
Developing Security Protocols by Refinement

Christoph Sprenger and David Basin
Institute of Information Security, ETH Zurich

{sprenger,basin}@inf.ethz.ch

July 5, 2013

Abstract

We propose a development method for security protocols based on stepwise re-
finement. Our refinement strategy transforms abstract security goals into protocols
that are secure when operating over an insecure channel controlled by a Dolev-
Yao-style intruder. As intermediate levels of abstraction, we employ message-less
guard protocols and channel protocols communicating over channels with secu-
rity properties. These abstractions provide insights on why the protocols are se-
cure and foster the development of families of protocols sharing common structure
and properties. We have implemented our method in Isabelle/HOL and used it
to develop different entity authentication and key establishment protocols. These
protocols include realistic features such as key confirmation, replay caches, and
encrypted tickets. Our development highlights that guard protocols and channel
protocols provide fundamental abstractions for bridging the gap between security
properties and standard protocol descriptions based on cryptographic messages. It
also shows that our refinement approach scales to protocols of nontrivial size and
complexity.

Keywords: Security protocols, stepwise refinement, correct-by-construction de-
velopment, entity authentication, key establishment.

1 Introduction
The fact that the development of even simple security protocols is error prone motivates
the use of formal methods to ensure their security. Past decades have witnessed signif-
icant progress in post-hoc verification methods for protocol security based on model
checking and theorem proving such as [48, 17, 5, 7, 26, 51]. However, methods for
developing security protocols lag behind and protocol design remains more an art than
a science.

In our view, a development method should be systematic and hierarchical. By
this we mean that the development is decomposed into smaller steps that are easy to
understand and that these steps should span well-defined abstraction levels leading the
developer from requirements down to cryptographic protocols. Moreover, the resulting
protocols should be secure in well-established attacker models and such claims should

1

level name features
L0 security properties global, protocol-independent
L1 guard protocols roles, local store, no messages, no intruder
L2 channel protocols channels with security properties, intruder
L3 crypto protocols cryptographic messages, Dolev-Yao intruder

Table 1: Levels of the refinement strategy

ideally be supported by machine-checked formal proofs. Stepwise refinement provides
such a hierarchical development method. However, most existing refinement-based
approaches to developing security protocols [22, 15, 35, 13, 24, 27] fall short of at least
one of these desiderata.

In this paper, we advocate a development method based on stepwise refinement that
satisfies all requirements on our wish list. Its central element is a four-level refinement
strategy, introduced in Section 3 and summarized in Table 1. This strategy allows de-
velopers to build models that incrementally incorporate the system requirements and
environment assumptions. Each model constitutes an idealized functionality for subse-
quent refinements. Safety properties, once proved for a model, are preserved by further
refinements.

Level 0 of our refinement strategy consists of abstract, protocol-independent mod-
els of security properties such as (reachability-based) secrecy and authentication. At
Level 1 of guard protocols, we introduce protocol roles, their local state, and the basic
sequencing of the protocol steps. The protocol agents communicate by accessing each
other’s local states. At Level 2 of channel protocols, the agents exchange plaintext mes-
sages over communication channels with intrinsic security properties, e.g., confidential
or authentic channels. Finally, at Level 3 of cryptographic protocols, we replace these
messages by cryptographic messages transmitted over insecure channels controlled by
a standard Dolev-Yao intruder. In our method, the functional and security require-
ments are established at the first two levels, while the last two levels incorporate the
environment assumptions (i.e., the hostile distributed environment).

A central and novel feature of our approach is the use of guard protocols (L1) as
an intermediate abstraction linking security properties (L0) and message-based proto-
cols (L2-3). Guard protocols enable the straightforward abstract realization of security
goals by adding security guards as necessary conditions for the execution of certain
protocol steps. Different kinds of security guards ensure the preservation of different
properties such as secrecy, authentication, and recentness. For example, key secrecy
means that only authorized agents may know a key. Accordingly, steps of guard proto-
cols where an agent A learns a key K contain a guard requiring that A is authorized to
know K. For authentication, there are guards ensuring that the local state of an agent
(partially) agrees with the state of another agent.

The security guards for secrecy and authentication specify conditions on the global
state in terms of other agent’s local states. This realizes an abstract form of commu-
nication. This abstraction simplifies proofs, but it is not directly implementable in a
distributed setting. Hence, we implement these guards at Level 2 by receiving mes-
sages on channels with intrinsic security properties. The associated refinement proof

2

naturally gives rise to invariants stating that the receiving of channel messages im-
plies the security guards they implement. These invariants precisely state the security
properties guaranteed by the messages. For example, a message containing a key K
received on a confidential channel to an agent A may implement a guard authorizing A
to learn K. The corresponding invariant guarantees that A is authorized to learn K from
this message.

To validate the effectiveness of our refinement strategy, we developed different
authentication and key establishment protocols from abstract specifications. In Sec-
tion 3, we develop two simple unilateral authentication protocols as running exam-
ples illustrating our approach: the ISO/IEC 9798-3 protocol and the first two steps
of the Needham-Schroeder-Lowe protocol. In Section 4, we show how to system-
atically develop an entire family of key transport protocols. This family consists of
the Needham-Schroeder Shared-key protocol, the core of Kerberos 4 and Kerberos 5,
and the Denning-Sacco protocol. Compared to the running examples from Section 3,
these protocols are significantly more complex in size and message structure and ex-
hibit additional features and security properties such as the use of timestamps, replay
protection caches, encrypted tickets (double encryption), dynamically created commu-
nication channels, key confirmation, key freshness, and key recentness. Interestingly,
in each class of protocols, the final models refine a common Level 1 ancestor, even
though they use different cryptographic primitives and communication patterns.

Contributions We see our five main contributions as follows. Our first contribution
is methodological. Our initial models at Level 0 specify the security goals of the guard
protocols at Level 1. These in turn determine the basic structure of entire families of
protocols. Using the refinement strategy outlined above, we systematically refine these
abstract models in a series of well-defined steps to protocols using cryptographic mes-
sages sent over an insecure channel. Our refinement strategy aims at proving security
properties at the highest possible abstraction level. General results guarantee that these
properties are preserved by subsequent refinements.

Our refinement strategy naturally gives rise to straightforward parametrized simu-
lation relations between the state spaces of models at different levels. These relations
are instantiated and used in refinement proofs. Moreover, the process of proving re-
finements helps us discover invariants. For example, the simulation relation linking
Levels 2 and 3 usually expresses that the local states of the roles is untouched by the
refinement and maps the cryptographic messages at Level 3 to messages on abstract
channels at Level 2. An invariant that appears in such refinement proofs states that the
honest agents’ long-term keys remain secret. This is the natural level of abstraction
for this invariant. Typically, the other relevant security properties are already proved in
earlier refinements.

Second, our development provides evidence that guard protocols and channel pro-
tocols constitute two fundamental abstractions that bridge the gap between security
properties and standard protocol descriptions based on cryptographic messages. In
other approaches, the guarantees about protocol messages given by the invariants men-
tioned above and the associated reasoning are usually stated informally, if at all. By
formalizing them, our approach fosters clear protocol designs and abstract, simple se-

3

curity proofs. Moreover, in standard protocol descriptions, secrecy and authentication
are often not clearly separated (e.g., when using a secure channel providing both prop-
erties) or are interdependent (e.g., due to a layered use of cryptographic keys and oper-
ations). This appears to be a major source of complexity and errors and makes security
protocols hard to design and understand. In contrast, guard protocols realize secrecy
and authentication properties abstractly, independently, and straightforwardly. This fa-
cilitates the formal development of security protocols and underscores the central role
that guard protocols can play in property-driven design approaches.

At the next level, channel protocols allow us to reason about a protocol’s security
properties at a lower degree of complexity than with the Dolev-Yao intruder. The chan-
nels also enable a range of different realizations. For example, we may implement an
authentic channel using signatures or MACs. Moreover, the communication structure
may change from Level 2 to 3. For instance, an abstract key server may independently
distribute keys on secure channels to the initiator and the responder, whereas in the con-
crete realization the distribution is sequential: one role receives two encrypted copies
of the key and forwards one copy to the other role (Section 4). The abstract view rep-
resents the essential structure of server-based key distribution. The forwarding is just
an implementation detail.

Third, we show how refinement can be used to develop protocols that are secure
under the standard Dolev-Yao intruder model (at Level 3). In contrast, in related work
such as [15, 35, 22, 13], the authors do not continue the refinements down to the level
of a standard Dolev-Yao model based on an algebra of cryptographic messages; some
use ad-hoc, protocol-dependent intruder definitions. This makes it difficult to compare
their models with existing work on protocol modeling and verification and to know for
which adversaries their properties hold.

Fourth, we show how to develop an entire family of key transport protocols from
requirements down to protocols that are secure against a standard Dolev-Yao intruder.
We model realistic features that are often abstracted away, such as replay prevention
caches for timestamped messages to achieve strong properties like injective authentica-
tion. We have formalized all models and proofs in this paper in the Isabelle/HOL the-
orem prover.1 Our formalization includes an infrastructure with general Isabelle/HOL
theories for protocol runs, fresh values, and channels with security properties. Our
development shows that our method scales to protocols of realistic complexity. The
protocols in our development share both structure and properties as the graph of re-
finements of our development indicates (see Figure 5). Property preservation through
refinements avoids proof duplication and fosters well-structured proofs.

Our final contribution is a comprehensive definitional extension of Isabelle/HOL
with a theory of refinement that is based on simulation and borrows elements from [3,
2]. We define an implementation relation on models including a notion of observation,
derive proof rules for invariants and refinement, and show that refinement is a sound
method for establishing the implementation relation between models.

1Our complete development including the infrastructure theories is available at the following URL:
http://people.inf.ethz.ch/csprenge/SecProtoRefine.

4

http://people.inf.ethz.ch/csprenge/SecProtoRefine

Organization The remainder of this paper is organized as follows. In Section 2, we
introduce Isabelle/HOL, notational conventions, and summarize the theory of refine-
ment that we have embedded in Isabelle/HOL. In Section 3, we present our four-level
refinement strategy for security protocols and illustrate its application by deriving two
simple authentication protocols. In Section 4, we report on our development of a fam-
ily of key transport protocols. In Section 5, we further discuss related work and we
draw conclusions in Section 6.

2 Preliminaries

2.1 Isabelle/HOL and notation
Isabelle is a generic, tactic-based theorem prover. We have used Isabelle’s implementa-
tion of higher-order logic, Isabelle/HOL [47], for our developments. HOL can roughly
be seen as logic on top of a functional programming language. We assume that the
reader has basic familiarity with both logic and typed functional programming. Proof
automation in Isabelle is supported by a rewrite-based simplifier and a tableau proce-
dure. These are invoked in isolation or combined using proof tactics.

To enhance readability, we will use standard mathematical notation where possible
and blur the distinction between types and sets. We also drop typing information unless
it is essential to understand a definition.

We use two definitional equalities: ≡ for terms and , for types. We define partial
functions by A ⇀ B , A → B⊥, where B⊥ , B | ⊥.2 The term f (x 7→ y) denotes
the function that behaves like f , except that it maps x to y. For a function or binary
relation R⊆ A×B and a set X ⊆ A, we define the image of X under R by R(X)≡ {y ∈
B | ∃x∈ X .(x,y)∈ R}. The inductive type of lists is defined by [A], [] | A# [A], where []
is the empty list and a#l is the list built by prefixing the element a∈ A to the list l ∈ [A].
We write [1,2,3] for 1#2#3#[]. We define multisets over A by multiset(A) , A→ N.
For multisets m,n ∈ multiset(A), the term m(e) indicates the multiplicity of e in m and
union is defined by (m] n)(e) = m(e)+ n(e). Record types may be defined, such as
point , (| x ∈ N, y ∈ N |) with elements like r = (| x = 1,y = 2 |) and projections r.x and
r.y. The term r(| x := 3 |) denotes r, where x is updated to 3, i.e., (| x = 3,y = 2 |). The
type cpoint , point +(| c ∈ color |) extends point with a color field. For record types
T and U including fields F , we define Π

T,U
F ≡ {(r,s) ∈ T ×U |

∧
x∈F r.x = s.x}. If U

has exactly the fields F , the function π
T,U
F : T →U projects T to U . We will drop the

superscripts T and U from Π
T,U
F and π

T,U
F when they are clear from the context.

2.2 Refinement theory
A development by refinement starts from a set of system requirements and environment
assumptions. We then construct a series of models resulting in a system that fulfills
the requirements provided it runs in an environment satisfying the assumptions. We

2More precisely, B⊥ , Some(B) | ⊥, but we will often elide single-argument constructors.

5

summarize the refinement theory that we developed in Isabelle/HOL. It is inspired
by [3, 2].

2.2.1 Specification and implementation

We define the structure of our models and we formalize the meaning of implementation.

Definition 2.1. A specification is a triple of the form S = (T,O,obs), where T =
(Σ,Σ0,→) is a transition system with state space Σ, set of initial stets Σ0 ⊆ Σ, and
transition relation →⊆ Σ×Σ. The observation function obs : Σ→ O maps states to
elements of a set of observations O.

The definition of transition systems is standard. The observation function obs spec-
ifies which state information is visible to an outside observer.

We will work with structured specifications, where the state space Σ is a record
type, i.e., a set of tuples of state variables, and the transition relation→ is a finite union
of parametrized relations, called events. Events have the form

evt(x) = {(s,s′) | G(x,s) ∧ s′.v := f (x,s)},

where ·̄ denotes vectors. Here, x are the parameters, v are the state variables, G(x,s) is
a conjunction of guards, and s′.v := f (x,s) is an action with update functions f . The
guards depend on the parameters x and the current state s and determine when the event
is enabled. The action is syntactic sugar denoting the relation s′ = s(| v := f (x,s) |), i.e.,
the simultaneous assignment of values f (x,s) to the variables v in the state s, yielding
the state s′.

Example 2.2. Consider an abstract file transfer protocol specification

S f ≡ ((Σ f ,Σ f ,→ f),O f , id),

where Σ f , (| f ,g ∈ file |) with file , I → D for a finite index set I and a set of data
blocks D and→ f ≡ xferf . The event xferf ≡ {(s,s′) | s′.g := s. f} transfers the file f in
one shot to g. All states are possible initial states and the entire state is observable, i.e.,
O f = Σ f and the observation function is the identity.

The set of behaviors of S, beh(S), consists of the finite sequences s0 · · ·sn of states
that start in an initial state in s0 ∈Σ0 and are linked by transitions in→, that is, si→ si+1
for 0≤ i < n. The set reach(S) denotes the set of reachable states. Since we only con-
sider safety properties (in fact, invariants), it suffices to consider just finite behaviors.
The sets of observable behaviors and reachable observations of the specification S
are defined by obeh(S) ≡ obs(beh(S)) and oreach(S) ≡ obs(reach(S)), where obs is
applied to behaviors elementwise.

Our notion of one specification implementing another is defined by the inclusion
of their observable behaviors. We assume that all models include a special event skip
(the identity relation) which is implemented by new concrete events. The intuition is
that events added to the concrete model correspond to an unobservable stuttering step
in the abstract model.

6

s
evta //___

R

✏✏

s0

R
✏✏�
�
�

t
evtc // t0

s
obsa !!

R

""

o

t
obsc !! p

π

##

Figure 1: Refinement of events (left) and observations (right)

Definition 2.3. We say Sc implements Sa via the mediator function π : Oc → Oa if
π[obeh(Sc)]⊆ obeh(Sa).

We consider two types of invariants: internal ones are supersets of reach(S) and
external ones are supersets of oreach(S) ≡ obs(reach(S)). We use internal invariants
to strengthen simulation relations in refinement proofs (see Example 2.9 below). The
importance of external invariants is that they are preserved by implementations.

Proposition 2.4 (Invariant preservation). Suppose Sc implements Sa via the mediator
function π and oreach(Sa)⊆ J for some J ⊆ Oa. Then π(oreach(Sc))⊆ J.

The observation and mediator functions allow us to relate specifications with dif-
ferently structured state spaces. In particular, the mediator function enables the ad-
dition of details to observations during implementation. Proposition 2.4 guarantees a
well-defined notion of property preservation for series of implementations. We use
refinement as a proof method to establish implementations.

