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Summary. The problem of distributed Kalman filtering (DKF) for sensor networks
is one of the most fundamental distributed estimation problems for scalable sensor
fusion. This paper addresses the DKF problem by reducing it to two separate dy-
namic consensus problems in terms of weighted measurements and inverse-covariance
matrices. These to data fusion problems are solved is a distributed way using low-
pass and band-pass consensus filters. Consensus filters are distributed algorithms
that allow calculation of average-consensus of time-varying signals. The stability
properties of consensus filters is discussed in a companion CDC ’05 paper [24]. We
show that a central Kalman filter for sensor networks can be decomposed into n
micro-Kalman filters with inputs that are provided by two types of consensus fil-
ters. This network of micro-Kalman filters collectively are capable to provide an
estimate of the state of the process (under observation) that is identical to the esti-
mate obtained by a central Kalman filter given that all nodes agree on two central
sums. Later, we demonstrate that our consensus filters can approximate these sums
and that gives an approximate distributed Kalman filtering algorithm. A detailed
account of the computational and communication architecture of the algorithm is
provided. Simulation results are presented for a sensor network with 200 nodes and
more than 1000 links.

Key words: sensor networks, distributed Kalman filters, consensus filters,
sensor fusion, network embedded systems, micro-Kalman filters

1 Introduction

Sensor networks and intelligent arrays of micro-sensors have broad range of
applications including information gathering and data fusion for modeling an
environment, surveillance, active monitoring of forests & agricultural lands,
health-care applications, collaborative information processing, and control of
smart materials with embedded sensors [7, 13, 16, 4, 1, 9, 5, 19, 15, 3, 33, 22, 8].

The most fundamental distributed estimation problem for sensor networks
is to develop a distributed algorithm [14] for Kalman filtering [2]. A scheme
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for approximate distributed Kalman filtering (DKF) was proposed in [30]
based on reaching an average-consensus [23, 27, 21]. The work in [30] only
suggests a scalable scheme to tackle the DKF problem in a special case of
full-information and does not contain the sufficient analytical results and dis-
tributed algorithms necessary to implement a distributed Kalman filter.

This paper provides the essential distributed algorithms and analytical
guarantees necessary to establish: a) The DKF problem can be reduced to
two dynamic consensus problems regarding fusion of the measurements and
covariance information and b) Solving the two dynamic consensus problems
requires appropriate consensus filters (i.e. a low-pass filter and a band-pass
filter). A detailed discussion of consensus filters that solve dynamic consensus
problems and their stability properties is provided in [24, 29]. In particular,
the low-pass consensus filter in [24] plays a crucial role in both data fusion
problems in part b).

The problem of decentralized Kalman filtering was first solved by Speyer
[31]1in 1979. It was independently resolved by Rao, Durrant-Whyte, and
Sheen in [25]. Both methods require a complete network with all-to-all links.
This solution is not scalable for large-scale sensor networks due to its O(n2)
communication complexity (n is the number of sensors/nodes). Thus, decen-
tralized Kalman filtering and distributed Kalman filtering are two separate
problems. In the latter one, each node only is allowed to communicate with
its neighbors on a graph G that is connected but rather sparse.

Consensus problems [23, 27] and their special cases have been the subject
of intensive studies by several researchers [17, 21, 12, 18, 26, 32, 33] in the
context of formation control, self-alignment, and flocking [20] in networked
dynamic systems.

An in-depth comparison between the distributed Kalman filter introduced
here and the existing decentralized fusion algorithms in [34, 28, 6, 11] is the
subject of ongoing investigation.

An outline of the paper is as follows: Section 2 provides some background
on the information form of Kalman filter. Section 3 contains our first main
result on decomposition of a Kalman filter into n collaborative micro-Kalman
filters with local communication. Consensus filters are described in Section 4.
Simulation results for a sensor network with 200 nodes and over 1000 links
are presented in Section 5. Finally, concluding remarks are made in Section 6.

2 Kalman Filter: Information Form

Consider a sensor network with n sensors that are interconnected via an over-
lay network G (e.g. a connected undirected graph as shown in Fig. 1).

1 The original work by Speyer was brought up to the attention of the author by J.
Shamma and has partially influenced the choice of the information form of the
Kalman filter as well as the notation used in the paper.
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Fig. 1. A sensor network with n = 200 nodes and l = 1074 links.

