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Abstract

We describe a system that supports source-level integration of ML-like functional language
code with C or Ada83 code, by translating the functional code into type-correct, “vanilla” 3GL
code. The system offers simple, efficient, type-safe interoperation between new functional code
components and “legacy” 3GL components. The novel features of our translator include user-
parameterized specification of primitive types and operators; removal of polymorphism by code
specialization; removal of higher-order functions using closure datatypes and interpretation; and
aggressive optimization of the resulting first-order code, which can be viewed as the result of a
closure analysis.
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1 Introduction

Functional languages (FLs) such as ML and Haskell provide powerful and high-level control mech-
anisms and symbolic data types that are not available in traditional “third-generation” languages
(8GLs) such as C, Ada, or Modula. For example, defining and iterating over a list can be done
more abstractly and succinctly in ML than in C. These high-level features make FLs well-suited
for rapid prototyping and stand-alone applications. But many real-world applications need to take
advantage of an existing base of “legacy” code written in imperative 3GLs. Thus a reasonable
aim is to enable programmers to use an FL to write “glue” code that combines existing 3GL code
components, or to write FL. components that can be integrated into larger 3GL-based systems.

Unfortunately, FL implementations typically do not give the programmer control over the de-
tailed layout and lifetime of data, and usually assume a special-purpose runtime system; these
characteristics impede interfacing with foreign languages. “Foreign function” interfaces that ad-
dress these problems are becoming more common [17, 25], but tend to have several disadvantages:
moving data between languages typically requires expensive on-the-fly format conversions or tricky
cast operations; there is often substantial overhead in transferring control between FL and 3GL
runtime systems, which discourages small-grained interactions; and the resulting integrated code is
an inelegant hybrid that depends on the implementation details of FL. and 3GL compilers, which
may be unacceptable in organizations that mandate use of standardized, portable 3GLs.

We have developed an alternative approach to interoperability that completely bypasses these
problems by translating the entire FL program into the imperative 3GL used by the legacy code
base. Specifically, we have built a system that translates an ML-like source language (called RML,
for “Restricted ML”) into well-typed (cast-free), portable, “vanilla” Ada83 or ANSI C code, which
can be passed to a standard compiler. Since the output of the translator represents FL types and
control structures using the 3GL’s types and control structures, it can be easily integrated at a
statement-by-statement level with the code of existing 3GL components, in an efficient and fully
type-safe manner.

Our system has been developed as the back end of a larger application generator system that
produces integrable components from high-level specifications [21]; we first generate RML code from
the specifications using semantics-directed techniques, and then translate that code to Ada83 using

I However, the system is quite general; it can accommodate

the scheme described in this paper.
hand-written or generated RML code from any source, and may be useful in any context where
tight integration with an existing legacy code base is desirable.

This paper describes the design and implementation of our RML-to-3GL translator. Many of
the requirements on such a translator are familiar from existing FL. compilers: high-level features
such as polymorphism, higher-order functions, and algebraic datatypes need to be expressed in
terms of much lower-level type and control constructs. However, the need to generate adequately

performing, well-typed, vanilla target code—particularly for Ada83, a quite secure and restrictive

!The choice of Ada83 was mandated by our project sponsor, the U.S. Air Force Materiel Command.



language— makes special demands on the translator. These have led us to introduce a number of

novel techniques, some of which are of independent interest:

e We use a type-based macro-expansion technique called templates [42, 43] to integrate 3GL
code into RML. RML programs are parameterized by a set of abstract types and operations,
whose translations into target-language text are specified by macros. Both substantial legacy
code components and simple primitive types and operators are handled uniformly in this

fashion. Templates are specified using a specialized definition language; see Section 4.

e We remove polymorphism from RML programs by cloning polymorphic functions and
datatype declarations, making a separate monomorphic version for each distinct set of instan-
tiating type variables; see Section 6. Although this approach has been suggested before [19],
and similar effects have sometimes been achieved by accident [41], we are unaware of any

previous full-scale implementation. The approach requires access to the whole program.

e We remove higher-order functions using a novel closure-conversion algorithm that represents
closures as members of algebraic datatypes, and generates type-specific dispatch functions
to interpret them; see Section 9. The resulting code does not even require function pointers
(which Ada83 lacks). Unlike previous treatments of typed closure-conversion [27], we do
not need to introduce new language primitives or fancy type systems to maintain typability,

although we again require access to the whole program, which must be monomorphic.

e We optimize the closure-converted code, using simple, standard “partial-evaluation-style”
transformations; although optimizing at this stage has been suggested before, we are not
aware that anyone has actually done it, and it proves to be useful. For example, the standard
uncurrying optimization is performed “for free” by the standard inlining optimization; see
Section 10.1.

e Furthermore, the code produced by our typed closure-conversion algorithm can be viewed as
being the result of the simple, implicit closure analysis. We take advantage of this closure
analyses to choose more efficient closure representations and perform more aggressive inlining
than an untyped conversion could support. We also show how to express the results of the
somewhat stronger closure analysis of Bondorf and Jorgensen [9, 30] within the standard

algebraic type framework.

e We eliminate tail-recursive calls, even among mutually recursive functions, without introduc-
ing global labels (which both ANSI C and Ada83 lack). We use local labels instead, merging
mutually recursive functions into a single function with multiple entry points if necessary; see
Section 11.

The architecture of our translator resembles that of other recent transformation-based FL com-
pilers [1, 24, 32, 41]. The translator, which is itself written in Standard ML, is structured as a

series of relatively simple transformations, each preserving semantics and types; see Section 5. It



uses a small set of intermediate languages, each of which is strongly typed and executable by an in-
terpreter. There are type-checkers and self-test mechanisms built in at each intermediate language
stage; these have been used heavily during development to find and correct bugs in the translator.
Only the very last transformation step is dependent on the particular 3GL target language involved,
so the translator is easily retargeted to new output languages. We rely on standard 3GL compilers
to handle traditional low-level concerns like register allocation, instruction selection, and local op-
timization, with reasonable results. Although high performance is not our goal, the performance
of the C code generated by the translator compares favorably with the output of the well-regarded
Standard ML of New Jersey compiler.

Memory management is one area in which we have not innovated. Our C back end incorporates
the Boehm conservative collector [7]. Although Ada83 supports garbage collection in principle, the
implementations we are using do not; the Ada-based applications we have built so far are structured
so that it is safe to perform simple “bulk” deallocation (in the Ada code) at a few key points.

There has been much recent interest in using typed intermediate representations in compilers [33,
28], but in most cases types are abandoned well before code generation. The TIL compiler [41]
does keep type information until a late stage in the compilation process when code has reached a
low level form more primitive than 3GL code, but its type system is substantially more complex
than the C or Ada-style typing we use. While there are many existing systems that compile ML
or Haskell to C [40, 14, 12, 31], they treat C as a loosely-typed “portable assembly language,” and
often make use of casts and non-standard extensions (e.g., as provided by gcc).

This paper describes the overall architecture of our system, and reports in detail on the more
novel transformations. We assume the reader to be familiar with the syntax of functional languages
such as ML, and to be able to read Ada and C code. We have tried to avoid formality except as

demanded for the sake of precision.

2 Example

As a simple motivating example, suppose we wish to build an RML component using an existing Ada
package that implements simple 2D transformations on points (see Figure 1). Points are represented
as pairs of reals and transformations as heap-allocated 3x3 real matrices; transformations are
composed and applied using matrix multiplication (see Figure 2).

We want to use this existing Ada to do the numerical computation, while using RML for con-
venient manipulation of points and transforms considered as abstract values.? (We’ll also use Ada
to write the “main program” or driver that will be responsible for invoking the RML component;
we’ll have little more to say about this driver, however.) In this application the granularity of
primitive operations is quite small, so a function-based interface would not be very attractive. A

template definition that imports these operations (and basic real number and boolean support)

2This is a somewhat artificial example, since many functional language implementations have good built-in support

for numerical computing, and recoding such a small legacy component would be easy.



PACKAGE GeoLib IS
TYPE trans_array IS ARRAY (integer RANGE 1..3, integer RANGE 1..3) of float;
TYPE transform IS ACCESS trans_array;
TYPE point IS RECORD x:float; y:float; END RECORD;

ID:transform := ...;
FUNCTION rotate (r:float) RETURN transform;
FUNCTION translate (x,y:float) RETURN transform;

FUNCTION compose (x,y:transform) RETURN transform;
FUNCTION apply (t:transform; p:point) RETURN point;
END GeoLib;

Figure 1: Example Ada Package Specification (Excerpts)

PACKAGE BODY GeoLib IS

FUNCTION rotate (r:float) RETURN transform IS
ret_val:transform; sinr:real := sin (r); cosr:real := cos (r);

BEGIN
ret_val := NEW trans_array’((cosr,-sinr,0.0), (sinr,cosr,0.0),(0.0,0.0,1.0));
RETURN (ret_val);

END rotate;

FUNCTION compose (x,y:transform) RETURN transform IS
ret_val:transform;
BEGIN
FOR i IN 1..3 LOOP
FOR j IN 1..3 LOOP

END LOOP;

END LOOP;
RETURN (ret_val);

END compose;

FUNCTION apply (t:transform; p:point) RETURN point IS
ret_val:point;

BEGIN
-- N.B. Bottom row of t is always (0.0,0.0,1.0)
ret_val.x := (p.x * t(1,1)) + (p.y * t(1,2)) + t (1,3);
ret_val.y := (p.x * t(2,1)) + (p.y * t(2,2)) + t (2,3);
RETURN (ret_val);

END apply;

END GeoLib;

Figure 2: Example Ada Package Implementation (Excerpts)



template GeoLibTemplate

header "WITH GeoLib; USE Geolib; WITH Math; USE Math"

type real (8) "float"

type point(16) "point"

type transform(4) "transform"

datatype bool "bool" = false "F" | true "T"

val / (x0O:real,xl:real) : (res:real) "‘res‘ := ‘x0°¢ / ‘x1‘;"
val not (b:bool) : (res:bool) pure

"IF ‘b‘ = T THEN ‘res‘ := F ELSE ‘res‘ := T END IF;"
val id : transform "id"

val translate (x:real,y:real) : (res:transform) "‘res‘ := translate (‘x‘,‘y‘);"
val apply (t: transform,p:point) : (res:transform)
"BEGIN \

\ ‘res‘.x := ((‘p‘.x * ‘t(1,1)) + (‘p‘.y * ‘£°(1,2)) + “t£(1,3)); \
\ ‘res‘.y := ((‘p‘.x * ‘t(2,1)) + (‘p‘.y * ‘£(2,2)) + ‘£(2,3)); \

\ END"

Figure 3: Example Template for Geometric Operations (Excerpts)

into an RML component is shown in Figure 3. This template declares real, point and transform
as new abstract types, with the operator signatures as listed. Most of the operators expand into
calls to the corresponding Ada routines; apply is defined to expand into inline Ada code. Template
syntax is explained in Section 4.

A simple RML component that uses this template is shown in Figure 4. RML concrete syntax
is similar to SML; details are given in Section 3. This component makes heavy use of RML’s
facility for defining and manipulating polymorphic algebraic types like 1ist and abstract traversal
operations like foldl. It builds a list of transforms and uses foldl and compose to make a
combined transformation; it then uses another foldl to apply the combined transform to a list
of points, and a third foldl to reverse the result (returning the list of transformed points to its
original order).

The remainder of the paper will refer to this example component repeatedly, to show the effect
of various transformations. As a preview of the end product, we show the final output of the
RML-to-Ada translator on this component in Figures 5 8. This is genuine output, except that
we have renamed the variables for better readability. The output code illustrates many of the
key characteristics of our translation approach; because of the extremely small size of the input
program, the optimizer has done an unusually good job with it. The output is efficient first-order
monomorphic code. The inner function f of the original polymorphic foldl function has been

specialized into two monomorphic variants £0 and f1, taking transform lists to transforms and



export type point "point"
type transform "transform"
type point list "PointList"
val Nil : point list "PointNil"
val Cons : point * point list -> point list "PointCons"
type transform list "TransList"
val Nil : transform list "TransNil"
val Cons : transform * transform list -> transform list "TransformCons"
val doit : point list -> point list "doit"

datatype ’a list = Cons of ’a x ’a list | Nil

val rec foldl (x : V ’a,’b. (Pa * ’b => ’b) * ’b -> ’a list -> ’b *) =
fn (c,n) => fn 1 =>

let val rec f : ’b * ’a list -> ’b =
fn (n,1) =>
case 1 of
Nil => n

| Cons (x,r) => f (¢ (x,n),r)
in f (n,1)

val ts (* : transform list *) = Cons (translate (2.0,72.0),
Cons (scale (1.0,0.5),
Cons (rotate(/(3.141592,2.0)), Nil)))

val reverse (x : V ’a.’a list -> ’a list *) = foldl(Comns, Nil)

val rec doit (* : point list -> point list *) =
fn ps =>
let val whole_t (* : transform *) = foldl (compose,id) ts
in let val comnsapp (* : point * point list -> point list *) =
fn (x,1) => Cons(apply(whole_t,x), 1)
in reverse(foldl (consapp,Nil) ps)

Figure 4: RML Component using Geometric Template. Type annotations are added as comments

to improve readability.

point lists to point lists, respectively. The two possible functional arguments to £1, namely
Cons and consapp, are represented as members of a discriminated record PxPL2PL _clos. The
discriminant tag indicates which function is required; the consapp variant, which carries the free
variable whole_t as an associated value, must be dynamically constructed, whereas the Cons variant
is statically defined. In either case the closure is small enough to be manipulated by value, rather
than being heap-allocated. Moreover, since Cons and consapp are used only as arguments to foldl,
their code is actually inlined into £1. The primitive Ada code for apply, used within consapp, has
been inlined, as specified in the template. Even stronger optimization has been applied to £0: since

compose is the only argument that can be passed to it, no closure is required at all, and its body



WITH GeolLib; USE GeoLib; WITH Math; USE Math;

PACKAGE Geo_package IS
TYPE PointList_item ; TYPE PointList IS ACCESS PointList_item;
TYPE PointList_item IS RECORD PointCons_O:point; PointCons_1:PointList; END RECORD;
FUNCTION PointCons (PointCons_O:point; PointCons_1:PointList) RETURN PointList;
PointNil:PointList := NULL;

TYPE TransList_item ; TYPE TransList IS ACCESS TransList_item;

TYPE TransList_item IS RECORD TransCons_O:transform; TransCons_1:TransList; END RECORD;
FUNCTION TransCons (TransCons_O:transform; TransCons_1:TransList) RETURN TransList;
TransNil:TransList := NULL;

FUNCTION doit (ps:PointList) RETURN PointList;
END Geo_package;

Figure 5: Generated Ada Package Spec Corresponding to Example

is specialized to call the primitive Ada compose routine directly.