2.2.2 Refinement

Our notion of refinement is based on standard simulation [41], which we extend to
account for observations. Figure 1 illustrates the second and third point of the following
definition.

Definition 2.5. We say Sc = (Tc,Oc,obsc) refines Sa = (Ta,Oa,obsa) using the simu-
lation relation R⊆ Σa×Σc and the mediator function π : Oc→ Oa, written Sc vR,π Sa,
if the following three conditions are met.

1. Each concrete initial state is related to some abstract initial state, i.e.,

Σc,0 ⊆ R(Σa,0).

2. For each concrete event evtc(x) there is an abstract event evta(z) simulating it,
i.e.,

R;evtc(x)⊆ evta(w(x));R,

where ‘;’ is forward relational composition and w(x) are the witnesses that con-
struct parameters for evta from those of evtc. The plain and dashed arrows in
Figure 1 (left) correspond to the given part on the left-hand side and the sought
part on the right-hand side of the inclusion above.

7

3. R respects observations mediated by π , i.e., for all (s, t) ∈ R,

obsa(s) = π(obsc(t)).

We say Sc refines Sa using π , written Sc vπ Sa, if Sc vR,π Sa for some R.

Let the concrete and abstract system have state variables v and u, respectively.
Moreover, suppose the event evtc(x) has guards Gc and update functions fc and the
abstract event evta(z) has guards Ga and update functions fa. Condition 2 decomposes
into two proof obligations, called guard strengthening and action refinement, both un-
der the premises (s, t) ∈ R and Gc(x, t).

• Ga(w(x),s) (GRD)

•
(
s(|u := fa(w(x),s) |), t(| v := fc(x, t) |)

)
∈ R (ACT)

Guard strengthening requires that if the concrete event is enabled then so is the abstract
one. Action refinement expresses that the two states resulting from the execution of the
abstract and concrete actions are again related by R.

Refinement is reflexive and transitive. Moreover, refinement is a sound (but incom-
plete [2, 36]) method to establish implementation.

Proposition 2.6 (Pre-order). We have (i) Svid S and (ii) S3 vρ S2 and S2 vπ S1 imply
S3 vπ◦ρ S1.

Proposition 2.7 (Soundness of refinement). If Sc vπ Sa then Sc implements Sa via the
mediator function π .

The combination of Propositions 2.4, 2.6, and 2.7 ensures that requirements and
assumptions, once established as external invariants, are preserved by subsequent re-
finements. Note that this does not generally hold for internal invariants. For later
reference we state the following corollary.

Corollary 2.8 (Invariant preservation II). Suppose Sc vπ Sa and oreach(Sa)⊆ J for
some J ⊆ Oa. Then π(oreach(Sc))⊆ J.

Example 2.9. We define a “protocol” implementing the file transfer specification S f

by Sp ≡ ((Σp,Σp,0,→p),Op,obsp), where Σp , Σ f +(|b ∈ I ⇀ D |) extends the state Σ f
with a buffer b. The set Σp,0 consists of initial states of the form (| f = f0,g = g0,b = /0 |)
for some f0,g0 ∈ file and the empty buffer b. The protocol non-deterministically trans-
fers blocks of the file f into the buffer b from where it is assigned to g, once the
transfer is completed. The transition relation→p≡ xferp∪

⋃
i∈I blkp(i) is the union of

two events:

blkp(i)≡ {(t, t ′) | i ∈ I \dom(t.b)∧ t ′.b := t.b(i 7→ f (i))}

and xferp ≡ {(t, t ′) | dom(b) = I ∧ t ′.g := t.b}. The observation function obsp ≡ π f
projects the state Σp to the observations Op = Σ f .

Let us try to establish a refinement between Sp and S f , using the simulation rela-
tion R≡Π f ⊆ S f ×Sp, i.e., the inverse of the projection π f : Σp→ Σ f , and the identity

8

mediator function π ≡ id. We focus on point (2), where we must show that blkp(i)
refines skip and that xferp refines xferf . The guard strengthening (GRD) proof obliga-
tion is trivial in both cases, since the abstract guards are true. The action refinement
(ACT) proof obligation for blkp(i) and skip (the identity relation) requires showing
(s, t ′) ∈ Π f for t ′ = t(|b := t.b(i 7→ f (i)) |), assuming (s, t) ∈ Π f and i ∈ I. This holds
trivially, since t ′.g = t.g = s.g. In the action refinement for xferp and xferf , we must
show that (s(|g := s. f |), t(|g := t.b |)) ∈ Π f assuming (s, t) ∈ Π f and dom(b) = I. To
prove this, we need additional information about the relation between b and f , ex-
pressed as the internal invariant Ip ≡ {t ∈ Σp | ∀i ∈ dom(b). t.b(i) = t. f (i)} of Sp. We
establish this invariant separately and use it to strengthen the simulation relation to
R≡Π f ∩ (Σ f × Ip).

In further refinements, one could develop a more realistic implementation, for ex-
ample, by eliminating non-determinism and by modeling a communication medium
such as an unreliable channel with acknowledgement messages.

3 Security Protocol Refinement
We now present our framework for security protocol development by refinement. Each
development starts by defining the system requirements and the environment assump-
tions. The environment assumptions include the adversary model and the cryptographic
setup. Given these elements we need a refinement strategy telling us in which order to
incorporate them into our models. The crucial point is that requirements and assump-
tions, once modeled, are preserved by subsequent refinement steps (Corollary 2.8).

The following four-level refinement strategy guides our developments, where each
level may itself consist of several refinement steps.

Level 0 Security properties. We give abstract, protocol-independent specifications of
secrecy and authentication properties. The models’ states contain just enough
structure to formulate these properties as invariants and define a few abstract
event satisfying these invariants. There are no intruder events.

Level 1 Guard protocols. These are abstract protocols without message passing. We
introduce protocol roles, local states of agents, and basic protocol steps. Agents
read data directly from other agents’ local states. There are still no intruder
events.

Level 2 Channel protocols communicate over abstract channels with security prop-
erties, such as confidential and authentic channels. The intruder may eaves-
drop messages on non-confidential channels and fake messages on non-authentic
channels. No cryptography is used.

Level 3 Cryptographic protocols. The messages on the abstract channels from Level 2
are now implemented using cryptographic messages sent over insecure channels.
A standard Dolev-Yao intruder completely controls the network.

In the rest of this section, we introduce protocol-independent infrastructure for model-
ing and reasoning about protocol runs, fresh values, channels with security properties,

9

L0: Security Properties

L1: Guard Protocols

L2: Channel Protocols

L3: Crypto Protocols

a0i

a2

iso3

c2

nsl3

a1

Figure 2: Refinement graph for authentication protocols

and intruder behavior. We also describe for each level the relevant structures such as
type definitions, state variables, and simulation relations. As running examples, we de-
velop two simple authentication protocols. In Section 4, we will apply this framework
to a more complex development and construct a family of key establishment protocols.
We start by introducing our running example.

3.1 Entity authentication protocols
To illustrate our methodology, we develop two unilateral authentication protocols. Both
protocols are based on a standard challenge-response pattern, where the initiator sends
a nonce as a challenge to the responder who returns it in a cryptographically trans-
formed form that authenticates him to the initiator. The first protocol is the signature-
based two-pass ISO/IEC 9798-3 standard [31]. The second, which we call NSL/2,
consists of the first two steps of the Needham-Schroeder-Lowe protocol [33] and uses
public-key encryption.

We start by specifying the system requirements and by making our assumptions
about the environment explicit. Our notion of entity authentication is based on the
strong property of injective agreement [34]. A protocol satisfies this property, if given
two roles R and R′ and a set of data items d then for each protocol thread executing
role R there exists exactly one thread executing role R′ with whom it agrees on the data
items d.

Requirement R1 (Protocol roles). The protocol has two roles, which we call initiator
and responder.

Requirement R2 (Entity authentication). The initiator injectively agrees with the re-
sponder on the initiator’s nonce and possibly on additional data.

We assume a standard Dolev-Yao intruder that we identify as usual with the com-
munication network. Moreover, we make two assumptions about agent corruption and
the cryptographic setup.

Assumption A1 (Dolev-Yao intruder). The intruder controls the network. He re-
ceives all messages sent and he can build and send messages composed from

10

parts obtained by decomposing received messages using the cryptographic keys
he knows.

Assumption A2 (Static corruption). An arbitrary fixed subset of agents is corrupted,
whereby their long-term keys are exposed to the intruder.

Assumption A3 (Cryptographic setup). The requisite cryptographic keys are distri-
buted prior to protocol execution.

Development overview Figure 2 summarizes the refinements in our development in
a refinement graph. Each node represents a model and each arc m→ m′ represents a
refinement mvπ m′ for some mediator function π , not shown.

We progress from the initial model a0i representing the intended injective agree-
ment property at Level 0 (Section 3.3) to the guard protocol a1 at Level 1 (Section 3.4).
This guard protocol is refined into two channel protocols, a2 and c2, based on authen-
tic and confidential channels, respectively (Section 3.5). Finally, we realize these two
protocols as cryptographic protocols, iso3 and nsl3 (Section 3.6). In the following, we
will restrict our presentation to the left path in the refinement graph. We do not present
the models c2 and nsl3, whose development is similar to a2’s and iso3’s.

3.2 General setup
We describe our formalization of atomic messages: agents, keys, nonces, and numbers.
We start by defining a type of agents, agent. We assume a non-empty subset bad of
dishonest agents (with complement good), an honest server S ∈ good, and an intruder
i ∈ bad with access to all dishonest agents’ long-term keys.

We also need a mechanism to generate fresh nonces and keys. We assume a type rid
of identifiers that we will use to uniquely identify protocol runs at Levels 1 to 3. From
this type, we derive the type of freshness identifiers as fresh , mkf(rid,N), which has
a single constructor mkf. We write mkf(R, i) as R$i. This setup allows us to derive an
arbitrary number of unique freshness identifiers from each protocol run identifier. We
define the types of nonces and keys as follows.

nonce , fresh key , fresh | ltk

Nonces and session keys both use freshness identifiers. The type of long-term keys,
ltk, is left unspecified at this point.

Finally, we define the type atom of atomic messages as the disjoint sum of the types
of agents, nonces, keys, and numbers:

atom , agent | nonce | key | N.

We use numbers mainly as timestamps. We will usually omit constructors from atomic
messages and use a notational convention instead. In particular, we use A,B,C for
agents, N,Na,Nb for nonces, K,Kab for session keys, and T,Ta,Ts for timestamps.

Many protocols assume a setup of long-term keys, which is established out-of-band
before the protocol starts. We model this by assuming an abstract (uninterpreted) key

11

setup keySetup ⊆ key× agent defining the initial key knowledge of each agent. The
definitions of this relation and the type ltk are deferred to Level 3 (Section 3.6), since
they are protocol-dependent. For example, the protocol may use a PKI or a shared-key
setup. The set of statically corrupted keys is derived from the key setup as the keys
initially known by dishonest agents:

corrKey , keySetup−1(bad).

3.3 Level 0 — Security properties
We present abstract, protocol-independent models of secrecy and authentication and
we formalize and prove their relevant properties as external invariants. Each protocol
development starts with the formalization of the protocol’s security requirements. This
is achieved by appropriately instantiating these Level 0 models. We will later show that
our guard protocol models at Level 1 refine these instantiated models, thus establishing
the respective requirements (by Corollary 2.8).

3.3.1 Secrecy

Our first model abstractly captures the notion of secrecy. We introduce two state vari-
ables, kn and az, both relations between data (of polymorphic type δ) and agents. In
particular, (d,A) ∈ s.kn means that agent A knows data d in state s, and (d,A) ∈ s.az
means that agent A is authorized to know data d in state s. The entire state is observable.

Σs0(δ),(| kn ∈P(δ ×agent), -- knowledge relation
az ∈P(δ ×agent) |) -- authorization relation

Secrecy can be expressed as the property that all knowledge is authorized.

secrecy≡ {s | s.kn⊆ s.az}

In other words, agents know secrets only if they are authorized. We allow any state
satisfying this property as an initial state.

Events The model s0 has one event for secret generation and one for learning secrets.
The secret generation event is parametrized by the data d, an agent A, and the intended
group of agents G sharing d.

gens0(d,A,G)≡ {(s,s′) |
-- guards
d /∈ dom(s.kn)∧ -- d is fresh
A ∈ G∧ -- A is a member of G

-- actions
s′.kn := s.kn ∪ {(d,A)}∧
s′.az := s.az ∪ {(d,B) | B ∈ G ∨ G∩bad 6= /0}}

12

The guards require that d is fresh, i.e., not known to any agent, and that A belongs to
the group G. The first action adds the pair (d,A) to the knowledge relation s.kn. The
second action updates the authorization relation with {d}×G if all agents in G are
honest and with {d}× agent otherwise. That is, if the group G contains a dishonest
member, there is no point in restricting access to d.

In the secret-learning event, an authorized agent B learns the secret d.

learns0(d,B)≡ {(s,s′) |
-- guards
(d,B) ∈ s.az∧ -- B is authorized to know d

-- action
s′.kn := s.kn ∪ {(d,B)}}

From a secrecy perspective, it is irrelevant from whom B learns d. Authentication
aspects will be covered separately. The model s0 clearly preserves secrecy.

Proposition 3.1. Let s0 be the above specification. Then oreach(s0)⊆ secrecy.

3.3.2 Authentication

Our notion of authentication is based on Lowe’s agreement [34]. Informally, a role R
non-injectively agrees with the role R′ on the data d if whenever an honest agent A in
role R terminates a run, apparently with an honest agent B in role R′, then there is a
run of agent B in role R′ with whom he agrees on the participants, their roles, and the
data d. This agreement is injective if there is at most one run of role R that agrees with
a given run in role R′.

We formulate two models, a0n and a0i, that represent a minimal, extensional vari-
ant of non-injective and injective agreement using signals, which indicate particular
stages of each role’s progress (e.g., termination). The state record has as its single field
an initially empty multiset of signals, sigs. The entire state is observable.

signal(δ) , Running(list(agent)×δ) | Commit(list(agent)×δ)

Σa0(δ) , (| sigs ∈ multiset(signal(δ)) |)

There are two signals: Running(h,d) and Commit(h,d), where h is a list of agents
and d is data of polymorphic type δ that is instantiated later. The agreement on the
data d is, by convention, between the first two agents in h and assumes the honesty
of all agents in h. In the simplest case, h includes the two agents participating in the
agreement, but in some cases it is necessary to include other agents in h, such as those
agents relaying messages.

Non-injective agreement states that if the agents in h are honest and there is a
Commit(h,d) signal (thought to be raised by the first agent in h), then there is a match-
ing Running(h,d) signal (raised by the second agent in h).

niagreea0n ≡ {s | ∀h,d.
h⊆ good ∧ s.sigs(Commit(h,d))> 0→ s.sigs(Running(h,d))> 0}

13

Injective agreement strengthens this by requiring that the number of Commit(h,d)
signals is not greater than the number of matching Running(h,d) signals.

iagreea0i ≡ {s | ∀h,d.h⊆ good→ s.sigs(Commit(h,d))≤ s.sigs(Running(h,d))}

The models a0n and a0i have two events, running(h,d) and commit(h,d), which
add the corresponding signal to the multiset s.sigs. The first event adds a Running(h,d)
signal to the multiset s.sigs.

runninga0n(h,d)≡ {(s,s′) | s′.sigs := s.sigs]{Running(h,d)}}

The second event adds a Commit(h,d) signal to the multiset s.sigs. Its guard requires
that there is a matching Running(h,d) signal if the agents in h are honest. This ensures
that invariant niagreea0n is preserved.

commita0n(h,d)≡ {(s,s′) |
h⊆ good→ s.sigs(Running(h,d))> 0 ∧

s′.sigs := s.sigs]{Commit(h,d)}}

The honesty condition weakens the guard just enough to accommodate the protocol’s
interaction with an explicit intruder in later refinements.

