

MIMO model, the channel correlation matrix is used to capture these channel resources.

The scattering of physical environment is then measured by the rank of this matrix. An

inadequate of this measure is its dependence on the number of antennas and their relative

positions on the arrays. The channel solid angles, on the other hand, do not depend on these

characteristics of antenna arrays (plus array orientation for spherical arrays) and hence

provide a more intrinsic measure. Just like delay spread, we would say a typical indoor

channel has a delay spread of 10–100 ns without mentioning the bandwidth and/or sampling

rate of the system.

Geometry and Size of Arrays

The geometry of antenna arrays determines the appropriate coordinate system to solve

the set of Maxwell equations or equivalently, the integral kernel a(·, ·) in Equation (12). This

results in different mapping between the array and the wavevector domains. The radiated

field is then spanned by different basis functions: sinc functions for linear arrays, complex

exponentials for circular arrays and spherical harmonics for spherical arrays. The array size

determines how many of them are significant or easy to excite. For example, the number

of significant excitation modes are 4L for linear arrays of length 2L, 2πR for circular arrays

of radius R and 4πA for spherical arrays of effective aperture A. Consequently, given the

size of arrays, there is a limit to the number of degrees of freedom. Packing more antennas

beyond this limit will not increase the channel capacity significantly even in a fully-scattered
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environment.

Polarization Benefits

The polarization benefit is determined by the rank of the system response C(·, ·) in

Equation (2) which is the minimum of the rank of the array responses, Ar(·, ·) and At(·, ·),
and channel response H(·, ·). Therefore, just looking at the rank of the channel response

is not sufficient. For example, there is a claim of 6-fold increase in degrees of freedom

from polarization [27]. The claim is based on the assumption that the electric field and the

magnetic field are oscillating independently, and hence there is a total of 6-fold increase.

This independence may hold on the channel response; however, it does not hold in the array

responses where the electric field is defined by the curl of the magnetic field. As a result,

there is at most 3-fold increase in degrees of freedom. In the intermediate- and near-field

regions, the Green function in Equation (3) is of rank 3, so in those two regions the 3-fold

increase is attainable. However, in the more important far-field region the rank of the array

responses is 2 and hence places a bottleneck on the available degrees of freedom.

The integral kernel for the array response is
(
I − k̂k̂†) exp(−i2πk̂p) and its physical

dimension is 3 × 3. The polarization benefit is determined by the rank of this kernel, that

is, the rank of the polarization matrix I− k̂k̂†. It is independent of the physical dimension

of the propagation direction k̂. Even the physical dimension of the propagation direction

is 1 (equivalent to resolving either the elevation or azimuth directions as in the linear and

circular arrays), the rank of the polarization matrix remains 2. This helps us understand

better the claim of 4-fold increase in degrees of freedom from polarization [28]. The extra

factor of 2 in the claim accounts for the physical dimension of the propagation direction

(elevation plus azimuth) which should not be attributed as a polarization benefit.

Effects of Carrier Frequency

The array apertures in the wavevector-aperture-polarization product are normalized

quantities. Let At0 and Ar0 denote the absolute effective aperture of the transmit and

receive arrays respectively. Then, the number of degrees of freedom can be expressed as

1

λ2
min

{
2At0|Ωt|, 2Ar0|Ωr|

}
(40)

At first glance, the degrees of freedom increases with carrier frequency. Therefore, it is

commonly believed that by operating at a higher frequency it is possible to increase the

degrees of freedom by packing more antennas on the same wireless device. However, the

channel solid angles decrease with increasing frequency. The reasons are twofold: (1) elec-

tromagnetic waves of higher frequency attenuate more after passing through or bouncing off

channel objects which reduces the number of scattering clusters; and (2) at high frequency

the wavelength is small relative to the feature size of typical channel objects, so scattering
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Figure 8: (a) Reproduce the plot of |Ωθ| versus frequency in an office and residential envi-

ronments from [16]. (b) Plots the corresponding |Ωθ|/λ versus frequency.

appears to be more specular in nature and results in smaller solid angles. These factors to-

gether magnify the decrease in the channel solid angles. As a result, it is more conclusive to

consider the entities |Ωt|/λ2 and |Ωr|/λ2 when judging the performance of multiple-antenna

systems in different physical environments and frequency bands.

