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Abstract: The infrastructure to support electronic commerce is one of the areas where more
processing power is needed. A multiprocessor system can offer advantages for running electronic
commerce applications. The memory performance of an electronic commerce server, i.e. a system
running electronic commerce applications, is evaluated in the case of shared-bus multiprocessor
architecture. The software architecture of this server is based on a three-tier model and the
workloads have been setup as specified by the TPC-W benchmark. The hardware configurations
are: a single SMP running tiers two and three, and two SMPs each one running a single tier. The
influence of memory subsystem on performance and scalability is analysed and several solutions
aimed at reducing the latency of memory considered. After initial experiments, which validate the
methodology, choices for cache, scheduling algorithm, and coherence protocol are explored to
enhance performance and scalability. As in previous studies on shared-bus multiprocessors, it was
found that the memory performance is highly influenced by cache parameters. While scaling the
machine, the coherence overhead weighs more and more on the memory performance. False
sharing in the kernel is among the main causes of this overhead. Unlike previous studies, passive
sharing i.e. the useless sharing of the private data of the migrating processes, is shown to be an
important factor that influences performance. This is especially true when multiprocessors with a
higher number of processors are considered: an increase in the number of processors produces real
benefits only if advanced techniques for reducing the coherence overhead are properly adopted.
Scheduling techniques limiting process migration may reduce passive sharing, while restructuring
techniques of the kernel data may reduce false sharing misses. However, even when process
migration is reduced through cache-affinity techniques, standard coherence protocols like MESI
protocol don’t allow the best performance. Coherence protocols such as PSCR and AMSD produce
performance benefits. PSCR, in particular, eliminates coherence overhead due to passive sharing
and minimises the number of coherence misses. The adoption of PSCR and cache-affinity
scheduling allows the multiprocessor scalability to be extended to 20 processors for a 128-bit
shared bus and current values of main-memory-to-processor speed gap.

1 Introduction

The infrastructure to support electronic commerce [1–3], is
one of the areas where more processing power is currently
needed. A typical e-commerce application is based on three-
tiered architecture [4–6]. On tier one, the user machine runs
a client program, typically a web browser and/or Java
applets; the client sends its requests to the server and
receives the results for the user [5]. Tier two includes a web
server that satisfies application specific requests; it takes
care of task management and delivers standard services,
such as transaction management and activity log. Tier three
contains data and their managers, typically DBMS systems,
to furnish credit-card information, catalogue information,
shipping information, and user information. The elements of
tiers two and three can be merged onto a single platform, or

they can be distributed on several computers (clustered
solution [7, 8]). The single-computer solution has the
advantage of lower cost and simplified management. The
distributed solution has flexibility, scalability, and fault-
tolerance. In both cases the systems can be based on
multiprocessor architecture [9].

We consider servers based on shared-bus shared-memory
multiprocessor systems. In this case, design issues are
scalability and speedup, which may be limited by memory
latency and bus traffic. The use of cache memories can
reduce both. Unfortunately multiple cache memories
introduce the coherence problem [10–12]. The coherence
protocol may have a great influence on performance. As a
matter of fact, to guarantee cache coherence the protocol
needs a certain number of bus transactions known as
coherence overhead that add up to the basic bus traffic,
which is also present in cache-based uniprocessors. Thus a
design issue is to minimise coherence overhead.
A commonly adopted solution to the coherence is the use
of MESI protocol [13]. Consequences on memory perform-
ance may also come from the scheduling algorithm, which
plays an essential role in these systems to obtain load
balancing. This also generates process migration and a
scarcely considered form of sharing, namely passive
sharing, where a private data block of a process can
become resident in multiple caches; coherence has to be
enforced even on those data, thus generating useless
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coherence-related overhead, which may limit system
performance [14, 15]. This sharing is not to be confused
with other types of avoidable sharing like false sharing [16].

The aim of this paper is to analyse the influence of the
memory subsystem on the performance and scalability of an
e-commerce server based on a shared-bus shared-memory
multiprocessor architecture. In our evaluation the workloads
have been setup as it is specified in the TPC-W benchmark
[17]. TPC-W simulates the activities of a business-oriented
transactional web server. That workload exercises the
breadth of system components associated with such
environments. The components we used in our implemen-
tation are: the Apache daemon [18], which handles HTTP
requests; several UNIX utilities, which both access file
system and interface the various programs running on the
system; and an SQL server, namely PostgreSQL [19], which
handles database queries. We considered the cases when the
workload is running on a single multiprocessor and when it
is distributed on two multiprocessors (one for each server
tier). The performance evaluation methodology relies on
enhanced trace-driven simulation by means of the trace
factory environment [20, 21]. We considered the major
bottlenecks of the memory subsystem of this architecture.
Starting from a reference case we explored different
architectural choices as for cache, number of processors,
scheduling algorithm, and coherence protocol.

We found, similar to other works [22, 23], that large
caches and cache-affinity improve the performance, but
already with a 2 Mbyte cache size the performance increase
is limited and it is mostly influenced by the coherence
overhead. This situation is more evident as the number of
processors is increased.

The results we obtained show that in these systems MESI
is not an optimal choice as coherence protocol, mainly
because of its nonselective invalidation mechanism. The use
of a selective invalidation line in PSCR [14] can recover the
efficiency of a write-update policy to maintain coherence.
This paper shows how this kind of protocol is effective
for some test-beds used in e-commerce server through a
TPC-W benchmark.

2 Memory subsystem issues and their
implications on system performance

From the user’s point of view, a multiprocessor system
could be employed to speed-up e-commerce workloads with
the goal of serving more requests per time unit. At the same
time, the system designer tries to achieve a higher
scalability to offer a wide range of processing power using
the same architecture.

The memory subsystem plays an essential role in
achieving these goals [24–27]. To enhance the performance
of the memory subsystem we need to minimise the memory
latency, also in current generations of microprocessor which
incorporate techniques to aggressively exploit instruction-
level parallelism [28].

A typical solution, with diminishing returns [29], to
reduce bus traffic is to include large cache memories.
Caches contribute to hide memory latency and to reduce
traffic on the bus [30–32], but they cause the coherence
problem [10–12]. Two or more processors may store a copy
of the same memory block in their private cache. When one
of them performs a write operation on a location within that
block, a coherence protocol is required to guarantee that
each subsequent read operation by any processor may get
the updated value.

The protocol activity requires a number of bus transactions
(coherence overhead) to keep the copies coherent, which add

up to the basic bus traffic as present in cache-based
uniprocessors. In shared-memory systems, another import-
ant factor of the bus traffic is due to misses generated as a
consequence of coherence handling (invalidaton misses).

The coherence overhead depends on the kind of data
sharing exhibited by the program. Three different types of
data sharing can be observed: true sharing [16], which
occurs when the same cached data item is referenced by
processes running on different processors, false sharing
[16], which occurs when several processes running on
different processors reference different data items belonging
to the same memory block, and passive [15] or process-
migration [33] sharing, which occurs when a memory block,
though belonging to a private area of a process, is replicated
in more than one cache as a consequence of the migration of
the owner process. While true sharing is unavoidable, the
other two forms of sharing are useless. The relevant
overhead they produce can be reduced [16, 34–38] and
possibly avoided [14].

True sharing is generated by the process communication
and access to kernel data. Its overhead depends on the
communication mechanism, the parallelism of the appli-
cation, and the programming style. A typical example of
true sharing is the use of data structures belonging to critical
sections, where processes read and modify data in an
exclusive manner [37, 39, 40]. False sharing is due to the
mismatch between the program data size and the size of
cache block. It is influenced by the variable-allocation
strategies used by the compiler and the access patterns to
these variables performed by the processes [16]. Passive
sharing is not directly connected with the programming
style or compiler strategies, but it is due to private data that
appear as shared data to the coherence scheme when a
process, which has been pre-empted on a certain
processor, is rescheduled to a different processor (process
migration). Migration of processes depends on the
number of ready processes, and the scheduling policy of
the operating system.