The model a0i for injective agreement is the same except for the guard in the
event commita0i(h,d), which we strengthen as follows to preserve the stronger invariant
iagreea0i.

h⊆ good→ s.sigs(Commit(h,d))< s.sigs(Running(h,d))

It is easy to see that a0i refines a0n. The properties of the models a0n and a0i are
summarized as follows.

Proposition 3.2. The models a0n and a0i defined above have the following properties:
(i) oreach(a0n)⊆ niagreea0n, (ii) oreach(a0i)⊆ iagreea0i, and (iii) a0ivId, id a0n.

Since the variable sigs is observable, these invariants are preserved by further re-
finements (Corollary 2.8).

Example 3.3 (Formalization of authentication properties). Our example develop-
ment starts with a formalization of the main security property: entity authentication by
injective agreement (R2). We do this by instantiating the model a0i. Since we would
like our entity authentication protocols to achieve injective agreement between the ini-
tiator A and the responder B on a nonce Na generated by A and also on a nonce Nb
generated by B, we instantiate the type of data δ in the model a0i to nonce×nonce.

This model is very abstract. Further refinement steps are needed to obtain a protocol
that is executable in the intended distributed environment and secure against a Dolev-
Yao intruder as described by the environment assumptions. ♠

14

3.3.3 Other types of security property specifications

In contrast to establishing security properties by refinements of L0 models, we may
express (and prove) security properties directly at the protocol level (i.e., at Level 1, 2,
or 3) in one of two ways.

First, the property may be ensured by a guard, whereby the property is established
by construction so that no extra proof is required. An example is a guard checking
the validity of a timestamp to ensure the recentness of an associated session key. Sec-
ond, we may formulate and prove the property as an external invariant of the proto-
col. This is how we express the freshness of session keys. An advantage of using the
refinement of abstract models over these two alternatives is that the abstract models
are protocol-independent. This enables clear and uniform property specifications. In
contrast, invariants that are formulated at the protocol level (see, e.g., [48]) must be
specified individually and tend to be more complex.

3.4 Level 1 — Guard protocols
We now introduce protocol roles and runs. A run is a thread executed by some agent in
a given role. Each run has a local memory holding state information. At this abstract
level, runs share information by reading each other’s memory. We call such protocols
guard protocols. Of course, this kind of communication by reading another thread’s
memory is unrealistic in a distributed setting. Hence, at Level 2, we will refine this
abstract form of communication by passing messages over communication channels.

3.4.1 State

Guard protocols have at least one state variable, runs, which is a partial function map-
ping run identifiers (of type rid) to a run’s local store. This local store consists of the
executed role, the participants, and a frame recording role-specific information. As we
focus here on two-party protocols, we model participants as a pair of agents. Similarly,
we fix the roles to an initiator (the first agent), a responder (the second agent), and
possibly an additional fixed server S. This could easily be generalized to handle an
arbitrary number of roles. The frame is a list of atomic messages that the run acquires
during its execution.

role , Init | Resp | Serv

frame , [atom]

runsT , rid ⇀ role×agent×agent× frame

Σ1 , (| runs ∈ runsT |)

Here, we have schematically defined the state of a Level 1 protocol by the record
type Σ1. In concrete models, this state may contain additional variables. We assume
that (at least) the variable runs is observable. All later refinements inherit the variable
runs, but may add atoms to the run’s frames.

15

3.4.2 Events

Each event executes a protocol step of a run by an agent in a particular role. The se-
quencing of events within a role is determined by local guards reading a run’s local
store. For example, the guard runs(R) = (Init,A,B, [Nb]) expresses that the event ex-
ecutes a step of the run R, which is owned by the agent A playing the initiator role,
talks to the responder B, and stores the nonce Nb in its frame. An event’s action typi-
cally extends the run frame with additional atomic messages, thereby tracking the run’s
progress. Informally, we call a run completed if there is no event that extends its frame.

Example 3.4 (Abstract authentication protocol, part I). The state Σa1 of our model
a1 contains a single variable, runs, defined above, which models threads executing
protocol roles. Since our setup provides initiator and responder roles, this already
establishes Requirement R1 that the protocol has two roles. Each role will generate a
nonce that the other role records.

Let na and nb be arbitrary natural numbers. The three events of our specification
a1 abstractly model a protocol that follows a standard challenge-response pattern. The
first event, which refines skip, just creates an initiator run Ra with an empty frame.
The event also “generates” a nonce Na = Ra$na associated with this run. Since Na is
derived from the run identifier Ra, there is no need to record it in the frame.

step1a1(Ra,A,B,Na)≡ {(s,s′) | -- by A, refines skip
-- guards:
Ra /∈ dom(s.runs) ∧ -- fresh run id
Na = Ra$na ∧ -- fresh nonce

-- actions:
s′.runs := s.runs(Ra 7→ (Init,A,B, []))}

The second event refines runninga0i and creates a responder run identified by Rb and
the nonce Nb. The run acquires an arbitrary nonce Na, which need not come from an
initiator, and records it in its frame. This reflects that the intruder can fake the challenge
nonce in later refinements.

step2a1(Rb,A,B,Na,Nb)≡ {(s,s′) | -- by B, refines runninga0i
-- guards:
Rb /∈ dom(s.runs) ∧ -- fresh run id
Nb = Rb$nb ∧ -- fresh nonce

-- actions:
s′.runs := s.runs(Rb 7→ (Resp,A,B, [Na]))}

The final event of the model a1 will be presented in the next example. ♠

Agents communicate by reading their peers’ memories. This is achieved by non-
local guards that refer to another run’s store. Such guards read remote values that may
be compared with local values and used in local state updates. We have two kinds
of non-local guards: authorization guards for secrecy and authentication guards for

16

agreements. Authorization guards prevent unauthorized agents from learning secrets.
We will explain the shape of these guards below.

An authentication guard for a given list of agents h and data d (cf. Section 3.3)
executed by a run R requires the existence of a run R′ executing a different role from
R’s and agreeing with R on data d, provided the agents in h are honest. More generally,
for A in role r to agree with B in role r′ on data d assuming honest agents h = [A,B, . . .],
we add an authentication guard G to an appropriate event of agent A (for example, the
final event of its role). This guard requires that the agent B in role r′ knows the data d,
whenever the agents in h are honest. It has the form

G = h⊆ good→∃R,x.C(R,d)∧ s.runs(R) = (r′,A′,B′, `) ,

where R is the identifier of a run of B in role r′, A′ and B′ are agent names possibly
including A and B, ` is a list of atomic messages including those in d, and C(R,d)
is a conjunction of equations fixing nonces and session keys in d generated by the
run R. The free variables of G are exactly the variables appearing in h and d. All other
variables are bound by the existential quantification over x. We will see a concrete
example shortly.

Since authorization and authentication guards are related to security properties, we
also call them security guards. There are also local security guards, for example, which
check the validity of timestamps to achieve recentness.

At this level of abstraction, there is no active intruder and guard protocol models
therefore have no intruder events. Instead, the intruder is implicitly present in the event
guards in the form of honesty assumptions.

Example 3.5 (Abstract authentication protocol, part II). The third step refines
commita0i and models the initiator run Na receiving its nonce back from a responder
run Nb. The first two guards state that the run Ra has not yet received the responder B’s
nonce and has generated Na. The third guard is an authentication guard that ensures an
agreement with the responder on the pair of nonces (Na,Nb).

step3a1(Ra,A,B,Na,Nb)≡ {(s,s′) | -- by A, refines commita0i
-- guards:
s.runs(Ra) = (Init,A,B, []) ∧
Na = Ra$na ∧
(A /∈ bad ∧ B /∈ bad→∃Rb. Nb = Rb$nb∧ s.runs(Rb) = (Resp,A,B, [Na])) ∧
-- actions:
s′.runs := s.runs(Ra 7→ (Init,A,B, [Nb]))}

More precisely, if A or B is dishonest then Nb is arbitrary. Otherwise, there is a run Rb
of responder B with initiator A that has generated the nonce Nb and previously received
the nonce Na. This can be seen as A reading Nb from B’s store. We will eliminate this
abstraction in the next refinement when we introduce communication channels. ♠

3.4.3 Refinements

We establish the secrecy and authentication properties of our guard protocol models by
refining appropriately instantiated secrecy and authentication models from Section 3.3.

17

Below we give general patterns for establishing secrecy and authentication properties.
In each case, we establish a refinement by reconstructing the abstract state (i.e., the
knowledge and authorization relations kn and az or signals sigs) from the concrete run
state in terms of the functions knC and azC, or sigsC. The concrete definitions of knC,
azC, and sigsC depend on the protocol. Moreover, for each such refinement, we identify
a pair of concrete events that refine the abstract ones (i.e., secret generation/learning
and running/commit, respectively). The remaining events refine skip.

Secrecy We establish secrecy by refining the model s0. We therefore define relations
knC(r) and azC(r), which reconstruct the knowledge and authorization relations, kn
and az, of s0 from the runs r ∈ runsT . The simulation relation Rs01 is π

−1
s01, where πs01

is the mediator function defined as follows.

πs01(t)≡ (| kn = knC(t.runs),az = azC(t.runs) |)

We can now explain how authorization guards are stated in terms of azC: we use
the expression (d,A) ∈ azC(t.runs) to check whether an agent A is authorized to ac-
cess data d. We will use authorization guards in Section 4.4 to model the confidential
distribution of session keys.

Authentication We similarly refine a0i and a0n by reconstructing a signal multiset
from the concrete runs. The simulation relation Ra01 is π

−1
a01, where the mediator func-

tion πa01 is defined by

πa01(t)≡ (| sigs = sigsC(t.runs) |).

In general, for an agreement of agent A in role R with B in role S on data d with
respect to agents h = [A,B, . . .], the multiset sigsC(t.runs) contains a Commit(h,d)
signal for each run of A in role R where the data d is known and a Running(h,d) signal
for each run of B in role S knowing d.

In contrast to secrecy and authentication, we will formulate key freshness as a state
predicate and establish it as an invariant of guard protocols (see Section 4.4.4).

Example 3.6 (Refinement of authentication model). Let a1 be the model from Ex-
amples 3.4 and 3.5. The simulation relation R01 and mediator function π01 are as
described for Ra01 and πa01 above. It remains to define the function sigsC, which
maps completed initiator and responder runs to Commit and Running signals to ex-
press agreement on the nonces Na and Nb. Concretely, the function sigsC(r) = mr
translates a run map r (such as runs in a1) to the multiset of signals mr (such as sigs in
a0i) that is defined as follows.

mr(S) =


1 if S = Commit([A,B],(Ra$na,Nb)) and r(Ra) = (Init,A,B, [Nb])
1 if S = Running([A,B],(Na,Rb$nb)) and r(Rb) = (Resp,A,B, [Na])
0 otherwise

Note that, in general, the abstraction function sigsC(r) maps each signal to the
number of runs in a state that give rise to that signal (see Section 4). Whenever the

18

run identifier appears in the signal’s data (as in both cases above), there is at most one
such run, since r is a partial function. Therefore, we directly use the constant 1 in the
definition above instead of the more complex general definition.

At this point we can state and prove the refinement result, which establishes the
entity authentication requirement R2. Its proof does not require auxiliary invariants,
but relies on a number of basic properties of the function sigsC.

Proposition 3.7. a1vR01,π01 a0i.

We have now satisfied both system requirements: injective agreement (R2) be-
tween an initiator and a responder (R1). By using abstraction we have captured the
essential features of entity authentication protocols and established their main property
once and for all. Recall that the channel protocols a2 and c2 are both refinements of a1
(cf. Figure 2). Our proofs avoid the intricacies of an active attacker controlling com-
munication. However, the resulting model is still quite abstract and requires further
refinement to be executable in the intended hostile distributed environment. ♠

3.5 Level 2 — Channel protocols
At Level 2 of our refinement strategy, we introduce protocols that use communication
channels with associated security properties. These channels carry plain text messages
without cryptographic operations. We also introduce an explicit intruder acting in this
distributed environment.

3.5.1 Channel messages

For informal use, we adopt the notation of [38] (second column of Table 2). We write
A→ B for an insecure channel from agent A to agent B. The “: M” indicates that the
message M is sent on the channel. Security properties are indicated by a dot on one
or both sides of the arrow. The respective agent has exclusive access to the marked
end. A confidential channel A→•B provides a service to A: A knows that only B can
receive messages. An authentic channel A•→B provides a service to B: B knows
that only A can send messages. A secure channel A•→•B provides both guarantees.
Besides these static channels, we also use dynamic channels, which are accessed using
a key K. For example, A•K→B denotes a dynamic authentic channel. These keys are
usually session keys generated during the protocol execution. Hence, the associated
channels are dynamically created. Static and dynamic channels will later be realized
by cryptographic operations using long-term and session keys, respectively.

We formalize the channel messages that can be transmitted by a data type chmsg,
with constructors for static and dynamic channels. The first parameter of these con-
structors specifies the set of security properties as a combination of authenticity (auth)
and confidentiality (confid). The actual payload message is a list of atomic messages.

security , P({auth,confid})

chmsg , StatCh(security,agent,agent, [atom])
| DynCh(security,key, [atom])

19

channel type dot notation channel message eavesdrop fake

insecure A→ B : M Insec(A,B,M) true true

confidential A→•B : M Confid(A,B,M) A or B bad true

authentic A•→B : M Auth(A,B,M) true A or B bad

secure A•→•B : M Secure(A,B,M) A or B bad A or B bad

confidential A K→•B : M dConfid(K,M) K leaked K run-bounded

authentic A•K→B : M dAuth(K,M) true K leaked

secure A•K→•B : M dSecure(K,M) K leaked K leaked

Table 2: Channel notation, messages, and conditions for extraction and faking

Static channel messages name the sender and the receiver. For dynamic channel mes-
sages, names are replaced by a key, which determines access to the respective channel.
Therefore, the agent names in the informal dot notation for dynamic channels (e.g., in
A K→•B) only suggest the intended communication partners.

In our formal developments, we use the abbreviations given in the third column of
Table 2. For example, we define

Secure(A,B,M)≡ StatCh({auth,conf},A,B,M)

and call this a secure message from A to B. We also say that M is sent to B on a secure
channel. We introduce analogous notions for the other channel messages.

3.5.2 Channel-based intruder

Based on the security attributes of channel messages we define the intruder capabilities
for eavesdropping (or extracting) payload messages and for faking channel messages,
indicated in the final two columns of Table 2. We formalize these intruder capabilities
as two functions:

extrT : P(chmsg)→P(atom)
fakeT,U : P(chmsg)→P(chmsg)

where the parameter T ⊆ atom specifies the intruder’s initial knowledge and the param-
eter U denotes a set of run identifiers. The expression extrT (H) denotes the set of atoms
that the intruder can extract from the set of (observed) messages H and fakeT,U (H) de-
notes the set of messages that the intruder can construct from messages in H. The faked
messages carry payloads that are extracted from messages in H using extrT (H). The
set of run identifiers U restricts the keys that the intruder can use to fake dynamic chan-
nel messages. These functions are defined by the rules in Figures 3 and 4. These rules
state that the intruder can eavesdrop messages on non-confidential (i.e., insecure and
authentic) channels and fake messages on non-authentic (i.e., insecure and confiden-
tial) channels. Moreover, the intruder can eavesdrop messages on confidential channels

20

·
T ⊆ extrT (H)

StatCh(c,A,B,M) ∈ H confid /∈ c∨A ∈ bad∨B ∈ bad
M ⊆ extrT (H)

DynCh(c,K,M) ∈ H confid /∈ c∨K ∈ extrT (H)

M ⊆ extrT (H)

Figure 3: Rules defining extractable atoms

·
H ⊆ fakeT,U (H)

M ⊆ extrT (H) auth /∈ c∨A ∈ bad∨B ∈ bad
StatCh(c,A,B,M) ∈ fakeT,U(H)

M ⊆ extrT (H) (auth /∈ c∧K ∈ rkey(U))∨K ∈ extrT (H)

DynCh(c,K,M) ∈ fakeT,U (H)

Figure 4: Rules defining fakeable channel messages

and fake messages on authentic channels, if these channels have a dishonest starting or
ending point (static case) or the associated key K is known to the intruder (dynamic
case).