For example, Figure 8(a) reproduces the measured |Ωθ| at different frequencies reported

in [16] where linear arrays were used in the measurement. The |Ωθ| decreases with increasing

frequency. As linear arrays can only resolve the elevation direction, we plot the entity |Ωθ|/λ
in Figure 8(b). The graphs show that |Ωθ|/λ initially increase with frequency and after

passing the optimal frequencies, then decrease. Interestingly, the optimal frequencies for

that particular office and residential environments are between 5 and 6 GHz where the IEEE

802.11a standard is located.

5 Extension to Multiuser Environments

The channel response in Equation (8) is non-zero at transmit direction k̂ and receive direction

κ̂, whenever there is a scatterer providing the connectivity between these directions. In a

network, users can be viewed as another type of channel object affecting this connectivity and

the wavevector domain provides an appropriate coordinate to describe the physical positions

of network users.
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Due to the broadcast nature of a wireless channel, signals can be captured and processed

by any nearby user. If the user is cooperative, it will behave like a scatterer and relay

the captured signals to the intended destination. But it can be more sophisticated: it

can spatially demodulate the captured signals, then spatially modulate and forward them.

Suppose Ω1
t and Ω1

r are the scattering intervals subtended by the scattering clusters, and Ωi
t

and Ωi
r (i = 2, · · · , K) are the scattering intervals subtended by the ith nearby users from the

transmitter and the receiver respectively (see Figure 9). Then, the channel response is non-

zero only on
(⋃K

i=1 Ωi
r

)
×

(⋃K
i=1 Ωi

t

)
. Therefore, the channel solid angles in the wavevector-

aperture-polarization product changes from |Ω1
t | and |Ω1

r| to
∣∣⋃K

i=1 Ωi
t

∣∣ and
∣∣⋃K

i=1 Ωi
r

∣∣.
Depending on the extent of overlapping among Ωi

t’s and among Ωi
r’s, they can be totally

non-overlapped as in Figure 9(a) or completely overlapped as in Figure 9(b). Except in the

later case, the number of spatial degrees of freedom increases with the existence of network

users. Consequently, we can think of “relay users” as an additional signal dimension. This is

different from the time/frequency counterparts in waveform channels where having multiple

users does not provide additional degrees of freedom. They are just sharing the existing time

/frequency degrees of freedom.

On the contrary, if the nearby user is non-cooperative and interfering, then it will reduce

the signal-to-noise ratio on that particular subset of transmit and receive directions. Hence,

its effect on the transmitted signal is additive interfering. When Ω1
r∩(

⋃K
i=2 Ωi

r) is non-empty,

the receiver can avoid the interferers and abandon this subset of channel resource. This will

incur a loss in the receive channel solid angle by
∣∣Ω1

r ∩ (
⋃K

i=2 Ωi
r)
∣∣ and hence decrease the

spatial degrees of freedom. In the extreme case as shown in Figure 9(b), all the degrees of

freedom created by the scatterers will been lost. Furthermore, if the scattering intervals Ωt

and Ωr are coupled such as in the single-bounce channel, the transmitter should abandon

the subset Ω1
t ∩ (

⋃K
i=2 Ωi

t) as well. This results in a loss of the transmit channel solid angle

by
∣∣Ω1

t ∩ (
⋃K

i=2 Ωi
t)
∣∣.

6 Optimal Number of Antennas

To ease the understanding, we will use linear arrays as the mapping between the array

and wavevector domains is the familiar Fourier transform. For other array geometries, the

analysis continues to apply but with different mappings.

6.1 Single-User Channels

When Ωθ contains a single interval, we can apply the Whittaker-Shannon sampling theorem.

Now, 2L|Ωθ| number of uniformly-spaced antennas are adequate in the respective transmit
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Figure 10: The physical environment with Ωθ = Ωθ,1∪Ωθ,2∪Ωθ,3 as seen by: (a) a continuous

linear array; (b) a discrete linear array with uniform antenna spacing of ∆ < 1/2 (normalized

to λ); and (c) a discrete linear array with uniform antenna spacing of ∆ = 1
|Ωθ| ≥ 1/2.

and receive spaces. For example, in the fully-scattered environment we have Ωθ = (−1, 1],

so 4L number of antennas with λ/2 spacing suffices for optimal performance. Packing more

antennas beyond 2L|Ωθ| is unnecessary and corresponds to oversampling in the array domain.