Process migration is an important issue to the global
performance [24, 26, 41–43] and particularly in our system
since workloads like e-commerce applications generate a
number of processes that we want to assign dynamically to
available processors to achieve load balancing without
requiring programmer’s efforts. However, when a process
resumes its execution on a new processor, a miss peak is
generated (context-switch misses) to reload its working set.
Moreover, a coherence-transaction peak may be also
generated because of passive sharing. To limit passive
sharing overhead it is possible to invalidate all private data
belonging to a process on context-switches, but doing so
eliminates the opportunity for a given process to reutilise the
working set previously loaded on a certain cache when, after
a migration, that process is scheduled again on the same
processor in the next scheduling time slices. In such a
condition, that process generates again a load-miss burst
that reduces performance. We evaluated the impact of the
invalidation on context switches in our initial works, finding
the worst results for every protocol, and concluding that the
best strategy to eliminate passive sharing overhead is to
invalidate private data only when they are accessed on a
different processor [15].

Using cache-affinity scheduling [22] is a typical solution
to reduce migration related problems [23]. Some specialised
coherence protocols as well can alleviate passive sharing.
Besides the commonly used MESI we therefore considered
further protocols which intervene both on the migration
effects and the coherence overhead: AMSD [34, 37] and
PSCR [14], which we describe.

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 2, March 200494



A de-facto standard for maintaining coherence is the
MESI protocol [13]. MESI, a write invalidate protocol, is a
widely employed solution and it is implemented with
different flavours on most high-performance microproces-
sors [44, 45] (like AMD K5, K6, Athlon-MP, PowerPC
series, Power4, SUN UltraSparc II, III-Cu, MIPS R10k,
Intel Pentium, Pentium Pro, Pentium-II, Pentium-III,
Pentium 4, IA-64/Itanium, Xeon-MP). Each implemen-
tation differs in some details and some implementations
only use three states (MIPS R20k), while others use five
(MOESI Athlon-64 [46]) or even seven states (Power4,
[47]). Although most industrial solutions are based on
MESI, significant contributions from the academics con-
tinue to explore cache coherence solutions [48–50].

Besides classical MESI protocol states the implemen-
tation of MESI that we considered [45] uses the following
bus transactions: read-block (to fetch a block); read-and-
invalidate-block (to fetch a block and invalidate all the
copies in other caches); invalidate (to invalidate all the
copies in other caches); and update-block (to write back
dirty copies when they have to be destroyed for replace-
ment). The drawback of the invalidation transaction used to
obtain coherency is the possible need to reload an
invalidated copy if it is used again by a remote processor,
thus generating a miss (invalidation miss). Therefore MESI
coherence overhead (that is the transactions needed to
enforce coherence) is due both to invalidate transactions and
invalidation misses.

AMSD is designed for migratory sharing, which is a kind
of true sharing that is characterised by the exclusive use of
data by a certain processor for a long time interval.
Typically this happens when the control over these data
migrates from one process to another running on different
processors. Migratory sharing patterns were also identified
in kernel data structures [43]. The protocol identifies
migratory-shared data dynamically to reduce the cost of
moving them. The implementation relies on an extension of
a common MESI protocol (the four basic states of MESI are
augmented with three new states to detect migratory sharing
copy.) Although designed for migratory sharing, AMSD
may have some beneficial effects also on passive sharing
too. As in the case of MESI, AMSD coherence overhead is
due to invalidate transactions and invalidation misses.

PSCR (passive shared copy removal) adopts a selective
invalidation scheme for the private data, and it uses the
write-update scheme for the shared data [14]. A cached
copy belonging to a process private area is invalidated
locally as soon as another processor fetches the same block.
The scheme, based on write-update RST protocol [10],
requires five states (one more than MESI) and an additional
bus line compared with MESI. This technique eliminates

passive sharing overhead without the drawbacks of private
data invalidation on context switch. Invalidate transactions
are eliminated and coherence overhead is due to write
transactions. It has been observed that the major contribut-
ing kernel data structures are those that mostly store the per-
process private state. Namely, they are the kernel stack,
components of the user structure, and the process table [43].
Since they may be considered private data, if these data
appear as shared to the system it is because the owner
process migrates among CPUs. Thus it would be possible to
extend the selective invalidation mechanism of PSCR to this
kind of kernel data too.

All the factors described have important consequences on
the global performance that we evaluate in Section 5.

3 E-commerce server setup and workload
definition

We considered a typical e-commerce system based on the
three-tiered model as introduced by Edwards et al. [5]
(Fig. 1): tier one is constituted by the e-commerce clients
(typically web browsers), which access the server over the
internet; tier two is constituted by the web server, the
transaction management process, and application processes
(which also provide accounting and auditing); and tier three
is constituted by data and their managers.

The activity of e-commerce systems typically involves
data scan (to access a product list, product features, credit
card information, shipping information), update (to update
customer status and activity status) and transactions (buying
products, making payments, for example). These activities
involve the interaction between tiers according to the
following model: the user (i.e. the client, tier one) sends its
requests by means of a web-browser. A process (a daemon,
which constitutes part of the tier two) waits for the user
request and sends the request to a child application process.
Then the daemon waits for new requests while the child
process handles the incoming request. This activity may
require accessing HTML pages and/or invoking service
processes at tier three.

The processing load of tiers two and three can be
distributed on several computational nodes by using
different solutions. A single node can be used or, as the
processing load increases, more nodes connected by a high-
speed network (cluster) can be used. Load distribution can
be obtained by allocating different software components on
the available processors or by distributing processing
requests among the nodes where the whole software
architecture is replicated by using clustering techniques
and load balancing [7, 8, 51]. In both cases, a node may be
a multiprocessor system.

Fig. 1 Typical architecture of e-commerce system

Tier one consists of client program, typically a web-browser
Tier two consists of web server, transaction processing monitor that enables requests and spawns child application processes
In tier three service processes furnish standard services (database or other legacy applications)
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As for workloads, we implemented a software
architecture based on the following freeware components.
The system front-end (part of tier two) includes an
Apache HTTP server [18, 52]. Client requests involving
database activities are forwarded to the database manage-
ment system (DBMS) PostgreSQL [19]. PostgreSQL is
constituted of a front-end (also part of tier two), which
intercepts requests, and a backend (part of tier three),
which executes queries.

We configured the Apache server so that it spawns a
minimum of eight idle processes, a maximum of 40 idle
processes. The number of requests that a child can process
before dying is limited to 100. PostgreSQL is a shareware
DBMS, initially developed at University of California,
Berkeley. It utilises shared memory to cache frequently
accessed data, indices, and locking structures [27].

We considered a general case of a workload not
depending on a specific e-commerce system. To this end
we followed the TPC-W benchmark [17], which specifies
how to simulate the activities of a business-oriented
transactional web server and exercises the breadth of system
components.

The application portrayed by the benchmark is a retail
store with customer browse-and-order scenario. The
customer visits the storefront in the company web site to
look at products, find information, place an order, or request
the status of an existing order. The visitor activity is mostly
devoted to browse the site. Some percentage of all visits
results in submitting a new order. The activity of a site client
is described through 14 possible web interactions specified
by the benchmark (‘home’, when connecting to the server,
‘shopping cart’, ‘customer registration’, ‘buy request’, ‘buy
confirm’, ‘order inquiry’, ‘order display’, ‘search request’,
‘search result’, ‘new products’, ‘best sellers’, ‘product
detail’, and two administrative web interactions). Each web
interaction describes both the web-page content and the
values to submit in the case of forms. These values are
generally the inputs of queries. A static diagram specifies
the sequence of web interactions. Among web objects we
can have JPEG and GIF images of various dimensions. The
TPC-W database system is organised by means of the
following tables: ‘ITEM’, ‘country’, ‘author’, ‘customer’,
‘orders’, ‘order_line’, ‘cc_xacts’, ‘address’.