The only heap-allocated structures in the Ada program are the lists themselves, for which the
translator has automatically chosen an efficient representation using one record per list item and
the NULL pointer to represent the empty list; point lists use a completely flattened five-word
record per item, with no indirection for the point pair or for the embedded reals. The tail-recursive
calls in £0 and f1 have been converted to local jumps. The only major remaining optimizations to

be performed by the Ada compiler are variable coalescing and jump-to-jump elimination.

3 RML Source Language

RML is an eager language with first-class functions, algebraic datatypes and parametric (Hindley-
Milner) polymorphism. Plain RML, without primitives, is essentially similar to the pure subset of
core Revised Standard ML (SML ’97) [26], without nested patterns or many derived forms, but
with the addition of true multi-argument functions and data constructors. In this paper, we use a
human-readable but still somewhat abstract syntax for RML (Figure 9) and the other intermediate
languages used in the translator. In this representation, all identifier names are assumed to be
distinct. In practice, source code is fed to the RML translator using a more elaborate concrete
syntax (actually a subset of SML syntax) with the usual lexical scoping rules, or, for machine-
generated source, using an internal representation of the abstract syntax. The primary difference
between concrete and abstract syntax is that the former is untyped; the system performs standard
Hindley-Milner type inference [11] to obtain the type-annotated abstract form. Also, the concrete
syntax allows primitives and constructors to be used as first-class values whereas the abstract syntax
permits them only in the operator position of applications; such first-class uses are automatically
eta-expanded by the concrete syntax parser.

RML’s typing rules are largely standard, so we mention only distinctive points here. RML



PACKAGE BODY Geo_package IS
WITH GeoLib; USE GeoLib; WITH Math; USE Math;

TYPE PxPL2PL_clos_constructors IS (cons_variant,consapp_variant);
TYPE PxPL2PL_clos (constructor:PxPL2PL_clos_constructor := cons_variant) IS
RECORD CASE constructor IS
WHEN cons_variant => NULL;
WHEN consapp_variant => whole_t:transform;
END CASE; END RECORD;
cons :PxPL2PL_clos(cons_variant);

FUNCTION PointsCons (pO:point; pl:PointList) RETURN PointList IS
BEGIN

return NEW PointCons_item’ (PointCons_0 => p0O, PointCons_1 => pl);
END;
FUNCTION TransCons (tO:transform; tl:TransList) RETURN TransList IS
BEGIN

return NEW TransCons_item’ (TransCons_0 => t0, TransCons_1 => t1);
END;

tf: float; tO:transform; tl:transform; t2:transform;
vtsO:TransList; tsl:TransList; ts:TransList;

FUNCTION fO (n:transform; l:TransList) RETURN transform IS
n0:transform; 10:TransList;
BEGIN
n0 :=n; 10 := 1;
GOTO JumpPointO;
<<JumpPoint0>>
IF 10 = NULL THEN
RETURN nO;
ELSE
DECLARE
X : transform; r: TransList;
BEGIN
x := 10.TransCons_0O; r := 10.TransCons_1;
DECLARE
n : transform;
BEGIN
n := compose(x,n0);
n0 :=n; 10 := r;
GOTO <<JumpPoint0>>;
END;
END;
END IF;
END fO;

Figure 6: Generated Ada Code Body Corresponding to Example (beginning).



FUNCTION f1 (n:PointList; 1l:PointList; c: PxPL2PL_clos) RETURN PointList IS
n0:PointList; 10:PointList; c0:PxPL2PL_clos;
BEGIN
n0 :=n; 10 := 1; cO0 := c;
goto JumpPoint1;
<<JumpPoint1>>
IF 10 = NULL THEN
RETURN nO;
ELSE
DECLARE
x : point; r: PointList;
BEGIN
x := 10.PointCons_0O; r := 10.PointCons_1;
CASE c.constructor IS
WHEN cons_variant =>
DECLARE
n : PointList;
BEGIN
n := NEW PointList_item’ (PointCons_0 => x, PointCons_1 => n0);
n0 :=n; 10 := r; cO0 := c0;
GOTO <<JumpPointi1>>;

END;
WHEN consapp_variant =>
DECLARE
whole_t : transform;
BEGIN
whole_t := cO.whole_t;
DECLARE
p0 : point;
BEGIN
pO.x := ((x.x * whole_t0(1,1)) + (x.y * whole_t0(1,2)) + whole_t0(1,3));
pO.y := ((x.x * whole_t0(2,1)) + (x.y * whole_t0(2,2)) + whole_t0(2,3));
DECLARE
n : PointList;
BEGIN
n := NEW PointList_item’ (PointCons_0 => pO,PointCons_1 => n0) ;
n0 :=n; 10 :=r; cO0 := cO;
GOTO JumpPointl;
END;
END;
END;
END CASE;
END IF;
END f1;

Figure 7: Generated Ada Code Body Corresponding to Example (continued)



FUNCTION doit (ps:PointList) RETURN PointList IS
whole_t:transform;
BEGIN
whole_t := f0(id,ts);
DECLARE
c : PxPL2PL_clos;
BEGIN
c := (consapp_variant,whole_t);
DECLARE
psO : Pointlist;
BEGIN
psO := f1(PointNil,ps,c);
DECLARE
psl : Pointlist;
BEGIN
psl := £f1(PointNil,ps0O,cons);
RETURN psi;
END;
END;
END;
END doit;

BEGIN
t0
tl

translate(2.0,-2.0);
scale(1.0,0.5);
tf 3.141592 / 2.0;
t2 rotate(tf);
ts0 := NEW TransList_item’ (TransCons_0 => t2,TransCons_1 => TransNil);
tsl NEW TransList_item’ (TransCons_0 => t1,TransCons_1 => ts0);
ts NEW TransList_item’ (TransCons_0 => t0,TransCons_1 => tsl);
END Geo_package;

Figure 8: Generated Ada Code Body Corresponding to Example (conclusion)

abstract syntax includes explicit type annotations on variable and constructor mentions and type
schemes on declarations. These annotations suffice to reconstruct the types of arbitrary terms.
Different mentions of a 1let-bound (or top-level) function or of a constructor may, of course, have
different types; for any given mention, the instantiating type expressions for the generic type
variables can be determined by unifying the type annotation on the mention with the scheme
annotation on the declaration. Like SML ’97, RML adheres to the value restriction on polymorphic
bindings [46].

As in SML 97, recursive bindings must be explicit function abstractions and polymorphic
recursion among functions and datatypes is prohibited.> Unlike in SML, there are no records or
tuples per se, but these can be built as datatypes with a single constructor. Also, datatypes can

be marked as “[flat]” meaning that they should be manipulated as a tuple of immediate values

®L.e., in a function or datatype definition abstracted over a given list of type variables, every right-hand-side

mention of that function or datatype datatype must be instantiated at exactly the same variables.
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(types) T
(type schemes) o
(expressions) e::
(rules) rule ::
(declarations) vdecs ::

(algebraic type decls.) atdec ::
(mutually recursive decls.)  atdecs ::
(imports) import ::
(exports) export ::

K

t

Hr}) =71
{r})D

[{t}, ]

(k: K)

(w:T)

e({e})
(c:7)({e})
p{e})

fn [inline| rule
let wdecs in e

case e of {(c:7) rule}
{v:71}) => e

val rec {v:o =fn [inline] rule}anqg

val v:o =e
({t})D[flat] = {c [of {r}.]},
datatype {atdec}yng

type K
datatype ({t})D

val p: 71

type 7 "name"

val v: 7 "name"

primitive types)
type variables)

function types)

~~ ~ —~

algebraic types)

(primitive constants)
(variables)

(function applications)
(constructor applications)
(primitive applications)
(anonymous abstractions)
(local declarations)

(

destructuring)

(recursive function decls.)

(value decls.)

(primitive type)
(algebraic type)

(value)

Figure 9: RML Abstract Syntax. In this and other syntax descriptions, we use the notation {z}sep

to mean a sequence of zero or more z’s separated by sep, and [z] to mean an optional x. When

giving examples written in the syntax, we generally omit the grouping parentheses () when no

ambiguity results.
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(primitive types) primtyp := type K (size) "string"

(algebraic types) algtyp ::= datatype ({t}) D ["string"] [flat] = {c ["string"] [of {7T}.]}
(primitive values) value == val k: K "string" (primitive constants)

| val p{v:7}):(v:7) [pure] "string" (primitive functions)
(templates) t::= template name | header "string" | {primtype} {algtyp} {value}

Figure 10: Template specification syntax. Types 7 are as in RML.

rather than being heap-allocated; this is suitable for small records or simple sum types (such as
option). As a pathological special case, data types may have zero constructors; a case over such
a constructor has no arms and thus arbitrary type, and its dynamic semantics is to abort.

The semantics of RML declarations and expressions are straightforward, so we omit a formal
presentation. Primitives may have side-effects, and so can be used to provide mutable references
or arrays and I/O operations. Like user functions, primitive receive their parameters by value. As
in SML, evaluation order is fixed left-to-right, and all conditional control flow is governed by case
expressions. There is no built-in facility for exceptions, nor can these be sensibly implemented
using call-by-value primitives.

The unit of translation is a component: a sequence of type and value declarations (e.g., as in
Figure 4). Each RML component has an export clause, which lists the types and values that
are to be exported for use by 3GL components of the system and specifies 3GL names for them.
In particular, the main program or driver for an executable is always written in the host 3GL,
and invokes RML code via one or more of the exported functions. Polymorphic types and values
can only be exported at specific monomorphic instances. Argument and result types of exported
functions must be first-order. Formally, the “meaning” of a component is an environment mapping
3GL names to RML types and values; transformations must not alter this mapping.

Our translator currently does not directly support multiple RML components in a program,
although functions generated from one RML component can be treated like any other 3GL functions
and imported as (first-order) primitives into another RML component via the template mechanism.
There are two obvious reasons why it might be useful to divide the RML code for a large system
into multiple components: to provide independent namespaces (e.g., for libraries), or to speed up
system building via separate compilation. We plan to extend our system to support the former
goal, which should be straightforward. Separate compilation would be much harder, however, since
many of our translation strategies depend fundamentally on having access to all the RML source

code at one time.
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4 Templates

Each RML component is translated with respect to a particular template, which specifies the
interface between 3GL components and RML code. The template definition plays two key roles.
It specifies which types and operators, implemented in the 3GL, are to be visible to RML code;
this information is used by the translator when parsing and typechecking RML components. The
template also includes macro definitions for the operators in terms of 3GL code fragments; these are
used by the translator when it generates 3GL code from RML. Templates are defined using a small
special-purpose language, whose concrete syntax is shown in Figure 10. Template specifications
make heavy use of quoted strings, which represent text in the target 3GL; they utilize a standard
set of escape conventions based on those of SML. Figure 3 provides a typical example of an Ada
template; a C template definition would have the same format, though of course the macro text
would differ.

Templates are primarily used to define abstract primitive types, values, and operators, whose
representation and implementation are specified in terms of the target 3GL. These typically include
both general-purpose primitive types (e.g., integer, string, ...) and application-specific types
(e.g., transform or point). Primitive types are introduced by type declarations, which give the
type a name to be used within RML code and specifies the corresponding 3GL type name—built-in
or user-defined—that provides a concrete realization of the type. In addition, the size (in bytes) of
the type’s concrete realization is specified, to allow the translator to calculate the size of algebraic
types that include the abstract type as a field. All primitive types must be monomorphic.

Primitive values and operators are defined by val declarations, which specify their expansion
into 3GL code. A value declaration specifies the (RML) type of the value and the corresponding
3GL syntax for it.* An operator declaration specifies formal names and types for the operator’s
arguments and result; the corresponding 3GL code string is treated as a macro using the formal
names as parameters. Formal parameters are referenced inside the string by surrounding them with

backquotes (‘). For example, the definition of the primitive division operator might be

val / (x0O:real,xl:real) : (res:real) "‘res® := ‘x0°¢ / ‘x1‘;"

An RML expression like val a = / (x,2) eventually leads to the Ada code
.a:=x/ 2;

As this example illustrates, the expansions for operators are statements rather than expressions,
which permits more elaborate definitions. To make this possible from the RML side, code generation
is performed on an imperative intermediate form (MIL; see Section 12) in which primitive operator
calls appear only as the right-hand sides of assignment statements, so the result of an operation

is “returned” by assigning it to a variable. All actual arguments to operators are either variable

*In principle, every integer, real, and string constant used in a RML program should be specified this way; to

avoid this tedium, the template mechanism has all such constants “built-in.”
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names or constants, which prevents potential problems with multiple uses of a formal argument in
the macro.