This section describes the so-called information form of the Kalman filter
(IKF) according to [2, 31].

Let us describe the model of a process (e.g. a physical phenomenon or a
moving object) and the sensing model of the IKF as follows:

xk+1 = Akxk + Bkwk; x0

zk = Hkxk + vk
(1)

where zk ∈ Rnp represents the vector of p-dimensional measurements obtained
via n sensors, wk and vk are white Gaussian noise (WGN), and x0 ∈ Rm

denotes the initial state of the process that is a Gaussian random variable.
Here is the information regarding the statistics of these variables:

E(wkw′
l) = Qkδkl, E(vkv′l) = Rkδkl (2)
x0 = N (x̄0, P0). (3)

Given the measurements Zk = {z0, z1, . . . , zk}, the state estimates can be
expressed as

x̂k = E(xk|Zk), x̄k = E(xk|Zk−1), (4)
Pk = Σk|k−1,Mk = Σk|k (5)

where Σk|k−1 and Σk|k−1 denote the state covariance matrices and their in-
verses are known as the information matrices. Note that Σ0|−1 = P0. Here
are the Kalman filter iterations in the information form:
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M−1
k = P−1

k + H ′
kR−1

k Hk (6)
Kk = MkH ′

kR−1
k (7)

x̂k = x̄k + Kk(zk −Hkx̄k) (8)
Pk+1 = AkMkA′

k + BkQkB′
k (9)

x̄k+1 = Akx̂k (10)

3 Distributed Kalman Filter and Micro-KFs

Our first objective is to show how the information form of a central Kalman
filter for a sensor network observing a process of dimension m with an np-
dimensional measurement vector zk can be equivalently expressed in consensus
form using n micro-Kalman filters (µKF) with p-dimensional measurement
vectors which are embedded in each sensor so that the network of micro-
Kalman filters collectively in a distributed way calculate the same state esti-
mate x̂ obtained via application of a central Kalman filter located at a sink
node (e.g. for a moving object in a plane p = 2,m = 4 and n � 1).

Let us assume that there are n sensors with p×m measurement matrices
Hi and sensing model:

zi(k) = Hix(k) + vi(k)

Thus, defining the central measurement, observation noise, and observation
matrix as

zc = col(z1, z2, . . . , zn), (11)
vc = col(v1, . . . , vn), (12)

Hc = [H1;H2; · · · ;Hn], (13)

where Hc is a column block matrix. We get

zc(k) = Hcx(k) + vc(k) (14)

where the subscript “c” means “central”. Let

Rc = diag(R1, R2, . . . , Rn)

denote the covariance of vc (i.e. we assume vi’s are uncorrelated). We have2

M = (P + H ′
cR

−1
c Hc)−1

and
Kc = MH ′

cR
−1
c .

Thus, the state propagation equation can be expressed as
2 The iteration numbers are dropped whenever no confusions occur.
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x̂ = x̄ + Kc(zc −Hcx̄) (15)
= x̄ + M(H ′

cR
−1
c zc −H ′

cR
−1
c Hcx̄) (16)

Defining the following m×m average inverse-covariance matrix

S =
1
n

H ′
cR

−1
c Hc =

1
n

n∑
i=1

H ′
iR

−1
i Hi (17)

and the m-vector of average measurements

yi = H ′
iR

−1
i zi, y =

1
n

n∑
i=1

yi, (18)

one gets the Kalman state update equation of a µKF as

x̂ = x̄ + Mµ(y − Sx̄) (19)

with a micro-Kalman gain of Mµ = nM , measurement consensus y, and
inverse-covariance consensus value of S. The expression for Mµ can be stated
as follows:

Mµ = nM = ((nP )−1 + S)−1. (20)

Denoting Pµ = nP and Qµ = nQ, we obtain an update equation of dimension
m×m for a µKF:

P+
µ = AMµA′ + BQµB′. (21)

Based on the above argument, we have the following decomposition theo-
rem for Kalman filtering in sensor networks:

Theorem 1. (distributed Kalman filter) Consider a sensor network with n
sensors and topology G that is a connected graph observing a process of dimen-
sion m using p ≤ m sensor measurements. Assume the nodes of the network
solve two consensus problems that allow them to calculate average inverse-
covariance S and average measurements y at every iteration k. Then, every
node of the network can calculate the state estimate x̂ at iteration k using the
update equations of its micro-Kalman filter (or µKF iterations)

Mµ = (P−1
µ + S)−1, (22)

x̂ = x̄ + Mµ(y − Sx̄), (23)
P+

µ = AMµA′ + BQµB′, (24)

x̄+ = Ax̂. (25)

This gives an estimate identical to the one obtained via a central Kalman
filter.