The e-commerce activity of TPC-W is performed by a
number of entities, denominated emulated browsers (EBs),
which dynamically produce typical client activities. Each
activity generates a number of web interactions and
consequently the exchange of a number of web objects.
The number and the type of these exchanges refer to the
benchmark implementation. In our experiments 20 EB
clients run on several workstations connected to the
simulated server via a LAN. In the benchmark, the number
of clients and the number of entries of ITEM table define the
dimension and the initial population of the DB. This
population varies during the execution of the benchmark. In
our case the number of entries in the ITEM table is about
100 K. This corresponds to a dimension of 80 Mbytes for the
ITEM table and a total dimension for the DB of 200 Mbytes.

In a typical situation, application and management
processes can require the support of different system
commands and ordinary applications. To this end, UNIX
utilities (ls, awk, cp, gzip, and rm) have been considered
in our workload setup. These utilities are important because
they model the ‘glue’ activity of the middleware software.
Their implementation comes from the standard GNU code
available in Linux distributions [53]. These utilities do not
have shared data and thus they increase the effects of

process migration, and they may interfere with shared data
and code footprint of other applications.

We defined three experiments to consider three possible
scenarios of multiprocessor use for e-commerce appli-
cations. In the first experiment all the server components are
allocated on a single multiprocessor. In the other two, we
allocated the web-server subsystem and the DBMS
subsystem on separated single multiprocessors.

4 Methodology

Our methodology is based on enhanced trace-driven
simulation [21, 54, 55], and on the simulation of the three
kernel activities that mostly affect performance: system
calls, process scheduling, and virtual-to-physical memory
address translation. We used the Trace Factory environment
[20]. This methodology is aimed at producing a process
trace, i.e. a sequence of user references, system-call
positions and references (from a Linux kernel [56]), and
synchronisation events in the case of multiprocess pro-
grams. (Our traces also contain particular events that we
called ‘synchronisation events’. This implies that, for
example, spin-loops do not dilute the source trace, but
they are just filtered out and substituted by synchronisation
events [20], which are crucial during the simulation of the
whole multiprogrammed workload [57].) This is done for
each process belonging to the workload by means of a
tracing tool and ad hoc instrumentation code. Then the
environment models the execution of workloads by
combining multiple process traces and the references of
system calls, and by simulating process scheduling and
virtual-to-physical memory address translation. As for
virtual memory and process scheduling, we only simulated
their effects on the processes. Finally, Trace Factory
furnishes the references to a memory-hierarchy simulator
[21] on demand. All these aspects are important to achieve
accuracy in simulation, especially in multiprogrammed and
OS intensive workloads running on modern ILP processors
[50, 58], as in the case of our analysis. Based on the Mauer
classification [58], our multiprocessor simulator utilises
traces that include OS code and events, so it appears to be a
static system simulator and then a functional-first simulator.
However, the events are scheduled based on both functional
and timing components (which are tightly coupled in our
environment), so it can be better classified as a timing and
function simulator, where some are decoupled based on
system timing.

On the simulated target system, process scheduling is
modelled by dynamically assigning a ready process to a
processor. The process scheduling is driven by time-slice for
single process applications, while it is driven by time-slice
and synchronisation events for multiprocess applications.
Clearly, I/O activities are taken into account through system
calls, which could be blocking: in such a case the scheduler
is taking adequate actions to schedule a new process.
Virtual-to-physical memory address translation is modelled
by mapping sequential virtual pages into nonsequential
physical pages.

Using this methodology, the TPC-W benchmark speci-
fication, and the freeware components, we generated three
workloads (EC-server, DB and Web-server). We traced the
execution of the workload programs handling 100 web
interactions in a specific time interval corresponding to 130
millions of references. Our methodology, to stop the
execution, is similar to the one presented in [50]. To have
comparable results, all the workloads are setup with 26
ready processes. The EC-server workload consists of 13
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processes spawned by the Apache daemon, eight by
PostgreSQL, and five UNIX utilities. Table 1 (for the single
process applications) and Table 2 (for the multiprocess
ones) contain some statistics of the traces used to generate
the workloads for a 32-byte block size. The DB workload
consists of 21 active processes from PostgreSQL application
while five processes are UNIX utilities. The Web-server
workload is constituted of 26 Apache processes. Table 3
summarises the statistics of the resulting workloads.

The simulator included in Trace Factory characterises a
shared-bus multiprocessor in terms of CPU, cache, and bus
parameters. The CPU parameters are the number of clock

cycles for a read=write CPU operation. The simulated
processors are MIPS R10000 [59], based on out-of-order
paradigm (issue width is four, instruction window size is 64,
and other internal parameters have standard values, in
agreement with [60]); the page size is 4 Kbyte. The cache
parameters are cache size, block size, and associativity. The
caches are nonblocking ones and up to eight outstanding
misses are allowed [61]. The cache block replacement
policy is LRU (least recently used).

Each processor uses a write buffer and implements a
relaxed model of memory consistency, in particular the
processor consistency model [31, 62, 63] with a two-word
store buffer. Cache controllers are fully simulated, both
from the timing and functional behaviours [64]. Finally the
bus parameters are the number of CPU clock cycles for each
kind of transaction: write, invalidation, update-block,
memory-to-cache read-block, cache-to-cache read-block,
memory-to-cache read-and-invalidate-block, and cache-to-
cache read-and-invalidate-block. The bus supports trans-
action splitting and has a 128-bit fixed width.

The bus timings relative to our experiments are reported
in Table 4. The reported values are calculated by taking into
consideration memory latencies. These values are chosen
in line with current high-performance processor’s typical
latencies, cf. Ultrasparc III-Cu [65], Power4 [66]; Scheduler

Table 1: Statistics of source traces for some UNIX
utilities in the case of 32-byte block size

Application

Distinct

blocks

Code

ð%Þ

Data

ð%Þ

Data write

ð%Þ

AWK 9876 76.23 23.77 8.83

CP 5432 77.21 22.79 8.88

GZIP 7123 82.32 17.68 2.77

RM 2655 86.18 13.82 2.11

LS-AR 5860 80.23 19.77 5.79

Table 2: Statistics of multiprocess application source traces (Apache and PostgreSQL) in the case of 32-byte block size

Workload Number of Distinct blocks Code ð%Þ Data ð%Þ Shared Shared data ð%Þ

processes Access Write blocks Access Write

Apache 13 34311 73.84 26.16 6.99 1105 1.84 0.6

PostgreSQL (DB) 21 259023 72.82 27.18 10.12 10515 2.27 0.67

PostgreSQL (EC-server) 8 24141 71.94 28.06 9.89 5838 2.70 0.79

Table 3: Statistics of workloads in the case of 32-byte block size

Workload Number of Distinct blocks Code ð%Þ Data ð%Þ Shared Shared data ð%Þ

processes Access Write blocks Access Write

EC-server 26 112183 75.49 24.51 7.39 6101 1.68 0.54

DB 26 330279 74.59 25.41 9.15 10516 1.77 0.53

Web-server 26 72550 73.94 26.06 6.92 1108 1.54 0.49

Table 4: Numerical values of timing parameters for multiprocessor simulator (timings in clock cycles)

Class Parameter Timing (byte)

32 64 128 256

CPU Read/Write operation 2 2 2 2

Bus Invalidate transaction 5 5 5 5

Write transaction 5 5 5 5

Memory-to-cache read-block transaction 68 72 80 96

Memory-to-cache read-and-invalidate-

block transaction

68 72 80 96

Cache-to-cache read-block transaction 12 16 24 40

Cache-to-cache read-and-invalidate-

block transaction

12 16 24 40

Update-block transaction 8 12 20 36
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supports two scheduling policies: a random policy and
cache-affinity [23]; Scheduler time-slice is equivalent to
about 200,000 references.