Operators on primitive types (e.g., addition on integers) can often be implemented using built-
in operators of the 3GL, whereas application-specific types usually depend on non-trivial 3GL type
definitions and library code, but the template definition makes no formal distinction between them.
If an expansion string references a 3GL library (Ada package or C file), the header declarations
required to bring that library into scope should be placed in a header clause in the template spec-
ification. (GeoLib and Math are such libraries in our example.) If desired, calls to small functions

5 QOperators that

can be inlined by hand in the operator definition (e.g., apply in our example).
have no side effects can be marked as pure; the translator can apply more aggressive optimizations
to expressions that involve only pure operators (see Section 8).

In addition to abstract types, templates may include algebraic datatype declarations, just as
in RML. Monomorphic instances of these types may appear in the type signatures of primitive
operators. This facility is essential because all conditional control flow in RML is achieved by
performing case operations over values of algebraic type. For example, the type bool is defined
as the algebraic sum type true | false. If abstract operators were unable to return algebraic
types such as bool, it would be impossible to perform conditional computation on the basis of their
results. (The alternative of providing abstract conditional operators doesn’t work in call-by-value
languages.) Template-defined algebraic types may also be used in RML components translated
against the template. There is no provision for mutually recursive combinations of algebraic and
abstract types.

It is sometimes convenient for 3GL code expansions of operators to reference algebraic type
constructors by name (e.g., the code for not in our example). To make this possible, monomorphic
datatype declarations may include 3GL translation strings for the type name (e.g., bool) and
the constructors (e.g., T and F); if present, these will be used in the generated 3GL code. The
template designer must take care not to use names that clash with existing identifiers in the 3GL
environment (such as the predefined Ada type BOOLEAN with constants TRUE and FALSE).

5 Compiler Architecture and Representations

The compiler is structured as a pipeline operating on a series of specialized, typed intermediate
representations; see Figure 11. This section of the paper summarizes the most important steps in
the compilation sequence, and serves as a guide to the detailed descriptions of these steps in the

sections that follow.

e RML code is parsed from a concrete text representation or loaded from a binary representation
produced by a separate generator tool. Parsing is performed with respect to a particular
template definition, which provides a particular set of primitive types and operators from

which imports are permitted.

50ur experience has been that 3GL compilers cannot be depended upon to perform such inlining automatically.
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RML concrete syntax

, Monomorphic RML code

Sequentialization (7)

/ SIL code Optimization (8)

Template
Specification Higher-order Removal (9)
\

\ First-order SIL code Reoptimization (10)

\
\
" @ removal (11)
\

\ First-order SIL code
\ with jump points

Y MIL code
\
\
\
N 3GL Code Generation (13)
C code Adacode

Figure 11: Architecture of the compiler. Numbers in parentheses refer to section numbers in this
paper where the relevant operation is described.
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e The RML code is annotated with type information using conventional Hindley-Milner type

inference. The annotated code is then reduced to monomorphic form (Section 6).

e The monomorphic RML code is transformed to a more restrictive language, called SIL (for
“Sequentialized Intermediate Language”), which is a variant of A-normal form [16], closely
related to CPS [38, 22, 1]). In SIL (Figure 15), all arguments to functions and primitives
are required to be named variables or constants. Thus, the translation from RML to SIL
(Section 7) effectively fixes the order of evaluation of all primitives. SIL also supports “jump
points,” i.e., locally scoped continuation functions [20], though the initial translation to SIL

doesn’t use these.

e The SIL code is optimized (Section 9) by repeated application of rewrite rules that encode
“partial-evaluation style” improvements: value and variable propagation, simplification of
case expressions over known values, elimination of dead code and unused datatypes, and

conservative function inlining.

e The SIL code is reduced to first-order form (Section 9). The resulting code is then re-optimized
(Section 10).

e All tail calls are changed into jumps, merging mutually recursive functions if necessary (Sec-
tion 11).

e The SIL code is transformed into a final intermediate form, called MIL (for “Mutable Inter-
mediate Language”), which abstracts the essential characteristics shared by C, Ada83, and
similar languages (Section 12). MIL (Figure 28) is imperative; it has mutable variables and
assignments rather than immutable values, statements rather than expressions, simple labels

and gotos rather than jumps, and a variety of efficient representations for algebraic datatypes.

e MIL code is translated into Ada83 or C code using the template macros (Section 13).

The entire compiler amounts to about 20,000 lines of Standard ML, and runs under the Standard

ML of New Jersey system.

6 Eliminating Polymorphism

6.1 Concept

6 The translator therefore

Our target 3GLs do not directly support parametric polymorphism.
converts polymorphic components to monomorphic ones by producing specialized clones of poly-
morphic functions and constructors for each type at which they are used. By arranging to perform

this step early in the compilation process, as an RML-to-RML translation, we clear the way for

6 Actually, Ada generics have the necessary power, but certain restrictions on the form of generic package interfaces

can cause unnecessary extra copies of code to be generated.
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later transformation algorithms, notably the higher-order function remover and the representation
analyzer, which require monomorphic input.

The specialization algorithm operates on the complete type-checked source program, in which
every use of a polymorphic identifier has been annotated with its instantiated type. Given this
representation, the full set of instantiations for each type abstraction can be enumerated by recur-
sively collecting the annotations at each level of nested polymorphism. RML’s restrictions against
polymorphic recursion in datatypes or functions guarantee that these sets are finite. Moreover,
the complete set of instantiations for the bound type variables in a recursive function or datatype
definition (or mutually recursive set of definitions) can always be determined without looking at
the right-hand side(s) of the definition(s). This fact allows the instantiations to be enumerated by
a one-pass algorithm that doesn’t require a fixed-point calculation.

In our Section 2 example, the specializer generates two versions of the 1ist datatype, specialized
to points and transforms respectively, and two corresponding versions of the foldl function. The

resulting component is shown in Figure 12.

6.2 Details of the Algorithm

The complete specialization algorithm consists of three passes over the type-annotated program
produced by a standard inferencer. The first pass replaces any occurrences of free type variables
by an arbitrary trivial type; this is safe because the computation never examines values whose
types involve free type variables [29]. The second pass computes a mapping from each polymorphic
variable and algebraic type constructor to its corresponding set of instantiations. The third pass
uses this mapping to perform the actual specialization.

The enumeration pass is by far the most complex of the three; details are given in Figure 13.
To explain the algorithm, we first require some terminology. A (simultaneous) substitution S =
({t} — {7}) is a mapping from a sequence of n type variables to a corresponding sequence of n
types. Applying a substitution S to a type p has the usual effect of replacing each type variable
t € Dom/(S) with S(t), while leaving other type variables and all type constructors unchanged. We
further define the result of applying a substitution S to a sequence of types {u} to be the sequence
{S(u)}. A multi-substitution M is a mapping ({t} — {{7}}) from a sequence of n type variables
to a set of corresponding sequences of n types; it thus compactly describes a set of substitutions
with a common domain. Here and elsewhere we use bold brackets ({}) to delimit sets, retaining
ordinary brackets ({} to denote syntactic sequences. We define the result of applying M to a type
(resp. a sequence of types) to be the set of types (resp. of sequences of types) resulting from
applying the individual substitutions in turn and removing duplicates. Any substitution can be
viewed as a multi-substitution by making the codomain of the mapping into a singleton set. If
M, = ({t} = T1) and My = ({t} — T5) are multi-substitutions with the same domain, we write
M, & M, for the multi-substitution ({¢} — T3 UT,), where U represents ordinary set union with
removal of duplicates. We define the composition My o My of multi-substitutions M; = ({t} — T})
and Ms to be the multi-substitution ({¢t} — U{Ma2({7}) | {7} € T1 }), where | computes the union
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export type point "point"
type transform "transform"
type list_point "PointList"
val Nil_point : list_point "PointNil"
val Cons_point : point * list_point -> list_point "PointCons
type list_transform "TransList"
val Nil_point : list_transform "TransNil"
val Cons_point : transform * list_transform -> list_transform "TransformCons"
val doit : list_point -> list_point "doit"

datatype list_point = Cons_point of point * list_point | Nil_point
datatype list_transform = Cons_transform of transform * list_transform | Nil_transform

val rec foldlO
(transform * transform -> transform) * transform -> list_transform -> transform =
fn (c, n) => fn 1 =>
let val rec f : transform * list_transform -> transform =
fn (n,1l) =>
case 1 of
Nil_transform => n
| Cons_transform (x,r) => f (c (x,n),r)
in £ (n,1)

val rec foldll
(point * list_point -> list_point) * list_point -> list_point -> list_point =
fn (c, n) => fn 1 =>
let val rec f : list_poitn * list_point -> list_point =
fn (n,1) =>
case 1 of
Nil_point => n
| Cons_point (x,r) => f (c (x,n),r)
in £ (n,1)

val ts:list_transform = Cons_transform (...)

val reverse : list_point -> list_point
foldl1i(fn (x:point,l:list_point) => Cons_point(x,1),Nil_point)

val rec doit : list_point -> list_point =
fn ps =>
let val whole_t : transform =
f01d10 (fn (tl:transform, t2:transform) => compose(tl,t2),id) ts
in let val consapp : point * list_point -> list_point =
fn (x,1) => Cons_point (apply(whole_t,x), 1)
in reverse(foldll (consapp,Nil) ps)

Figure 12: RML abstract syntax for example component after type specialization. Most type

annotations are omitted for readability.
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TIK] = 0
Tl = 7] = (WATI7]}) wTlr]
TIErO D] = (WHTI7]}) w{D — (Tyvarsof[D] — {7})}

SV{t}, .71 = TIr]

E[k:K)] = 0

E[w:m)] = {v— (Inst(Schemeof(v), 7))} & T[7]
Elee}d] = Elelw (W{€lel})

Elc: ) {e})] = {Tyconof[c] — (Inst(Schemeof(c), 7))} W T[] W (W{E[e]})
Elperd] = W{lel}

E[fn inl rule] = R[rule]
E[1let wvdecs in e] = D(E[e])[vdecs]
E[case e of {(c:7) rule}(]
Ele] w (W{{ Tyconof[c] — (Inst(Schemeof(c), 7))} W T[] & R[rule]})
RIQu:7h) => €] = {Tlr]we[e]}
D(I)[val v:o =e] = IW((I[v]) o (E]e]wS[o]))

D(I)[val rec {v:o = fn inl rule}zng]l = 1@ (W{I]v]}) o (W{R[rule] v S[a]}))

DS(I)[{vdecs} vdec] = DS(D(I)[vdec])[{vdecs}]
DS(DIT = 1

AS(I)[{atdecs} atdecs] = AS(A(I)[atdecs])[{atdecs}]
AS(DIT = 1

A(I)[datatype {({t})Dfit={c [of {7}.]}j}andl =
Ty (I[D]) o (W{(W{(L{TI7]}) 1}

X[type T "name"] = TI[7]
X[val v:7 "name"] = {vw Inst(Schemeof(v),7)} W T[]

Mlexport {ezport}{atdecs}{vdecs}] = DS(AS(W{X[export]})[{atdecs}])[{vdecs}]

Figure 13: Enumeration of instances of polymorphic identifiers.
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of the members of a set of sets.

An instantiation map I[z] is a mapping from polymorphic identifiers z : V{t},.7p to multi-
substitutions with domain {¢}; we will build instantiation maps whose domains includes both
variables and algebraic type constructors. If I} and Iy are instantiation maps, we write Iy & I5 for
the instantiation map {z — I;[z]|W1s]z] | z € (Dom(l1)UDom(l2))}. Further, if {I} is a sequence
of instantiation maps, {/}, represents their sequential combination under &. If I = {z — M}
is an instantiation map and M is a multi-substitution, we define the composition M o I to be the
instantiation map {x — M o M, }.

Each of the syntax-directed rules in Figure 13 maps a syntactic fragment to the instantiation
map describing the sets of type instantiations induced by mentions of variables and constructors
within that fragment. In particular, M calculates the instantiation map for an entire component,
whose domain is the component’s complete set of top-level and let-bound variables and algebraic
type constructors. The algorithm relies on a number of auxiliary functions. Inst(V{t} .79,7) returns
a substitution S = ({t} — {u}) such that S(rp) = 7; it will only be called on arguments for which
such the result substitution is guaranteed to exist. Note that the p may still contain other type
variables. We also assume the existence of reconstruction functions Schemeof[z], which returns the
(possibly degenerate) type-scheme corresponding to any variable or constructor z; Tyconof[c], which
returns the algebraic type constructor to which data constructor ¢ belongs; and Tyvarsof[ D], which
returns the (possibly empty) sequence of type variables over which algebraic type constructor D is
abstracted. Moreover, we assume certain consistency conditions on these functions: the schemes
of any two mutually-recursive functions must have the same sequence of bound type variables;
similarly, the schemes of any two data constructors of the same type constructor or of mutually-
recursive type constructors must have the same sequence of bound type variables, which must
also match the sequence(s) returned by T'yvarsf on the type constructor(s). These conditions are
naturally met by the annotations produced by a standard type-inferencer.

