
From ML to Ada(!?!): Strongly-typed Language Interoperabilityvia Source TranslationDino P. Oliva Andrew TolmachPaci�c Software Research CenterDepartment of Computer Science Department of Computer ScienceOregon Graduate Institute Portland State University20000 N.W. Walker Road P.O. Box 91000 P.O. Box 751Portland, OR 97291-1000 Portland, OR 97207-0751oliva@cse.ogi.edu apt@cs.pdx.eduJune 2, 1997AbstractWe describe a system that supports source-level integration of ML-like functional languagecode with C or Ada83 code, by translating the functional code into type-correct, \vanilla" 3GLcode. The system o�ers simple, e�cient, type-safe interoperation between new functional codecomponents and \legacy" 3GL components. The novel features of our translator include user-parameterized speci�cation of primitive types and operators; removal of polymorphism by codespecialization; removal of higher-order functions using closure datatypes and interpretation; andaggressive optimization of the resulting �rst-order code, which can be viewed as the result of aclosure analysis.

This work was supported, in part, by the US Materiel Command under contract F19628-93-C-0069. The second author was also supported, in part, by the National Science Foundationunder grant CCR-9503383.
1

1 IntroductionFunctional languages (FLs) such as ML and Haskell provide powerful and high-level control mech-anisms and symbolic data types that are not available in traditional \third-generation" languages(3GLs) such as C, Ada, or Modula. For example, de�ning and iterating over a list can be donemore abstractly and succinctly in ML than in C. These high-level features make FLs well-suitedfor rapid prototyping and stand-alone applications. But many real-world applications need to takeadvantage of an existing base of \legacy" code written in imperative 3GLs. Thus a reasonableaim is to enable programmers to use an FL to write \glue" code that combines existing 3GL codecomponents, or to write FL components that can be integrated into larger 3GL-based systems.Unfortunately, FL implementations typically do not give the programmer control over the de-tailed layout and lifetime of data, and usually assume a special-purpose runtime system; thesecharacteristics impede interfacing with foreign languages. \Foreign function" interfaces that ad-dress these problems are becoming more common [17, 25], but tend to have several disadvantages:moving data between languages typically requires expensive on-the-y format conversions or trickycast operations; there is often substantial overhead in transferring control between FL and 3GLruntime systems, which discourages small-grained interactions; and the resulting integrated code isan inelegant hybrid that depends on the implementation details of FL and 3GL compilers, whichmay be unacceptable in organizations that mandate use of standardized, portable 3GLs.We have developed an alternative approach to interoperability that completely bypasses theseproblems by translating the entire FL program into the imperative 3GL used by the legacy codebase. Speci�cally, we have built a system that translates an ML-like source language (called RML,for \Restricted ML") into well-typed (cast-free), portable, \vanilla" Ada83 or ANSI C code, whichcan be passed to a standard compiler. Since the output of the translator represents FL types andcontrol structures using the 3GL's types and control structures, it can be easily integrated at astatement-by-statement level with the code of existing 3GL components, in an e�cient and fullytype-safe manner.Our system has been developed as the back end of a larger application generator system thatproduces integrable components from high-level speci�cations [21]; we �rst generate RML code fromthe speci�cations using semantics-directed techniques, and then translate that code to Ada83 usingthe scheme described in this paper.1 However, the system is quite general; it can accommodatehand-written or generated RML code from any source, and may be useful in any context wheretight integration with an existing legacy code base is desirable.This paper describes the design and implementation of our RML-to-3GL translator. Many ofthe requirements on such a translator are familiar from existing FL compilers: high-level featuressuch as polymorphism, higher-order functions, and algebraic datatypes need to be expressed interms of much lower-level type and control constructs. However, the need to generate adequatelyperforming, well-typed, vanilla target code|particularly for Ada83, a quite secure and restrictive1The choice of Ada83 was mandated by our project sponsor, the U.S. Air Force Materiel Command.1

language| makes special demands on the translator. These have led us to introduce a number ofnovel techniques, some of which are of independent interest:� We use a type-based macro-expansion technique called templates [42, 43] to integrate 3GLcode into RML. RML programs are parameterized by a set of abstract types and operations,whose translations into target-language text are speci�ed by macros. Both substantial legacycode components and simple primitive types and operators are handled uniformly in thisfashion. Templates are speci�ed using a specialized de�nition language; see Section 4.� We remove polymorphism from RML programs by cloning polymorphic functions anddatatype declarations, making a separate monomorphic version for each distinct set of instan-tiating type variables; see Section 6. Although this approach has been suggested before [19],and similar e�ects have sometimes been achieved by accident [41], we are unaware of anyprevious full-scale implementation. The approach requires access to the whole program.� We remove higher-order functions using a novel closure-conversion algorithm that representsclosures as members of algebraic datatypes, and generates type-speci�c dispatch functionsto interpret them; see Section 9. The resulting code does not even require function pointers(which Ada83 lacks). Unlike previous treatments of typed closure-conversion [27], we donot need to introduce new language primitives or fancy type systems to maintain typability,although we again require access to the whole program, which must be monomorphic.� We optimize the closure-converted code, using simple, standard \partial-evaluation-style"transformations; although optimizing at this stage has been suggested before, we are notaware that anyone has actually done it, and it proves to be useful. For example, the standarduncurrying optimization is performed \for free" by the standard inlining optimization; seeSection 10.1.� Furthermore, the code produced by our typed closure-conversion algorithm can be viewed asbeing the result of the simple, implicit closure analysis. We take advantage of this closureanalyses to choose more e�cient closure representations and perform more aggressive inliningthan an untyped conversion could support. We also show how to express the results of thesomewhat stronger closure analysis of Bondorf and J�rgensen [9, 30] within the standardalgebraic type framework.� We eliminate tail-recursive calls, even among mutually recursive functions, without introduc-ing global labels (which both ANSI C and Ada83 lack). We use local labels instead, mergingmutually recursive functions into a single function with multiple entry points if necessary; seeSection 11.The architecture of our translator resembles that of other recent transformation-based FL com-pilers [1, 24, 32, 41]. The translator, which is itself written in Standard ML, is structured as aseries of relatively simple transformations, each preserving semantics and types; see Section 5. It2