A great number of statistics are obtained by the simulator.
These include the miss rate, number of write transactions
per 100 memory operations, bus utilisation ratio, and global
system power (GSP). The most significant metric for our
evaluation of the machine is the GSP, which includes the
combined effects of processor architecture and memory
hierarchy. We briefly recall the definition of the global
system power metric [10, 14, 20, 21, 67]: GSP ¼ SUcpu;
where Ucpu ¼ ðTcpu � TdelayÞ=Tcpu: Tcpu is the time needed
to execute the workload, and Tdelay is the total CPU delay
time due to memory latency. GSP provides a measurement
of the processing power of a multiprocessor system, which
is more realistic in such cases as ours when we have a
workload made of applications running on the system in a
continuous and cyclical way (and not applications where we
want to measure execution time from beginning to end).

We also measured the scalability of the system by using
this definition: we say that a multiprocessor system is
scalable up to N processors, if N is the number of processors
that causes the GSP to drop by more than 0.5 when switching
from an N- to an ðN þ 1Þ-processor machine. This definition
is equivalent to the definition of ‘critical point’ in [14].

The simulator also classifies the coherence overhead by
analysing the access patterns to shared data (true, false [16],
and passive sharing [15, 33]. In particular, it classifies
coherence transactions (write or invalidate) and misses due
to a previous invalidate transaction (invalidation misses).
An operation issued to access a cache block generates an
invalidation-miss if the missing copy is still present in
cache, but has been invalidated because of an invalidate
transaction. The type of access pattern to the cache block
determines the type of the coherence transaction or
invalidation-miss. The classification [68] is based on an
existing algorithm [69], extended to the case of passive
sharing, finite-size caches, and process migration.

5 Simulation results

We analyse the memory subsystem of a shared-bus multi-
processor employed to run e-commerce applications. In
particular, we wish to show how the performance and the
scalability of the whole system can be improved by using a
careful design of the memory subsystem.

First consider the EC-server workload running on a single
multiprocessor. Afterwards, we will consider the case in
which the two server tiers are each running on a different
node. For the single multiprocessor case, we analysed 4-, 8-,
12-, 16-processor configurations for the shared-bus multi-
processor. We varied some common cache parameters
(e.g. cache size, block size) and considered solutions for the
scheduling policy and the coherence protocol that influence
the performance of our system more closely, once the
machine is pushed to higher performance levels.

In our performance analysis we use the global system
power (GSP) and a measure of the scalability of the
multiprocessor. These two metrics are discussed in detail in
Section 4. We use miss rate and coherence transaction
graphs to explain the performance results and to identify the
main sources of memory overhead, according to the
methodology already used in [31].

5.1 Analysis of performance limits of 4- and
8-processor configurations

We consider two configurations with a relatively low
number of processors as we vary cache parameters (cache

size and block size), and we highlight the main causes of
performance limits. The results with different associativity
are not shown, since they are in line with general theory of
caches.

5.1.1 Four-processor configuration: We started
our analysis with a commonly used four-processor con-
figuration. Previous studies also considered four-processor
machines [24–27]. The caches have a 32-byte block size,
while capacity has been varied between 128 Kbytes and 2
Mbytes, and for the associativity we considered two ways.
The system adopts MESI protocol, discussed in Section 2.
The scheduler relies on a random scheduling policy. As a
result of this experiment we found that: GPS increases with
cache size and associativity, ranging from 2.6 to 3.3; the
scalability, calculated as in Section 4, is four processors in
the 128 Kbyte case and nine processors in the 2 Mbyte case;
the invalidation misses becomes more and more important
when increasing cache size, ranging from a 5% of the total
misses in the 128 Kbyte case to 20% of the total misses in
the 2 Mbyte case.

The first two results reported are due to the reduction of
bus traffic, which is decreasing from 72 to 35%; as the cache
size and associativity increase. In this case, the main part of
traffic is due to classical misses (sum of cold, conflict, and
capacity misses [31], reported in Fig. 2 as ‘other misses’)
and coherence traffic, constituted of invalidation misses
(first bar in each couple of bars in Fig. 2) and invalidate
transactions (Fig. 3). (Update transactions are only a
negligible part of the bus traffic: very low for large cache
sizes and lower than 10% of read-block transactions even in
the worst case considered here, which is for smaller caches.)
The reduction of bus traffic is due to the lower miss rate and
in particular to the lower ‘other-miss’ rate. As the ‘other
misses’ are reduced through the increase of cache size and
associativity, the coherence traffic weighs more and more on
the total traffic (third result reported), since the invalidation
misses not only do not decrease but, on the contrary, slightly
increase (Fig. 2, and more in detail Fig. 3). This effect is
more evident as we increase the block size and discussed in
detail in Section 5.1.3. At the same time, the coherence
transactions increase (see Fig. 5).

The main conclusion from this first experiment is that
with such a configuration of the machine, intervening on the
cache capacity and associativity can increase the GSP and
scalability, as already shown in the literature, but other
factors like passive sharing already start to appear. On the

Fig. 2 Breakdown of miss rate against cache size in case of 4
and 8 processors, random scheduling policy, 32-byte block size,
and two-way set associative cache

Miss rate decreases when increasing cache size and associativity (values
not shown), although invalidation misses slightly increase. All miss
components increase when switching from 4- to 8-processor configurations
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other hand, we have to observe that the ‘other misses’
cannot be cleared completely: to increase the performance
and scalability further we need to reduce the coherence
overhead.

5.1.2 Eight-processor configuration: We found
that the previous configuration would be scalable up to nine
processors, so we wish to analyse the consequences of
doubling the number of processors. Figure 4 shows that the
machine performance does not double as we switch to eight-
processors. The reasons are: the miss-rate increases in
comparison with the four-processor case; the number of
coherence transactions particularly increases in terms of
false and passive sharing (Fig. 5). In this configuration the
higher number of processors produces a greater process
migration and an increase of data sharing. These are the
main causes of both the observed effects.

The miss-rate increase is due both to the increased
invalidation miss-rate (Fig. 3), in turn due to the higher
parallelism of the system (causing a higher probability that a
shared block is used by a higher number of processors,) and
to the higher ‘other miss’ rate caused by the higher number

of context-switch misses (the misses generated when
reloading the working set of a newly scheduled process)
related to the higher number of migrating processes. The
invalidation miss-rate increase (Fig. 5) is mostly due to the
kernel activity, and in particular to the false sharing.

The increase in the number of coherence transactions
(Fig. 5) is essentially due to the increased passive sharing.
As in the four-processor case, passive sharing becomes
more significant with larger caches. Thus the larger caches
adopted in current systems enhance the passive sharing
overhead.

This experiment also shows the importance of misses and
coherence overhead as we scale up the number of
processors. In the eight-processor case we need larger
caches than in the four-processor case to exploit the
machine effectively. For example, to reach at least about
the same average processor utilisation that we have for a
128 Kbyte cache in the case of four processors, we need a
2 Mbyte cache in the case of eight processors (Fig. 6).

5.1.3 Effect of block size on misses and
coherence overhead: Both misses and coherence
overhead depend on the cache block size. As the block size
increases from 32 to 256 bytes the main results are: a higher

Fig. 3 Breakdown of invalidation miss rate against cache size in
case of 4 and 8 processors, random scheduling policy, 32-byte
block size for two-way set associative cache

Each component of invalidation misses increases when switching to
8-processor configuration

Fig. 5 Number of coherence transactions (invalidate trans-
actions) against cache size in case of 4 and 8 processors, random
scheduling policy, 32-byte block size and two-way set associative
cache

Each component of overhead increases in 8-processor configuration.
Passive sharing component increases more significantly

Fig. 4 Global system power against cache size in the case of 4
and 8 processors, random scheduling policy, 32-byte block size
and two-way set associative cache

GSP increase is higher for 8-processor case as cache size increases due to
higher bus utilisation in 8-processor case and longer bus latency

Fig. 6 Average processor utilisation against cache size in case of
4 and 8 processors, random scheduling policy, 32-byte block size,
and two-way set associative cache

System efficiency decreases as machine doubles number of processors from
4 to 8. Having larger caches is more relevant in 8-processor case
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GSP (in the case of two-way caches and 2 Mbyte cache
sizes, GSP increases from 5.6 to 7, Fig. 7), a lower bus
utilisation (in the same case, bus utilisation decreases from
71 to 43%; Fig. 8), and the number invalidation of misses
becomes comparable to the number of ‘other misses’
(Fig. 9). This would allow us to increase architecture
scalability up to 18 processors, corresponding to a 14.5 GSP
value. The first two results are due to the decrease of miss
rate. For a 2 Mbyte cache size, for example, the decrease is
from 1.1 to 0:39% (Fig. 9). This is a consequence of the
reduction of the ‘other miss’ component (Fig. 9), and of the
invalidation miss component (Fig. 10). The decrease of
invalidation misses (Fig. 10) is due to a decrease of false and
true sharing misses in the kernel area. Figure 7 shows how
the increase of GSP is less effective for block sizes above
128 bytes. Actually both higher transaction cost and
coherence overhead have to be taken into account. The
third result is caused by the different behaviour of the ‘other
misses’ and invalidation misses, as the block size is
increased. The ‘other misses’ are influenced by the spatial
locality of the single process, while invalidation misses

depend on the access pattern of processes on different
processors.