The algorithm walks over the component in bottom-up fashion, so that information about the
(non-recursive) mentions of an identifier has always been incorporated into an instantiation map
before the definition of that identifier is processed; this map is passed as an auxiliary argument
I to the rule that processes the definition, i.e., D or A. Because RML prohibits polymorphic
recursive definitions of functions or algebraic types, I is guaranteed to describe all instantiations of
the identifier being defined; that is, there is no need to look at the right-hand side of the definition
as well. Thus, for example, to process a definition fragment let val v : V{t} .7 = e; in e, the

algorithm
i. builds an instantiation map (/) based on ey;

ii. builds another instantiation map based on e;, in which the instantiating types may mention

the type variables {t};

iii. expands this latter map by pre-composing with I[v], the multi-substitution describing all

possible instantiations for the {t};
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datatype ’a List = Nil | Cons of ’a * ’a List
val f : V ’b.’b -> ’b List =
fn (x: ’b) => ((Cons:’b * ’b List -> ’b List) ((x:’b), (Nil:’b List)))
val g : V ’¢c,’d. ’c * ’d -> ’d List =
fn (y:’c, z: ’d) =>
let w : ’c List = (f: ’c - ’c List) (y:’c)
in (f:°d -> ’d List) (z:’4d)
val a : bool List = (g:int * bool -> bool List) (3:int,true:bool)
val b : string List = (g:int * string -> string List) (l:int,"abc":string)

Figure 14: Example of nested polymorphic functions.

iv. adds the expanded map to I to produce the complete map for the definition fragment.

The rules for recursive function and datatype definitions are similar. Note that for the recursive

function case it is necessary to combine instance information about uses of all the functions before

pre-composing.

As an (artificial) example, consider the code in Figure 14, written in explicitly typed form. The

computation proceeds roughly as follows:

e The right-hand side for b is processed, yielding an instantiation map
I ={g~ ({'c,/ d} — {{int, string}})}
which also serves as the map for the overall declaration of b
e The right-hand side for a is processed, yielding an instantiation map
L ={g— ({'c,/ d} — {{int,bool}})}

e Iy is added to I; to produce the overall map for the declarations of a and b

Iy ={g~ ({'c,/d} = {{int, string}, {int,bool}})}
e The right-hand side for g is processed, yielding (in several steps) the map

I ={f— ({'b} = {{'c}, {'d}}),List = ({"a} = {{'c}. {"d}})}

e The composition I3(g)ols is computed, yielding the map

I — f — ({'b} — {{int}, {string}, {bool}}),
List = ({"a} — {{int}, {string}, {bool}})

e [5 is added to I3 to produce the overall map for the declarations of g, a, and b:

g — ({"¢,/d} — {{int,string}, {int,bool}}),

Is = { £ — ({b} — {{int}, {string}, {bool}}), }
List = ({'a} — {{int}, {string}, {bool}})
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After possible further expansion by processing of reverse, I can be used to guide the the
specialization pass of the algorithm. Two specialized copies are made of function g, corresponding
to the two instantiations for (’c, ’d); three specialized copies are made of List and £, corresponding
to the three instantiations for ’a and for ’b. We omit a detailed description of this pass, which is

quite straightforward given the existence of the instantiation map.

6.3 Discussion

In the worst case, the number of cloned versions of a function or datatype may be exponential in
the static nesting depth of the program. However, we have not found code explosion to be a serious
problem in practice, as most polymorphic functions tend to be small; this is probably because the
more polymorphic a function is, the fewer useful things it can do [44]!

The idea of removing parametric polymorphism by specialization has received much informal
discussion, and a small experiment has been attempted for Gofer [19], but we are not aware of
any previous full-scale implementation based on this approach. Analysis of benchmarks run on the
Til compiler [41] indicates that the compiler removes essentially all polymorphism as the result of
aggressive function inlining, thus offering independent evidence that specialization need not lead
to excessive code explosion. However, since Til does not guarantee to produce a monomorphic pro-
gram, it cannot take full advantage of having one during later compilation stages, as our translator

does.

7 Sequentialization

RML has a rich collection of expression forms; our 3GL target languages are have severely limited
expressions. Also, even where there appears to be a direct correspondence between expression forms
in RML and a target language, evaluation order may differ. Thus, the first step in translating
RML is to simplify expressions and name all intermediate results, at the same time explicitly
sequentializing the computation in the intended order. We call the resulting language SIL (for
“Sequentialized Intermediate Language”); its syntax is specified in Figure 15. Compared with
RML, the most important differences are that arguments to applications and discriminants in
case expressions must be simple, i.e., variables or constants, and there are no anonymous function
expressions. SIL’s type system is monomorphic, since any polymorphism has already been removed
at the RML level. This means that types can no longer mention type variables, there are no more
type schemes, and type annotations are dropped wherever they have become redundant (e.g., on
variable mentions); otherwise, imports, exports, and algebraic type declarations are identical to
RML. Jump points (1abel and goto) and their use are discussed in Section 11.

Figure 16 gives the details of the RML to SIL translation of expressions and declarations, using
syntactic continuations. The symbol X introduces a meta-level function, which is applied using @;
none of these meta-functions appear in the final output. The translation £e] of each expression

e generates a SlL-language expression and a simple expression for it; the translation function is
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(types) T
(simple expressions) se
(expressions) e::

(variable declarations) vdec ::
(function declarations) fdecs ::
(jump point declarations) ldecs ::
(declarations) decs ::
(top-level declarations) topdecs ::
(mutually recursive decls.)  atdecs :
(algebraic type decls.) atdec ::
(exports) export ::
(components) m

K

D

Hr}) =71
(k: K)

v

se

v({se})
c({se})
p({se})

let decs in e
case se of {c({v}) => e}

goto [({se})

val v:7=e

fun {v[inline]({v:7}) :7 =e}ang
label {{({v:7}) : 7= e}and

vdec

fdecs

ldecs

vdec

fdecs
datatype {atdec}ang
Dlflat] = {c [of {r}.]},

type 7 "name"

val v: 7 "name"

export {export} {atdecs} {topdecs}

Figure 15: SIL syntax.
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El(k:7)] = Mk.k@(k:7)
Elw:1)] = E/ﬁ.n@v o o B
Eleo{e})] = Ar.Lleo]@(Ase.lS[{e} ]JQ(A{se} let val v:pu = se({se}) in kQu))

(v fresh; p = Codom(Typeof(eq)))

Elle:n)({e})] = Ma.ES[{e} ]@(N\{se} .let val v:pu = c({se}) in kQuv)
(v fresh; u = Codom(T))

Elp{e})] = Ax.ES[{e}]Q(N{se} let val v:pu = p({se}) in k@Qv)

(v fresh; u = Codom(Typeof(p)))

E[fn inl rule] = Mr.let fun v inl Rp[rule] in xkQu (v fresh)
E[let decs in €] = Mk.let D[decs] in [e]@k
E[case eg of {(c:7) rule}|] = Au.E[eg]@(Ase.let val v:p = case se of {c Re[rule]}; in x@Qv)

(v fresh; p = Codom(T))
ESJeo,{e}] = Mu.Eleo]@(Aseq.ES[{e} JQ(Mse} .k(seq,{se})))
ES[] = Mk.k@{}
Dlval v:7 = €] = val v = E[e]Q(Ase.se)
Dlval rec {v:0 = fn inl rule} pngq] = fun {v inl Rr[rule]}ang

[[e_]]@()\se.se) (1 = Typeof(e))
(Ase.se)

Re[Hv:7}) => €]
Relv:71}) => €]

Hv:7}) 17 =

&
Hv:}) => Ele]@

Figure 16: Transformation from RML to SIL, specified using syntactic continuations. Auxiliary
function Typeof reconstructs the type of an RML term, and Codom returns the co-domain of an

arrow type.

parameterized by a continuation meta-function x that says “what to do” with this simple expression.
The translation of expression sequences (£S[{e} ]) encodes RML’s left-to-right evaluation order; it
generates a sequence of names of the expressions and its continuation meta-function says “what to
do” with the sequence of names. The translations for declarations (D) and function or case rules
(R) are direct-style and straightforward. This style of translation algorithm, which works in one
pass and generates no unnecessary fresh names, is due to Danvy and Filinski [15].

As an example, Figure 17 shows the SIL form of the £01d10, reverse and doit functions from
the monomorphic version (Figure 12) of our running example from Section 2.

The semantic correctness of the transformation is straightforward to prove. The one significant
detail to be checked is that left-to-right order of evaluation is correctly encoded in the translation
rules, e.g., for £S. Since the RML source is monomorphic type preservation is almost trivial.

The essentials of this transformation are well-known; they are very similar to a partial
continuation-passing-style (CPS) transform [38, 22, 1]. Recently, there has been considerable inter-

est in “almost-CPS” translations, which perform the naming and sequentialization steps of a CPS
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fun foldl0 (c:transform * transform -> transform, n: transform)
list_transform -> transform =
let fun g (1l:1list_transform) : transform =
let fun f (n: transform, l:list_transform) : transform =
case 1 of
Nil_transform => n
| Cons_transform(x,r) =>
let val n’ : transform = c(x,n)
in f(n’,r)
in f(n,1)
in g

fun foldll (c:point * list_point -> list_point, n: list_point)
list_point -> list_point =
. same as f0ld1l0 except for types. ..

val reverse : list_point -> list_point =
let fun cons (p:point, c:list_point) : list_point = Cons_point(p,c)
in foldlil(cons,Nil_point)

fun doit (ps:list_point) : list_point =
let val whole_t : transform =
let fun comp (x:transform,y:transform) : transform = compose (x,y)
in let val f : list_transform -> transform = foldlO (comp,id)
in f ts
in let fun consapp (x:point,l:list_point) : list_point =
let val x’ : point = apply (whole_t,x)
in Cons_point (x’,1)
in let val f : list_point->list_point = foldll (consapp,Nil_point)
in let val ps’ : list_point = f ps
in reverse ps’

Figure 17: Initial SIL translation of example program (selections).

transform, but don’t introduce full-scale continuations [23, 16, 20, 39].

8 Optimization

SIL code is optimized by repeated application of rewrite rules that encode “partial-evaluation
style” improvements. These include propagation of simple expressions (constants and variables),
simplification of case expressions over known values,” elimination of unused function and (pure)
value bindings, elimination of unused datatypes, and conservative function inlining. A function

application is inlined if

e it is the sole application of that function; or

"Note that this includes as a special case the selection of fields from records with known values.
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fun foldll (c:point * list_point -> list_point, n: list_point)
list_point -> list_point =
. same as in Figure 17. ..

fun doit (ps:list_point) : list_point =
let fun fO (n: transform,l:list_transform) : transform =
case 1 of
Nil_transform => n
| Cons_transform(x,r) =>
let val n’ = compose(x,n)
in f0(n’,r)
in let val whole_t : transform = f0(id,ts)
in let fun consapp (x:point,l:list_point) : list_point =
let val x’ : point = apply (whole_t,x)
in Cons_point (x’,1)
in let val f : list_point->list_point = foldll (consapp,Nil_point)
in let val ps’ : list_point = f ps
in let fun cons (p:point, c:list_point) : list_point = Cons_point(p,c)
in let val g : list_point -> list_point = foldll(cons,Nil_point)
in g ps’

Figure 18: Result of optimizing example program (selection).

e its body is “small, ” i.e., a value, variable, or another application; or

e its body has the form of a case expression over an argument, the argument is a known value,

and the relevant arm of the case is “small” (we call this case splitting); or
e the programmer demands inlining via a source pragma on the function definition.

To guarantee termination of the inliner, a function is never inlined into its own body. Our choice
and implementation of optimizations was largely inspired by Appel and Jim [3]. We do not perform
speculative inlining. Optimization passes are performed repeatedly until no change is observed or
some fixed small number of passes has been reached. We precede these optimizing passes by a
single round of eta-expansion to improve opportunities for inlining.

When the initial SIL translation (Figure 17) of our example program from Section 2 is optimized,
function £01d10, which is used only once, is in-lined into the body of doit with arguments ¢ and
n specialized. Value reverse is eta-expanded into a function which is also inlined into doit. The
resulting version of doit is shown in Figure 18. The body of function foldll is unchanged by
optimization.

Note that in the body of doit, the local function £0 used to calculate whole_t has been hoisted
to a more global scope. This is not essential; SIL permits the defining expression in a 1let binding to
be another let binding or a case expression. This flexibility keeps SIL closed under the operation of
function inlining; otherwise, it would be necessary to renormalize every inlined expression (e.g., as

in [39]). However, though not required, hoisting case expressions out of lets can aid optimization
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by increasing the amount of information available for constant propagation in each case arm. The

general form of the transformation is:

becomes
let val v = case ey of case ey of
Cr({w}) => e C;({w}) => let val v = e; in e
| Co({w}) => es | Co({w}) => let val v = ey in e
[ ... [ ...
| C,{w}) => e, | C,{w}) => let val v = e, in e

in e

In general, this is a dangerous transformation, since it duplicates the code for e in each case
arm. However, it is worth doing if e has the form f(v) and we can perform case splitting on f.
Even if case splitting is not possible, code explosion will not a problem so long as e is a “small”
expression, so we perform the transformation in just that those circumstances.® We always hoist
lets out of lets, as this never hurts, and may help by exposing more case hoisting opportunities.
Each of these hoisting transformations is done as a separate pass following the main simplification
pass.

Since RML has strict semantics, and templates may include impure operators, the optimizer
must guarantee not to duplicate, reorder, or eliminate calls to primitives or to potentially non-
terminating functions. In fact, none of the transformations described above induce duplication or
reordering, and only “pure” expressions can be eliminated. Pure primitive operators are marked
as such in the template definition; for simplicity, all user function calls are treated as impure. A
more sophisticated approach would be to perform an effects analysis on functions to increase the

the number of eliminable expressions (e.g., [39]).