uses a small set of intermediate languages, each of which is strongly typed and executable by an in-terpreter. There are type-checkers and self-test mechanisms built in at each intermediate languagestage; these have been used heavily during development to �nd and correct bugs in the translator.Only the very last transformation step is dependent on the particular 3GL target language involved,so the translator is easily retargeted to new output languages. We rely on standard 3GL compilersto handle traditional low-level concerns like register allocation, instruction selection, and local op-timization, with reasonable results. Although high performance is not our goal, the performanceof the C code generated by the translator compares favorably with the output of the well-regardedStandard ML of New Jersey compiler.Memory management is one area in which we have not innovated. Our C back end incorporatesthe Boehm conservative collector [7]. Although Ada83 supports garbage collection in principle, theimplementations we are using do not; the Ada-based applications we have built so far are structuredso that it is safe to perform simple \bulk" deallocation (in the Ada code) at a few key points.There has been much recent interest in using typed intermediate representations in compilers [33,28], but in most cases types are abandoned well before code generation. The TIL compiler [41]does keep type information until a late stage in the compilation process when code has reached alow level form more primitive than 3GL code, but its type system is substantially more complexthan the C or Ada-style typing we use. While there are many existing systems that compile MLor Haskell to C [40, 14, 12, 31], they treat C as a loosely-typed \portable assembly language," andoften make use of casts and non-standard extensions (e.g., as provided by gcc).This paper describes the overall architecture of our system, and reports in detail on the morenovel transformations. We assume the reader to be familiar with the syntax of functional languagessuch as ML, and to be able to read Ada and C code. We have tried to avoid formality except asdemanded for the sake of precision.2 ExampleAs a simple motivating example, suppose we wish to build an RML component using an existing Adapackage that implements simple 2D transformations on points (see Figure 1). Points are representedas pairs of reals and transformations as heap-allocated 3x3 real matrices; transformations arecomposed and applied using matrix multiplication (see Figure 2).We want to use this existing Ada to do the numerical computation, while using RML for con-venient manipulation of points and transforms considered as abstract values.2 (We'll also use Adato write the \main program" or driver that will be responsible for invoking the RML component;we'll have little more to say about this driver, however.) In this application the granularity ofprimitive operations is quite small, so a function-based interface would not be very attractive. Atemplate de�nition that imports these operations (and basic real number and boolean support)2This is a somewhat arti�cial example, since many functional language implementations have good built-in supportfor numerical computing, and recoding such a small legacy component would be easy.3

PACKAGE GeoLib ISTYPE trans_array IS ARRAY (integer RANGE 1..3, integer RANGE 1..3) of float;TYPE transform IS ACCESS trans_array;TYPE point IS RECORD x:float; y:float; END RECORD;ID:transform := ...;FUNCTION rotate (r:float) RETURN transform;FUNCTION translate (x,y:float) RETURN transform;...FUNCTION compose (x,y:transform) RETURN transform;FUNCTION apply (t:transform; p:point) RETURN point;END GeoLib; Figure 1: Example Ada Package Speci�cation (Excerpts)PACKAGE BODY GeoLib IS...FUNCTION rotate (r:float) RETURN transform ISret_val:transform; sinr:real := sin (r); cosr:real := cos (r);BEGINret_val := NEW trans_array'((cosr,-sinr,0.0),(sinr,cosr,0.0),(0.0,0.0,1.0));RETURN (ret_val);END rotate;...FUNCTION compose (x,y:transform) RETURN transform ISret_val:transform;BEGINFOR i IN 1..3 LOOPFOR j IN 1..3 LOOP...END LOOP;END LOOP;RETURN (ret_val);END compose;FUNCTION apply (t:transform; p:point) RETURN point ISret_val:point;BEGIN-- N.B. Bottom row of t is always (0.0,0.0,1.0)ret_val.x := (p.x * t(1,1)) + (p.y * t(1,2)) + t (1,3);ret_val.y := (p.x * t(2,1)) + (p.y * t(2,2)) + t (2,3);RETURN (ret_val);END apply;END GeoLib; Figure 2: Example Ada Package Implementation (Excerpts)4