The main result of this experiment is that by increasing
the block size we can improve the performance of the
system both in terms of GSP and scalability (although the
use of very large block size is not recommended, as we
explain subsequently). In the best configuration for the
block size, the ‘other misses’ are about the same number of
the invalidation misses. Considering that the ‘other misses’
cannot be completely eliminated, the only way to further
reduce the misses is to act on the invalidation misses.

A drawback of increasing the block size too much is that
system performance becomes too tied to the program
locality. Considering that program locality may vary, it is
not convenient to use much larger block sizes. Therefore an
optimal choice for the block size would be 128 bytes for our
system. Another drawback is that the number of false
sharing misses could increase with block size. False sharing
misses are generated by the superposition of two main
effects: on the one hand, false sharing misses decrease when

Fig. 7 Global system power against cache size and block size in
case of 8 processors, random scheduling policy, and two-way set
associative cache

GSP increases with block size. Increase is more noticeable when switching
from 32-byte block size to 64-byte and 128-byte

Fig. 8 Bus utilisation against cache size and block size in case of
8 processors, random scheduling policy, and two-way set
associative cache

Fig. 9 Breakdown of miss rate against cache size and block size,
in case of 8 processors, random scheduling policy, and two-way set
associative cache

‘Other miss’ rate decreases as block size increases

Fig. 10 Breakdown of invalidation miss rate against cache sizes
and block sizes in case of 8 processors, random scheduling policy,
and two-way set associative cache

Every component decreases as cache block size is increased
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switching from smaller to medium-size blocks. This is due
to the lower miss probability, as a general effect of caches.
On the other hand, false sharing itself always increases with
block size. The actual number of false sharing misses is
mainly the combined effect of these two factors. Also, the
locality of accesses performed by each process and the
probability of migration may have to be accounted for. All
these factors make the behaviour of false sharing misses, in
a system with migration, not completely predictable.

Some researchers had found an increase of false sharing
misses with block size [16, 35, 70] for other applications.
However, this is only true starting from a certain cache
block size [70] that depends on the application. In our
experiments we found that this critical block size is 1024
bytes. This means that a decrease of false sharing misses
could be generally observed, as in the case of the block size
range we used. A similar result can be found in other recent
papers [68, 71].

5.1.4 Summary of performance limits of four
and eight-processor configurations: The
performance of the machine we analysed depends heavily
on the number of cold, conflict, and capacity misses and
coherence overhead (due to invalidation misses and
coherence transactions). In the four-processor case the use
of larger caches can effectively maximise performance. In
the case of more processors larger caches can help but, as we
show, it is more cost-effective to use other solutions that
intervene directly on the major causes (process migration
and kernel false sharing) that limit performance and
scalability.

The reduction of miss rate is a good result, since it allows
us to obtain better performance when the miss cost is high or
when we are executing a program that exhibits a number of
misses that is intrinsically high. The miss cost may rise as
well because of an increase of processor speed, while the
other system parameters do not vary. We can reduce
classical misses (the ‘other misses’) by using hardware
techniques [30–32] (in particular modifying cache associa-
tivity, cache size, and cache block size,) or by using
program restructuring techniques [72–74]. Other studies
[43] also suggested that instruction cache misses could be
reduced by laying out basic blocks that conflict in the cache.
The adoption of a scheduling algorithm based on cache-
affinity [22, 23] can reduce the ‘other miss’ component due
to process migration (context switch misses).

Coherence overhead weighs more and more as we add
processors. The component of coherence overhead due to
false sharing can be decreased either by using special
coherence protocols, which adopt selective block invalida-
tion [38], by properly allocating the involved shared data
structures [35], or by means of data restructuring through
profiling information [16, 35]. Kernel data restructuring
could be easily accomplished since the kernel is a
completely known part of the system at design time. As
we wish to push the performance to higher levels, we need
to act more effectively on it: we suggest intervening by
using an appropriate coherence protocol.

Why is MESI protocol not effective to act on these
causes? The main reason is its invalidation mechanism,
which produces subsequent invalidation misses that are
more dangerous to the performance as we increase the
number of processors. For example, by doubling the cache
size (from 1 to 2 Mbytes, 128 byte block size, eight
processors, Fig. 9), we save only 10% of misses. In the same
condition, invalidation misses remain about 35% of the total
misses. In this situation it is reasonable to change the

coherence protocol to reduce the coherence related over-
head and the effects of process migration.

5.2 Reducing process migration and
coherence overhead effects

As process migration is also influenced by the scheduling
policy, we evaluate a situation where a scheduling that
reduces process migration is used. One of the most-used
solutions is cache-affinity scheduling policy. Then we
evaluate the benefits of introducing special coherence
protocols that act on the process migration.

5.2.1 Cache-affinity: The aim of the following
experiments is to analyse the system when the kernel
adopts a scheduling policy based on cache-affinity [22, 23].
From previous analysis we deduce that we can continue our
study using a baseline configuration with eight processors,
128 byte block size and a two-way set associative cache.
The main results in comparison with the case of random
scheduling policy are: GSP increases (Fig. 11) and bus
utilisation becomes lower allowing for a higher scalability,
the percentage of invalidation misses on total misses
becomes higher (Fig. 12), and the coherence transactions

Fig. 11 Global system power against cache size and scheduling
policy (random, affinity), in case of 8 processors, 128-byte block
size, and two-way set associative cache

Fig. 12 Breakdown of miss rate against cache size and
scheduling policy (random, affinity), in case of 8 processors,
128-byte block size, and two-way set associative cache

Miss reduction due to cache-affinity technique is evident
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are lower (Fig. 13). This situation would allow us to extend
the number of system processors up to 14, with a related
increase of GSP equal to 11.3 (again using the definition
given in Section 4). The first two results come from the
‘other misses’ reduction. The third is due to the reduction of
passive sharing transactions. As for invalidation misses
(not reported in Figure), there is no substantial difference
compared with the base scheduling policy case. This means
that cache-affinity acts not only on context-switch miss, as
expected in the literature [23], but also on the passive
sharing transactions, which effect has not been noticed
before. Thus affinity is useful to reduce the effects of process
migration. It is also clear that to further improve the
performance (GSP and scalability) we need to concentrate
on the reduction of invalidation misses (which are a 50% of
the total misses for a 2 Mbyte cache), since the other misses
are now almost exclusively due to intrinsic misses. Another
reason to focus on coherence related misses is that they
could not be reduced with indefinitely larger caches [43].

This can be observed from the strong flattening of the slope
between the cases of 1 Mbyte and 2 Mbyte caches (cache-
affinity case) in Fig. 12.

Since we wish to reduce the invalidation misses we can
use an adequate coherence protocol. It is also clear that an
adequate coherence protocol is important since cache-
affinity cannot solve all the problems generated by process
migration. Moreover, the load condition can vary signifi-
cantly and there are cases in which the number of ready-to-
run process, compared with the number of available
processors, is critical and process migration cannot be
avoided [14, 75]. If we rely only on cache-affinity, the
machine performance would be too tied to the number of
ready process.