9 Removing Higher-order Functions

9.1 Concepts

Our target 3GL’s do not directly support first-class nested functions; Ada83 does not even support
pointers to top-level functions, and ANSI C does not support nested functions. We therefore must
convert higher-order programs into equivalent first-order programs without nested functions, i.e.,
perform closure conversion. For simplicity, we’d like to express the first-order programs in a strict
subset of the original language, as in “closure-passing style” [2], where closures are represented as
ordinary records, and are constructed and accessed using ordinary record operators. In particular,
this would allow us to optimize closure manipulation operations using ordinary record optimizations.
However, we would also like the closure-converted program to be well-typed according to the rules

of the original language rules that should also be enforceable in C or Ada. The difficulty in doing

8Code explosion could be avoided in the all cases by introducing a continuation function to be applied by each
case arm. If the continuation function can itself be case-split, this may be worthwhile, but if it cannot, we end
up having added function call overhead! Moreover, although these local continuation functions would be natural
candidates for turning into (much cheaper) jump points (see Section 11), they will have been lifted out to top-level

by the higher-order removal algorithm (see Section 9) before this can happen.
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this is that two functions having the same argument and result type might well differ in the number
and types of their free variables, and hence have closure records of completely different (structural)
type.

Minamide, Morrisett, and Harper [27] have treated this problem, but their solutions rely either
on new language primitives for closure manipulation, which complicate subsequent optimization,
or on giving closures existential types, a substantial complication to the compiler’s type system.
Neither solution leads to typable C or Ada. Moreoever, both solutions continue to make use of
(top-level) function pointers.

We take a different approach, which relies on having the whole monomorphic program avail-
able for analysis and transformation. It derives from the interpretive technique introduced by
Reynolds [35] and Warren [45] and explored in typed settings by Bell, Bellegarde and Hook [4, 6, 5].
The key idea is to represent function closures as members of an algebraic data type (i.e., discrimi-
nated union). There is one constructor for each lambda expression in the program; its arguments
are the lambda expression’s free variables.” To convert a program to first order, a suitable closure
type declaration is introduced, lambda expressions are transformed into closure constructor ap-
plications, and calls to “unknown” (i.e. lambda-bound) functions are transformed into calls to an
auxiliary function that dispatches on the constructor to invoke a lambda-lifted version of the correct
original function. As usual, calls to “known” (i.e. let-bound) functions need not be converted in
this way they are simply changed to invoke the lambda-lifted version; if all calls to a function
are known, the construction of a closure datatype value will be removed altogether by the standard
dead-code elimination optimization. Figure 19 provides a simple example.

In a strongly-typed setting, we cannot make do with just one closure datatype and dispatch
function: we must have a pair of them for each distinct arrow type in the program. The translation
algorithm chooses the correct dispatch function at each site by inspecting the type of the (original)
function. For example, if we alter the above example to use a continuation-passing version of
map, as in Figure 20, we need two sets of clos datatypes and dispatch functions. Executing this
example generates a statically unbounded number of distinct 1ist_int -> list_int closures, one
per member of g, each containing another such closure as a free variable. This is reflected in the
fact that type clos_1i211i is recursive. Note that higher-order removal techniques based on code

specialization [13] cannot cope with programs of this sort.

9.2 Details of the Algorithm

The core of the algorithm is a syntax-directed translation of terms to terms, under which
e each distinct arrow type is converted to a unique corresponding closure datatype;

e each function definition is “lambda-lifted” by augmenting its argument lists with new argu-

ments representing the function’s free variables;

9We use a flat closure representation in this paper; more elaborate representations could be handled in the same

framework.
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Original SIL code:

datatype list_int = Nil_int | Cons_int of int * list_int
fun outer (y:int,q:list_int) : list_int =
let fun gl (x:int) : int = + (x,y)

in let fun g2 (x:int) : int = - (x,2)
in let fun map (f:int->int,l:list_int) : list_int =
case 1 of

Nil_int => Nil_int
| Cons_int(h,t) =>
let val cl:int = f h
in let val c2:list_int = map (f,t)
in Cons_int(c1,c2)
in map (g1, q)

After closure-converting g1 and g2:

datatype list_int = Nil_int | Cons_int of int * list_int

and clos = G1 of int | G2 (* closure datatype *)
fun g1’ (x:int,y:int) : int = + (x,y) (* lambda-lifted functions *)
and g2’ (x:int) : int = - (x,2)
and dispatch(c:clos,i:int) : int = (* dispatch function *)
case c of
Gl y => g1’ (i,y)
| G2 => g2’ (i)

fun outer (y:int,q:list_int) =
let val gl:clos = Gl y (* closures *)
in let val g2:clos = G2
in let fun map(f:clos,l:list_int) : list_int =
case 1 of
Nil_int => Nil_int
| Cons_int(h,t) =>
let val cl:int = dispatch(f,h)
in let val c2:1list_int = map(f,t)
in Cons_int(cl,c2)
in map (g1, q)

Figure 19: Simple example of typed closure conversion

e these augmented functions are renamed and their definitions are lifted to top-level;

e cach original function definition in the body of the program is replaced by a binding to an

application of a freshly chosen closure constructor to the free variables;'
e variables bound to function values become variables bound to closure values;

e calls to unknown functions become calls to the appropriate dispatch function, passing the

closure datatype value as an extra argument;

10Special stub versions of top-level functions are created to avoid changing the signatures of exported values; see
below.
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Original SIL code:

datatype list_int = Nil_int | Cons_int of int * list_int

fun

outer (y:int, q:list_int) : list_int =

let fun gl (x:int) : int = + (x,y)
in let fun g2 (x:int) : int = - (x,2)

in let fun id (p:list_int) : list_int = p

in let fun map (f:int->int,l:1list_int,k:list_int -> list_int) : list_int =

case 1 of
Nil_int => k Nil_int
| Cons_int(h,t) =>

let fun kk(p:list_int) : list_int

let val c1 = f h
in let val c2 = Cons_int(c1l
in k c2
in map(f,t,kk)
in map (gl,q,id)

After closure-converting g1,g2,id, and kk:

datatype list_int = Nil_int | Cons_int of int * list_int

and
and
fun
and
and
and

and

and

fun

clos_i2i = G1 of int | G2 (*
clos_1i21i = ID | KK of clos_1i21i * clos_i2i * int (*
gl’ (x:int,y:int) : int = + (x,y) (%
g2’ (x:int) : int = - (x,2)

id’? (p:list_int) : int list = p

kk’ (p:list_int,k:clos_1i21i,f:clos_i2i,h:int) : list_int
let val cl = dispatch_i2i(f,h)
in let val c2 = Cons_int(cl,p)
in dispatch_1i21i(k, c2)

dispatch_i2i(c:clos_i2i,i:int) : int = (*
case c of
Gl y => g1’(i,y)
| G2 => g2’ (i)
dispatch_1i21i(c:clos_1i21i,p:1list_int) : list_int = (%
case c of
ID => id’ (p)
| KK(k,f,h) => kk’(p,k,f,h)

outer (y:int,q:list_int) : list_int =

let val gl:clos_i2i = Gl y (%
in let val g2:clos_i2i = G2

in let val id: clos_1i21i = ID
in let fun map(f:clos_i2i,l:int list,k:clos_1i211i)
case 1 of
Nil_int => Nil_int
| Cons_int(h,t) =>
let val kk:clos_1i21i = KK(k,f,h)
in map(f,t,kk)
in map (gl, q, id)

,P)

int -> int closure datatype *)
list_int -> list_int clos. d.t. %)
lambda-1lifted functions *)

= (x k,f,h are free vars of kk *)

int->int dispatch function *)

list_int -> list_int disp. fun. *)

closures %)

list_int =

Figure 20: Closure conversion at multiple types.
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e calls to known functions become calls to the corresponding lifted function, passing the free

variables as extra arguments.

Along the way, the conversion keeps track of the new closure datatypes and data constructors, which
are created incrementally; when all top-level declarations in the component have been converted,
this information is used to construct the definitions of the closure datatypes and the corresponding
dispatch functions. Finally, these definitions are combined with the lifted function definitions and
the converted terms to form the fully converted component definition.

A detailed specification of the term conversion algorithm is given in Figure 21. The translation
of type 7 is denoted 7. TS translates top-level declarations, £ translates expressions, F translates
functions, and FS§ is an auxiliary function for translating recursive sets of functions. Each of
these translations is explicitly parameterized by an environment k£ that records those identifiers
in the current scope that refer to known functions; where defined, k(v) returns the sequence of
free variables of v, which are guaranteed to be in the current scope as well. F and FS§ are
also parameterized by the function’s sequence of free variables. S, which is parameterized by a
free variable sequence, produces function stubs from functions, as explained below. A translates
mutually recursive sets of algebraic type declarations.

In addition to producing result terms, these translations use side-effects to build important

auxiliary structures:
i. a mapping Lift from source function names to corresponding lifted function names;

ii. an bijective mapping ClosType from source arrow types to corresponding closure datatype

narnes;

iii. a mapping Dispatch from closure datatype names to corresponding dispatch function names;
iv. a mapping Stub from source top-level function names to corresponding stub function names;
v. a set Lifted of lifted function definitions; and

vi. a mapping ClosData from closure datatype names tc to sets of tuples (de, f,{fv: 7}), where
dc is a fresh closure data constructor of te, f is the corresponding (lifted) function name, and

{fv: 7} is the sequence of the corresponding function’s free variables and their types.

The mappings Lift, ClosType, Dispatch, and Stub are treated as idempotent functions: they generate
and return a fresh name when called with a given argument for the first time; subsequent calls
with that argument return the same result as the first call. We also assume auxiliary functions
NewDataCon(), which returns a fresh closure data constructor name each time it is called; Typeof]e],
which reconstructs the (original) type of any source term e; and FunName[f], which extracts the
function name from a declaration f. The Lifted set and ClosData sets are extended explicitly as
a side-effect of the F translation. When the term translation is complete, these sets are used to

generate the closure datatype definitions and dispatch functions, as described below. Note that the
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Exfe({se})]
Exlp({se})]

Er[let val v:7 = e; in ey]
Er[let fun {fdec}ynq in €]
Er[case se of {c({v})=> e}]

FSk({fo})[fdec{fdec}][e]
FSk({fob)[ le]

Fe{fo})[v inl {v:7}):7 = €]

Aldatatype {D fit = {c[of{T}.]} }andl

TSk[val v:7 = e topdecs]
TSk[fun {fdec}ang topdecs]

TSkl ]

S{foP)lv ({v:1}):7 = €]

K
D
ClosType[ ({T}+) — 7]

if v € Dom(k)

then let {fv} = k[v]in LiftJlv] ({se},, {fv})
else (Dispatch o ClosType o Typeof)[v] (v, {se})
e({se})

p({se})

let val v:7 = &fer] in Exfles]

let {fv} = FVy[fun {fdec}apnq] in

let k¥’ = k + (FunName[ fdec] — {fv}) in

FSp (o) [ fdece]

case se of {c({v})=> &kle]}

let Fp({fv})[fdec] in FSi({fv})[{fdec}][e]
Erle]

Lifted := Lifted +
(Lifto] ind ({o: 7}, o Topeafo)}) - 7 = Exlel);
let te = (ClosType o Typeof)[v] in
let ¢ = newDataCon() in
ClosData := ClosData +

(tc = (c,Lift[v] {fv : Typeof(fv)}));
val v:tec = c({fv})

{D fit = {c[oft{T}.]}}

val v:7 = &fe] T Sk[topdecs]
let {fv} = FVg[fun {fdec}anq] in
let k’ =k + (FunName[ fdec] — {fv}) in

{Fp({foD)lfdec]} {SUfo})[fdecl} TSr[topdecs]

fun Stublv] {v:7}) = v ({v:7},, {fv: Typeof(fv)})

Figure 21: Closure conversion of SIL terms.
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FVi[fun {fdectangl = U{FVil[fdec]}
FVelv inl {v:71}):7 =€) = FVile] —U{{v}} - {v}
FVel(k:K)] = 0
FVilol = {v}
FVilv({se})] = UFVilse]} U (if v e Dom(k) then k(v) else {v})
FVile({se})] = U{FVi[sel}
FVilp({se})] = U{FVi[se]}
FVi[let val v:7T = e; in es] = FVi[el]U (FVi[ea] — {v})
FVi[let fun {fdec}anq in €] = FVi[fun {fdec}angl VU (FVi[e] — { FunName[fdec]})
FVi[case se of {c({v})=> e}] = FVi[se]U (U{FVkle] — U{{v}}})

Figure 22: Calculation of free variables. To avoid confusion, we use bold brackets ({}) to denote
sets and ordinary brackets ({}) to denote syntactic sequences. The notation J{X} denotes the set

union of all the sets X resulting from a calculation on members of a syntactic sequence.

order in which side-effects are executed to build these structures does not alter the results except
for choice of names, so the translation functions in Figure 21 do not have to be read with any
particular imperative evaluation order in mind. For simplicity, the figure omits certain variable
renamings required to maintain identifier uniqueness.

Conversion of top-level functions is complicated by the possibility that they might be exported
from the SIL component. The types of exported values must not by changed by any transformation;
moreover, exported types should never be closures, since the surrounding 3GL context certainly
knows nothing about how to invoke a closure. This implies that the argument and result types
of exported functions must not be arrow types (as we already noted in Section 3), and that the
exported functions themselves must not be closure-converted. On the other hand, top-level func-
tions might be used as a first-class values within the component, and thus do in general need to
be closure-converted. The solution is to closure-convert each top-level function, but also introduce
a corresponding stub function, which has the original function’s signature but a new name, and
export the stub in place of the original. The body of the stub function simply invokes the closure-
converted function using the stub’s arguments and the free variables (which are guaranteed to be
in the top-level scope at the point of the stub’s definition). Stub functions not needed for export
will be removed as dead code by the standard optimizer.