Remark 1. The gain Mµ of the micro-Kalman filter has O(m2) elements,
whereas the Kalman gain K of the central Kalman filter has O(m2n) ele-
ments. Thus, the calculations of the central KF require manipulation of large
matrices which is not computationally feasible.
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Remark 2. We assume all nodes know n or solve a consensus problem to cal-
culate n. This is necessary for calculation of Qµ = nQ.

Considering that both S and y are time-varying quantities, one need to
solve two dynamic consensus problems that allow asymptotic tracking of the
values of S(k) and y(k) [30]. The nature of these two dynamic consensus
problem differ in nature. Consensus in y(k) requires sensor fusion for noisy
measurements yi that can be solved using a newly found distributed low-pass
consensus filter given in [24]. The consensus regarding the inverse-covariance
matrices for calculation of S requires a band-pass consensus filter that will be
described in the next section. Neither problems can be solved using a high-pass
consensus filter alone.

Based on the results in [24], the nodes of a network that uses a consensus
filter only reach an ε-consensus (for non-static cases). Meaning that all agents
reach a state that is in a closed-ball of radius ε � 1 around the group decision
value [24]. This means that practically every node calculates its approximate
consensus values Ŝi and ŷi that all belong to small neighborhoods around
S and y, respectively. This gives the following state and covariance update
equations for the ith µKF:

Mi = (P−1
i + Ŝi)−1, (26)

x̂ = x̄ + Mi(ŷi − Ŝix̄), (27)
P+

i = AMiA
′ + BQµB′, (28)

x̄+ = Ax̂, (29)

with Pi = nP . This is the perturbed version of the exact iterations of the µKF
equation in Theorem 1. The convergence analysis of the collective dynamics
of the perturbed µKF equations is the subject of future research.

4 Consensus Filters

Theorem 1 does not amount to the solution of the DKF problem. So far, we
have only managed to show that if two dynamic consensus problems in S
and y are solved, then a distributed algorithm for Kalman filtering in sensor
networks exists. The crucial part of solving the DKF problem is solving its
required dynamic consensus problems which have been addressed in [24] and
partially in [29].

We state the distributed algorithms for three consensus filters: a low-pass
filter, a high-pass filter, and a resulting band-pass filter. Let us denote the
adjacency and Laplacian matrix [10] of G by A and L = diag(A1) − A,
respectively.

• Low-Pass Consensus Filter (CFlp, [24]): Let qi denote the m-dimensional
state of node i and ui denote the m-dimensional input of node i. Then,
the following dynamic consensus algorithm
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q̇i =
∑
j∈Ni

(qj − qi) +
∑

j∈Ni∪{i}

(uj − qi) (30)

that can be equivalently expressed as

q̇ = −L̂q − L̂u + (In + Â)(u− x) (31)

with q = col(q1, . . . , qn), Â = A ⊗ Im and L̂ = L ⊗ Im gives a low-pass
consensus filter with a MIMO transfer function

Hlp(s) = [(s + 1)In + Â+ L̂)−1(In + Â) (32)

from input u to output x.
This filter is used for fusion of the measurements that calculates ŷi by
applying the algorithm to H ′

iR
−1
i zi as the input of node i.

• High-Pass Consensus Filter (CFhp, [24, 29]): Let pi denote the m-
dimensional state of node i and ui denote the m-dimensional input of node
i. Then, the following dynamic consensus algorithm

ṗi =
∑
j∈Ni

(pj − pi) + u̇i (33)

that can be equivalently expressed as

ė = −L̂e− L̂ui (34)
p = e + u (35)

with L̂ = L⊗ Im. This gives a high-pass consensus filter with an improper
MIMO transfer function

Hhp(s) = (sIn + L̂)−1s (36)

from input u to output x that becomes In as s → ∞. This filter appar-
ently propagates high-frequency noise and by itself is inadequate for sensor
fusion.