Putting less antennas, on the other hand, is equivalent to decimating the signal on the array

and hence increases the periodicity of the radiated field in the wavevector domain. Grating

lobes occurs where the radiated field repeats itself within the interval Ωθ. At the transmitter,

the same information will be sent over more than one direction while at the receiver, signals

from different directions will be aliased and perceived as from the same direction.

When Ωθ contains multiple sub-intervals and is packable without gap2, 2L|Ωθ| number of

uniformly-spaced antennas is still adequate as illustrated in Figure 10. When Ωθ is arbitrary,

the problem is equivalent to finding the minimum rate to sample multiband signals3 with

spectral support of W. Landau [29] has derived the lower bound which is |W|, that is, the

minumum number of samples taken over a period of T for perfect reconstruction is T |W|.
It has been shown that periodic non-uniform sampling can approach this lower bound [30].

This implies that the optimal number of antennas remains 2L|Ωθ| but the position of the

2There exists α0 such that translating Ωθ by multiples of α0 introduces no overlap, and tiling a number
of them covers the entire axis.

3Signals have non-vanishing power spectral density over a funite union of arbitrary non-overlapping
intervals in the frequency domain.
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antennas depends on the structure of Ωθ.

Averaging over the array orientation, E
[|Ωθ|

]
is approximately equal to 2

π
|Θ|. If the

parameters, |Θt| and |Θr|, in the targeted environment are known a prior, we will demon-

strate numerically that the respective 2LE
[|Ωθ|

]
number of uniformly-spaced antennas at

the transmitter and the receiver are adequate to approach the optimal ergodic capacity.

That is, 4
π
Lt|Θt| number of transmit and 4

π
Lr|Θr| number of receive antennas suffice where

2Lt and 2Lr are the length of the transmit and receive arrays respectively. This is in analogy

to knowing the delay spread in the targeted environment so as to design channel equalizers

with the optimal number of taps.

6.2 Multiuser Environments

In a cooperative (relaying) network, simply replacing Ω in the single-user case by
∣∣⋃K

i=1 Ωi
t

∣∣
at the transmitter and by

∣∣⋃K
i=1 Ωi

r

∣∣ at the receiver, will give the optimal number of transmit

and receive antennas. In a non-cooperative (interfering) network, on the contrary, the perfor-

mance of any interference management scheme depends on the gaps between the interfering

and the desired scattering intervals. Large gaps result in better performance. For example, if

Ωθ,2 in Figure 10(a) corresponds to the interfering interval while Ωθ,1 and Ωθ,3 are the desired

intervals, increasing the antenna spacing beyond 1/2 (normalized to a wavelength) reduces

the gaps between Ωθ,2 and Ωθ,1, and between Ωθ,2 and Ωθ,3 as illustrated in Figure 10(c).

This will degrade the performance. Likewise, decreasing the antenna spacing smaller than

1/2 will not change the gaps (see Figure 10(b)) and hence will not improve the performance.

Therefore, the number of antennas in non-cooperative networks is insensitive to the physical

environment but depends on the size of arrays.

6.3 Numerical Examples

To verify the results, numerical examples are given. The transmit and receive signals on the

arrays are related by

y(qz) =

∫
c(qz, pz)x(pz) dpz + z(qz) (41)

where z(pz) is the additive white complex Gaussian noise of zero mean and unit variance.

The transmit signal x(·) is normalized such that E
[‖x(pz)‖2

]
= SNR. The system response

c(qz, pz) can be decomposed into

c(qz, pz) =

∫∫
ei2πqz cos ϑ h(ϑ, θ) e−i2πpz cos θ d cosϑ d cos θ (42)

where θ and ϑ are the transmit and receive angles respectively. We assume that the channel

response h(ϑ, θ) is uncorrelated at different (ϑ, θ), and is a complex Gaussian random process

with zero mean and unit variance within the scattering intervals.
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Suppose the antennas are uniformly spaced with separation of ∆t on the transmit array

and ∆r on the receive array. Then, the (n,m)th element of the channel matrix is given by

Cnm =
√

∆r∆t c(n∆r, m∆t) (43)

The ergodic capacity with full channel state information at both transmitter and receiver is

used for comparison, and is given by

EC

[∑
i

(log2 υσ
2
i )

+
]

where υ satisfies ∑
i

(υ − σ−2
i )+ = SNR

and σi’s are the singular values of C.