The mild technical condition K ∈ rkey(U) in the third rule of Figure 4 restricts the
intruder to using a session key in the set

rkey(U)≡ {R$i | R ∈U ∧ i ∈ N}

to fake a non-authentic dynamic message. We call these keys run-bounded. Below,
we will use U = dom(s.runs) to preserve the invariant that all identifiers R$i with
R /∈ dom(s.runs) are indeed fresh.

The astute reader may be surprised that the intruder does not need to know a key
to read from an authentic dynamic channel or write to a confidential dynamic channel.
This situation differs from Dolev-Yao-style perfect cryptography. For example, verify-
ing a MAC or signature requires a (shared or public) key. However, the key is typically
only required for verifying the authenticity of the message and not for giving access
to the authenticated message itself. Likewise, producing an encryption in a Dolev-Yao
model requires a key. However, there are encryption schemes such as stream ciphers
where the intruder can produce valid ciphertexts without knowing the encryption key.

Similarly, it may be surprising that we allow the intruder to (i) eavesdrop messages
on confidential channels with a dishonest sender and (ii) send messages on authentic
channels with a dishonest receiver. While in case (i), one can argue that the intruder
knows the message anyway, we know no similar argument for case (ii). However, an
important reason to allow this behavior is to enable implementations based on symmet-
ric cryptography, for instance, realizing an authentic channel using MACs.

21

3.5.3 State, events, and refinement

Channel protocols extend the state of the guard protocol they refine with a variable
chan containing a set of channel messages.

Σ2 , Σ1 +(| chan ∈P(chmsg) |)

The protocol events use guards of the form M ∈ s.chan to receive a channel mes-
sage M. These guards replace the non-local security guards in the guard protocols,
which directly read other runs’ local stores. Sending a message M is achieved by an
action of the form s′.chan := s.chan∪{M}.

Channel protocols include an intruder event, which closes the set of channel mes-
sages under fakeable messages.

fake2 ≡ {(s,s′) | s′.chan := fakeik0,dom(s.runs)(s.chan)}

Here, we work with the initial knowledge ik0 consisting of the sets of all agents, cor-
rupted keys, and numbers.

ik0 ≡ agent | corrKey | N

The refinement of the abstract Level 1 model just extends the state record with the
variable chan. Hence, the simulation relation is typically R12 ≡ Πruns, stating that the
values of variable runs of this and the previous model are identical.

Example 3.8 (A channel-based authentication protocol). The high level of abstrac-
tion of guard protocols allows many different realizations. Recall from the overview
in Section 3.1 that we have also refined the model a1 into two protocols, one using
authentic and one using confidential channels, respectively. As an example, we now
model the following abstract protocol using authentic channels.

M1. A → B : Na
M2. B•→A : Nb,Na

The initiator A sends the nonce Na to B, who returns it together with his own nonce Nb
on an authentic channel. In Section 3.6, we will refine this protocol into the ISO/IEC
9798-3 two-pass unilateral authentication protocol [31].

The state Σa2 of model a2 is exactly as Σ2 described above. Initially, all fields are
empty. The observation function is πruns, i.e., it projects this state to the runs field.

The intruder event fakea2 is fake2 defined above. The protocol events send and
receive messages to and from the insecure and authentic channels. In the first step,
step1a1, the initiator A sends Na on an insecure channel to B. In the second step,
the responder B creates a new run identified by Rb, an associated nonce Nb, receives
message M1 from the insecure channel, and authentically sends message M2 to A. This
event adds the reception and sending of messages to the event step2a1 that it refines. In
particular, instead of accepting any nonce Na, the nonce is now extracted from M1.

step2a2(Rb,A,B,Na,Nb)≡ {(s,s′) | -- by B, refines step2a1
-- guards:

22

Rb /∈ dom(s.runs) ∧ -- fresh run Rb
Nb = Rb$nb ∧ -- fresh nonce Nb
Insec(A,B, [Na]) ∈ s.chan ∧ -- receive M1

-- actions:
s′.runs := s.runs(Rb 7→ (Resp,A,B, [Na]))∧
s′.chan := s.chan ∪ {Auth(B,A, [Nb,Na])}} -- send M2

In the third step, the initiator run Ra receives message M2 and updates his local
state with the nonce Nb.

step3a2(Ra,A,B,Na,Nb)≡ {(s,s′) | -- by A, refines step3a1
-- guards:
s.runs(Ra) = (Init,A,B, []) ∧
Na = Ra$na∧
Auth(B,A, [Nb,Na]) ∈ s.chan ∧ -- recv M2

-- actions:
s′.runs := s.runs(Ra 7→ (Init,A,B, [Nb])) }

The reception of message M2 replaces the access to the responder run’s memory of the
refined event step3a1. The corresponding guard refinement (GRD) of the refinement
proof requires the following invariant, which states that authentic messages between
honest agents indeed originate from an associated responder run identified by Rb.

autha2 ≡ {s | ∀A,B,Na,Nb.
Auth(B,A, [Nb,Na]) ∈ s.chan∧B /∈ bad∧A /∈ bad
→∃Rb. Nb = Rb$nb ∧ s.runs(Rb) = (Resp,A,B, [Na])}

This invariant is all that is needed to prove the refinement. Note that this is an internal
invariant since it refers to channel messages, which are not observable.

Let a2 be the above specification. The simulation relation is the canonical R12 ≡
Πruns described above.

Proposition 3.9. Let R′12 be the relation R12∩(Σa1×autha2). Then reach(a2)⊆ autha2
and a2vR′12,id

a1.

By using abstract channels, we retain the possibility of different cryptographic re-
alizations. For example, we may realize the authentic channels using signatures or
MACs. ♠

3.6 Level 3 — Cryptographic protocols
We model concrete protocols and the Dolev-Yao intruder using a standard theory of
cryptographic messages due to Paulson [48]. At this level, messages are transmitted
over insecure channels.

23

3.6.1 Cryptographic messages and setup

The type of messages, msg, is defined inductively from agents A ∈agent, nonces N∈
nonce, timestamps T ∈ N, keys K∈key, pairs {|M1,M2 |}, and encryptions {|M |}K .

At this level, we can define a concrete type of long-term keys, ltk. As one of many
possible examples, we may define ltk as follows.

ltk , pub(agent) | pri(agent) | shr(agent)

The terms pub(A), pri(A), and shr(A) respectively denote A’s public key, A’s private
key, and the symmetric key that A shares with the server S.

We can also concretize the previously declared abstract setup of cryptographic keys,
keySetup (see Section 3.2). For example, we may define keySetup as follows.

A,B ∈ agent
(pub(A),B) ∈ keySetup

A ∈ agent
(pri(A),A) ∈ keySetup

A ∈ agent C ∈ {A,S}
(shr(A),C) ∈ keySetup

As a consequence we can prove the following equation about corrKey.

corrKey = ran(pub)∪pri(bad)∪ shr(bad)

To formalize protocol properties and the intruder, we use the standard closure oper-
ators parts, analz, and synth on sets of messages (see [48]). The term parts(H) closes
H under submessages (i.e., subterms of messages), analz(H) closes H under submes-
sages accessible by projection and decryption using the keys in H, and synth(H) closes
H under message compositions.

3.6.2 State and events

Cryptographic protocols replace the channel messages chan with a variable IK contain-
ing a set of cryptographic messages. Therefore, like the channel protocols, they extend
the state Σ1 of the guard protocol they refine.

Σ3 , Σ1 +(| IK ∈P(msg) |)

Initially, the set IK contains the initial intruder knowledge, e.g., the long-term keys of
all bad agents, corrKey. Note that agent ∪N⊆ synth(H) for all sets of messages H.

Protocol events receive messages by using guards of the form M ∈ s.IK and send
messages by actions of the form s′.IK := s.IK ∪ {M}. The Dolev-Yao intruder can
generate and send messages from the set synth(analz(s.IK)).

fake3 ≡ {(s,s′) | s′.IK := synth(analz(s.IK))}

Example 3.10 (A cryptographic authentication protocol). We now refine the ab-
stract protocol model a2 into the ISO/IEC 9798-3 two-pass unilateral authentication
protocol [31] by translating the authentic channels into signed messages communicated
over an insecure channel.

M1. A→ B : A,B,Na
M2. B→ A : {|Nb,Na,A |}pri(B)

24

The state Σiso3 is Σ3 described above. Initially, the runs field is empty and IK =
corrKey. Note that for this example the shared keys could be omitted. This models
Assumptions A2 and A3 about static corruption and the cryptographic setup. Only the
runs field is observable.

We restrict our presentation to the second protocol step, step2iso3. It refines the ab-
stract event step2a2 by replacing the insecure message M1 by a corresponding message
in IK and the authentic message M2 by a signed message in IK.

step2iso3(Rb,A,B,Na,Nb)≡ {(s,s′) | -- by B, refines step2a2
-- guards:
Rb /∈ dom(s.runs)∧
Nb = Rb$nb∧
{|A,B,Na |}∈ s.IK∧ -- receive M1

-- actions:
s′.runs := s.runs(Rb 7→ (Resp,A,B, [Na])),
s′.IK := s.IK ∪ {{|Nb,Na,A |}pri(B) } } -- send M2

The intruder event fakeiso3 is fake3 introduced above, which models the Dolev-Yao
intruder described in Assumption A1. ♠

3.6.3 Refinement

The refinement of channel protocols by cryptographic ones is based on a protocol-
dependent message abstraction function absMsg : P(msg)→P(chmsg). Given such
a function, the simulation relation R23 is defined as the intersection of the following
four relations.

Rmsgs
23 ≡ {(s, t) | absMsg(parts(t.IK))⊆ s.chan}

Rnon
23 ≡ {(s, t) | analz(t.IK)∩nonce⊆ extrik0(s.chan)}

Rkey
23 ≡ {(s, t) | analz(t.IK)∩ key⊆ extrik0(s.chan)}

Rpres
23 ≡ Πruns

The relation Rmsgs
23 expresses that the abstractions of concrete message parts in t.IK

are contained in the channel variable s.chan. Abstracting message parts instead of
the messages themselves increases the flexibility of the abstractions. We will further
discuss this point in Section 4.6 where this possibility enables the modification of the
communication topology between Levels 2 and 3. The relations Rkey

23 and Rnon
23 state that

the abstract intruder knows at least the nonces and keys that the concrete intruder also
knows. If no keys or no nonces appear in a protocol then the corresponding relation
can be dropped from the simulation relation. Finally, the relation Rpres

23 states that the
variable runs is preserved, i.e., it has the same value in the abstract and concrete model.
In concrete applications, this relation may include other preserved state variables.

In the refinement proof for the intruder events, a variant of the following action
refinement (ACT) proof obligation arises.

(s(| chan := fake(s.chan) |), t(| IK := synth(analz(t.IK)) |)) ∈ R23

25

This states that the successor states resulting from the respective intruder actions are
still in the simulation relation. The proof of the part concerning Rmsgs

23 relies on the
property

(s, t) ∈ R23⇒ absMsg(parts(synth(analz(t.IK))))⊆ fake(s.chan),

which typically follows from the definitions of absMsg and fake and from general prop-
erties of parts, synth, and analz.

Example 3.11. The simulation relation in this refinement is R23 as defined above, ex-
cept that Rkey

23 is not needed. We concretize the message abstraction function absMsg(H)
as follows.

{|A,B,Na |}∈ H
Insec(A,B, [Na]) ∈ absMsg(H)

{|Nb,Na,A |}pri(B)∈ H

Auth(B,A, [Nb,Na]) ∈ absMsg(H)

The refinement proof only requires one internal invariant expressing the secrecy of
the private signing keys.

keysiso3 ≡ {s | ∀A. pri(A) ∈ analz(s.IK)→ A ∈ bad}

We can now state the refinement result relating this model of the ISO/IEC 9798-3
protocol to the abstract channel model a2.

Proposition 3.12. Let R′23 be the relation R23 ∩ Σa2× keysiso3. Then reach(iso3) ⊆
keysiso3 and iso3vR′23,id

a2. ♠

3.7 Discussion
We have presented our four-level refinement strategy along with its supporting infras-
tructure. We have illustrated our approach with the development of simple entity au-
thentication protocols. This resulted in two different concrete protocols at Level 3:
ISO/IEC 9798-3 and NSL/2. We satisfied all system requirements by proving prop-
erties of the abstract model at Levels 0 and 1. As these models are not directly im-
plementable, we continued our refinements, thereby obtaining models that are suitable
for an implementation in the intended hostile distributed environment and, crucially,
inherit the properties we proved for the abstract models. The simulation relation and
invariants used here at Levels 2 and 3 are canonical for our refinement strategy (cf. Sec-
tion 4). We would like to emphasize that a number of alternative cryptographic realiza-
tions of the channel protocols are possible, for example, using symmetric encryption
or MACs. Our approach fosters abstraction and enables the sharing of structure and
proofs.

4 Key Establishment Protocols
In this section, we validate our refinement approach by developing a family of key
establishment protocols, including the Needham-Schroeder Shared Key (NSSK), core

26

versions of the Kerberos 4 and 5 protocols, and the Denning-Sacco protocol. Compared
to the simple running examples from Section 3, our protocol models feature additional
elements such as timestamps, replay caches, dynamic channels, and a changing com-
munication structure. We also prove additional security properties related to session
keys, such as key confirmation, key freshness, and key recentness.

4.1 Requirements and Assumptions
Our informal requirements and assumptions for (server-based) key establishment pro-
tocols follow below. The first three requirements are mandatory and must be satisfied
by all protocols we consider. The last three requirements are optional. We will formal-
ize these requirements in subsequent sections.

Requirement R1 (Key distribution). The server generates and distributes a fresh ses-
sion key to an initiator and a responder.

Requirement R2 (Key secrecy). Only authorized agents may learn a session key, un-
less one of them is dishonest whereby other agents may also learn it.

The next two requirements cover authentication properties, which we will formalize
in Section 4.3 as injective or non-injective agreements.

Requirement R3 (Server authentication). The initiator and the responder each au-
thenticate the server on the session key and possibly on additional data.

Requirement R4 (Key confirmation). The initiator and the responder authenticate
each other on the session key and possibly on additional data, thereby confirming
to each other their knowledge of the key.

Two additional (and independent) requirements concern the freshness and recent-
ness of the session key. A key is fresh if it is only used in a single session and is recent
if its lifetime does not exceed a specified limit.

Requirement R5 (Key freshness). The initiator and responder obtain assurance that
the session key is fresh.

Requirement R6 (Key recentness). The initiator and responder obtain assurance that
the session key is recent.

The environment assumptions about the intruder, static corruption, and the crypto-
graphic setup are the same as in Section 3.1.

4.2 Development Overview
We concretize our refinement strategy for deriving different server-based key estab-
lishment protocols: the Needham-Schroeder Shared-Key (NSSK) protocol [45], the
Denning-Sacco protocol [29], and a core version of Kerberos 4 [52] and Kerberos 5 [46]
with one instead of two servers. In these protocols, the initiator requests a session key
from the server for use with a given responder. We derive different variants of these

27

s0a0i

a0nL0: Security
 Properties

L1: Guard
 Protocols

L2: Channel
 Protocols

L3: Crypto
 Protocols

kt11,2

kt1nn3

ds2

ds3d ds3

nssk14,5r

nssk2

nssk3d nssk3

krb14,5r,6

krb2

krb3d krb3ivkrb3v

kt1in3,5i

ds16

Figure 5: Refinement graph

protocols. In the simplest variant, the server responds by sending encrypted copies of
the session key directly to the initiator and the responder. In the original protocols, the
server also sends the responder’s encrypted key, called a ticket, to the initiator who for-
wards it to the responder. The ticket is either encrypted inside the message containing
the initiator’s copy of the session key (NSSK, Denning-Sacco, and Kerberos 4) or sent
alongside that message (Kerberos 5). Moreover, in the NSSK and Kerberos 4 and 5
protocols, the initiator and the responder exchange two additional messages for mutual
key confirmation. After this overview, we will focus on the core Kerberos 4 and 5
protocols in the remainder of this section. Figure 12 on page 39 depicts a message
sequence chart of these protocols.

The refinement graph in Figure 5 summarizes our development. Recall that each
node in such a graph represents a model and each arc m→ m′ represents a refinement
m vπ m′ for a given mediator function π , not shown. The superscripts refer to the
requirements established, where i and r denote the initiator and responder.