template GeoLibTemplateheader "WITH GeoLib; USE Geolib; WITH Math; USE Math"type real (8) "float"type point(16) "point"type transform(4) "transform"datatype bool "bool" = false "F" | true "T"val / (x0:real,x1:real) : (res:real) "`res` := `x0` / `x1`;"...val not (b:bool) : (res:bool) pure"IF `b` = T THEN `res` := F ELSE `res` := T END IF;"val id : transform "id"val translate (x:real,y:real) : (res:transform) "`res` := translate (`x`,`y`);"...val apply (t: transform,p:point) : (res:transform)"BEGIN \\ `res`.x := ((`p`.x * `t`(1,1)) + (`p`.y * `t`(1,2)) + `t`(1,3)); \\ `res`.y := ((`p`.x * `t`(2,1)) + (`p`.y * `t`(2,2)) + `t`(2,3)); \\ END"Figure 3: Example Template for Geometric Operations (Excerpts)into an RML component is shown in Figure 3. This template declares real, point and transformas new abstract types, with the operator signatures as listed. Most of the operators expand intocalls to the corresponding Ada routines; apply is de�ned to expand into inline Ada code. Templatesyntax is explained in Section 4.A simple RML component that uses this template is shown in Figure 4. RML concrete syntaxis similar to SML; details are given in Section 3. This component makes heavy use of RML'sfacility for de�ning and manipulating polymorphic algebraic types like list and abstract traversaloperations like foldl. It builds a list of transforms and uses foldl and compose to make acombined transformation; it then uses another foldl to apply the combined transform to a listof points, and a third foldl to reverse the result (returning the list of transformed points to itsoriginal order).The remainder of the paper will refer to this example component repeatedly, to show the e�ectof various transformations. As a preview of the end product, we show the �nal output of theRML-to-Ada translator on this component in Figures 5{8. This is genuine output, except thatwe have renamed the variables for better readability. The output code illustrates many of thekey characteristics of our translation approach; because of the extremely small size of the inputprogram, the optimizer has done an unusually good job with it. The output is e�cient �rst-ordermonomorphic code. The inner function f of the original polymorphic foldl function has beenspecialized into two monomorphic variants f0 and f1, taking transform lists to transforms and5

export type point "point"type transform "transform"type point list "PointList"val Nil : point list "PointNil"val Cons : point * point list -> point list "PointCons"type transform list "TransList"val Nil : transform list "TransNil"val Cons : transform * transform list -> transform list "TransformCons"val doit : point list -> point list "doit"datatype 'a list = Cons of 'a * 'a list | Nilval rec foldl (* : 8 'a,'b. ('a * 'b -> 'b) * 'b -> 'a list -> 'b *) =fn (c,n) => fn l =>let val rec f : 'b * 'a list -> 'b =fn (n,l) =>case l ofNil => n| Cons (x,r) => f (c (x,n),r)in f (n,l)val ts (* : transform list *) = Cons (translate (2.0,~2.0),Cons (scale (1.0,0.5),Cons (rotate(/(3.141592,2.0)), Nil)))val reverse (* : 8 'a.'a list -> 'a list *) = foldl(Cons, Nil)val rec doit (* : point list -> point list *) =fn ps =>let val whole_t (* : transform *) = foldl (compose,id) tsin let val consapp (* : point * point list -> point list *) =fn (x,l) => Cons(apply(whole_t,x), l)in reverse(foldl (consapp,Nil) ps)Figure 4: RML Component using Geometric Template. Type annotations are added as commentsto improve readability.point lists to point lists, respectively. The two possible functional arguments to f1, namelyCons and consapp, are represented as members of a discriminated record PxPL2PL clos. Thediscriminant tag indicates which function is required; the consapp variant, which carries the freevariable whole t as an associated value, must be dynamically constructed, whereas the Cons variantis statically de�ned. In either case the closure is small enough to be manipulated by value, ratherthan being heap-allocated. Moreover, since Cons and consapp are used only as arguments to foldl,their code is actually inlined into f1. The primitive Ada code for apply, used within consapp, hasbeen inlined, as speci�ed in the template. Even stronger optimization has been applied to f0: sincecompose is the only argument that can be passed to it, no closure is required at all, and its body6

WITH GeoLib; USE GeoLib; WITH Math; USE Math;PACKAGE Geo_package ISTYPE PointList_item ; TYPE PointList IS ACCESS PointList_item;TYPE PointList_item IS RECORD PointCons_0:point; PointCons_1:PointList; END RECORD;FUNCTION PointCons (PointCons_0:point; PointCons_1:PointList) RETURN PointList;PointNil:PointList := NULL;TYPE TransList_item ; TYPE TransList IS ACCESS TransList_item;TYPE TransList_item IS RECORD TransCons_0:transform; TransCons_1:TransList; END RECORD;FUNCTION TransCons (TransCons_0:transform; TransCons_1:TransList) RETURN TransList;TransNil:TransList := NULL;FUNCTION doit (ps:PointList) RETURN PointList;END Geo_package;Figure 5: Generated Ada Package Spec Corresponding to Exampleis specialized to call the primitive Ada compose routine directly.The only heap-allocated structures in the Ada program are the lists themselves, for which thetranslator has automatically chosen an e�cient representation using one record per list item andthe NULL pointer to represent the empty list; point lists use a completely attened �ve-wordrecord per item, with no indirection for the point pair or for the embedded reals. The tail-recursivecalls in f0 and f1 have been converted to local jumps. The only major remaining optimizations tobe performed by the Ada compiler are variable coalescing and jump-to-jump elimination.3 RML Source LanguageRML is an eager language with �rst-class functions, algebraic datatypes and parametric (Hindley-Milner) polymorphism. Plain RML, without primitives, is essentially similar to the pure subset ofcore Revised Standard ML (SML '97) [26], without nested patterns or many derived forms, butwith the addition of true multi-argument functions and data constructors. In this paper, we use ahuman-readable but still somewhat abstract syntax for RML (Figure 9) and the other intermediatelanguages used in the translator. In this representation, all identi�er names are assumed to bedistinct. In practice, source code is fed to the RML translator using a more elaborate concretesyntax (actually a subset of SML syntax) with the usual lexical scoping rules, or, for machine-generated source, using an internal representation of the abstract syntax. The primary di�erencebetween concrete and abstract syntax is that the former is untyped; the system performs standardHindley-Milner type inference [11] to obtain the type-annotated abstract form. Also, the concretesyntax allows primitives and constructors to be used as �rst-class values whereas the abstract syntaxpermits them only in the operator position of applications; such �rst-class uses are automaticallyeta-expanded by the concrete syntax parser.RML's typing rules are largely standard, so we mention only distinctive points here. RML7