The auxiliary function FVg[e], specified in Figure 22, computes the free variables of expression
e assuming the initial known function environment k. As specified, FV returns a set; we assume
that an implementation will produce the members of the set in some deterministic order, which then
becomes the canonical sequence ordering for the free variables wherever they are used. The free
variable calculation is slightly tricky because we actually need the free variables of the translated
term, but (because of potential recursion) we need them before the translation has been done! To

break the circularity, we observe that the free variables sets of source and translated terms can only
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M([ export {export} {atdecs} {topdecs}] =
( Lift := 0; CloseType := 0; Dispatch := (; Stub := 0;
Lifted := (; ClosData := §;
let {atdec’} =  Flatten {A[atdecs]} in
let {topdecs’} = TSy[{topdecs}] in
(* at this point all mappings have been built *)
let {closure_atdec} =
{tc = {dc of {r}.} | tc € Codom(ClosTypes); {(dc,_,{(_,7)})} € ClosData(tc)} in
let {dispatch_fun} = {Dispatchltc] (vo:tc,{v:p}) : p =
case vy of
{de {fv:7}H) => f({v}, {fv})}
| tc € Codom(ClosTypes); {(de, f,{fv:1}H} € ClosData(tc);
{u}y) -> p = ClosType '(tc); wo, {v} fresh }
let {lifted_fun} = {f| f € Lifted} in
let {export’} = {X[export]} in
export {export’}
datatype {atdec’}yng and {closure_atdec}nq
fun {dispatch_fun}ynq and {lifted_fun}ynq

topdecs’
)
X[ type T "name"] = type T "name"
X[ val v : 7 "name"] =

let v' = if v € Dom(Stub) then Stub[v'] else v
in val v': 7 "name"

Figure 23: Closure conversion of SIL components. The notation {s | s € S} should be read as a
sequence comprehension, i.e., the sequence of s values drawn from set S. Auxiliary function Flatten

converts a sequence of sequences into a single sequence.

differ due to the replacement of a known function application f({v},) by the corresponding lifted
application Lift[f]({v},,{fv},), where {fv} are the free variables of f. In this case the target free
variable set should not include f, but should include the {fv}.!!

The top-level conversion function M for components is shown in Figure 23. This function must
be read imperatively, since the construction of the closure datatypes and dispatch functions and the
translation of the export list rely on the auxiliary data structures built as a side-effect of the 7S and
AS translations. A datatype declaration and dispatch function are built for each closure datatype
invented by ClosType, i.e., corresponding to each arrow type in the source program. Note that
it is possible for a closure datatype to end up with no constructors; the corresponding dispatch
function body is a case with no arms and hence no well-defined type. These dispatch functions
are never actually applied; in most cases, the dead-code eliminator will remove them.

In general, it is possible for freshly-created closure datatype declarations to refer to the converted

versions of source program datatype declarations (since free variables may belong to datatypes)

"'We discovered this formulation of the free variable calculation in Xavier Leroy’s Gallium compiler.
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and vice-versa (since source datatypes may include fields of arrow type, which are converted to
closure types). Therefore, the converted component has a single mutually recursive set of algebraic
type declarations including both closure datatypes and converted source datatypes. For similar
reasons, the converted component groups all the freshly-created closure dispatch functions and
the lifted versions of the source program functions into a single mutually recursive declaration,
followed by the translations (i.e., ordinary value declarations, closure value declarations, and stub
function declarations) of the original top-level declarations. Identifier uniqueness guarantees that
it is harmless to declare any set of declarations as mutually recursive; a post-processing step is used
to separate both datatypes and functions into their true mutually-recursive components.

As a further example, Figures 24 and 25 show the result of applying the conversion algorithm
to our running example. For compactness, we omit some datatype and value declarations that
are completely unreferenced and hence immediately known to be dead code; the code is otherwise
unoptimized. There are two closure datatypes; one (for point * list point -> list_point)
describes the possible arguments to fold1l1; the other (for 1ist_point -> list_point) describes
the possible results of partially applying fo1d11 (which is curried). Notice that this latter datatype
contains closure constructor for doit (because it has a matching type) even though doit never
actually escapes; this constructor will be removed by the standard optimizer. Function doit’’ is

the exported stub generated to replace the original doit.

9.3 Discussion

Because of the need for per-type dispatch functions, our algorithm depends critically on having
monomorphic source code, but we believe a similar algorithm could be given for polymorphic pro-
grams with the addition of a typecase construct [28]. Bell, Bellegarde and Hook [5] have specified
a more elaborate algorithm for polymorphic source programs that performs type specialization and
higher-order removal simultaneously, and may leave parts of the program polymorphic where that
is possible. Their approach is thus more powerful, but it is also significantly more complicated, and
has not been implemented.

We also depend on having the full source program available; this restriction can be lifted if we
permit extensible datatype declarations, i.e., datatypes for which the data constructor declarations
can be scattered throughout the program, even in separate compilation units. Supporting such
datatypes requires only a small extension to the type system (Standard ML treats the built-in
exception type constructor in this way), but requires a somewhat more expensive implementation

of case, and precludes the optimizations discussed in the next section.

10 Optimization of First-order Code

After first-order conversion and a pass back through the optimizer, a typical call to an unknown
function has become a known call (to a dispatch function) followed by a case dispatch. This sequence

is probably less efficient than the single indirect jump that would be performed by a conventionally
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exports

val doit’’ : list_point -> list_point "doit"
datatype pxlp2lp_clos = (* point * list_point -> list_point closure datatype *)
Ccons

| Cconsapp of transform
and 1p2lp_clos = (* list_point -> list_point closure datatype *)
Cdoit of list_transform
| Cgl of pxlp2lp_clos * list_point

fun dispatch_pxlp2lp (c: pxlp2lp_clos, x:point, 1: list_point) : list_point =
case c of (* point * list_point -> list_point dispatch function *)
Ccons => comns’ (x,1)
| Cconsapp whole_t => consapp’(x,l,whole_t)

and dispatch_1p2lp (c:1p2lp_clos, ps:list_point) : list_point =
case c of (* list_point -> list_point dispatch function *)
Cdoit(ts) => doit’(ps,ts)
| Cg1(c’,1) => g1’ (ps,c’,l)

and consapp’ (x:point, 1l:1list_point, whole_t: transform) : list_point = (* free var: whole_t *)
let val x’ : point = apply (whole_t,x)
in Cons_point (x’,1)

and cons’ (x:point, 1: list_point) : list_point = Cons_point(x,1)

and f1’ (n: list_point, 1: list_point, c: pxlp2lp_clos) : list_point = (x free var: c *)
case 1 of
Nil_point => n
| Cons_point(x,r) =>
let n’ : list_point = dispatch_pxlp2lp(c,x,n)
in f1°(n’,r,c)

and g1’ (10; list_point, c : pxlp2lp_clos, n: list_point) : list_point = f1’(n,10,c)
(x free vars: c,n *)

and foldll’ (c: pxlp2lp_clos, n: list_point) : pl2pl_clos = Cgl(c,n)

and f0’ (n:transform, l:list_transform) : transform =
case 1 of
Nil_transform => n
| Cons_transform(x,r) =>
let val n’ = compose(x,n)
in f0’ (n’,r)

Figure 24: Results of closure-converting example program (beginning).
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and doit’ (ps:list_point,ts: list_transform) : list_point =
let val whole_t : transform = f0’(id,ts)
in let val consapp : pxlp2lp_clos = Cconsapp(whole_t)
in let val f : 1lp2lp_clos = foldll (consapp,Nil_point)
in let val ps’ : list_point = dispatch_lp2lp(f,ps)
in let val cons : pxlp2lp_clos = Ccons

in let val g : 1lp2lp_clos = foldl1l(cons,Nil_point)

in dispatch_1p2lp(g,ps’)

val ts : list_transform = Cons_transform(...)

(x free var: ts *)

fun doit’’(ps : list_point) : list_point = doit’(ps,ts) (* stub function for export *)

Figure 25: Results of closure-converting example program (conclusion).

closure-converted program.'? However, there are many potential performance advantages to be

obtained from the “interpreted” style of the converted program, deriving from the fact that it is

an explicitly first-order program.

Figure 26 shows the effect of optimizing the code in Figure 24. Function foldl1 has been uncur-

ried, removing the intermediate closures constructions f and g in doit’, and dead code elimination

has then removed the 1p21p_clos datatype and the associated dispatch function altogether, allow-

ing g1’ to be eliminated and doit’ to be inlined into doit’’. Function dispatch _px1lp2lp, having

already absorbed consapp’ and cons’, has been inlined into £1’. The remaining closure datatype

pxlp2lp_clos can be represented “flat” and hence need not be heap-allocated. The remainder of

this section describes these points in more detail.

10.1 Uncurrying

The general-purpose optimization rules that inline “small” functions and perform “case splitting”

also work together on the explicit closure form to mimic the effect of a standard uncurrying trans-

formation, with no extra implementation effort. Consider a curried function

f (x1:t1) (x2:t2) : t = e

expressed in SIL as:

fun f (x1:tl1) : t2 > t =
let fun f2 (x2 : t2) : t = ¢
in f2

A fully-applied instance ((f e;) e3) is expressed in SIL as:

21n C, which supports indirect jumps to top-level functions, we could convert from our representation back to a

conventional closure representation as a final compilation step, by choosing the lifted functions’ code pointers to be

the closure type’s constructor tags. (This works because each closure value is cased over only once, by the relevant

dispatch function.) Of course, we would need to add unsafe casts to the C code.
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exports

val doit’’ : list_point -> list_point "doit"

datatype pxlp2lp_clos flat = Ccons | Cconsapp of transform

fun f1’ (n: list_point, 1: list_point, c: pxpolp_clos) : list_point =
case 1 of
Nil_point => n
| Cons_point(x,r) =>
case c of
Ccons =>
let val n’ :list_point = Cons(x,n)
in f1°(n’,r,c)
| Cconsapp(whole_t) =>
let val x’ : point = apply(whole_t,x)
in let val n’ : list_point = Cons(x’,n)
in f1’(n’,r,c)

fun f0’ (n:transform, l:list_transform) : transform =
case 1 of
Nil_transform => n
| Cons_transform(x,r) =>
let val n’ = compose(x,n)
in f0’ (n’,r)

val ts : list_transform = Cons_transform(...)

fun doit’’(ps : list_point) : list_point =
let val whole_t = f0’(id,ts)
in let val consapp : pxlp2lp_clos = Cconsapp(whole_t)
in let val ps’ : list_point = f1’(Nil_point,ps,consapp)
in £1’(Nil_point,ps’, Ccons)

Figure 26: Optimized first-order code.

let val g1 : t2 -> t = £f e
in gl €9

This code is much less efficient than an application of an arity-2 function would be, due to the cost
of building and entering an intermediate closure. An uncurrying transformation reduces the cost
by introducing an arity-2 function £’ and redefining f to call £’ (note that e is not duplicated).
fun £’ (x1:t1,x2:t2) : t =¢
fun f (x1:t1) : t2 > t

let fun f2 (x2 : t2) : t = £2(x1:t1,x2:t2)
in £2
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Now fully-applied instances of f are altered to call £’ directly instead; partially-applied or escaping
instances of £ are not changed. A similar transformation is desirable for curried functions of more
than two arguments, whenever they are called with two or more actuals.

Uncurrying is ordinarily performed prior to closure conversion. Appel [1] noted that uncurrying
can be achieved simply by introducing the definition of £’, as above, and relying on standard inlining
heuristics to inline £ and £2 (whose bodies are small), yielding a direct call to £’. Our observation is
that closure conversion already performs the same transformation that Appel suggests, introducing
a lifted version of £2. By applying a round of our standard optimizations after closure conversion,

we get uncurrying “for free.” Here is the result of closure conversion on the example above:

datatype t2_t_clos = Cf2 of t1 |
fun f’(x1:t1) : t2_t_clos = Cf2(x1)

fun t2_t_dispatch (c:t2_t_clos, x2:t2) : t =
case c of
Cf2 x1 => £2’ (x2,x1)
|

and f2’ (x2:t2,x1:t1) : t = ¢

let val gl : t2_t_clos = f’(e;)
in t2_t_dispatch(gl,es)

Now, the standard optimizer proceeds as follows: it inlines the call £’ (e;), since the body of the
function is “small,” which yields:

let val gl : t2_t_clos = Cf2(e;)
in t2_t_dispatch(gl,es)

Now the call to t2_t_dispatch can be “case split,” resulting in the inlining of the dispatch and
yielding the direct n-ary call £2° (eg,e1)! Note that the success of this inlining strategy doesn’t
depend on the number of cases in this dispatch function, which might be arbitrarily large. Nor does
it depend on a sizing heuristic; even our conservative inliner will always judge the relevant function

bodies to be small enough. It also works correctly for functions of more than two arguments.

10.2 Implicit Type-based Closure Analysis

Higher-order functions complicate compilers by making flow analysis much more difficult: data
flow and control flow become interdependent, so analyses from the conventional 3GL compiler
world won’t work without modification. Many partial-evaluation-based optimizations, such as
value propagation and dead-code elimination, require the compiler to determine an (approximation
of) the set of £n-expressions that might be invoked at each application site in the program. Existing
implementations of this so-called closure analysis use an abstract interpretation involving a fixpoint
calculation [36, 37] or a constraint-based mechanism [9, 30]. Surprisingly, closure analysis does not

appear to have been implemented for typed languages, despite the fact that typing obviously
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" Also, existing closure analysis algorithms do

provides a good first cut at the analysis “for free.’
not express their results within the language itself, and so cannot feed subsequent general-purpose
optimizations.