Two propagation environments will be studied: fully-scattered (ideal) and indoor. In

the fully-scattered environment, there are scatterers all around the transmitter and receiver,

which result in their respective |Ωθ| being 2. Parameters for the indoor environment are

inferred from Table 1. There are 3 scattering clusters each of angle 20◦ (0.35 rad) ran-

domly placed which result in E
[|Ωθ|

] ≈ 2
π
× 0.35 × 3 = 0.67. Figure 11 plots the channel

capacity versus the number of antennas on arrays of 4-wavelength long (2L = 4) at SNR

of 10 dB. The graphs show that
⌈
2LE[|Ωθ|]

⌉
number of transmit and receive antennas suf-

fice to approach the optimal throughput in both environments. To further re-inforce the

observations, Figure 12 plots the channel capacities for different array sizes in the indoor

environment. The numbers of transmit and receive antennas in the discrete arrays are kept

to be
⌈
2LE[|Ωθ|]

⌉
. Continuous arrays are used as upper-bounds for comparison. The graphs

show that the channel capacities acheived by the discrete arrays approach closely to those

of the continuous arrays.

Taking into account the interfering signals, the additive noise term is no longer white but

is colored with the (n,m)th element in the covariance matrix being

δn−m +
K∑

i=2

INRi∆r

∫
Θi

r

ej2π cos θ∆r(n−m) d cos θ (44)

where INRi denotes the average transmit interference-to-noise ratio. Suppose INRi = SNR,

for i = 2, · · · , K. The scattering intervals Θi
t’s and Θi

r’s are assumed to be independently

and uniformly distributed over [0, π). Figure 13 plots the waterfilling capacity versus the

number of receive antennas for discrete arrays of 4-wavelength long at SNR of 10 dB and the

number of transmit antennas is fixed to
⌈
2LE[|Ωθ|]

⌉
= 3. The graphs show that invariant to

the physical environment and the number of interferers, the optimal number of antennas is

always 9 = 4L+ 1. Similar obervations are reported when the number of transmit antennas

is increased.
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7 Conclusions

Previous studies on the capacity of multiple-antenna channels are based on a statistical

MIMO approach. Given a constraint on the areas of the transmit and receive arrays, there

is a deterministic limit to the number of spatial degrees of freedom underlying the statistical

approach. In this paper, we incorporate antenna theory with observations from spatial

channel measurements to obtain a mathematical model. Based on this model, we derive the

limit to the spatial degrees of freedom given the space constraints. The results help assess

the optimal number of antennas that should be packed on a given wireless device in a given

application environment. Nowadays major portion of the chipset for single-antenna systems

is occupied by the RF/analog frontend and is expected to increase due to the poor scaling

of analog circuitry. Also, most of the power consumption in single-antenna systems goes

to the RF/analog frontend. Therefore, optimizing the number of antennas plus RF/analog

frontends is practically important for multiple-antenna systems. The proposed mathematical

framework would be useful in this aspect.
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A Proof of Equation (3)

The Green function G(p,p′) satisfies(−∇p ×∇p ×+ k2
0

)G(p,p′) = ik0η δ(p− p′) (45)

Notice that under 3-dimensional Fourier transform, the curl operator transforms to

∇p× F←→ ik×
Taking the 3-dimensional Fourier transform with respect to p on both sides of Equation (45)

and applying the following identity,

a× (b× c) = (a†c)b− (a†b)c ,

we obtain [
kk† + (k2

0 − k2)I
]
G(k,p′) = ik0ηe

−ik†p′

Recalling the matrix inversion lemma, the Green function is then given by

G(k,p′) =
iη

k0(k
2
0 − k2)