PACKAGE BODY Geo_package ISWITH GeoLib; USE GeoLib; WITH Math; USE Math;TYPE PxPL2PL_clos_constructors IS (cons_variant,consapp_variant);TYPE PxPL2PL_clos (constructor:PxPL2PL_clos_constructor := cons_variant) ISRECORD CASE constructor ISWHEN cons_variant => NULL;WHEN consapp_variant => whole_t:transform;END CASE; END RECORD;cons:PxPL2PL_clos(cons_variant);FUNCTION PointsCons (p0:point; p1:PointList) RETURN PointList ISBEGINreturn NEW PointCons_item'(PointCons_0 => p0, PointCons_1 => p1);END;FUNCTION TransCons (t0:transform; t1:TransList) RETURN TransList ISBEGINreturn NEW TransCons_item'(TransCons_0 => t0, TransCons_1 => t1);END;tf: float; t0:transform; t1:transform; t2:transform;vts0:TransList; ts1:TransList; ts:TransList;FUNCTION f0 (n:transform; l:TransList) RETURN transform ISn0:transform; l0:TransList;BEGINn0 := n; l0 := l;GOTO JumpPoint0;<<JumpPoint0>>IF l0 = NULL THENRETURN n0;ELSEDECLAREx : transform; r: TransList;BEGINx := l0.TransCons_0; r := l0.TransCons_1;DECLAREn : transform;BEGINn := compose(x,n0);n0 := n; l0 := r;GOTO <<JumpPoint0>>;END;END;END IF;END f0;Figure 6: Generated Ada Code Body Corresponding to Example (beginning).8

FUNCTION f1 (n:PointList; l:PointList; c: PxPL2PL_clos) RETURN PointList ISn0:PointList; l0:PointList; c0:PxPL2PL_clos;BEGINn0 := n; l0 := l; c0 := c;goto JumpPoint1;<<JumpPoint1>>IF l0 = NULL THENRETURN n0;ELSEDECLAREx : point; r: PointList;BEGINx := l0.PointCons_0; r := l0.PointCons_1;CASE c.constructor ISWHEN cons_variant =>DECLAREn : PointList;BEGINn := NEW PointList_item'(PointCons_0 => x, PointCons_1 => n0);n0 := n; l0 := r; c0 := c0;GOTO <<JumpPoint1>>;END;WHEN consapp_variant =>DECLAREwhole_t : transform;BEGINwhole_t := c0.whole_t;DECLAREp0 : point;BEGINp0.x := ((x.x * whole_t0(1,1)) + (x.y * whole_t0(1,2)) + whole_t0(1,3));p0.y := ((x.x * whole_t0(2,1)) + (x.y * whole_t0(2,2)) + whole_t0(2,3));DECLAREn : PointList;BEGINn := NEW PointList_item'(PointCons_0 => p0,PointCons_1 => n0);n0 := n; l0 := r; c0 := c0;GOTO JumpPoint1;END;END;END;END CASE;END IF;END f1;Figure 7: Generated Ada Code Body Corresponding to Example (continued)
9

FUNCTION doit (ps:PointList) RETURN PointList ISwhole_t:transform;BEGINwhole_t := f0(id,ts);DECLAREc : PxPL2PL_clos;BEGINc := (consapp_variant,whole_t);DECLAREps0 : PointList;BEGINps0 := f1(PointNil,ps,c);DECLAREps1 : PointList;BEGINps1 := f1(PointNil,ps0,cons);RETURN ps1;END;END;END;END doit;BEGINt0 := translate(2.0,-2.0);t1 := scale(1.0,0.5);tf := 3.141592 / 2.0;t2 := rotate(tf);ts0 := NEW TransList_item'(TransCons_0 => t2,TransCons_1 => TransNil);ts1 := NEW TransList_item'(TransCons_0 => t1,TransCons_1 => ts0);ts := NEW TransList_item'(TransCons_0 => t0,TransCons_1 => ts1);END Geo_package;Figure 8: Generated Ada Code Body Corresponding to Example (conclusion)abstract syntax includes explicit type annotations on variable and constructor mentions and typeschemes on declarations. These annotations su�ce to reconstruct the types of arbitrary terms.Di�erent mentions of a let-bound (or top-level) function or of a constructor may, of course, havedi�erent types; for any given mention, the instantiating type expressions for the generic typevariables can be determined by unifying the type annotation on the mention with the schemeannotation on the declaration. Like SML '97, RML adheres to the value restriction on polymorphicbindings [46].As in SML '97, recursive bindings must be explicit function abstractions and polymorphicrecursion among functions and datatypes is prohibited.3 Unlike in SML, there are no records ortuples per se, but these can be built as datatypes with a single constructor. Also, datatypes canbe marked as \[flat]" meaning that they should be manipulated as a tuple of immediate values3I.e., in a function or datatype de�nition abstracted over a given list of type variables, every right-hand-sidemention of that function or datatype datatype must be instantiated at exactly the same variables.10