• Band-Pass Consensus Filter (CFbp): This distributed filter can be
defined as

Hbp(s) = Hlp(s)Hhp(s) (37)

that can be equivalently stated in the form of a dynamic consensus algo-
rithm

ėi = −L̂ei − L̂ui, (38)
pi = ei + ui, (39)

q̇i =
∑
j∈Ni

(qj − qi) +
∑

j∈Ni∪{i}

(pj − qi) (40)
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with a state (ei, qi) ∈ R2m, input ui, and output qi. This filter is used for
inverse-covariance consensus that calculates Ŝi column-wise for node i by
applying the filter on columns of H ′

iR
−1
i Hi as the inputs of node i. The

matrix version of this filter can take H ′
iR

−1
i Hi as the input.

Fig. 2 shows the architecture of each node of the sensor network for dis-
tributed Kalman filtering. Note that consensus filtering is performed with the
same frequency as Kalman filtering. This is a unique feature that completely
distinguishes our algorithm with some related work in [30, 33].

Sensor
Data

Covariance
Data

Low-Pass
Consensus Filter

Band-Pass
Consensus Filter

Micro
Kalman

Filter
(µKF)

Node i

x̂

(a) (b)

Fig. 2. Node and network architecture for distributed Kalman filtering: (a) archi-
tecture of consensus filters and µKF of a node and (b) communication patterns
between low-pass/band-pass consensus filters of neighboring nodes.

5 Simulation Results

In this section, we use our consensus filters jointly with the update equation
of the micro-Kalman filter of each node to obtain an estimate of the position
of a moving object in R2 that (approximately) goes in circles. The output
matrix is Hi = I2 and the state of the process dynamics is 2-dimensional
corresponding to the continuous-time system

ẋ = A0x + B0w
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with

A0 =
[

0 −1
1 0

]
, B0 = I2

The network has n = 200 sensors with a topology shown in Fig. 1. We use
the following data:

Ri = 100(i
1
2 )I2, Q = 25, P0 = I2, x0 = (15,−10)′.

with a step-time of T = 0.02 (sec). Figs 3 and 4 and show the estimate ob-
tained by nodes i = 100, 25. Apparently, the distributed and central Kalman
filters provide almost identical estimates. Of course, the difference is in scal-
ability of the DKF. In Fig. 5, the consecutive snapshots of estimates of all
nodes are shown. The estimates appear as a cohesive set of particles that
move around the location of the object.
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20
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Distributed vs. Cenralized Kalman Filter
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Fig. 3. Distributed position estimation for a moving object by node i = 100: (a)
DKF vs. KF (DKF is the smooth curve in red) and (b) Distributed Kalman filter
estimate (in red) vs. the actual position of the object (in blue).

6 Conclusions

The importance of distributed Kalman filtering (DKF) for sensor networks
was discussed. We addressed the DKF problem by reducing it to two sep-
arate dynamic consensus problems in terms of weighted measurements and
inverse-covariance matrices that can be viewed as two data fusion problems
with different natures. Both data fusion problems were solved is a distributed
way using consensus filters. Consensus filters are distributed algorithms that
allow calculation of average-consensus of time-varying signals. We employed
a low-pass consensus filter for fusion of the measurements and a band-pass
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Fig. 4. Distributed position estimation for a moving object by node i = 25: (a)
DKF vs. KF (DKF is the smooth curve in red) and (b) Distributed Kalman filter
estimate (in red) vs. the actual position of the object (in blue).

consensus filter for fusion of the inverse-covariance matrices. Note that the
stability properties of consensus filters is discussed in a companion paper [24].
We established that a central Kalman filter for sensor networks can be de-
composed into n micro-Kalman filters with inputs that are provided by two
consensus filters. This network of micro-Kalman filters was able to collabora-
tively provide an estimate of the state of the observed process. This estimate
is identical to the estimate obtained by a central Kalman filter given that
all nodes agree on two central sums. Consensus filters can approximate these
sums and that gives an approximate distributed Kalman filtering algorithm
for sensor networks. Computational and communication architecture of the al-
gorithm was discussed. Simulation results are presented for a sensor network
with 200 nodes and 1074 links.
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