5.2.2 Coherence protocol: We wish to show
how to reduce coherence overhead (both as invalidation
misses and coherence transactions) by using an appro-
priate coherence protocol. We evaluated 8-, 12-, and 16-
processor configurations with a two-way set associative
cache, and 128 byte block size. We carried out tests with
both random and cache-affinity scheduling algorithms.

Fig. 13 Number of coherence transactions (invalidate trans-
actions) against cache size and scheduling policy (random,
affinity), in case of 8 processors, 128-byte block size, and two-
way set associative cache

Cache-affinity scheduling reduces mainly passive sharing component,
while other components remain constant

Fig. 14 Global system power against number of processors and
scheduling algorithm (random, affinity)

Cache is 2-way set associative with 128 byte block size, and 2 Mbyte size

Fig. 15 a Coherence transactions against number of processor and scheduling algorithm (random, affinity). Cache has 128-byte block
size, 2 Mbyte size and is 2-way set associative. b Invalidation miss rate against number of processor and scheduling algorithm (random,
affinity). Cache has 128 byte block size, 2 Mbyte size and is 2-way set associative
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Among possible choices for the coherence protocols, we
considered PSCR [14] and AMSD [34, 37], as they could
reduce the effects of process migration on coherence
overhead. The first-mentioned is based on write-update
technique, the last on a write-invalidate technique. We
described these protocols in Section 2. Here, the main
results are: GSP and scalability are improved with PSCR
and AMSD in comparison to MESI protocol, and PSCR
outperforms both AMSD and MESI in all configurations.
As the number of processors increases (Fig. 14), the
performance difference among protocols becomes more
evident. The choice of MESI protocol, in particular,
appears as the least performing.

AMSD has beneficial effects on the reduction of passive
sharing, although it does not eliminate it completely. The
benefits on passive sharing are mainly due to a decrease of
coherence transactions (Fig. 15). The reduction of the
number of coherence transaction is due to the behaviour of
AMSD on shared copies. When AMSD detects a block that
has to be treated exclusively for a long interval, it
invalidates the copy locally during the handling of a remote
miss, avoiding a necessary consequent bus transaction in
this way.

PSCR is based on the update of effectively shared copies,
which avoids invalidation misses. Using the write-update
technique the number of coherence transactions is higher
compared with other protocols (Fig. 15), but they cost less.
In fact, the cost of the coherence overhead is limited by the
lower cost of the coherence maintaining write transactions
(Table 4). On the other hand, the reduction of total number
of misses (Fig. 16) produces a more consistent bus
utilisation decrease (Fig. 17) than the other protocols do.
Another advantage of the use of write transaction, with
benefits for these results, is due to the fact that the
transaction can be performed asynchronously, without a
direct processor delay. Finally, the write transaction cost is
independent from the block size. More generally, in
nontechnical workloads it has been noticed that there is a
scarce reuse of data and there are large working sets [42].
This will give further advantage to the solutions based on
write-update techniques, like PSCR.

Now analyse the scalability offered by the various
protocols. It has previously been observed that the system
is in saturation when the GSP does not increase by a
minimal quantity as the number of processors is increased.
In our experiments we calculated that this minimal quantity

is equal to a GSP of 0.5 for each added processor. As a rule
of thumb, this corresponds to a GSP increase of two when
switching among different configurations in Fig. 14. Thus,
as shown in Fig. 14, we can state that MESI (in the case of
random scheduling policy) is already near the saturation
threshold for a 12-processor configuration. AMSD performs
slightly better since the saturation is reached for a number of
processors between 12 and 16, for both scheduling policies.
In the configurations shown, PSCR is never in saturation.
We also observe that, when using such protocols, the
average processor utilisation varies more consistently for
configurations having a higher number of processors
(Fig. 18). Therefore adding more processors is more
effective once a more performing protocol is chosen. This
affects performance=price ratio advantageously. For
instance, GSP performance for PSCR in a 16-processor
configuration is twice that for MESI in an eight-processor
configuration (Fig. 14).

Summarising the results of experiments carried out so far:
in configurations with a lower number of processors, the
choice of a different protocol is less critical. When
the performance is pushed to the limits (and consequently
the system works near saturation) the designer should take
advantage of more optimisation techniques, like smart
coherence protocols. The combination of all analysed
techniques (adequate block size, cache-affinity, and
PSCR) allows system scalability to be pushed up to 20

Fig. 16 Miss rate against number of processor and scheduling
algorithm (random, affinity)

Cache has 128 byte block size, 2 Mbyte size, and is 2-way set associative

Fig. 17 Bus utilisation against number of processor and
scheduling algorithm (random, affinity)

Cache has 128 byte block size, 2 Mbyte size and is 2-way set associative

Fig. 18 Average processor utilisation against number of
processors and scheduling algorithm (random, affinity)

Cache is 2-way set associative with 128 byte block size, and 2 Mbyte size
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processors with a corresponding GSP of about 16. Further
improvement could be obtained if the selective invalidation
mechanism were applied to those kernel data structures [43]
that are used in an exclusive manner by a process. In Table 5
we report a summary of the configuration that we tested and
how the solutions considered have been found effective in
increasing the scalability of a machine (Fig. 19).

5.3 Performance analysis for distributed
workloads

We analyse another possible solution to implement an
e-commerce system. Two distinct single multiprocessors
are used to execute separately the Web-server workload (tier
two) and the DBMS workload (tier three). The purpose is to
evaluate the effectiveness of the bus-based SMP architec-
ture discussed previously also in such distributed environ-
ment. We also compare directly the results obtained for the
single-multiprocessor configuration with this new case
study.

We generated two different workloads, still based on the
TPC-W benchmark, namely: DB and Web-server, whose
detailed statistics are given in Table 3. The two servers are
connected via a high-speed LAN. By putting only the
database activity on a single machine, the DBMS server has
the opportunity to spawn more processes, thus increasing
the quantity of processed data in the time unit and
consequently the amount of the accessed shared data
(mostly database metadata) by the DBMS.

On the contrary, the Web-server can better utilise its
kernel shared data, without interference from DB-server
kernel activity. The Web-server activity doesn’t involve
user shared data; this is characteristic of the Apache

implementation of the web server, where each process
manages a preconfigured number of user request without
communicating with other user processes.

Further details on these two workloads are discussed in
Sections 3 and 4.

The results related to the configuration with cache affinity
scheduling and a standard cache configuration (2 Mbyte

Table 5: Scalability that can be reached on our shared-bus multiprocessor by combining several solutions

Section 5.1.1 5.1.2 5.1.3 5.2.1 5.2.2

System parameter Number of processors 4 8 8 8 16

Cache capacity (bytes) 2M 2M 2M 2M 2M

Cache block size (bytes) 32 32 256 128 128

Cache associativity 2 2 2 2 2

Scheduling policy random random random cache affinity cache affinity

Coherence protocol MESI MESI MESI MESI PSCR

Performance GSP 3.3 5.6 7 7.4 14

Bus utilisation 38% 71% 43% 32% 55%

Scalability Max number of processors 9 9 18 14 20

Corresponding (Estimated) GSP �6 �6 �14 �11 �16

Fig. 19 Global system power of systems when workload type is
changed for possible e-commerce server cases

Graph refers to case of 16 processors, cache-affinity scheduling, 2 Mbyte
cache size, 2-way set associative cache, 128-byte block size

Fig. 20 Miss rate of systems when workload type is changed for
possible e-commerce server cases

Graph refers to case of 16 processors, cache-affinity scheduling, 2 Mbyte
cache size, 2-way set associative cache, 128-byte block size. DB workload
exhibits higher miss rate, Web-server the lower

Fig. 21 Number of coherence transactions per 100 memory
references of systems when workload type is changed for possible
e-commerce server cases

Graph refers to case of 16 processors, cache-affinity scheduling, 2 Mbyte
cache size, 2-way set associative cache, 128-byte block size. In Web-server
workload there are no user shared data, but there are user invalidations due
to passive sharing effects
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cache size, two-way set associative cache, 128 byte block
size) are as follows

. In the case of DB workload, we observed a GSP decrease
compared with EC-server case (Fig. 19). This is essentially
due to higher miss rate generated by classical misses (‘other
miss’ in Fig. 20) and the increased coherence overhead in
the user part (Figs. 21 and 22).
. In the case of Web-server, we have a higher GSP due to a
lower miss rate (Fig. 20). This is due to the higher locality of
the HTTP processes, as remarked also in [24], and the lack
of user shared data. Nevertheless, we have some passive
sharing overhead (Figs. 21 and 22). Besides, we have an
increase of kernel activity, which generate more invalida-
tion misses and coherence transactions with respect to the
DB workload.
. Globally, the considerations that we have drawn for EC-
server workload, in spite of varying cache configuration,
scheduling policy and coherence protocol, are still valid.
In Fig. 19, the GSP obtained with different protocols is
compared for the three different workloads considered. The
relative performance of the three protocols examined
remains the same as in the single-multiprocessor case study.