(types) � ::= K (primitive types)j t (type variables)j (f�g�)! � (function types)j (f�g;)D (algebraic types)(type schemes) � ::= [8ftg;.]�(expressions) e ::= (k : K) (primitive constants)j (v : �) (variables)j e(feg;) (function applications)j (c : �)(feg;) (constructor applications)j p(feg;) (primitive applications)j fn [inline] rule (anonymous abstractions)j let vdecs in e (local declarations)j case e of f(c : �) rulegj (destructuring)(rules) rule ::= (fv : �g;) => e(declarations) vdecs ::= val rec fv : � = fn [inline] rulegand (recursive function decls.)j val v : � = e (value decls.)(algebraic type decls.) atdec ::= (ftg;)D[flat] = fc [of f�g�]gj(mutually recursive decls.) atdecs ::= datatype fatdecgand(imports) import ::= type K (primitive type)j datatype (ftg;)D (algebraic type)j val p : � (value)(exports) export ::= type � "name"j val v : � "name"
Figure 9: RML Abstract Syntax. In this and other syntax descriptions, we use the notation fxgsepto mean a sequence of zero or more x's separated by sep, and [x] to mean an optional x. Whengiving examples written in the syntax, we generally omit the grouping parentheses () when noambiguity results.

11

(primitive types) primtyp ::= type K (size) "string"(algebraic types) algtyp ::= datatype (ftg;) D ["string"] [flat] = fc ["string"] [of f�g�]gj(primitive values) value ::= val k : K "string" (primitive constants)j val p(fv : �g):(v : �) [pure] "string" (primitive functions)(templates) t ::= template name [header "string"] fprimtypeg falgtypg fvaluegFigure 10: Template speci�cation syntax. Types � are as in RML.rather than being heap-allocated; this is suitable for small records or simple sum types (such asoption). As a pathological special case, data types may have zero constructors; a case over sucha constructor has no arms and thus arbitrary type, and its dynamic semantics is to abort.The semantics of RML declarations and expressions are straightforward, so we omit a formalpresentation. Primitives may have side-e�ects, and so can be used to provide mutable referencesor arrays and I/O operations. Like user functions, primitive receive their parameters by value. Asin SML, evaluation order is �xed left-to-right, and all conditional control ow is governed by caseexpressions. There is no built-in facility for exceptions, nor can these be sensibly implementedusing call-by-value primitives.The unit of translation is a component: a sequence of type and value declarations (e.g., as inFigure 4). Each RML component has an export clause, which lists the types and values thatare to be exported for use by 3GL components of the system and speci�es 3GL names for them.In particular, the main program or driver for an executable is always written in the host 3GL,and invokes RML code via one or more of the exported functions. Polymorphic types and valuescan only be exported at speci�c monomorphic instances. Argument and result types of exportedfunctions must be �rst-order. Formally, the \meaning" of a component is an environment mapping3GL names to RML types and values; transformations must not alter this mapping.Our translator currently does not directly support multiple RML components in a program,although functions generated from one RML component can be treated like any other 3GL functionsand imported as (�rst-order) primitives into another RML component via the template mechanism.There are two obvious reasons why it might be useful to divide the RML code for a large systeminto multiple components: to provide independent namespaces (e.g., for libraries), or to speed upsystem building via separate compilation. We plan to extend our system to support the formergoal, which should be straightforward. Separate compilation would be much harder, however, sincemany of our translation strategies depend fundamentally on having access to all the RML sourcecode at one time.
12

4 TemplatesEach RML component is translated with respect to a particular template, which speci�es theinterface between 3GL components and RML code. The template de�nition plays two key roles.It speci�es which types and operators, implemented in the 3GL, are to be visible to RML code;this information is used by the translator when parsing and typechecking RML components. Thetemplate also includes macro de�nitions for the operators in terms of 3GL code fragments; these areused by the translator when it generates 3GL code from RML. Templates are de�ned using a smallspecial-purpose language, whose concrete syntax is shown in Figure 10. Template speci�cationsmake heavy use of quoted strings, which represent text in the target 3GL; they utilize a standardset of escape conventions based on those of SML. Figure 3 provides a typical example of an Adatemplate; a C template de�nition would have the same format, though of course the macro textwould di�er.Templates are primarily used to de�ne abstract primitive types, values, and operators, whoserepresentation and implementation are speci�ed in terms of the target 3GL. These typically includeboth general-purpose primitive types (e.g., integer, string, : : :) and application-speci�c types(e.g., transform or point). Primitive types are introduced by type declarations, which give thetype a name to be used within RML code and speci�es the corresponding 3GL type name|built-inor user-de�ned|that provides a concrete realization of the type. In addition, the size (in bytes) ofthe type's concrete realization is speci�ed, to allow the translator to calculate the size of algebraictypes that include the abstract type as a �eld. All primitive types must be monomorphic.Primitive values and operators are de�ned by val declarations, which specify their expansioninto 3GL code. A value declaration speci�es the (RML) type of the value and the corresponding3GL syntax for it.4 An operator declaration speci�es formal names and types for the operator'sarguments and result; the corresponding 3GL code string is treated as a macro using the formalnames as parameters. Formal parameters are referenced inside the string by surrounding them withbackquotes (`). For example, the de�nition of the primitive division operator might beval / (x0:real,x1:real) : (res:real) "`res` := `x0` / `x1`;"An RML expression like val a = / (x,2) eventually leads to the Ada code: : : a := x / 2; : : :As this example illustrates, the expansions for operators are statements rather than expressions,which permits more elaborate de�nitions. To make this possible from the RML side, code generationis performed on an imperative intermediate form (MIL; see Section 12) in which primitive operatorcalls appear only as the right-hand sides of assignment statements, so the result of an operationis \returned" by assigning it to a variable. All actual arguments to operators are either variable4In principle, every integer, real, and string constant used in a RML program should be speci�ed this way; toavoid this tedium, the template mechanism has all such constants \built-in."13