At Level 0, we have the abstract models of secrecy (s0) and authentication (a0i,
a0n) from Section 3.3. At Level 1, our first guard protocol, kt1, abstractly models
server-based secret key transport (R1, R2). It refines the secrecy model s0 and is an
ancestor of all key transport protocols that we have derived. The model kt1 therefore
provides secret key distribution, but does not guarantee the session key’s authenticity,
freshness, or recentness. Hence, we refine kt1 into further guard protocols that establish
authentication properties (R3, R4) and use freshness identifiers [30], namely, nonces or
timestamps, to prevent replays and guarantee key freshness and recentness (R5, R6).
We do this in two stages.

In the first stage, we refine kt1 into two different models that realize server authen-
tication (R3). In the first model, kt1in, the initiator injectively agrees with the server on
the session key, while the responder non-injectively agrees with the server (reflected
in the name as ending in). The injective agreement and secrecy entail key freshness

28

protocol model R1 R2 R3 R4 R5 R6

NSSK nssk3 X X i/n i/i X -

Kerberos 4 krb3iv X X i/n n/i X X

Kerberos 5 krb3v X X i/n n/i X X

Denning-S. ds3 X X n/n - - X

Table 3: L3 models and their properties

(R5) for the initiator. In the second model, kt1nn, both initiator and responder achieve
non-injective agreements with the server (reflected in the name as nn). The data agreed
upon, in addition to the session key, is a parameter in these models. We establish each
authentication property by refining an L0 model, a0n or a0i, using a different mediator
function. This explains why there are multiple paths between some models in Figure 5.

In the second stage, we refine the model kt1in into nssk1 and krb1 and establish
key confirmation (R4). We achieve this by adding protocol steps and proving mutual
agreement between the initiator and the responder on the key and other data. In nssk1,
these agreements are injective due to the use of nonces. In krb1, we use timestamps to
ensure key recentness (R6). A replay prevention cache allows the responder to obtain
an injective agreement with the initiator. Key freshness (R5) for the responder relies
on both authentication and secrecy properties. Finally, we also refine the model kt1nn
into ds1 using timestamps to obtain key recentness. At this point, all requirements are
established. The remaining two levels realize the environment assumptions A1-A3,
making the protocol fit for execution in a hostile distributed environment.

At Level 2, we construct the three channel-based models nssk2, krb2, and ds2,
where the roles exchange channel messages instead of reading each other’s memory.
The server distributes the session key on static secure channels to the initiator and
responder and key confirmation is realized in nssk2 and krb2 using dynamic authentic
channels protected by the session key.

At Level 3, we replace the channel messages by cryptographic messages sent over
an insecure channel. We implement the static secure channels by symmetric encryp-
tion with long-term keys and the dynamic authentic channels by encryption with the
session key. The models at this level differ in their handling of the responder’s ticket.
In models with names ending in d (for direct), namely, nssk3d, ds3d, and krb3d, the
server sends the ticket directly to the responder. In the other models, the communi-
cation topology changes: the server sends the ticket to the initiator who forwards it
to the responder. While in krb3v the ticket is sent alongside the ciphertext containing
the initiator’s session key, it appears inside the ciphertext in the models nssk3, ds3,
and krb3iv.

Table 3 summarizes the requirements achieved by the final protocols. In the columns
for the authentication requirements R3 and R4, ‘i’ and ‘n’ mean injective and non-
injective agreement. The slash separates initiator and responder guarantees. The mod-
els with names ending in d (not listed in the table) achieve the same properties as their
listed siblings.

29

Σs0Σs0 , (| kn,az |)
id

Proposition 4.1

Σkt1

πs01

Σkt1 , (| runs |)
([Kab], [Kab], [])

π
−1
s01 (*)

id

Proposition 4.3

Σkt1

π1in1

Σkt1in , Σkt1
([. . . ,Ts], [. . . ,Ts], [Na,Ts])

π
−1
1in1

id

Proposition 4.4

Σkrb1

π11

Σkrb1 , Σkt1in +(| clk,cch |)
([. . . ,Ta], [. . . ,Ta,END], [. . .])

π
−1
11

id

Proposition 4.7

Σkrb1

id

Σkrb2 , Σkrb1 +(| chan |)
([. . .], [. . .], [. . .])

Πruns,clk,cch (*)

πruns,clk,cch

Proposition 4.8

Σkrb1

id

Σkrb3v , Σkrb1 +(| IK |)
([. . .], [. . .], [. . .])

R23 (*)

πruns,clk,cch

Figure 6: Details of refinements in the Kerberos development.

Based on the modeling and reasoning framework and the infrastructure from Sec-
tion 3, in the following sections we develop concrete models at each abstraction level.
We focus on the models typeset in boldface in Figure 5 leading to the core versions of
Kerberos. Figure 6 provides an overview of most refinements between these models
and the related propositions. State spaces (without variable types) and simulation re-
lations are displayed on the left hand side, observations and mediator functions on the
right hand side, and observation functions are shown as left-to-right arrows. Triples of
the form (i,r,s) describe the frames of completed initiator, responder, and server runs,
where . . . stands for the fields inherited from the model above. A star (*) means that
the related refinement proof requires invariants to strengthen the simulation relation. In
this figure, we have not included the refinements of the authentication models a0n and
a0i by the models kt1in and krb1 (Propositions 4.2 and 4.5). These exhibit a structure
similar to the refinement of s0 by kt1. We have also omitted the refinement of krb2 into
core Kerberos 4 (krb3iv) stated in Proposition 4.9 as it is similar to the refinement into
core Kerberos 5 (krb3v). This figure is primarily intended as a reference for the reader,
but we will return to it in Section 4.7.1, where we discuss the security guarantees that
the refinements yield for the final models at Level 3.

30

4.3 Security Properties (L0)
We start our development by formalizing the security requirements. We formalize each
secrecy and authentication requirement as an instance of the corresponding Level-0
model from Section 3.3. We will later show that our guard protocol models (L1) refine
these instantiated models, thus establishing the respective requirements (by Proposi-
tion 2.4). We will formalize key freshness and key recentness as invariants of Level 1
protocols and therefore discuss these later in Section 4.4.

Secrecy The instantiation of the polymorphic type of data of the model s0 to keys
provides an abstract model of key distribution and key secrecy. Refining this model
will establish the Requirements R1 and R2.

Authentication We formalize the Requirements R3 and R4. For this purpose, we
must specify the data agreed upon. We use authentication graphs to represent this
information visually. Figure 7 displays the authentication graph of the Kerberos pro-
tocols. In these graphs, there is one node for each protocol role. Each node is labeled
by an agent name (in the given role), possibly followed by a list of freshness identifiers
generated during the role’s execution. For example, the server S generates the session
key Kab and a timestamp Ts, and the initiator generates a nonce Na and a timestamp Ta.
Each arrow specifies one agreement property by defining the parameters h and d for
the running and commit events of models a0n or a0i. The arrow endpoints define the
agents h, whose honesty is assumed, and the tuples labeling the arrows specify the data
d to be agreed upon between these agents. Note that for the current development, we
do not need to assume the honesty of agents other than the participants in the agree-
ment. An arrow tail indicates an injective agreement. The boldface labels indicate the
requirements that are established for the agent near the arrow head. For example, the
arrow from S to B labeled by (Kab,A,Ts) means that the responder B non-injectively
agrees with the server on (Kab,A,Ts), assuming the honesty of S and B (R3). The
arrow from A to B labeled by (Kab,Ts,Ta) means that B injectively agrees with A on
Kab, Ts, and Ta, assuming the honesty of A and B (R4).

To prove that an L1 model establishes an agreement of role R with role S, we
identify an event of role R that refines the commit event and an event of role S that
refines the running event. All other events must refine skip. Each agreement requires a
different mapping of the protocol events to the running and commit events and therefore
requires a separate refinement of the model a0i or a0n (cf. Figure 5).

4.4 Guard Protocols (L1)
In our server-based key transport protocols, there are three roles: a key-generating
server and key-receiving initiators and responders. The state records runtime informa-
tion about the execution of these roles as described in Section 3.4.

Σkt1 , (| runs ∈ runsT |)

Initially, the runs map is empty. The entire state is observable, i.e., the observation
function is the identity.

31

A: Na, Ta B

S: Kab, Ts

(Kab, B, Na, Ts) (Kab, A, Ts)

(Kab, Ts, Ta)

(Kab, Ts, Ta)

R3

R4

R3
R4

Figure 7: Authentication graph for Kerberos

A BS: Kab
Kab Kab

Figure 8: Basic secret key distribution (kt1)

4.4.1 Secret key distribution

A sequence chart of our first abstract key transport protocol model, kt1, appears in
Figure 8. This model establishes R1 and R2 as follows. The server S generates the
session key Kab, which is indicated by the role label S : Kab. The initiator A and the
responder B then secretly acquire this key and record it in their run frames, which is
represented by arrows from S to A and B labeled by Kab. These arrows do not represent
the communication of messages, since there are no messages or channels at this stage.

Before presenting the events of the specification kt1, we discuss the simulation re-
lation used in the refinement of the model s0 from Section 3.3.1, which establishes ses-
sion key secrecy. As described in Section 3.4, we define relations knC(r) and azC(r),
which reconstruct s0’s knowledge and authorization relations from the runs r ∈ runsT .

We define the relation knC(r) by four rules. We give two examples describing the
initiator and server’s session key knowledge. There is a similar rule for the responder.

r(Ra) = (Init,A,B,K#ns)
(K,A) ∈ knC(r)

r(Rs) = (Serv,A,B,ns)
(Rs$sk,S) ∈ knC(r)

Here, Rs$sk is the fresh value used by the server run Rs for the session key and sk is an
arbitrary natural number. An additional rule states that the initial key setup is contained
in the knowledge relation, i.e., keySetup⊆ knC(r).

The following rule defines who is authorized to learn a session key that the server S
generated for A and B, namely A, B, and S, if A and B are honest, and everyone other-
wise.

r(Rs) = (Serv,A,B,ns) C ∈ {A,B,S}∨A ∈ bad∨B ∈ bad
(Rs$sk,C) ∈ azC(r)

(1)

Two additional rules state that keySetup⊆ azC(r) and that anyone is authorized to learn
corrupted keys.

The specification kt1 has five events, each modeling a protocol step. The first event
creates a new run Ra of initiator A with responder B by updating runs with (Ra 7→

32

(Init,A,B, [])). The second event creates a responder run analogously. These two events
refine skip. In the third event, we generate a new server run Rs with associated fresh
session key Kab. This event refines gens0(Kab,S, [S,A,B]).

step3kt1(Rs,A,B,Kab)≡ {(s,s′) | -- by S,refines gens0
Rs /∈ dom(s.runs)∧ -- fresh server run
Kab = Rs$sk∧ -- session key

s′.runs := s.runs(Rs 7→ (Serv,A,B, []))}

The final two events model the confidential acquisition of the session key by the initia-
tor and the responder. They both refine the event learns0. In Step 5, the responder B
acquires the session key Kab in its run Rb.

step5kt1(Rb,A,B,Kab)≡ {(s,s′) | -- by B,refines learns0
s.runs(Rb) = (Resp,A,B, []) ∧ -- B’s run
(Kab,B) ∈ azC(s.runs)∧ -- check authorization

s′.runs := s.runs(Rb 7→ (Resp,A,B, [Kab]))}

The first guard requires that Rb identifies a run of responder B with initiator A, where
B has not yet received a key. The action updates the responder run with the session
key Kab. The initiator’s step4kt1 is analogous.

The second guard is an authorization guard requiring that B is authorized to learn
Kab. There are two cases according to the definition of azC. The first case, described
by rule (1), corresponds to reading a (session) key Kab from the server, who deter-
mined the authorization to access the key. Note that there is no guarantee that the key
was generated for B. In the second case, Kab is a static key, which may be corrupted.
For now, there are no further constraints on Kab. The authorization guard is sufficient
to preserve the secrecy of Kab. In Section 4.4.2, we will establish authentication prop-
erties to ensure that honest agents only accept session keys generated for them and
shared with the intended partner.

Instantiating the simulation relation Rs01 from Section 3.4 with the relations azC(r)
and knC(r) defined above, we show that the model kt1 refines the secrecy model s0.
The guard strengthening proof in the refinement of the event gens0 by step3kt1 requires
an invariant, keykt1, stating that no fresh key K is in the domain of either knC(s.runs)
or azC(s.runs).

Proposition 4.1. Let R′s01 ≡ Rs01 ∩ (Σs0× keykt1). Then we have reach(kt1) ⊆ keykt1
and kt1vR′s01,πs01

s0.

Since the abstract variables kn and az are observable and reconstructable from the
concrete state, the secrecy invariant for s0 (Proposition 3.1) is inherited by kt1 (Corol-
lary 2.8), which thus realizes secret key distribution (R1, R2).

4.4.2 Server authentication

We now refine the model kt1 into kt1in and establish agreements of the initiator and the
responder with the server on the session key and additional data. The additional data

33

A: Na BS: Kab, Ts

Kab, B, Na, Ts

Kab

Kab, A, Ts

Kab

Figure 9: Adding server authentication (kt1in)

is a parameter of kt1in. However, for the sake of the presentation, we will focus our
attention on the instantiation of kt1in for the Kerberos development. The models kt1
and kt1in have identical state spaces, but in kt1in we introduce nonces and timestamps,
which are part of the data included in the agreement and recorded in the run frames of
the different roles. The observation function is the identity. Figure 9 shows a sequence
chart for this model. The labels below the arrows denote agreements and an arrow tail
indicates an injective agreement as specified in Figure 7. Na is a nonce generated by A
and Ts is a freshness identifier generated by S that we will later refine into a timestamp
(i.e., a clock reading). The initiator A achieves (R3) by an injective agreement with
the server on (Kab,B,Na,Ts) and the responder B establishes (R3) by a non-injective
agreement with the server on (Kab,A,Ts). The model kt1in refines kt1, a0i, and a0n
(cf. Figures 5 and 6). We establish key freshness (R5) for the initiator as an invariant
(cf. Section 4.4.4 for the similar responder case).

We obtain the model kt1in by modifying kt1 in two ways. First, we introduce new
event parameters and corresponding state updates to reflect that both partners of the
agreement know the data being agreed upon. In the server’s Step 3, we add a nonce Na
and the freshness identifier Ts to the parameters and record these in the run frame, i.e.,
the runs are updated with Rs 7→ (Serv,A,B, [Na,Ts]). Neither Na nor Ts are constrained
by any guards. In the responder’s Step 5, we add the parameter Ts and update the runs
with Rb 7→ (Resp,A,B, [Kab,Ts]) and similarly in the initiator’s Step 4.

Second, we realize the agreements described above by adding authentication guards
to the key-receiving Steps 4 and 5. These guards may either be added directly to the
respective events or discovered during the refinement proof of the commit event of the
model a0n or a0i. Here, we describe guard discovery.

For the refinement of a0n, we therefore first define the function sigsC, which
reconstructs signal multisets from protocol runs, and use it to obtain the mediator
function πrs

a01 and simulation relation Rrs
a01, as described in Section 3.4. The multi-

set sigsCrs(r) ≡ mr contains a Commit signal for each completed responder run. We
formalize this as follows.

mr(Commit([B,S],(Kab,A,Ts)))≡ |RR|
where RR≡ {Rb | ∃nl. r(Rb) = (Resp,A,B,Kab#Ts#nl)}

Similarly, completed server runs give rise to Running signals. Since the session key
Kab is derived from the (unique) server run identifier Rs, a simpler definition suffices.

mr(Running([B,S],(Kab,A,Ts)))≡
if ∃Rs,Na,nl. (Kab = Rs$sk ∧ r(Rs) = (Serv,A,B,Na#Ts#nl)) then 1 else 0

The existential quantifications on nl account for extensions to the run frames with ad-
ditional atomic messages in later refinements. Finally, we set mr(x) ≡ 0 at all other

34

points x.
Next, we prove that the server’s event step3kt1in and the responder’s event step5kt1in

refine the events runninga0n([B,S],(Kab,A,Ts)) and commita0n([B,S],(Kab,A,Ts)) of
the abstract model a0n. The remaining events refine skip. In the proof of guard re-
finement (GRD) for step5kt1in, we get stuck in a proof state3 that directly suggests the
following authentication guard for this event.