(k2
0I− kk†)e−ik†p′

Define r = p− p′ and perform the inverse Fourier transform result in

G(p,p′) =
iη

(2π)3k0

∫
(k2

0I− kk†)
eik

†r

k2
0 − k2

d3k

which is equivalent to

G(p,p′) =
ik0η

(2π)3

(
I +

1

k2
0

∇r∇r

)∫
eik

†r

k2
0 − k2

d3k

The integral on the right side is a complex integral and is evaluated as 2π2eik0r/r. Its gradient

is

∇r
eik0r

r
=

(
ik0 − 1

r

)eik0r

r
r̂

and thus, the second gradient is

∇r∇r
eik0r

r
=
eik0r

r

[
−k2

0 r̂r̂
† +

ik0

r
(I− 3r̂r̂†)− 1

r2
(I− 3r̂r̂†)

]
Consequently, the Green function is

G(p,p′) =
ik0ηe

ik0r

4πr

[
(I− r̂r̂†) +

i

k0r
(I− 3r̂r̂†)− 1

k2
0r

2
(I− 3r̂r̂†)

]

As k0 = 2π/λ where λ is the wavelength, so the Green function can also be written as

G(p,p′) =
iηei2πr/λ

2λr

[
(I− r̂r̂†) +

i

2πr/λ
(I− 3r̂r̂†)− 1

(2πr/λ)2
(I− 3r̂r̂†)

]
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B Proof of Equation (32)

Define

cos γ = sin θ sin θ′ cos(φ− φ′) + cos θ cos θ′

in which the argument γ is the angle between the position vector p and the direction vector k̂.

As −1 ≤ cos γ ≤ 1, so the array response can be expanded in terms of Legendre polynomials

which are orthogonal over [−1, 1]:

e−i2πR cos γ =
∞∑
l=1

al

√
2l + 1

2
Pl(cos γ)

The coefficients in this expansion are given by

al =

√
2l + 1

2

∫ 1

−1

e−i2πRxPl(x) dx

The Rodrigues formula [25] provides

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l

which results in

al =
(−1)l

2ll!

√
2l + 1

2

∫ 1

−1

(x2 − 1)l d
l

dxl
e−i2πLx dx

The integral can be further simplified to∫ 1

−1

(x2 − 1)l d
l

dxl
e−i2πRx dx = (−i2πR)l

∫ 1

−1

(x2 − 1)le−i2πRx dx

= (−i2πR)l

∫ 1

−1

(x2 − 1)l cos(2πRx) dx

= (−i2πR)l l!

(−πR)l
√
R
Jl+1/2(2πR)

= i2l+1l! jl(2πR)

and yields

al = (−i)l
√

2(2l + 1) jl(2πR)

Therefore, we obtain

e−i2πR cos γ =

∞∑
l=0

(−i)l(2l + 1)jl(2πR)P (cos γ)

Applying the addition theorem [25], yields

e−i2πR cos γ = 4π

∞∑
l=0

l∑
m=−l

(−i)ljl(2πR)Ylm(θ, φ)Y ∗
lm(θ′, φ′)

where jl(·) is the spherical bessel function of the first kind and lth order.

28



References

[1] E. Telatar, “Capacity of multi-antenna gaussian channels,” AT&T-Bell Labs Internal

Tech. Memo., June 1995.

[2] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading

environment when using multiple antennas,” Wireless Personal Commun., vol. 6, pp.

311–35, 1998.

[3] R. G. Gallager, Information Theory. Wiley, 1968.

[4] G. J. Foschini, “Layered space-time architecture for wireless communication in a fad-

ing environment when using multi-element antennas,” Bell Labs Tech. J., pp. 41–59,

Autumn 1996.

[5] A. S. Y. Poon, D. N. C. Tse, and R. W. Brodersen, “An adaptive multi-antenna

transceiver for slowly flat fading channels,” to appear in IEEE Trans. Commun.

[6] G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless communication,”

IEEE Trans. Commun., vol. 46, pp. 357–66, Mar. 1998.

[7] A. M. Sayeed, “Deconstructing multi-antenna fading channels,” IEEE Trans. Signal

Processing, vol. 50, pp. 2563–79, Oct. 2002.

[8] K. Liu, R. Vasanthan, and A. M. Sayeed, “Capacity scaling and spectral efficiency in

wideband correlated mimo channels,” submitted to IEEE Trans. Inform. Theory.