names or constants, which prevents potential problems with multiple uses of a formal argument inthe macro.Operators on primitive types (e.g., addition on integers) can often be implemented using built-in operators of the 3GL, whereas application-speci�c types usually depend on non-trivial 3GL typede�nitions and library code, but the template de�nition makes no formal distinction between them.If an expansion string references a 3GL library (Ada package or C �le), the header declarationsrequired to bring that library into scope should be placed in a header clause in the template spec-i�cation. (GeoLib and Math are such libraries in our example.) If desired, calls to small functionscan be inlined by hand in the operator de�nition (e.g., apply in our example).5 Operators thathave no side e�ects can be marked as pure; the translator can apply more aggressive optimizationsto expressions that involve only pure operators (see Section 8).In addition to abstract types, templates may include algebraic datatype declarations, just asin RML. Monomorphic instances of these types may appear in the type signatures of primitiveoperators. This facility is essential because all conditional control ow in RML is achieved byperforming case operations over values of algebraic type. For example, the type bool is de�nedas the algebraic sum type true | false. If abstract operators were unable to return algebraictypes such as bool, it would be impossible to perform conditional computation on the basis of theirresults. (The alternative of providing abstract conditional operators doesn't work in call-by-valuelanguages.) Template-de�ned algebraic types may also be used in RML components translatedagainst the template. There is no provision for mutually recursive combinations of algebraic andabstract types.It is sometimes convenient for 3GL code expansions of operators to reference algebraic typeconstructors by name (e.g., the code for not in our example). To make this possible, monomorphicdatatype declarations may include 3GL translation strings for the type name (e.g., bool) andthe constructors (e.g., T and F); if present, these will be used in the generated 3GL code. Thetemplate designer must take care not to use names that clash with existing identi�ers in the 3GLenvironment (such as the prede�ned Ada type BOOLEAN with constants TRUE and FALSE).5 Compiler Architecture and RepresentationsThe compiler is structured as a pipeline operating on a series of specialized, typed intermediaterepresentations; see Figure 11. This section of the paper summarizes the most important steps inthe compilation sequence, and serves as a guide to the detailed descriptions of these steps in thesections that follow.� RML code is parsed from a concrete text representation or loaded from a binary representationproduced by a separate generator tool. Parsing is performed with respect to a particulartemplate de�nition, which provides a particular set of primitive types and operators fromwhich imports are permitted.5Our experience has been that 3GL compilers cannot be depended upon to perform such inlining automatically.14

SIL code Optimization (8)

Ada codeC code

First-order SIL code

First-order SIL code
with jump points

MIL code

Reoptimization (10)

Tail-recursion removal (11)

Conversion to imperative style (12)

3GL Code Generation (13)

Template

Specification

Type Inference
Parsing and

Sequentialization (7)

Monomorphic RML code

Remove polymorphism (6)

RML concrete syntax

Typed RML code

Higher-order Removal (9)

Figure 11: Architecture of the compiler. Numbers in parentheses refer to section numbers in thispaper where the relevant operation is described.15

� The RML code is annotated with type information using conventional Hindley-Milner typeinference. The annotated code is then reduced to monomorphic form (Section 6).� The monomorphic RML code is transformed to a more restrictive language, called SIL (for\Sequentialized Intermediate Language"), which is a variant of A-normal form [16], closelyrelated to CPS [38, 22, 1]). In SIL (Figure 15), all arguments to functions and primitivesare required to be named variables or constants. Thus, the translation from RML to SIL(Section 7) e�ectively �xes the order of evaluation of all primitives. SIL also supports \jumppoints," i.e., locally scoped continuation functions [20], though the initial translation to SILdoesn't use these.� The SIL code is optimized (Section 9) by repeated application of rewrite rules that encode\partial-evaluation style" improvements: value and variable propagation, simpli�cation ofcase expressions over known values, elimination of dead code and unused datatypes, andconservative function inlining.� The SIL code is reduced to �rst-order form (Section 9). The resulting code is then re-optimized(Section 10).� All tail calls are changed into jumps, merging mutually recursive functions if necessary (Sec-tion 11).� The SIL code is transformed into a �nal intermediate form, called MIL (for \Mutable Inter-mediate Language"), which abstracts the essential characteristics shared by C, Ada83, andsimilar languages (Section 12). MIL (Figure 28) is imperative; it has mutable variables andassignments rather than immutable values, statements rather than expressions, simple labelsand gotos rather than jumps, and a variety of e�cient representations for algebraic datatypes.� MIL code is translated into Ada83 or C code using the template macros (Section 13).The entire compiler amounts to about 20,000 lines of Standard ML, and runs under the StandardML of New Jersey system.6 Eliminating Polymorphism6.1 ConceptOur target 3GLs do not directly support parametric polymorphism.6 The translator thereforeconverts polymorphic components to monomorphic ones by producing specialized clones of poly-morphic functions and constructors for each type at which they are used. By arranging to performthis step early in the compilation process, as an RML-to-RML translation, we clear the way for6Actually, Ada generics have the necessary power, but certain restrictions on the form of generic package interfacescan cause unnecessary extra copies of code to be generated.16