B /∈ bad→∃Rs,Na,nl. (Kab = Rs$sk ∧ s.runs(Rs) = (Serv,A,B,Na#Ts#nl)) (2)

This guard guarantees to an honest B that there is a server in a state counting as a
matching Running([B,S],(Kab,A,Ts)) signal. After adding this guard, the proof suc-
ceeds.

For the refinement of a0i, we similarly discover the authentication guard for the
event step4kt1in(Ra,A,B,Na,Kab,Ts) in the proof that this event refines the abstract
event commita0i([A,S],(Kab,B,Na,Ts)).

A /∈ bad→∃Rs,nl. (Kab = Rs$sk ∧ s.runs(Rs) = (Serv,A,B,Na#Ts#nl))

Compared to (2), the absence of the existential quantification on Na reflects that this
agreement includes Na.

Proposition 4.2. kt1inv
π is

a01
a0i for the initiator and kt1invπrs

a01
a0n for the responder.

Finally, it is easy to see that kt1in refines kt1. The mediator function π1in1 removes
the nonce Na and the timestamp Ts from server run frames and Ts from initiator and
responder run frames, therefore only keeping the session key Kab.

Proposition 4.3. kt1inv
π
−1
1in1,π1in1

kt1.

4.4.3 Key confirmation

We next extend the model kt1in to an abstract model of Kerberos (Figure 10), which
achieves key confirmation (R4), key freshness for the responder (R5), and key re-
centness (R6). To model timestamps and their expiration, we explicitly introduce a
(discrete-time) global clock. For key recentness, the initiator and responder check the
validity of a timestamp Ts that the server associates with the session key Kab. For key
confirmation, the initiator and responder mutually agree on the session key Kab, its
associated timestamp Ts, and an initiator timestamp Ta (cf. Figure 7). The responder
caches keys Kab and timestamps Ta to obtain an injective agreement with the initiator.
We assume arbitrary fixed lifetimes Ls and La for server and initiator timestamps. Note
that the sequence chart in Figure 10 contains all agreements specified in Figure 7 and
(partially) orders them causally.

We extend the state of kt1 with two additional variables, reflecting the elements
discussed above.

Σkrb1 , Σkt1+(| clk ∈ time, cch ∈P(agent× key× time) |)
3FIX: Andreas suggested showing a proof state here. What do you think?

35

A: Na,Ta BS: Kab, Ts

Kab, B, Na, Ts

Kab

Kab, A, Ts

Kab

Kab, Ts, Ta

Kab, Ts, Ta

Figure 10: Adding key confirmation (krb1)

The variable clk models the discrete-time clock. We introduce an associated tick(T)
event that increments the clock by T time units. All other events are assumed to take
no time and hence do not modify the clock. The variable cch represents a cache storing
triples (B,Kab,Ta) consisting of an agent name B, a session key Kab, and an initiator
timestamp Ta. For replay protection, a responder B checks the cache before accepting
a key Kab with timestamp Ta. A new purge(B) event removes from B’s cache those
entries whose timestamps Ta have expired and thus are no longer valid, which is the
case when s.clk ≥ Ta+La.

The events for Steps 1 to 5 of the model krb1 are derived from the corresponding
kt1in events, possibly adding guards and actions. In Step 3, we turn Ts into a timestamp
by adding the guard Ts = s.clk.

In the initiator’s Step 4, we add the initiator’s timestamp Ta as a parameter and
record it in the frame, and we introduce two time-related guards.

step4krb1(Ra,A,B,Na,Kab,Ts,Ta)≡ {(s,s′) | -- by A
· · · -- guards of step4kt1in (omitted)
Ta = s.clk∧ -- get timestamp
s.clk < Ts+Ls∧ -- chk validity of Ts
s′.runs := s.runs(Ra 7→ (Init,A,B, [Kab,Ts,Ta]))}

The first guard states that the timestamp Ta is the current value of the clock. The second
guard ensures the validity of the server timestamp Ts.

In the responder’s Step 5, we also add Ta as a parameter and record it in the frame.
Furthermore, we introduce four new guards and a new action.

step5krb1(Rb,A,B,Kab,Ts,Ta)≡ {(s,s′) | -- by B
· · · -- guards of step5kt1in (omitted)
-- for agreement with A on (Kab,Ts,Ta)
(A /∈ bad∧B /∈ bad→∃Ra,nl. s.runs(Ra) = (Init,A,B,Kab#Ts#Ta#nl))∧
(B,Kab,Ta) /∈ s.cch∧ -- replay protection
s.clk < Ta+La∧ -- chk validity of Ta
s.clk < Ts+Ls∧ -- chk validity of Ts
s′.cch := s.cch∪{(B,Kab,Ta)} -- cache update
s′.runs := s.runs(Rb 7→ (Resp,A,B, [Kab,Ts,Ta]))}

The first guard ensures agreement with the initiator on the data (Kab,Ts,Ta). The sec-
ond guard achieves injectivity for the responder by checking that B has not previously

36

seen Kab with timestamp Ta. The last two guards ensure recentness by checking the
validity of Ta and Ts. The new action adds (B,Kab,Ta) to the cache to avoid future
replays.

Finally, we add a new Step 6 to the initiator, which uses an authentication guard to
achieve agreement with a responder run Rb on Kab, Ts, and Ta. We add an arbitrary
value END to the frame to mark the initiator run’s termination.

step6krb1(Ra,A,B,Na,Kab,Ts,Ta)≡ {(s,s′) | -- by A
s.runs(Ra) = (Init,A,B, [Kab,Ts,Ta])∧
-- for agreement with B on (Kab,Ts,Ta)
A /∈ bad∧B /∈ bad→ (∃Rb. s.runs(Rb) = (Resp,A,B, [Kab,Ts,Ta]))
s′.runs := s.runs(Ra 7→ (Init,A,B, [Kab,Ts,Ta,END])) }

The mediator function π11 in the refinement of kt1in by krb1 drops the timestamps
Ta and the termination marker END from initiator and responder frames.

Proposition 4.4. krb1v
π
−1
11 ,π11

kt1in.

The mediators π ir
a01 and πri

a01 and associated simulation relations for refining a0i
and a0n are defined analogously to Section 4.4.2. The authentication guards can be
defined or discovered as described in that section. The replay cache guarantees injective
agreement with the initiator to the responder, while the initiator obtains only a non-
injective agreement with the responder. The proof of injectivity in the refinement of
commita0i by step5krb1 requires an invariant stating that if a responder B knows a key
Kab and a timestamp Ta then he has an entry (B,Kab,Ta) in the replay cache during
Ta’s validity. Appendix A provides some proof details.

Proposition 4.5. (i) krb1 v
π ir

a01
a0n for the initiator and (ii) krb1 v

πri
a01

a0i for the
responder.

4.4.4 Key freshness

Finally, we formalize key freshness (R5) for the responder as an invariant of krb1.
This property expresses that a session key K appearing in a run of a responder B with
an initiator A uniquely identifies that run, provided that A and B are honest.

rfreshkrb1 ≡ {s | ∀R,R′,A,A′,B,B′,K,Ts,Ts′,Ta,Ta′.
s.runs(R) = (Resp,A ,B , [K,Ts ,Ta])∧
s.runs(R′) = (Resp,A′,B′, [K,Ts′,Ta′])∧
B /∈ bad ∧ A /∈ bad→ R = R′ }

We have proved that this is an external invariant of krb1.

Proposition 4.6. oreach(krb1)⊆ rfreshkrb1.

All cases except for the critical Step 5 by the responder are proved automatically. In
the latter case, the proof relies on other invariants proved for krb1 or inherited from its
ancestors. Secrecy and the responder’s agreement with the server are used to exclude
the cases where the initiator A′ or the responder B′ in the run R′ is dishonest. Otherwise,
we use the injective agreement with the initiator to reduce the proof to the initiator’s
key freshness (proved for kt1in).

37

A: Na, Ta BS: Kab, Ts

M2a. Kab, B, Ts, Na M2b. Kab, A, Ts

M1. A, B, Na

M3. Kab: A, Ta

M4. Kab: Ta

Figure 11: Channel-based Kerberos protocol (krb2)

4.5 Channel Protocols (L2)
As described in Section 3.5, at Level 2, we extend the state with a field chan for the
set of channel messages of type chmsg. All fields except chan are observable, i.e., the
observation function πruns,clk,cch projects Σkrb2 to Σkrb1.

Σkrb2 , Σkrb1 + (| chan ∈P(chmsg) |)

For the refinement of krb1, we use the simulation relation R12 ≡ Πruns,clk,cch with
the identity mediator function. In the protocol events, we add message-receiving guards,
which replace the authorization and authentication guards from Level 1 (if any), and
actions for sending channel messages. The local guards remain the same. Moreover,
we introduce an active intruder as described in Section 3.5. The intruder’s fake event
refines skip, as it only modifies chan, while all other events refine their counterparts in
the model krb1.

The channel-based refinement krb2 of krb1 is shown in Figure 11. The protocol
is now started by the initiator sending A,B together with his nonce Na to the server.
The server uses static secure channels to send the session key Kab, the name B, the
timestamp Ts, and the nonce Na to the initiator A and Kab,A,Ts to the responder B.
The responder B obtains key confirmation from A by receiving A,Ta on a dynamic
authentic channel protected by the session key Kab (and similarly for A’s guarantee in
the other direction). No confidentiality is required in the key confirmation phase.

As example events, we describe the changes in Steps 3 and 5. In the server’s Step 3,
we add an additional guard for receiving message M1 and an action for sending mes-
sages M2a and M2b.

Insec([A,B,Na]) ∈ s.chan -- receive M1
s′.chan := s.chan∪{Secure(S,A, [Kab,B,Ts,Na]),Secure(S,B, [Kab,A,Ts])}

In Step 5, the responder B receives message M2b from the server and M3 from
the initiator A and sends message M4. Here, the message-receiving guards replace the
previous authorization and authentication guards.

Secure(S,B, [Kab,A,Ts]) ∈ s.chan
dAuth(Kab, [A,Ta]) ∈ s.chan
s′.chan := s.chan∪{dAuth(Kab, [Ta])}

38

A: Na, Ta BS: Kab, Ts
M1. A, B, Na

M3. {| A, Ta |}Kab, {| Kab, A, Ts |}shr(B)

M4. {| Ta |}Kab

M2

M2 = {| Kab, B, Ts, Na |}shr(A),{| Kab, A, Ts |}shr(B)krb3v:

M2 = {| Kab, B, Ts, Na, {| Kab, A, Ts |}shr(B) |}shr(A)krb3iv:

Figure 12: Cryptographic core Kerberos protocols

The refinement proof requires additional invariants. Many of these are directly sug-
gested by the guard strengthening proof obligations stating that the message-receiving
guards (L2) imply the security guards (L1). This is one of the main benefits of us-
ing guard protocols as a link between the properties and the message-based protocols.
Appendix B contains a proof sketch of guard strengthening for Step 5.

Proposition 4.7. Let Ikrb2 be the intersection of the invariants of krb2 and let R′12 ≡
R12∩ (Σkrb1× Ikrb2). Then reach(krb2)⊆ Ikrb2 and krb2vR′12,id

krb1.

4.6 Cryptographic Protocols (L3)
As described in Section 3.6, in our setup at Level 3, each agent A shares a long-term
symmetric key shr(A) with the server S. We concretize the initial key setup relation by
defining keySetup ≡ {(shr(A),C) | C = A∨C = S}, thereby establishing (A3). In the
state, we replace the set of channel messages, chan, by a set of cryptographic messages,
IK (for intruder knowledge). All fields except IK are observable. Initially, IK holds the
corrupted long-term keys, i.e., shr(bad).

Σkrb3v , Σkrb1 + (| IK ∈P(msg) |)

The simulation relation R23 with krb2 is defined as the intersection of the rela-
tions Rmsgs

23 , Rkey
23 , and Rnon

23 , from Section 3.6 with Πruns,clk,cch. The relation Rmsgs
23

is parametrized by the protocol-dependent message abstraction function absMsg ∈
P(msg)→P(chmsg), which we will instantiate to the Kerberos protocols below.

By refining the channel-based intruder into a standard Dolev-Yao intruder, as de-
scribed in Section 3.6, we also establish (A1). In the protocol events, we replace the
channel messages by cryptographic ones. In general, there are alternative realizations
using different cryptographic operations.

Figure 12 shows the core of Kerberos 4 [52] and Kerberos 5 [46]. We implement
the static secure channels by encryption with the long-term keys and we refine the
dynamic authentic channels into encryptions with session keys. (In the Dolev-Yao
model, symmetric encryption also provides authenticity.)

We also modify the communication topology of the channel-based model: The
initiator now relays the responder’s ticket from the server. While in Kerberos 5 the

39

ticket is sent alongside the ciphertext containing the initiator’s session key, it appears
inside the ciphertext in Kerberos 4. We now present our models of Kerberos 5 and
Kerberos 4, krb3v and krb3iv.

4.6.1 Kerberos 5 protocol (L3)

We focus on the refinement of Steps 3–5, which reflect the modified communication
topology. In Step 3, the server sends the message M2 by adding it to IK. This message
consists of a pair of ciphertexts and replaces the messages M2a and M2b in krb2. In
Step 4, the initiator A receives M2 and forwards its second component along with the
authenticator {|A,Ta |}Kab, which proves that A knows Kab.

{| {|Kab,B,Ts,Na |}shr(A),X |}∈ s.IK -- recv M2

s′.IK := s.IK∪{{| {|A,Ta |}Kab,X |} } -- send M3

The responder receives the two-component message M3 in Step 5 and sends back the
confirmation message M4.

{| {|A,Ta |}Kab,{|Kab,A,Ts |}shr(B) |}∈ s.IK -- recv M3

s′.IK := s.IK∪{{|Ta |}Kab } -- send M4

The message abstraction function, absMsg, abstracts the components of messages
M2 and M3 separately. For instance, here are the rules defining the abstraction of the
initiator’s encrypted key, the responder tickets, and the authenticators.

{|K,B,T,N |}shr(A)∈ H

Secure(S,A, [K,B,T,N]) ∈ absMsg(H)

{|K,A,T |}shr(B)∈ H

Secure(S,B, [K,A,T]) ∈ absMsg(H)

{|A,T |}K∈ H
dAuth(K, [A,T]) ∈ absMsg(H)

Here, the possibility to abstract message parts, which is reflected in the definition of
the simulation relation as absMsg(parts(s.IK)) ⊆ t.chan (cf. Section 3.6.3), allows us
to abstract each component of message M2 separately. This enables the modification
of the communication topology between Levels 2 and 3.

The refinement proof requires only four simple additional invariants: Two concern
key definedness and two state that the long-term keys the intruder knows are exactly
those of the dishonest agents (Assumption A2). We have already established all other
relevant properties on higher levels of abstraction.

Proposition 4.8. Let Ikrb3v be the intersection of the invariants of krb3v and let Rv
23 ≡

R23∩ (Σkrb2× Ikrb3v). Then we have reach(krb3v)⊆ Ikrb3v and krb3vvRv
23,id

krb2.

4.6.2 The Kerberos 4 protocol (L3)

In the core Kerberos 4 protocol, the responder’s ticket is encrypted inside the initiator’s
message from the server. Hence, message M2 is modified as follows.

M2′. S→ A : {|Kab,B,Ts,Na,{|Kab,A,Ts |}shr(B) |}shr(A)

40

The changes in the model are straightforward. Moreover, the simulation relation, R′23,
is the same as R23 above except for a minor change in the message abstraction function:
the cryptographic messages abstracted to message M2a, i.e., Secure(S,A, [K,B,T,N])
(see Figure 11), are now of the form {|K,B,T,N,X |}shr(A) and include a message vari-
able X for the responder’s ticket instead of {|K,B,T,N |}shr(A) for Kerberos 5.