Our closure conversion algorithm can be seen as the encoding of a simple type-based closure
analysis. Type inference tags each application site with a type; only lambdas of that type can
possible be invoked at that site, and set of such lambdas is explicit in the dispatch function called at
that site and in the corresponding closure datatype. Standard partial-evaluation style optimizations
such as constant propagation and dead code elimination, as described in Section 8, work directly
on this representation. In addition, there are potential optimization payoffs if the number of data
constructors for a particular closure type is small. A singleton set of constructors is ideal: the
optimizer knows precisely which function will be called, and can arrange to call it directly or (if it
small enough) inline it [18]. Inlining is also possible (with some risk of code blow-up) for sets with
just a few constructors, although we have not implemented this.

If a closure datatype must be built, the compiler can use the fact that it knows all the construc-
tors to choose an optimized representation. The standard datatype representation tricks [10, 1] will
avoid building heap records for closure constructors with no free variables. It is also useful to sup-
port “flat” (i.e., unboxed) variant types (see Section 12.2) to avoid heap allocation for non-recursive
constructors that have just a few free variables.

The payoff from these optimizations depends on the precision of the underlying type-based
closure analysis, and this in turn depends on source program types. To the extent that these types
represent structural distinctions among values, they are essentially fixed by the programmer’s choice
of data structures and algorithms. However, source languages that support a name-equivalence
model for types allow programmers to distinguish between different uses of structurally equivalent
types. In RML (as in Standard ML), for example, this can be done by using “transparent” datatype
declarations, e.g.,

datatype farenheit = F of integer
datatype centigrade = C of integer

Ordinarily, programmers do this in order to make their program text clearer and to obtain help
from the compiler’s typechecker in detecting logical errors. For example, lambda-bound functions
of type farenheit -> farenheit can be reliably distinguished from those of type centigrade ->
centigrade, etc., reducing the risk of accidentally confusing the two kinds of quantities. Under
our closure conversion scheme, these two functions will go into distinct closure datatypes, each
having fewer constructors than would a datatype for their common structural type int -> int,
and hence possibly offering more optimization opportunities at their call sites. Thus users have a
further motive for making fine typing distinctions: they may thereby enable better optimization,

more efficient closure representations, and better performance!
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10.3 Explicit Closure Analysis

The translator can also perform its own forms of flow analysis explicitly, and record the results in the
form of a more specialized typing, which the closure converter will take into account when collecting
constructors into closure datatypes, and produce a larger number of datatypes each containing
fewer constructors. We have built one such analyzer, structured as a variant of type inferencing.
Beginning with a copy of the original SIL program in which every expression is annotated with an
explicit (monomorphic) type, the analyzer tags each occurrence of an arrow type (on a fn expression
or a variable) with a unique integer. It then performs a standard type-checking traversal of the
program, with one adjustment: whenever the type-checker unifies two arrow types, the integer
tags on these types are placed in the same equivalence class. In particular, this guarantees that
if a fn expression (I : 7,—'7y) is among those that might possibly be applied at an application
(a : Ty—I719)(b : 71), then the tags i and j are necessarily in the same equivalence class. On the
other hand, arrow tags are not placed in the same equivalence class merely because their argument
and result types match. Thus the classes are a refinement on ordinary types. This analysis is
simple, given that we already have the typed intermediate form in hand, and is almost linear (its
complexity is dominated by the union-find algorithm). It produces essentially the same analysis
as the constraint-based approach described by Bondorf and Jergensen [9] and further analyzed by
Palsberg [30].

An important point about our framework is that the result of an automated analysis like this can
be expressed directly in SIL, and used as the basis of a (finer-grained) closure conversion. This is
done by rewriting the SIL program. For each equivalence class 7;—"75, the analyzer simply invents
a new unary datatype D' = ¢’ of 7 and replaces all instances of 71 =1, by 7 — D’ adding the
necessary coercions to the program. These amount to a C’ construction around the body of each
function of this type and a case on the result of each application of such a function. The resulting
program is fed directly to the ordinary closure converter.

The coercions just mentioned carry no runtime cost (since the D’ are “transparent” constructors),
but they do inhibit some further SIL optimizations. We have therefore developed a clean-up
transformation, to be applied after closure conversion, that gets rid of all transparent datatypes.'?

As ongoing work, we are trying to apply conventional (FORTRAN-world) optimizers to our
closure-converted code, particularly to take advantage of well-developed dataflow frameworks that

don’t rely on inlining to propagate information.

131n fact, it may prove useful to get rid of all non-structural typing distinctions at this point, rewriting the program

to use a set of structurally-distinct canonical datatypes. We have yet to implement this idea.

41



11 Eliminating Tail Calls

Function calls are generally expensive in standard implementations of our target 3GLs.!* So it is
valuable to avoid making recursive calls where possible, and it is particularly desirable to remove
tail calls in favor of jumps, especially when such calls are recursive. Tail calls are frequent in
SIL, both in user functions derived from the original RML code, and in the dispatch functions
generated by higher-order function removal.

To make it possible to express calls as jumps, SIL includes a facility for defining labeled jump
points and corresponding gotos within a function [20]. Jump points are declared similarly to lo-
cal functions, with a label name, formal parameters, defining expression, and scoped-over body
expression; gotos are similar to function applications, with a target jump point label and actual

parameters. However:
e goto expressions can only appear in tail position;

e jump point labels can only be mentioned as the targets of gotos (i.e., they are not first class

values); and

e the scope of a jump point label does not extend into function declarations nested inside the

body expression.

These restrictions guarantee that the target label of a goto is always in the same function as the
goto itself. Hence, when SIL is translated to a target 3GL, SIL jump point labels can become
ordinary labels, their parameters become ordinary variable declarations scoped at the function
level, and a SIL goto translates to a set of assignments to the parameter variables followed by an

ordinary 3GL local goto. Here’s an example in SIL together with the corresponding C code:

fun f(x:int) : int = int f(int x)
label g(y:int) = y+1 { int y;
in let val b : bool = x > 8 {int b = x > 8;
in case b of switch (b) {
true => g x case 1: y = x;
| false => g 0 goto g;
case 0: y = 0;
goto g;
}
}
g: return (y+1);
}

Because gotos must be in tail position, code that uses jump points is not amenable to simplifying
rewrites like inlining. Therefore, we introduce such code only at the very last minute, after first-

order conversion and all optimizations are completed, and just before conversion to MIL.

"Deeply recursive nests of calls are particularly expensive on SPARC processors when register windows are used

(as they are by most 3GL compilers).
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fun f0’ (n:transform, 1: list_transform) : transform =
let label jpO (n0O:transform, 10:1list_transform) =
case 10 of
Nil_transform => nO
| Cons_transform(x,r) =>
let val n’ = compose(x,n0)
in goto jpO (n’,r)
in goto jpO0 (m,1)

fun doit’’(ps : list_point) : list_point =
let val whole_t = f0’(id,ts)
in ...

Figure 27: Insertion of jump points into example code.

When can a tail-call be turned into a goto? Since all functions have been lifted to top level
at this point, at least one call to every (non-dead) function must be from the body of different
top-level declaration. Thus, it is never possible to convert a function definition and its calls directly
into a jump point and corresponding gotos; the original function must be preserved for the sake
of the external (non-recursive) caller. But we are free to introduce a jump point at the top of the
function body, for use by recursive tail calls; external and non-tail recursive calls continue to use
the original function. As an example, Figure 27 shows how a jump point is introduced at the top
of £0’ in the code of Figure 26.

This approach works well for removing simple tail-recursion; the only added cost is the extra
goto associated with calls to the original function.'® The same approach can be extended to handle
tail-calls among mutually-recursive functions, though at a significantly increased cost. In order to
make the nested labels have the proper scoping, the functions must be combined into a single
function with simulated multiple entry points. A jump point is established inside the combined
functions for each of the original functions, and the combined function gets an extra discriminant
argument used to dispatch control to the appropriate label. The discriminant is encoded as a
datatype, in a manner very similar to the closure datatypes introduced during higher-order function
removal. For example:

let fun £ (x:t1)

and g (y:t2)
ingr

1]
H 09
= N
h

q

becomes

5 This expense could be reduced by a simple algorithm for ordering code blocks; decent 3GL compilers already do
this.
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datatype D flat = F of t1 | G of t2
let fun f_or_g (d:D) =
let label f (x:t1)
and g (y:t2)
in case d of
F x’ => goto f x’
| Gy’ => goto g y’
in f_or_g (G r)

. goto g z
. f_or_g (Fw) ... goto £ q

Under this transformation, a non-tail call to one of the original functions requires constructing
a discriminant datatype value, passing it to the combined function, and performing an immediate
case dispatch on it. Fortunately, the added datatype can always sensibly be declared flat, since
it cannot be recursive, and its values are always consumed immediately at the top of the combined
function and never escape. In most target 3GL compilers, the net effect is to push the datatype tag
and parameters (i.e., the original functions’ arguments) on the stack. In principle, good compilers
could pass them in registers. Still, this transformation is costly in code size and execution time
(for non-tail calls), so it is performed only if there is at least one tail-recursive call in the set of
definitions. But it is well worth including in our repertoire, because mutual tail-recursion between

dispatch functions and the lifted functions they invoke is quite common.

12 Generating Imperative Code

12.1 MIL

The translation of first-order, optimized SIL code into our target 3GLs is mediated by a translation
to a common imperative intermediate form called MIL, whose syntax is given in Figure 28. MIL
is built around imperative statements in which assignments update the values of variables. In
particular, the body of each SIL function becomes a MIL statement, which in turn becomes the
body of the corresponding 3GL function. Statements are defined recursively in such a way that
they group into sequences. In addition to assignments, sequences may contain case statements that
dispatch on the tag of an algebraic type, or nested statement blocks. Each sequence terminates
with an explicit return, which exits from the enclosing function, or with a goto to some locally
defined label; sequences never “fall through” one to another. A block is used to declare a set of

local variables and (mutually recursive) labeled statement sequences. The block

block var vy : T;... Up:T, lab ly :sty... [l : sty begin st

corresponds to these C and Ada blocks
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(types) T
(simple expressions) se
(expressions) e
(statements) st

(variable declarations) vdec ::
(function bindings) fdec ::
(labeled statement bindings) jdec ::
(mutually recursive decls.) atdecs ::
(algebraic type decls.) atdec ::
(algebraic type representations) rep i
(exports) export ::
(components) m::

K (primitive types)

D (monomorphic algebraic types)
(k: K) (primitive constants)

v (variables)

v.a (record selections)

se

f({se})
c({se},)
p({se})

(simple expressions)
(function applications)
(constructor applications)
(

primitive applications)

return se

v = e ; st

goto [

case v of {c => st}

block var {wvdec} lab {jdec} begin st

datatype {atdec}ang

D =rep {c of {a:7})}

enum

value

[flat] record

[flat] variantrecord

oneNull c rep

type 7 "name"

val v:7 "name"

export {export} {atdecs} {vdecs} {fdec} st

Figure 28: MIL Syntax. Note that all jdecs in a given let are treated as mutually recursive, as are all fdecs

in a component.
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{n oy oo T Vs DECLARE

st; V1 ! Ty ...; Up ! Tnj
ly: BEGIN
sty st;
<<Ll>>
I : sty
St
} <<y >>
St
END;

Variables do mot have associated initializing expressions; legal programs must take care to
initialize any variable before using it.

Argument and return values must be simple expressions, i.e., constants, simple variables, or
dereferenced fields of constructed values (see below); application expressions can appear only as
the right-hand sides of assignments. In particular, this guarantees that primitive applications
appear only in the context of assignments v := p({se }), so there will always be a suitable target
variable into which the primitive’s template code can store the result.

Algebraic data types are specified in more detail than in RML or SIL; their declarations include
representation information (see Section 12.2) and the individual fields of each constructor are named
and can be dereferenced using dot notation. Such dereferences can legally occur only within an
appropriate arm of case over some value of the corresponding data type.

The top level of a MIL component consists of a list of exports; a set of algebraic type declarations,
which must include definitions of all exported types; a set of variable declarations and a (mutually
recursive) set of function declarations, which between them must include definitions of all exported
values; and an initializing statement, which fills in the values of the top-level variables and which
the surrounding 3GL driver must arrange to execute (once) before any exported value is used.

A slightly simplified formulation of the translation of SIL to MIL is specified in Figure 29. The
core of the translation scheme is the function &(vy, sty)[e], which converts the SIL expression e
into a MIL statement, in a context where the expression should be assigned to variable vy, and the
immediately following statement should be sty. Thus, statement sequences are built up in reverse
order. The root argument for st; is either a return statement, as specified in the FS rule, which
translates functions, or a goto statement.