later transformation algorithms, notably the higher-order function remover and the representationanalyzer, which require monomorphic input.The specialization algorithm operates on the complete type-checked source program, in whichevery use of a polymorphic identi�er has been annotated with its instantiated type. Given thisrepresentation, the full set of instantiations for each type abstraction can be enumerated by recur-sively collecting the annotations at each level of nested polymorphism. RML's restrictions againstpolymorphic recursion in datatypes or functions guarantee that these sets are �nite. Moreover,the complete set of instantiations for the bound type variables in a recursive function or datatypede�nition (or mutually recursive set of de�nitions) can always be determined without looking atthe right-hand side(s) of the de�nition(s). This fact allows the instantiations to be enumerated bya one-pass algorithm that doesn't require a �xed-point calculation.In our Section 2 example, the specializer generates two versions of the list datatype, specializedto points and transforms respectively, and two corresponding versions of the foldl function. Theresulting component is shown in Figure 12.6.2 Details of the AlgorithmThe complete specialization algorithm consists of three passes over the type-annotated programproduced by a standard inferencer. The �rst pass replaces any occurrences of free type variablesby an arbitrary trivial type; this is safe because the computation never examines values whosetypes involve free type variables [29]. The second pass computes a mapping from each polymorphicvariable and algebraic type constructor to its corresponding set of instantiations. The third passuses this mapping to perform the actual specialization.The enumeration pass is by far the most complex of the three; details are given in Figure 13.To explain the algorithm, we �rst require some terminology. A (simultaneous) substitution S =(ftg 7! f�g) is a mapping from a sequence of n type variables to a corresponding sequence of ntypes. Applying a substitution S to a type � has the usual e�ect of replacing each type variablet 2 Dom(S) with S(t), while leaving other type variables and all type constructors unchanged. Wefurther de�ne the result of applying a substitution S to a sequence of types f�g to be the sequencefS(�)g. A multi-substitution M is a mapping (ftg 7! ff�gg) from a sequence of n type variablesto a set of corresponding sequences of n types; it thus compactly describes a set of substitutionswith a common domain. Here and elsewhere we use bold brackets (fg) to delimit sets, retainingordinary brackets (fg to denote syntactic sequences. We de�ne the result of applying M to a type(resp. a sequence of types) to be the set of types (resp. of sequences of types) resulting fromapplying the individual substitutions in turn and removing duplicates. Any substitution can beviewed as a multi-substitution by making the codomain of the mapping into a singleton set. IfM1 = (ftg 7! T1) and M2 = (ftg 7! T2) are multi-substitutions with the same domain, we writeM1]M2 for the multi-substitution (ftg 7! T1 [T2), where [represents ordinary set union withremoval of duplicates. We de�ne the composition M2 �M1 of multi-substitutions M1 = (ftg 7! T1)andM2 to be the multi-substitution (ftg 7! SfM2(f�g) j f�g 2 T1g), where S computes the union17

export type point "point"type transform "transform"type list_point "PointList"val Nil_point : list_point "PointNil"val Cons_point : point * list_point -> list_point "PointCons"type list_transform "TransList"val Nil_point : list_transform "TransNil"val Cons_point : transform * list_transform -> list_transform "TransformCons"val doit : list_point -> list_point "doit"datatype list_point = Cons_point of point * list_point | Nil_pointdatatype list_transform = Cons_transform of transform * list_transform | Nil_transformval rec foldl0 :(transform * transform -> transform) * transform -> list_transform -> transform =fn (c, n) => fn l =>let val rec f : transform * list_transform -> transform =fn (n,l) =>case l ofNil_transform => n| Cons_transform (x,r) => f (c (x,n),r)in f (n,l)val rec foldl1 :(point * list_point -> list_point) * list_point -> list_point -> list_point =fn (c, n) => fn l =>let val rec f : list_poitn * list_point -> list_point =fn (n,l) =>case l ofNil_point => n| Cons_point (x,r) => f (c (x,n),r)in f (n,l)val ts:list_transform = Cons_transform (...)val reverse : list_point -> list_point =foldl1(fn (x:point,l:list_point) => Cons_point(x,l),Nil_point)val rec doit : list_point -> list_point =fn ps =>let val whole_t : transform =foldl0 (fn (t1:transform, t2:transform) => compose(t1,t2),id) tsin let val consapp : point * list_point -> list_point =fn (x,l) => Cons_point(apply(whole_t,x), l)in reverse(foldl1 (consapp,Nil) ps)Figure 12: RML abstract syntax for example component after type specialization. Most typeannotations are omitted for readability. 18