The refinement proof for krb3iv requires additional invariants. One invariant links
the variable X above with the ticket by describing the ticket’s shape and the encrypted
key K in message M2 received by an honest initiator A.

ticketkrb3iv ≡ {s | ∀A,B,T,N,K,X .
{|K,B,T,N,X |}shr(A)∈ parts(s.IK) ∧ A /∈ bad→

X = {|K,A,T |}shr(B)∧K /∈ ran(shr)}

Another invariant expresses that the addition of session keys to the intruder’s knowl-
edge does not reveal additional keys.

sessKkrb3iv ≡ {s | ∀KS,K.
KS⊆ key\ ran(shr)→ (K ∈ analz(KS∪ s.IK)↔ K ∈ KS∨K ∈ analz(s.IK))}

A similar invariant states that the intruder cannot derive new nonces by learning new
session keys. We then prove:

Proposition 4.9. Let Ikrb3iv be the intersection of the invariants of krb3iv and let Riv
23 ≡

R′23∩ (Σkrb2× Ikrb3iv). Then reach(krb3iv)⊆ Ikrb3iv and krb3ivvRiv
23,id

krb2.

4.7 Discussion
4.7.1 Overall security guarantees at Level 3

Having gone through a number of refinements, the reader may wonder at this point what
is the precise relationship between the secrecy and authentication properties proved as
invariants at Level 0 and the final models at Level 3. The answer is given by Propo-
sition 2.6 and Corollary 2.8, which state that refinement is transitive and that exter-
nal invariants (such as the secrecy and agreement invariants of s0, a0n, and a0i) are
preserved along refinements. The mediator function translates the observations from
concrete to abstract models.

As an example, consider the series of refinements in Figure 6: we have refined the
secrecy model s0 in five steps into the core Kerberos 5 model (krb3v). The composed
mediator function along the right-hand side of this figure is πs01 ◦π1in1 ◦π11. The first
part, π1in1 ◦π11, projects the state of the model krb3v with fields runs, clk, cch, and IK
to the state of the model kt1, which has only the runs variable. Moreover, using the
notation of Figure 6, the frames of the initiator, responder, and server runs are projected
from ([Kab,Ts,Ta], [Kab,Ts,Ta,END], [Na,Ts]) to ([Kab], [Kab], []), thereby removing
everything but the session key Kab.

The second part, the mediator function πs01 (defined in Section 4.4.1), transforms
this minimal state information to the knowledge and authorization relations kn and az
of the model s0. Hence, using Proposition 2.4, the following overall secrecy result can
be derived as a combination of Propositions 3.1, 4.1, 4.3, 4.4, 4.7, and 4.8.

41

definitions lemmas lines cpu time

infrastructure 54 326 3343 12

Level 1 models 47 138 2023 44

Kerberos 5 73 184 2996 221

NSSK 73 202 3357 149

Denning-Sacco 56 96 1896 68

Table 4: Overall specification and proof statistics. Times are indicated in seconds.

Corollary 4.10. (πs01 ◦π1in1 ◦π11)(oreach(krb3v))⊆ secrecy.

In a similar way, we can express the authentication results directly as proper-
ties of krb3v (cf. Figure 7). The initiator’s injective agreement with the server on
(Kab,B,Na,Ts) and his non-injective agreement on (Kab,Ts,Ta) with the responder
are summarized in the following corollary.

Corollary 4.11. For the initiator, we have

1. (π is
a01 ◦π1in1 ◦π11)(oreach(krb3v))⊆ iagree, and

2. (π ir
a01 ◦π11)(oreach(krb3v))⊆ niagree.

We complete the picture by stating the authentication guarantees for the responder
with the server and with the initiator.

Corollary 4.12. For the initiator, we have

1. (πrs
a01 ◦π1in1 ◦π11)(oreach(krb3v))⊆ niagree, and

2. (πri
a01 ◦π11)(oreach(krb3v))⊆ iagree.

Summarizing, given a security property P proved as an external invariant of a model
S (e.g., at Level 0) and a series of refinements of S into a model S′ (e.g., at Level 3) with
composed mediator function π , Proposition 2.4 yields the guarantee π(oreach(S′)) ⊆
P for S′, i.e., π transforms the set of concrete observations of S′ to a set of abstract
observations satisfying P.

4.7.2 Specification and proof statistics

We have summarized some statistics from our developments in Table 4, which has
entries for five groups of theories. For each group we indicate the number of defi-
nitions and lemmas that we formalized in Isabelle/HOL, the number of lines of the
corresponding theory files, and the elapsed time. The times are for proof checking
only and do not include the generation of a session image or the documentation. The
measurements were made on a 2.6 GHz Intel Core i7 laptop with 8 GB RAM running
Isabelle/HOL 2013.

42

level model lemmas invariants refines

L1 kt1 30 1 / 1 s0

kt1in 58 2 / 2 a0i, a0n

kt1nn 50 1 / 0 a0n (twice)

krb1 77 3 / 5 kt1in, a0i, a0n

nssk1 71 2 / 5 kt1in, a0n (twice)

L2 krb2 67 9 / 4 krb1

nssk2 69 10 / 4 nssk1

L3 krb3iv 59 7 / 0 krb2

krb3v 32 4 / 0 krb2

nssk3 62 9 / 0 nssk2

Table 5: Detailed proof statistics: lemmas, new / inherited invariants, and refinements

The first group consists of the infrastructure theories, which support our method,
and includes the general theory of refinement (Section 2.2) as well as the specific infras-
tructure for security protocol modeling and refinement including the Level-0 models of
secrecy and authentication (Section 3). The second group is formed by the Level-1
models kt1, kt1in, and kt1nn (Sections 4.4.1 and 4.4.2). The third, fourth, and fifth
lines list the data for the models krb1, krb2, and krb3v pertaining to the Kerberos 5
protocol (Sections 4.4.3, 4.5, and 4.6.1), the models nssk1, nssk2, and nssk3 related to
the Needham-Schroeder Shared-Key (NSSK) protocol, and the models ds1, ds2, and
ds3 for the Denning-Sacco protocol (see also Figure 5).

Table 5 shows more detailed proof statistics for the models used in the development
of the Kerberos 4 and 5 and the NSSK protocols. In particular, the fourth column lists
two numbers for invariants. The first number denotes new invariants, which are proved
by induction and primarily used to strengthen the simulation relation in refinement
proofs. One type of (internal) invariant, which we find in most models at all levels,
are key definedness invariants. These relate session keys to the domain of the variable
runs; they are easy to prove and serve mainly a technical purpose. These invariants
are therefore not further mentioned below. The second number indicates invariants that
are inherited from higher-level models. This number does not include all inherited
invariants, but only those that are needed in a proof at the same or a lower level. For
example, the abstract Kerberos and NSSK models, krb1 and nssk1, inherit the same five
invariants from their common ancestor models. Hence, these invariants can be used in
further proofs without the need to reestablish them.

As mentioned earlier, all system requirements are already established at Level 1,
mainly in the form of refinements of Level-0 models. Exceptions are key freshness
properties, which are formulated as invariants. There is one other new invariant at
Level 1, which states a property of the cache in the abstract Kerberos model krb1.

43

The largest number of invariants is required at Level 2. These invariants can be
classified into two groups: those concerning session key secrecy (2 each for krb2 and
nssk2) and those relating received messages to their sender’s or receiver’s state (5 for
krb2 and 6 for nssk2). Many of these invariants arise naturally from guard refinement
proof obligations, e.g., to establish that the received messages imply an authorization or
authentication guard at Level 1. All but two of them have short straightforward proofs
(2-6 lines of proof script).

The invariants remaining at Level 3 mainly concern details introduced at that level.
Examples are the secrecy of long-term keys, an invariant about the shape of forwarded
tickets that are encrypted with an honest agent’s long-term key (krb3iv and nssk3), and
an invariant about the non-use of session keys to encrypt other session keys or nonces
(krb3iv and nssk3).

5 Related Work
There have been other proposals for developing security protocols by refinement us-
ing various formalisms such as the B method [15], its combination with CSP [22],
Event-B [14], I/O automata [35], and ASMs [13]. None of these continue their refine-
ments to the level of a full Dolev-Yao intruder. Either they only consider an intruder
that is passive [35], defined ad-hoc [22, 13, 14], or that corresponds to our Level-2
intruder [15]. This makes a comparison of their results with standard protocol models
difficult. Moreover, these works do not propose a uniform and systematic development
method as we do with our four-level refinement strategy and most of them develop
individual protocols rather than entire families.

Datta et al. [27] use protocol templates with messages containing function variables
to specify and prove properties of protocol classes. Refinement here means instantiat-
ing function variables and discharging the associated assumptions. Based on the same
notion of refinement, Pavlovic et al. [49, 24] propose specialized logics for proving in-
terdependent secrecy and authentication properties. In contrast to our approach, these
refinements do not involve a fundamental change of the abstraction level since one
abstracts and instantiates operations on messages. Moreover, the soundness of these
refinements is not formally justified.

Abstract channels and their transformations were studied by Maurer and Schmid [38].
Boyd has formalized analogous results using Z [18]. Bieber et al. [16] model abstract
channels using the B method and refine them to cryptographic implementations. Bella
et al. [10] combine messages transmitted over channels with security properties with
cryptographic messages in order to model “second-level” protocols, which rely on the
services of some underlying protocols (such as a secure SSL channel). Abadi et al. [1]
formalize secure channels in a variant of the join calculus and establish full abstraction
results for translations to cryptographic implementations.

Mödersheim and Viganò [44] propose a compositional approach, where protocol
specifications may combine channel messages and cryptographic messages. Channel
messages can later be replaced by protocols realizing their properties. Their objec-
tive is to identify the weakest condition that allows protocols to securely implement
channels. In contrast, we use refinement to transform channel protocols into concrete

44

cryptographic protocols.
Classical notions of refinement (such as simulation) do not preserve information-

flow properties, since they involve a reduction of non-determinism, which can destroy
secrecy. Several works address this problem, known as the refinement paradox, for
example, [37, 4, 32, 39]. Morgan and McIver [39, 42, 43] solve the paradox by ex-
plicitly recording the set of possible values of secret variables. These sets represent
the intruder’s ignorance and refinements may extend, but never reduce them. Cortier
et al. [25] show that strong secrecy is equivalent to reachability-based secrecy (used
here), if the secrets are not tested. Key establishment protocols that include a key
confirmation phase (such as such as Kerberos and NSSK) do not satisfy this condition.

Simulation-based security [23, 6] is a paradigm for specifying idealized function-
alities and implementing them using a notion of secure emulation. Delaune et al. [28]
have recently proposed a symbolic version of this paradigm, which can be understood
as a form of compositional refinement. The compositionality comes at the price of
requiring an public-key encryption/decryption functionality and proving a joint-state
theorem. As an example they derive the Needham-Schroeder-Lowe protocol. The
modeling of encryption as a service considerably reduces the abstraction level of these
models compared to the standard symbolic representation as a term constructor.

Our most concrete models are still quite abstract when compared to a protocol im-
plementation in a programming language such as C or Java. The work by Polikarpova
and Moskal [50] can be seen as an extension of our refinement levels with two addi-
tional levels towards an implementation: one in which the messages are replaced by
bitstrings and one that represents the real implementation. The refinements are encoded
and proved in the general-purpose C program verifier VCC.

Isabelle/HOL has been used in several approaches to post-hoc security protocol ver-
ification. Paulson [48] uses induction to define the protocols’ event traces and verify
their properties. We reuse his Isabelle/HOL theory of cryptographic messages includ-
ing the closure operators parts, analz, and synth in our L3 refinements. Refinement
enables us to prove most security properties at higher levels of abstraction. More-
over, strong authentication properties such as injective agreement cannot be proved in
his models, since any message may trigger the same response multiple times. More
recently, Isabelle/HOL has been used to machine-check proofs that are generated by
automatic security protocol verifiers [19, 40].

Several other researchers have analyzed Kerberos. Bella and Riccobene [13] de-
velop Kerberos 4 in three refinements using ASMs. They use a non-standard attacker
model and prove mostly liveness properties (e.g., all runs reach a specific state) instead
of secrecy and authentication properties. Bella and Paulson model BAN Kerberos [12],
Kerberos 4 [11], and Kerberos 5 [9] including session key compromise using the in-
ductive approach [48]. However, they do not model a replay cache and prove only
non-injective agreements.

Butler et al. [21, 20] constructed detailed models of Kerberos 5 using multiset
rewriting. These models include cross-realm authentication and other realistic fea-
tures such as options, flags, and error handling. They manually construct their models
and proofs in several “refinements” to keep them manageable. However, their notion
of refinement is informal.

45

6 Conclusions
Our development provides strong evidence that refinement supports the systematic un-
derstanding and development of families of protocols. The abstract models help the
developer to focus on the essentials: In our case studies, we have established all re-
quirements on guard protocol models (L1), which contain neither messages, commu-
nication channels, nor intruder events. Our refinement strategy guides the developer
towards the concrete levels that account for the environment assumptions, namely, the
distributed environment controlled by a Dolev-Yao intruder. The abstraction levels of
our refinement strategy are reflected in well-structured proofs of correctness, where
the simulation relations used are either fixed (a projection at L1-L2) or systematically
derived (e.g., abstraction of runs to signals at L0-L1 and cryptographic to channel mes-
sages at L2-L3). Our case studies also show that our development strategy and tools
scale to realistic protocols with non-trivial features.

A central part of this work has been the development and exploitation of guard pro-
tocols, which form the bridge between security properties and channel protocols, i.e.,
from the “what” to the “how”. Security guards realize properties abstractly. Moreover,
they substantially simplify proof construction. They give rise to invariants in a canon-
ical way during refinement, thereby facilitating invariant discovery. These invariants
strengthen the simulation relations in the refinement proofs.

Our channel protocol model is quite simple and protocol messages with nested
cryptographic operations or undecryptable message parts have no direct representation.
This excludes modeling, for example, messages containing certificates, the forwarding
of undecryptable messages, and nested encryption (NSSK and Kerberos). Our experi-
ence has convinced us that this simplicity is a virtue rather than a limitation. Our mod-
els of server-based key transport protocols naturally reflects their actual (star-shaped)
security architecture. We view forwarding and double encryption as implementation
techniques, to be dealt with at the final level. Our developments show that this is pos-
sible. Such abstractions are even more beneficial for developing new protocols. From
this perspective, certificates provide an abstract authentic channel from the certifica-
tion authority to the agent verifying the certificate’s content and encrypted and signed
messages are just one way of implementing a secure channel.

Future Work We ultimately envision a tool-based development process where engi-
neers can choose standard properties and follow high-level recipes for building guard,
channel, and crypto protocols, with tools checking their steps along the way. To achieve
this, we will work into two directions. First, we want to extend the range of protocols
that can be modeled and reasoned about. For example, we plan to add support for
Diffie-Hellman key agreement, compromising adversaries, and more complex proper-
ties such as perfect forward secrecy, possibly along the lines of [8]. Second, we would
like to automate development based on our strategy. It should be possible to derive pro-
tocol models directly from high-level descriptions such as the authentication graphs of
Figure 7 and sequence charts of Figures 8–10. Moreover, with suitable infrastructure
it should be feasible to automatically generate and (as far as possible) prove invariants
and simulations, given their strong regularity.

46

Acknowledgements
This work is partially supported by the EU FP7-ICT-2009.1.4 Project No. 256980,
NESSoS: Network of Excellence on Engineering Secure Future Internet Software Ser-
vices and Systems. We are grateful to Jean-Raymond Abrial for fruitful discussions in
the early stages of this work. We would also like to thank Ivano Somaini for devel-
oping parts of the Isabelle/HOL theories and Martin Vechev, Vincent Jugé, Son Thai
Hoang, Eugen Zălinescu, Binh Thanh Nguyen, Ognjen Maric, and Andreas Lochbihler
for their helpful comments.

References
[1] M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel ab-

stractions. Inf. Comput., 174(1):37–83, 2002.

[2] M. Abadi and L. Lamport. The existence of refinement mappings. Theor. Comput.
Sci., 82(2):253–284, 1991.

[3] J.-R. Abrial and S. Hallerstede. Refinement, decomposition, and instantiation of
discrete models: Application to Event-B. Fundam. Inform., 77(1-2):1–28, 2007.