[9] A. S. Y. Poon, D. N. C. Tse, and R. W. Brodersen, “Multiple-antenna channels from a

combined physical and networking perspective,” Proc. Asilomar Conf. Signals, Systems

and Computers, vol. 2, pp. 1528–32, Nov. 2002.

[10] S. Wei, D. Goeskel, and R. Janaswamy, “On the asymptotic capacity of mimo systems

with fixed length antenna arrays,” Proc. ICC, vol. 4, pp. 2633–37, May 2003.

[11] T. S. Pollock, T. D. Abhayapala, and R. A. Kennedy, “Antenna saturation effects on

MIMO capacity,” Proc. ICC, vol. 4, pp. 2301–05, May 2003.

[12] L. W. Hanlen and M. Fu, “Wireless communications systems with spatial diversity: a

volumetric approach,” Proc. ICC, vol. 4, pp. 2673–77, May 2003.

[13] J. D. Jackson, Classical Electrodynamics, 3rd ed. Wiley, 1998.

[14] J. D. Kraus and R. J. Marhefka, Antennas, 3rd ed. McGraw-Hill, 2001.

29



[15] R. J.-M. Cramer, “An evaluation of ultra-wideband propagation channels,” Ph.D. dis-

sertation, University of Southern California, Dec. 2000.

[16] A. S. Y. Poon and M. Ho, “Indoor multiple-antenna channel characterization from 2 to

8 GHz,” Proc. IEEE ICC, vol. 5, pp. 3519–23, May 2003.

[17] Q. H. Spencer et al., “Modeling the statistical time and angle of arrival characteristics

of an indoor multipath channel,” IEEE J. Select. Areas Commun., vol. 18, pp. 347–60,

Mar. 2000.

[18] R. Heddergott and P. Truffer, “Statistical characteristics of indoor radio propagation

in NLOS scenarios,” Tech. Rep. COST 259 TD(00) 024, Valencia, Spain, Tech. Rep.

COST 259, Jan. 2000.

[19] T. Zwick, C. Fischer, and W. Wiesbeck, “A stochastic multipath channel model includ-

ing path directions for indoor environments,” IEEE J. Select. Areas Commun., vol. 20,

pp. 1178–92, Aug. 2002.

[20] D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, fourier analysis and

uncertainty - I,” Bell System Tech. J., vol. 40, pp. 43–63, Jan. 1961.

[21] H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, fourier analysis and

uncertainty - II,” Bell System Tech. J., vol. 40, pp. 65–84, Jan. 1961.

[22] ——, “Prolate spheroidal wave functions, fourier analysis and uncertainty - III: the

dimension of the space of essentially time- and band-limited signals,” Bell System Tech.

J., vol. 41, pp. 1295–36, July 1962.

[23] H. J. Landau and H. Widom, “Eigenvalue distribution of time and frequency limiting,”

J. Mathematical Analysis and Applications, vol. 77, pp. 469–81, 1980.

[24] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables, 10th ed. New York: Government Printing Office,

1972.

[25] G. Arfken and H. J. Weber, Mathematical Methods for Physicists, 4th ed. New York:

Academic Press, 1995.

[26] D. Slepian, “Prolate spheroidal wave functions, fourier analysis and uncertainty - V: the

discrete case,” Bell Syst. Tech. J., vol. 57, pp. 1371–30, May 1978.

30



[27] M. R. Andrews, P. P. Mitra, and R. deCarvalho, “Tripling the capacity of wireless

communications using electromagnetic polarization,” Nature, vol. 409, pp. 316–18, Jan.

2001.

[28] T. L. Marzetta, “Fundamental limitations on the capacity of wireless links that use

polarimetric antenna arrays,” Proc. IEEE ISIT, p. 51, July 2002.

[29] H. J. Landau, “Necessary density conditions for sampling and interpolation of certain

entire functions,” Acta. Math., vol. 117, pp. 37–52, Feb. 1967.

[30] C. Herley and P. W. Wong, “Minimum rate sampling and reconstruction of signals with

arbitrary frequency support,” IEEE Trans. Inform. Theory, vol. 45, pp. 1555–64, July

1999.

31