In conclusion, such analysis shows that when distributing
the workload the most critical part to achieve an efficient
implementation of an SMP e-commerce system remains the
design of the DBMS server. In this case an efficient
management of conventional misses and user coherence
overhead is more critical to achieve high (memory)
performance. In particular, a designer should focus on
optimisations of the software component (DBMS) and the
hardware component (coherence protocol) to manage the
user part of the workload. On the other hand, an efficient
web server should include a careful management of kernel
resources. From a designer point of view, as in the
EC-server case study, we recommend adequate kernel
data layout to improve memory performance.

6 Related work

In this Section we consider the most significant evaluations
of multiprocessors related to our work and their main
results. We present a summary of results for various

workloads and platforms. As platforms we considered a
combination of multiprocessor architecture and operating
system.

Several current categories of commercial applications,
like Web-server and database applications, motivated a
more realistic evaluation framework for shared memory
multiprocessing research [9, 50, 57]. Other studies started
considering benchmarks like TPC-series (including OLTP,
DSS, Web-server benchmarks), representative of commer-
cial workloads, to evaluate the performance of multi-
processor servers [24–27, 76, 77]. In the following
discussion we first consider works that evaluated workloads
similar to ours, and then works related to the general
framework of designing multiprocessor and operating
systems to optimise the execution of complex workload.

Cain et al. [76] implemented TPC-W as a collection of
Java servlets and presented an architectural study detailing
the memory system and branch predictor behaviour of that
workload. They used a six-processor IBM RS/6000 S80
SMP machine, running AIX 4.33 operating system. They
also evaluated the effectiveness of a coarse-grained multi-
threaded processor, simulated by means of SimOS, at
increasing system throughput. However, their evaluation
uses no more than six processors. As shown in our work as
well, they found that the false sharing in the user part is
almost absent.

Karlsson et al. [77] present a detailed characterisation of
the memory system behaviour of two benchmarks based on
Java (EC-perf and SPECjbb) using both commercial server
hardware and full system simulation. Their results show that
memory footprint and primary working set of these
workloads are small compared with other commercial
workload, and that a large fraction of the working set are
shared between processor. They suggest also the adoption,
in one case, of a shared data cache, typical of single-chip
multiprocessors. However, they consider in the evaluation
only middle-tier activity (they exclude all the DB activity),
so their results are not directly comparable with ours, and
are the consequence of an implementation heavily based on
Java Virtual Machine.

The paper by Alameldeen et al. [50] also evaluates
several workloads (OLTP, WEB, Apache, FLASH-like
parallel workload) and highlights the influence of several
coherency protocols on the global performance. They show
that coherency may have a very different impact on
performance, depending on the workload.

Ranganathan et al. consider both an OLTP workload
(modelled after TPC-B [78]) and a DSS workload (query 6
of TPC-D [60, 79]). Their study is based on trace-driven
(only user-level traces) simulation, where traces are
collected on a four-processor AlphaServer4100 running
Digital Unix and Oracle-7 DBMS. The simulated system is
a CC-NUMA shared-memory multiprocessor with
advanced ILP support. Results, on a four-processor system
and an ILP configuration with four-way issue, 64-entry
instruction window, four outstanding misses, provide
already significant benefits for OLTP and DSS workload.
Such configurations are even less aggressive than ILP
commercial processor like Alpha 21264, HP-PA 8000,
MIPS R10000 [59]. The latter processor, used in our
evaluation, makes us reasonably safe that this processor
architecture is sound for investigation in the memory
subsystem.

Trancoso et al. consider TPC-D-based DSS queries
running on Postgres95 on a simulated four-processor CC-
NUMA multiprocessor [27]. They study the memory access
patterns of this workload for a memory-resident database.
They find that the memory use of queries differs largely

Fig. 22 Breakdown of invalidation miss rate of systems when
workload type is changed for possible e-commerce server cases.

Graph refers to case of 16 processors, cache-affinity scheduling, 2 Mbyte
cache size, 2-way set associative cache, 128-byte block size. User
invalidation miss are significant in DB workload, due to database activity
while absent in Web-server workload
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depending on the different types of data structures used in
database indexing. Coherence-related misses are mainly due
to indices and metadata structures in index queries. The
simulation encompassed several cache block (4 to 128
bytes) and capacity (128 Kbytes to 8 Mbytes) sizes. The
authors conclude that queries can benefit from large cache
blocks and data prefetching.

Barroso et al. evaluated an Alpha 21164-based SMP
memory system by using hardware counter measurements
and SimOS simulation [24]. The machine was running
Digital-UNIX operating system and Oracle-7 DMBS. The
authors consider a TPC-B database (OLTP benchmark),
TPC-D (DSS queries) and Altavista search engine. They
consider two basic configurations: one with four and the
other with eight processors. Results show that the memory
hierarchy accounts for 75% of stall time. The number
of processes per processor, which is usually kept high to
hide I/O latencies, significantly influences cache behaviour
as well. For TPC-B workload, they report a high coherency-
related miss rate. When switching among 2-, 4-, 6-, and 8-
processor configurations they found that coherency miss
stalls increase linearly with the number of processors.
Beyond an 8 Mbytes outer-level cache they observed that
true sharing misses limit performance.

Keeton et al. characterise the performance of Quad
Pentium Pro SMP server running commercial applications
[26]. They found that the most critical issue in the case of
database workload (namely TPC-C) is the processor traffic
to memory. They used an Informix DBMS on Windows NT-
SP3 operating system (allowing cache-affinity scheduling).
The methodology of evaluation relies on hardware counters.
They found almost the same characteristics (high context
switch rates, substantial portion of execution time in
operating system) found by others as for commercial
workloads [24, 42]. They conclude that larger caches are
necessary especially in the case of multiprocessor systems,
even if they increase the coherency traffic. As a matter of
fact, larger caches produce lower bus utilisation and lower
memory latencies. The findings of that work are in
agreement with ours, in the case of four-processor
configuration. Anyway, we also analysed other aspects
that become critical in different architectural configurations
(e.g. with more processors). Other differences are due to our
specific database workload: while in the authors’ work there
are many read and write operations, in our case, that is for a
database connected to a web server, we mostly have read
patterns. Therefore as discussed in Section 5.3, we find
different cache performance in the case of DB-only
workload.

Cao et al. examine a TPC-D workload in execution on a
Pentium-Pro four-processor machine with Windows NT and
MS SQL Server [25]. Their methodology is based on
hardware counters. Major sources of processor stalls are
instruction fetch bottleneck and data miss in outer-level
caches. They found lower miss rates for data caches in
comparison with other studies on TPC-C [24, 26]. This is
due to the smaller working set of TPC-D compared with
TPC-C.