[4] R. Alur, P. Cerný, and S. Zdancewic. Preserving secrecy under refinement. In
M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, Proc. 33nd Interna-
tional Colloquium on Automata, Languages and Programming (ICALP), number
4052 in Lecture Notes in Computer Science, pages 107–118, 2006.

[5] A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H.
Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron.
The AVISPA tool for the automated validation of internet security protocols and
applications. In K. Etessami and S. K. Rajamani, editors, CAV, volume 3576 of
Lecture Notes in Computer Science, pages 281–285. Springer, 2005.

[6] M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability (RSIM)
framework for asynchronous systems. Inf. Comput., 205(12):1685–1720, 2007.

[7] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model checker for
security protocols. International Journal of Information Security, 4(3):181–208,
June 2005.

[8] D. A. Basin and C. J. F. Cremers. Modeling and analyzing security in the presence
of compromising adversaries. In D. Gritzalis, B. Preneel, and M. Theoharidou,
editors, ESORICS, volume 6345 of Lecture Notes in Computer Science, pages
340–356. Springer, 2010.

[9] G. Bella. Formal Correctness of Security Protocols. Information Security and
Cryptography. Springer, 2007.

47

[10] G. Bella, C. Longo, and L. C. Paulson. Verifying second-level security protocols.
In D. A. Basin and B. Wolff, editors, TPHOLs, volume 2758 of Lecture Notes in
Computer Science, pages 352–366. Springer, 2003.

[11] G. Bella and L. C. Paulson. Kerberos version 4: Inductive analysis of the secrecy
goals. In Proc. 5th European Symposium on Research in Computer Security (ES-
ORICS), pages 361–375, 1998.

[12] G. Bella and L. C. Paulson. Mechanising BAN Kerberos by the inductive method.
In A. J. Hu and M. Y. Vardi, editors, CAV, volume 1427 of Lecture Notes in
Computer Science, pages 416–427. Springer, 1998.

[13] G. Bella and E. Riccobene. Formal analysis of the Kerberos authentication sys-
tem. Journal of Universal Computer Science, 3(12):1337–1381, 1997.

[14] N. Benaïssa. La composition des protocoles de sécurité avec la méthode B événe-
mentielle. PhD thesis, Université Henri Poincaré - Nancy I, France, May 2010.
(In French).

[15] P. Bieber and N. Boulahia-Cuppens. Formal development of authentication pro-
tocols. In Sixth BCS-FACS Refinement Workshop, 1994.

[16] P. Bieber, N. Boulahia-Cuppens, T. Lehmann, and E. van Wickeren. Abstract ma-
chines for communication security. In Proc. 6th IEEE Computer Security Foun-
dations Workshop (CSFW), pages 137–146, 1993.

[17] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules.
In CSFW, pages 82–96. IEEE Computer Society, 2001.

[18] C. Boyd. Security architectures using formal methods. IEEE Journal on Selected
Areas in Communications, 11(5), 1993.

[19] A. D. Brucker and S. Mödersheim. Integrating automated and interactive protocol
verification. In P. Degano and J. D. Guttman, editors, Formal Aspects in Security
and Trust, volume 5983 of Lecture Notes in Computer Science, pages 248–262.
Springer, 2009.

[20] F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov. A formal analysis of some
properties of Kerberos 5 using MSR. In Proc. 15th IEEE Computer Security
Foundations Workshop (CSFW), pages 175–. IEEE Computer Society, 2002.

[21] F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and C. Walstad. Formal anal-
ysis of Kerberos 5. Theoretical Computer Science, 367:57–87, November 2006.

[22] M. J. Butler. On the use of data refinement in the development of secure commu-
nications systems. Formal Aspects of Computing, 14(1):2–34, 2002.

[23] R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145, 2001.

48

[24] I. Cervesato, C. Meadows, and D. Pavlovic. An encapsulated authentication logic
for reasoning about key distribution protocols. In CSFW ’05: Proceedings of the
18th IEEE workshop on Computer Security Foundations, pages 48–61, Washing-
ton, DC, USA, 2005.

[25] V. Cortier, M. Rusinowitch, and E. Zalinescu. Relating two standard notions of
secrecy. Logical Methods in Computer Science, 3(3), 2007.

[26] C. J. F. Cremers. The Scyther tool: Verification, falsification, and analysis of
security protocols. In A. Gupta and S. Malik, editors, CAV, volume 5123 of
Lecture Notes in Computer Science, pages 414–418. Springer, 2008.

[27] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and
compositionl logic for security protocols. Journal of Computer Security, 13:423–
482, 2005.

[28] S. Delaune, S. Kremer, and O. Pereira. Simulation based security in the applied pi
calculus. In R. Kannan and K. N. Kumar, editors, FSTTCS, volume 4 of LIPIcs,
pages 169–180. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2009.

[29] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Com-
munications of the ACM, 24(8):533–536, 1981.

[30] L. Gong. Variations on the themes of message freshness and replay - or the
difficulty in devising formal methods to analyze cryptographic protocols. In In
Proceedings of the Computer Security Foundations Workshop VI (CSFW), pages
131–136, 1993.

[31] ISO. Information Technology – Security Techniques – Entity Authentication
Mechanisms – Part 3: Entity Authentication Using a Public-key Algorithm
ISO/IEC 9798-3. International Standard, 2nd edition, 1998.

[32] J. Jürjens. Secrecy-preserving refinement. In Proc. 10th Symposium on Formal
Methods Europe (FME 2001), number 2021 in Lecture Notes in Computer Sci-
ence, pages 135–152. Springer, 2001.

[33] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. Software — Concepts and Tools, 17:93–102, 1996.

[34] G. Lowe. A hierarchy of authentication specifications. In IEEE Computer Secu-
rity Foundations Workshop, pages 31–43, Los Alamitos, CA, USA, 1997. IEEE
Computer Society.

[35] N. A. Lynch. I/O automaton models and proofs for shared-key communication
systems. In Proc. 12th IEEE Computer Security Foundations Workshop (CSFW),
pages 14–29, 1999.

[36] N. A. Lynch and F. W. Vaandrager. Forward and backward simulations: I. untimed
systems. Inf. Comput., 121(2):214–233, 1995.

49

[37] H. Mantel. Preserving information flow properties under refinement. In Proc.
22nd IEEE Symposium on Security & Privacy, pages 78–91, 2001.

[38] U. M. Maurer and P. E. Schmid. A calculus for secure channel establishment
in open networks. In Proc. 9th European Symposium on Research in Computer
Security (ESORICS), pages 175–192, 1994.

[39] A. McIver and C. C. Morgan. Sums and lovers: Case studies in security, composi-
tionality and refinement. In FM 2009: Formal Methods, Second World Congress,
Eindhoven, The Netherlands, November 2-6, 2009. Proceedings, pages 289–304,
2009.

[40] S. Meier, C. Cremers, and D. A. Basin. Efficient construction of machine-checked
symbolic protocol security proofs. Journal of Computer Security, 21(1):41–87,
2013.

[41] R. Milner. An algebraic definition of simulation between programs. In IJCAI,
pages 481–489, 1971.

[42] C. Morgan. The shadow knows: Refinement of ignorance in sequential programs.
In Mathematics of Program Construction, 8th International Conference, MPC
2006, Kuressaare, Estonia, July 3-5, 2006, Proceedings, volume 4014 of LNCS,
pages 359–378, 2006.

[43] C. Morgan. The shadow knows: Refinement and security in sequential programs.
Science of Computer Programming, 74(8):629–653, 2009.

[44] S. Mödersheim and L. Viganò. Secure pseudonymous channels. In M. Backes
and P. Ning, editors, Proc. 14th European Symposium on Research in Computer
Security (ESORICS), volume 5789 of Lecture Notes in Computer Science, pages
337–354. Springer, 2009.

[45] R. Needham and M. D. Schroeder. Using encryption for authentication in large
data networks of computers. Communications of the ACM, 21(12):993–999,
1978.

[46] B. C. Neuman and T. Ts’o. Kerberos: An authentication service for computer
networks. IEEE Communications Magazine, 32(9):33–38, 1994.

[47] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer, 2002.

[48] L. Paulson. The inductive approach to verifying cryptographic protocols. J. Com-
puter Security, 6:85–128, 1998.

[49] D. Pavlovic and C. Meadows. Deriving secrecy in key establishment protocols. In
Proc. 11th European Symposium on Research in Computer Security (ESORICS),
pages 384–403, 2006.

50

[50] N. Polikarpova and M. Moskal. Verifying implementations of security protocols
by refinement. In R. Joshi, P. Müller, and A. Podelski, editors, VSTTE, volume
7152 of Lecture Notes in Computer Science, pages 50–65. Springer, 2012.

[51] B. Schmidt, S. Meier, C. Cremers, and D. Basin. Automated analysis of Diffie-
Hellman protocols and advanced security properties. In Proc. 25th IEEE Com-
puter Security Foundations Symposium (CSF), pages 78–94, 2012.

[52] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An authentication
service for open network systems. In Winter 1988 Usenix Conference, Feb. 1988.

51

A Proof of Step 5 in Proposition 4.5(ii) (L1)
We sketch the proof of guard strengthening in the refinement of the abstract event
commita0i([B,A],(Kab,Ts,Ta)) by the concrete step5krb1(Rb,A,B,Kab,Ts,Ta) of the
responder B, which is part of the proof that establishes the responder’s injective agree-
ment with the initiator. We define the function sigsC(r) ≡ mr that reconstructs the
abstract signals from the runs r, where mr is defined as follows.

mr(Running([B,A],(Kab,Ts,Ta)))≡ cI
mr(Commit([B,A],(Kab,Ts,Ta)))≡ cR

Here, cI and cR are the following cardinalities.

cI ≡ |{Ra | ∃nl. r(Ra) = (Init,A,B,Kab#Ts#Ta#nl)}|
cR ≡ |{Rb | ∃nl. r(Rb) = (Resp,A,B,Kab#Ts#Ta#nl)}|

For the remaining cases, we set mr(x) ≡ 0. The guard strengthening proof obligation
requires that we prove

cR < cI , (3)

assuming that A and B are honest and that the guards of step5krb1 are satisfied. Since we
use a cache to prevent a responder B from accepting the same key Kab and timestamp
Ta multiple times, there cannot be any prior execution of Step 5 with these parame-
ters. We therefore strengthen the subgoal (3) to the conjunction of the following two
subgoals.

cI > 0 (4)
cR = 0 (5)

Subgoal (4) follows from the authentication guard for step5krb1. Subgoal (5) requires
that there is no responder run Rb′ and list nl′ corresponding to a commit signal, i.e.,

s.runs(Rb′) = (Resp,A,B,Kab#Ts#Ta#nl′). (6)

We prove this by contradiction, using an invariant stating that (6) and the validity of Ta
(i.e., s.clk < Ta+La) entail the existence of a cache entry (B,Kab,Ta) ∈ s.cch. This
entry was added in a previous execution of Step 5 by run Rb′ and is not yet purged from
the cache, since the timestamp Ta is still valid. Hence, by assuming (6) and noting that
s.clk < Ta+La and the replay check (B,Kab,Ta) /∈ s.cch are guards of Step 5, we use
the invariant to derive a contradiction. This concludes the proof that the guards of the
step5krb1 event imply the guard of commita0i.

B Proof of Step 5 in Proposition 4.7 (L2)
The guard strengthening proof obligation for Step 5 requires that the guards for receiv-
ing M2b and M3 in the responder B’s step5krb2 imply the following three non-local
security guards of step5krb1: the authorization guard

(Kab,B) ∈ azC(s.runs), (7)

52

the server authentication guard

B /∈ bad→∃Rs,Na. Kab = Rs$sk ∧ s.runs(Rs) = (Serv,A,B, [Na,Ts]) (8)

and the initiator authentication guard

A /∈ bad∧B /∈ bad→∃Ra,nl. s.runs(Ra) = (Init,A,B,Kab#Ts#Ta#nl). (9)

The following invariant directly arises from the proof obligation expressing the
strengthening of the server authentication guard (8). It expresses the guarantee that an
honest B gets about the server’s state from receiving message M2b.

M2b+krb2 ≡ {s | ∀Kab,A,B,Ts.
Secure(S,B, [Kab,A,Ts]) ∈ s.chan ∧ B /∈ bad→
∃Rs,Na.Kab = Rs$sk ∧ s.runs(Rs) = (Serv,A,B, [Na,Ts])}

A related invariant, M2b−krb2, describes the case where B is dishonest. In this case, Kab
is either a corrupted key or a session key generated by the server for some dishonest
agent. These two invariants suffice to derive the strengthening of the authorization
guard (7).

The strengthening of the initiator authentication guard (9) corresponds to the fol-
lowing proof obligation. It describes the authentication guarantee that the responder B
gets about the initiator’s state from receiving messages M2b and M3: A knows Kab,
Ts, and Ta in an initiator run Na, provided that A and B are honest.

Secure(S,B, [Kab,A,Ts]) ∈ s.chan ∧dAuth(Kab, [A,Ta]) ∈ s.chan∧
A /∈ bad ∧ B /∈ bad→
∃Ra,nl. s.runs(Ra) = (Init,A,B,Kab#Ts#Ta#nl)

(10)

When trying to prove that this is an invariant, we get stuck in a proof state that
suggests replacing the honesty of A and B by the secrecy of Kab. This enabled the
successful completion of the proof.

M3krb2 ≡ {s | ∀Kab,A,B,Ts,Ta.
Secure(S,B, [Kab,A,Ts]) ∈ s.chan ∧ dAuth(Kab, [A,Ta]) ∈ s.chan∧
Kab /∈ ikk(s.chan)→
∃Ra,nl. s.runs(Ra) = (Init,A,B,Kab#Ts#Ta#nl)}

To establish the required guard strengthening (10) using the invariant M3krb2, it
suffices to show that its first premise (i.e., Secure(S,B, [Kab,A,Ts]) ∈ s.chan) and third
premise (i.e., the honesty of A and B) imply Kab /∈ ikk(s.chan). This follows from the
invariant M2b+krb2 above and the following invariant, which guarantees to the server that
the intruder never learns a session key generated for honest agents.

ikkSvkrb2 ≡ {s | ∀Rs,A,B,nl.
s.runs(Rs) = (Serv,A,B,nl)∧A /∈ bad∧B /∈ bad→ Rs$sk /∈ ikk(s.chan)}

This completes our sketch of the refinement proof of step5krb1 by step5krb1.

53

	1 Introduction
	2 Preliminaries
	2.1 Isabelle/HOL and notation
	2.2 Refinement theory
	2.2.1 Specification and implementation
	2.2.2 Refinement

	3 Security Protocol Refinement
	3.1 Entity authentication protocols
	3.2 General setup
	3.3 Level 0 — Security properties
	3.3.1 Secrecy
	3.3.2 Authentication
	3.3.3 Other types of security property specifications

	3.4 Level 1 — Guard protocols
	3.4.1 State
	3.4.2 Events
	3.4.3 Refinements

	3.5 Level 2 — Channel protocols
	3.5.1 Channel messages
	3.5.2 Channel-based intruder
	3.5.3 State, events, and refinement

	3.6 Level 3 — Cryptographic protocols
	3.6.1 Cryptographic messages and setup
	3.6.2 State and events
	3.6.3 Refinement

	3.7 Discussion

	4 Key Establishment Protocols
	4.1 Requirements and Assumptions
	4.2 Development Overview
	4.3 Security Properties (L0)
	4.4 Guard Protocols (L1)
	4.4.1 Secret key distribution
	4.4.2 Server authentication
	4.4.3 Key confirmation
	4.4.4 Key freshness

	4.5 Channel Protocols (L2)
	4.6 Cryptographic Protocols (L3)
	4.6.1 Kerberos 5 protocol (L3)
	4.6.2 The Kerberos 4 protocol (L3)

	4.7 Discussion
	4.7.1 Overall security guarantees at Level 3
	4.7.2 Specification and proof statistics

	5 Related Work
	6 Conclusions
	A Proof of Step 5 in Proposition 4.5(ii) (L1)
	B Proof of Step 5 in Proposition 4.7 (L2)