Each SIL ldec generates a MIL block with local variables corresponding to the ldec’s argu-
ments and a labeled statement sequence corresponding to the ldec’s body. The translation of a
corresponding SIL goto (which must always be in tail position) is a parallel assignment of the
actual parameter expressions to the variables representing the formal parameters, terminated by
a MIL goto to the label; the sty parameter is ignored. Since the actual parameters may refer to
the current values of the formal parameters, it is in general necessary to introduce new temporary
names for the actual values; once the temporaries have all been defined, they can be safely used to
overwrite the formals. Here and elsewhere, the translation as presented is rather profligate in its

generation of fresh variables; in practice we use a somewhat more complex translation that avoids
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E(vp, sto)[let v:7 = €1 in e
E(vy, sto)[case v of {calis}

block var v:7 begin &(v,&(vg, sto)[e2])[er]

E(vo, sto)[se] = wo := se; sty
E(vo, sto)[f({se} )] = wo := f({se}); sto
E(vo,sto)[c({se})] = wo := c({se}); sto
E(vo, sto)[p({se} )] = wo := p({se}); sto

]
]

block lab I: sty begin case v of {R(v,vg,goto I)[calt]}
(I fresh)
E(vp, sto)[let label ldecs in e] =
block lab I : sty begin block LS(vg,goto )[ldecs] begin &(vy,goto 1)[e]
(I fresh)
E(vo, sto)[goto I({se})] = block var {v: 7} begin {v := se;} {x := v;} goto I
({v} fresh; {z : 7} = Args(l))

R(vi,vg, sto)[c({v},) => e] = ¢ => block var {v:7} begin {v:=vi.a;} &(vg, sto)[e]
({a : 7} = Fields(c))

L8(vo, sto)[{l({v: 7}) : 7 = e}andl

var {{v:7}} lab {l:&(vg,sto)[e]}

FS[fun {f inl ({v:7}):7 = e}angl =
{f({v:7}):7 = block var vy : 7 begin £(vp,return vg)[e]}
(vo fresh)

TS[val v:71 = e topdecs] = let (vs, fs,st) = TS[topdecs] in (v:7 vs, fs, E(v,st)[e])
TS[fdecs topdecs] = let (vs, fs,st) = TS[topdecs] in (vs, FS[fdecs] fs, st)
TS[] = (, ,return null) (null an arbitrary constant)

Figure 29: Transformation of SIL expressions and declarations to MIL statements. Auxiliary
function Args returns and names and types of the formal parameters to a label, and Fields returns

the names and types of the fields of a data constructor.

making unnecessary copies of variables, but in any case we assume that the 3GL compiler will do
a good job of coalescing unnecessary copies.

The translations for SIL case and let ldecs expressions must arrange to perform the “next
statement” sty in each subexpression. This aim could be achieved simply by duplicating sty ev-
erywhere it is needed, but at the potential cost of a code explosion if sty is large. Therefore, the
translation generates a fresh “join point” label for each such expression, and arranges for each
subexpression to jump to it. In practice, we use a slightly more complex translation that avoids
generating such join points when sty is simple enough that it can be duplicated without danger of
a code explosion, which is often the case; this optimization avoids generating lots of unnecessary

jumps to jumps.
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The DS rules describe how to translate the top-level declarations of a SIL component into
the corresponding MIL sequence of variable declarations, function declarations, and initializing
statement. The primary complication arises from the need to separate out the declaration and
initializing definition of each SIL value declaration.

Figure 30 shows the MIL equivalent to the function £0’ from Figure 27, just as it would be
generated by the translation rules described here (without optimizations). The equivalent C code
is shown in Figure 31. Figure 6 shows similar Ada code, based on MIL code generated with the

optimizations mentioned above.

12.2 Choosing Representations for Algebraic Types

Any algebraic type can be given a default representation as a heap-allocated (“boxed”), tagged
variant record, with each n-ary data constructor in the type corresponding to a tagged variant
with n fields. Such types can be defined in a straightforward manner in each target 3GL. However,
many types can be given much more efficient representations [1, 10]. In particular, it is often
possible to avoid boxing small records, since in a monomorphic setting there is no reason to require
that all types be representable in a single word. The only significant restriction on our choice of
representations is that they must be typable in the target 3GL.

Our translator automatically chooses optimized target-language representations in the following

cases, which correspond to the possible values of rep in the MIL syntax description.
e If no data constructor carries values, an (unboxed) enumerated type is used.

e If there is only one data constructor, a simple (untagged) boxed record can be used. Moreover,
if the data constructor carries only a single value, there is no need to box a singleton record;

the value itself can be used.

e If there is exactly one nullary data constructor (one that doesn’t carry a value), and the other
constructors require a boxed representation, the nullary constructor can be represented by
the null pointer.'® Any nullary constructor can be represented by a pointer to a statically-

allocated address.

e If a type that would normally be boxed is non-recursive and its values occupy a sufficiently
small space, it can be represented as unboxed (or flat), i.e., manipulated directly by value
rather than being heap-allocated and manipulated by reference. The user can also explicitly

mark datatypes in the source program as flat.

The use of unboxed records carries both benefits and costs. The major benefit is reducing
the use of the heap, with consequent reductions in allocation, garbage collection, and data access

costs. On the other hand, unboxed records are more expensive to move around than boxed ones,

5When generating C, we might be tempted to extend this trick [1] to represent multiple nullary constructors as

distinct “small” integers (i.e., integers that cannot be confused with pointers), but this would require casting.
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fun fO (n: transform, 1: list_transform) : transform =
block
var n9 : transform
lab JoinPointO:
return n9
begin
block
var nO: transform 10: list_transform
lab JumpPointO:
block
lab JoinPoint1:
goto JoinPointO
begin
case 10 of
Cons_transform =>

block
var x: transform r: list_transform
begin
x := 10.Cons_1list_O; r := 10.Cons_1list_1;
block
var nb : transform
begin
n5 := compose(x,n0);
block
var n4: transform 14 : list_transform
begin
n4d := nb; 14 := r;

n0 := n4; 10 := 14;
goto JumpPointO
| Nil_transform =>

block
begin
n9 := n0;
goto JoinPointl
begin
block
var n7 : transform 17 : list_transform
begin

n7 :=n; 17 := 1;
n0 := n7; 10 := 17;
goto JumpPointO

Figure 30: MIL code for example function.
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transform fO (transform n, TransList 1) {
transform n9;
{ transform n0; TransList 10;
{ transform n7; TransList 17;
n7 = n; 17 = 1;
n0 = n7; 10 = 17;
goto JumpPointO;
};
JumpPointO:
{ if (10 != NULL)
{ transform x; TransList r;
x = 10->Cons_1list_O0; r = 10->Cons_1list_1;
{ transform n5;
n5 = compose(x,n0);
{ transform n4; TransList 14;
n4d = nb; 14 = r;

n0 = n4; 10 = 14;
goto JumpPointO;
}
}
}
else
{ n9 = no;
goto JoinPoint1;
3
};
JoinPoint1:
goto JoinPointO;
3
JoinPointO:

return n9;

}

Figure 31: C equivalent of MIL code for example.

as each move requires that the entire contents of the record be copied. Thus use of the unboxed
representation obviously should be restricted to fairly small records; we make the threshold size a
tunable parameter of the translator.

Our translator supports unboxed representations even for variant records, unlike other func-
tional language compilers known to us. These are particularly useful for avoiding heap-allocation
of small closures. Of course, unboxed values always occupy the space needed for the largest possible
variant, and hence waste space (and copying time) for smaller variants, so it is again important
that the largest variant not be too large.

One potential advantage of using unboxed values is that they need not, in principle, be stored
in memory at all; they can often be profitably spread over registers (at least on machines that
have lots of registers). Unfortunately, our target 3GL compilers are generally reluctant to handle

unboxed records this way; in particular, they insist on passing and returning unboxed records on
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the stack. We cannot improve on this without direct access to machine code. Even so, choosing
unboxed representations offers measurable improvements in the performance of some benchmarks,

as discussed in Section 14.

13 Generating Ada or C

Since MIL represents a “lowest common denominator” of ANSI C and Ada83, translation to these
languages is quite straightforward. If C is the target, the MIL component is translated into a
single file containing one top-level declaration for each component value and function, and a special
function Initialize containing the component-level statement code. If Ada is the target, the MIL
component generates an Ada package in two files: a package specification file, which contains the
definitions of exported types, the definitions of exported values, and the declaration signatures of
exported functions; and a package body file, which contains the definitions of all functions and the
initialization code.

We have used the gcc compiler for ANSI C compilation and the Sun/Verdix Ada compiler
(version 77) for Ada83 compilation. We rely on the 3GL compilers to do several important tasks,
including register allocation and copy propagation, peephole optimization of jumps, and generation
of good code for case statements. In practice, the two compilers we use vary considerably in the
quality of their code, with gcc generally doing a better job, especially on copy propagation.

In a few cases, the semantics of the target language cause subtle performance problems. For
example, in Ada83 a local variable slated to contain a variant record must be initialized with a
default value, even if it is immediately overwritten by an assignment; these initializations make
function entry much more expensive than the simple stack pointer adjustment one might epect.

We have also had to deal with a number of complications arising from arbitrary limitations in
the Verdix Ada compiler. For example, there is a hard internal limit on the depth of syntactically
nested blocks; this has required us to perform a transformation on MIL function bodies that lifts all
nested blocks to the top of the function. Unfortunately, this transformation broadens the syntactic
scope of local variables and thus substantially increases the stress on the Ada compiler’s register

allocator.

14 Benchmarks

Simple benchmark results indicate that our compiler generates code that is quite competitive in
quality with the well-established Standard ML of New Jersey compiler. We also measure the effects
of using more refined closure analysis and of using unboxed closure representations. A summary of
the benchmark results is given in Table 1. 1ife is an implementation by Reade [34] of Conway’s
Game of Life making makes heavy use of higher-order functions; the inner loop processes a list of
pairs of integers which we mark as flat. £ft is an implementation of the Fast Fourier Transform due

to Xavier Leroy; it is based on a template that supports simple operations arrays of reals. interpd
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life fft interpd interpc

line count 302 237 113 119

smlnj time (sec) 20 538 2.3 3.0

standard time (sec) 0.8 2.7 2.0 4.7

max closure size (words) 3 1 1 1

flow-flat time (sec) 0.8 2.7 1.7 4.6
flow-boxed time (sec) 1.0 2.7 2.0 5.1
max closure size (words) 3 1 5 7

flow-flat-nogc time (sec) 0.5 2.6 1.2 24
heap alloc (MB) 24 0 6.6 29.9

flow-boxed-nogc time (sec) 1.6 2.7 1.3 2.6
heap alloc (MB) 3.9 0 8.5 34.9

Table 1: Benchmark results.

and interpc are lambda-calculus interpreters evaluating the factorial function; the former is in
direct style and the latter in continuation-passing style; they are taken from Bondorf [8].

All tests were performed on a 133MHz Pentium processor with 80MB memory running under
Linux. Row smlnj represents the behavior of Standard ML of New Jersey version 109.27, with the
compilation settings reducemore := 0 and rounds := 0 to encourage thorough optimization of
small programs. The other rows represent the behavior of our compiler generating C under a variety
of compilation settings; the resulting C was then compiled using gcc version 2.7.2.1 with option
-03, and (unless otherwise noted) linked with the Boehm-Demers conservative garbage collector [7]
version 4.11. Row standard represents the standard configuration of our compiler. In particular,
flat (non-heap) datatype representations are used for all non-recursive closure types. Execution
times for our compiler are within a small factor of those of SML/NJ, and substantially better in
some cases.

flow-flat represents a configuration in which we invoke the more explicit closure analysis
described in Section 10.3 and continue to use the (often larger) flat representations for all closure
types; flow-boxed does the same analysis but uses boxed representations for all closure types.
Comparing these figures indicates that the refined closure analysis is sometimes worthwhile (e.g.,
for interpd), but only in conjunction with the flat representation for closure types.'”

These comparisons of flat vs. boxed closure representations may be skewed by our use of the
relatively slow Boehm-Demers collector, which probably penalizes heavy heap allocation dispropor-
tionately more than a system with an efficient built-in allocator. To get better evidence that flat
closures types are worthwhile, we linked the generated code for flow-flat and flow-boxed against
a very low-overhead heap memory management implementation: allocation from a single large ar-

ray and no garbage collection. The results are shown as flow-flat-nogc and flow-boxed-nogc.

'"The apparent anomaly of interpc’s increased execution time under flow-boxed is due to the optimizer’s failure

to clean up fully after the introduction of the artificial datatypes that encode the closure analysis rsult.
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Even with very cheap heap management, and despite the fact that gcc doesn’t generate particularly
good code for handling flat structures, the substantially lower heap allocation requirements of the
flat approach lead to measurable speed improvement. We conclude that flat closure allocation is

worth further investigation as an optimization technique for functional language compilers.

15 Conclusions

Versions of the compiler described here have been in use within our overall translation system for
nearly two years. It generates working Ada83 and ANSI C code with respectable performance
relative to established functional language compilers, and an unimpeachable level of type safety. It
has cheerfully handled RML input programs of up to 20,000 lines. Generated Ada components have
been integrated into the US Air Force’s Generic Command Center demonstration environment, thus
meeting the specific goals of the project for which this work was originally undertaken.

More broadly, we believe our approach is a promising alternative to existing interoperability
schemes for strongly-typed functional languages. We would like to perform more detailed compar-
isons between our work and existing non-functional “glue” languages like Tcl.

We have tried to construct our compiler from the best known technologies for FL. compilation.
We have found the staged approach to compilation very effective for managing a complex group of
transformations. Like other researchers [41, 32] we have found the ability to type-check intermediate
representations invaluable in uncovering bugs in the course of compiler development. Moreover, we
have developed new uses for type information in late-stage optimization of programs.

The most significant restriction of our system is that it requires access to the entire RML
program, because both the polymorphism removal and higher-order removal algorithms are “whole-
program” transformations. However, we believe that this problem can be at least partly addressed
by providing separately compiled components a digest of the relevant type and function information

from the other components.
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