Most of the conclusions of these commercial-workload
evaluations [24, 26, 27, 76] have analogies with our
evaluation, especially in the case of four-processor con-
figuration. In particular, large caches, more associativity,
and larger blocks help in the case of large working set. The
major drawback of large caches is the increased coherence
overhead. In our case we consider also passive sharing,
configurations with more processors and with different
solutions for the cache parameters, coherence protocol, and
scheduling policies (in particular cache affinity). Another

important contribution of our work concerns the evaluation
of a bus-based shared-memory multiprocessor in the context
of three-tier software architecture. We consider database
and Web-server workloads, as well as the combination of
these two.

In the evaluation of multiprocessor architectures, a
popular benchmark suite used in the past decade is
SPLASH-2 [80] from Stanford University. The suite
comprises technical (scientific, engineering, and graphics)
applications and is targeted for the evaluation of multi-
processor systems like DSM and CC-NUMA.

Some other studies compare the behaviour of technical
and commercial workloads [26, 42], finding several
differences. Technical workloads are highly code-opti-
mised, the execution time is mostly spent in user mode
rather than in kernel mode, the working set is particularly
small compared to commercial-workload or TPC-like
benchmark ones, as noticed in [26, 42, 81]. Moreover,
technical workloads are usually single-user, while commer-
cial workloads are usually multiuser and have significant
amount of kernel activity [42]. Keeton et al. also notice that
commercial applications exhibit high context-switch rate
compared with technical ones [26].

Griffazzi–Maynard et al. examine the characteristic
differences between technical and commercial workloads
and illustrate how those differences affect cache perform-
ance [42]. The reference machine is a uniprocessor system
based on IBM RS-6000, running AIX operating system.
They use trace-driven simulation to explore cache design
alternatives that perform well in commercial workloads.
They found that large instruction caches help because of the
large code working sets of nontechnical applications; in the
case of database application, the user and kernel portion can
exhibit similar behaviour and in particular they can
experience misses similarly high; process switching should
be considered in the design of outer-level caches. Some of
these results are in common with ours, since we both use a
commercial workload, in particular, the behaviour of the
applications as the block and cache size increases, as
discussed subsequently. In our case, the focus is on TPC-W
in execution on a multiprocessor-based system. As for other
commercial workloads, the typical scenario is a single
complex application that is shared by several users
(or clients). Anyway, most of their results are not directly
applicable. For instance, classical misses change because
the number of processes visiting a certain processor
decreases, and data sharing produce significant overhead
not present in the uniprocessor case.

Woo et al. evaluate a 32-processor CC-NUMA for
characterising SPLASH-2 benchmark [80]. Kernel activity
for this workload is not significant and the evaluation
focuses on the user part of execution time. The authors find
that performance is highly influenced by coherence over-
head: misses are mainly due to coherence misses rather than
classical misses. In particular, they show that false sharing
overhead and interconnection network traffic increases,
while total misses decrease with the block size (in the range
of 32 to 256 bytes).

Other studies consider the influence of operating system
on the overall evaluation of a multiprocessor system.
Chapin et al. characterise the performance of the memory
system of a CC-NUMA machine: the Stanford DASH with
32 processors organised as eight clusters of four processors
each one, running a precommercial release of SGI IRIX 5.2
(based on UNIX SVR4) [82]. The authors analyse the
effects of possible operating system and architectural
changes. Their methodology relies on a nonintrusive
cache miss monitor. They consider a fairly OS-intensive
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technical workload, namely Combo32, which features
characteristics of a software development/engineering
environment. We found analogies with this work regarding
the importance of OS effects, the high influence of
coherency misses, and the limited usefulness of large
caches in a multiprocessor system. However, most of their
results are not directly applicable to our case.

Chandra et al. examine the effects of OS scheduling and
page migration policies on the performance of the Stanford
DASH distributed memory cache-coherent multiprocessor
server [41]. The machine has 16 processors organised as
four clusters of four processors each one, which uses a
modified version of SGI IRIX (based in UNIX SVR3). They
consider different workloads consisting of multiple parallel
applications that are combined in several ways. They found
that cache-affinity with page migration is effective in the
case of their architecture and for a sequential multi-
programmed workload. They observe that in other studies
on bus-based multiprocessors these techniques are not so
effective. Our results on cache-affinity scheduling agree
with this work. In particular we found that affinity
scheduling is not so effective when the number of processes
is near to the number of processors.

Torrellas et al. characterise the cache performance of a
commercial operating system (System-V UNIX) running on
a four-processor multiprocessor (SGI PowerStation
4D/340). The authors consider the following three work-
loads: a parallel compile of 56 files; a parallel numeric
program running concurrently with the parallel compile and
a five-screen edit sessions; an Oracle database. The
methodology relies on a hardware monitor that records the
cache misses of this fixed-configuration commercial
machine. Their results show that the operating system can
slow down software development and commercial work-
loads by 17–21%: They identify the causes for this
slowdown and propose solutions to reduce their effects.
We found analogies between this work’s results and ours in
the case of four-processor configuration. Anyway, we also
analyse other aspects that become critical in different
architectural configurations (e.g. with more processors).
Other differences are due to our specific workload.

7 Conclusions

This paper has analysed the memory subsystem of a shared-
bus multiprocessor employed to run e-commerce appli-
cations. In particular, we have shown how the performance
and the scalability of the whole system can be improved
(even doubled compared with MESI based solutions) by
resolving specific problems of the memory subsystem, like
passive sharing. Our workload has been set up according to
the specification from TPC-W benchmark. We considered
software components like an HTTP server (Apache),
PostgreSQL database management system, and typical
UNIX shell commands. The analysis has been carried out
through trace-driven simulation and by considering not only
user references, but also the most influencing kernel
activities.

In the four-processor case, our conclusions agree with the
literature: intervening on the cache capacity and associa-
tivity can increase GSP and scalability. As we scale up the
number of processors the importance of misses and
coherence overhead becomes clearer. In particular, coher-
ence overhead and process migration weighs more and more
as we add processors. In the eight-processor case, we need
larger caches than in the four-processor case to exploit the
machine effectively. By increasing the block size we can
improve the performance of the system both in terms of GSP

and scalability. However, increasing the block size too
much makes system performance too tied to the program
locality. Also the adoption of a scheduling algorithm based
on cache-affinity improves the performance. Cache-affinity
is useful to reduce the effects of process migration: it acts on
context-switch misses, as expected in the literature, but also
on the passive sharing transactions. However, cache-affinity
cannot eliminate process migration. In fact, the load
condition can vary significantly in e-commerce workloads
and there are situations in which the number of processes,
compared with the number of available processors, is
critical and process migration cannot be avoided. In such a
case the machine performance significantly decreases.

To limit the overhead due to process migration we
suggest the adoption of appropriate coherence protocols,
like AMSD and PSCR, different from usual MESI protocol.
As the number of processors increases the performance
difference among protocols becomes more evident. In
particular the choice of MESI protocol appears the least
reliable. AMSD has beneficial effects on passive sharing
although it does not eliminate it completely. PSCR
eliminates passive sharing and avoids invalidation misses.
By using the write-update technique, the number of
coherence transactions is higher compared with other
protocols. On the other hand, the reduction of total number
of misses produces a more consistent bus utilisation
decrease than with the other protocols. The combination
of all analysed techniques (adequate block size, cache-
affinity, and coherence protocols) allows us to push system
scalability up to 20 processors with a corresponding GSP of
about 16. Further improvement could be obtained if the
selective invalidation mechanism of PSCR were used for the
kernel data structure associated to a process in an exclusive
manner.

The considerations that we have drawn, while varying
cache configuration, scheduling policy, and coherence
protocol, are still valid when we distribute the whole
workload on two multiprocessor systems, one running the
second tier and another running the third tier of the
e-commerce workload. In particular, for the Web-server
(second tier of the e-commerce workload), the higher
locality of the HTTP processes speeds up the execution
compared with the other solutions, and the main focus for
system developers must be on the design of the kernel. The
DB workload (third tier of the e-commerce workload),
instead, is the less performing part of the system. The focus
here must be on the DBMS software and on coherence
strategy to deal with user shared data, rather than on the
kernel.
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