T [[K]] = ;T [[(f�g�)! �]] = (UfT [[�]]g)] T [[�]]T [[(f�g;)D]] = (UfT [[�]]g)] fD 7! (Tyvarsof[[D]] 7! f�g)gS[[8ftg;.�]] = T [[�]]E [[(k : K)]] = ;E [[(v : �)]] = fv 7! (Inst(Schemeof(v); �))g] T [[�]]E [[e(feg;)]] = E [[e]]] (UfE [[e]]g)E [[(c : �)(feg;)]] = fTyconof[[c]] 7! (Inst(Schemeof(c); �))g] T [[�]]] (UfE [[e]]g)E [[p(feg;)]] = UfE [[e]]gE [[fn inl rule]] = R[[rule]]E [[let vdecs in e]] = D(E [[e]])[[vdecs]]E [[case e of f(c : �) rulegj]] =E [[e]]] (UffTyconof[[c]] 7! (Inst(Schemeof(c); �))g] T [[�]]]R[[rule]]g)R[[(fv : �g;) => e]] = fT [[�]]] E [[e]]gD(I)[[val v : � = e]] = I] ((I[[v]]) � (E [[e]]] S[[�]]))D(I)[[val rec fv : � = fn inl rulegand]] = I] ((UfI[[v]]g) � (UfR[[rule]]] S[[�]]g))DS(I)[[fvdecsg vdec]] = DS(D(I)[[vdec]])[[fvdecsg]]DS(I)[[]] = IAS(I)[[fatdecsg atdecs]] = AS(A(I)[[atdecs]])[[fatdecsg]]AS(I)[[]] = IA(I)[[datatype f(ftg;)Dt = fc [of f�g�]gjgand]] =I] (I[[D]]) � (Uf(Uf(UfT [[�]]g)g)g)X [[type � "name"]] = T [[�]]X [[val v : � "name"]] = fv 7! Inst(Schemeof(v); �)g] T [[�]]M[[export fexportgfatdecsgfvdecsg]] = DS(AS(UfX [[export]]g)[[fatdecsg]])[[fvdecsg]]Figure 13: Enumeration of instances of polymorphic identi�ers.19

of the members of a set of sets.An instantiation map I[[x]] is a mapping from polymorphic identi�ers x : 8ftg; :�0 to multi-substitutions with domain ftg; we will build instantiation maps whose domains includes bothvariables and algebraic type constructors. If I1 and I2 are instantiation maps, we write I1] I2 forthe instantiation map fx 7! I1[[x]]]I2[[x]] j x 2 (Dom(I1)[Dom(I2))g. Further, if fIg is a sequenceof instantiation maps, UfIg, represents their sequential combination under]. If I = fx 7! Mxgis an instantiation map and M is a multi-substitution, we de�ne the composition M � I to be theinstantiation map fx 7!M �Mxg.Each of the syntax-directed rules in Figure 13 maps a syntactic fragment to the instantiationmap describing the sets of type instantiations induced by mentions of variables and constructorswithin that fragment. In particular, M calculates the instantiation map for an entire component,whose domain is the component's complete set of top-level and let-bound variables and algebraictype constructors. The algorithm relies on a number of auxiliary functions. Inst(8ftg;:�0,�) returnsa substitution S = (ftg 7! f�g) such that S(�0) = � ; it will only be called on arguments for whichsuch the result substitution is guaranteed to exist. Note that the � may still contain other typevariables. We also assume the existence of reconstruction functions Schemeof[[x]], which returns the(possibly degenerate) type-scheme corresponding to any variable or constructor x; Tyconof[[c]], whichreturns the algebraic type constructor to which data constructor c belongs; and Tyvarsof[[D]], whichreturns the (possibly empty) sequence of type variables over which algebraic type constructor D isabstracted. Moreover, we assume certain consistency conditions on these functions: the schemesof any two mutually-recursive functions must have the same sequence of bound type variables;similarly, the schemes of any two data constructors of the same type constructor or of mutually-recursive type constructors must have the same sequence of bound type variables, which mustalso match the sequence(s) returned by Tyvarsf on the type constructor(s). These conditions arenaturally met by the annotations produced by a standard type-inferencer.The algorithm walks over the component in bottom-up fashion, so that information about the(non-recursive) mentions of an identi�er has always been incorporated into an instantiation mapbefore the de�nition of that identi�er is processed; this map is passed as an auxiliary argumentI to the rule that processes the de�nition, i.e., D or A. Because RML prohibits polymorphicrecursive de�nitions of functions or algebraic types, I is guaranteed to describe all instantiations ofthe identi�er being de�ned; that is, there is no need to look at the right-hand side of the de�nitionas well. Thus, for example, to process a de�nition fragment let val v : 8ftg;:� = e1 in e2, thealgorithmi. builds an instantiation map (I) based on e2;ii. builds another instantiation map based on e1, in which the instantiating types may mentionthe type variables ftg;iii. expands this latter map by pre-composing with I[[v]], the multi-substitution describing allpossible instantiations for the ftg; 20

datatype 'a List = Nil | Cons of 'a * 'a Listval f : 8 'b.'b -> 'b List =fn (x: 'b) => ((Cons:'b * 'b List -> 'b List) ((x:'b), (Nil:'b List)))val g : 8 'c,'d. 'c * 'd -> 'd List =fn (y:'c, z: 'd) =>let w : 'c List = (f: 'c - 'c List) (y:'c)in (f:'d -> 'd List) (z:'d)val a : bool List = (g:int * bool -> bool List) (3:int,true:bool)val b : string List = (g:int * string -> string List) (1:int,"abc":string)Figure 14: Example of nested polymorphic functions.iv. adds the expanded map to I to produce the complete map for the de�nition fragment.The rules for recursive function and datatype de�nitions are similar. Note that for the recursivefunction case it is necessary to combine instance information about uses of all the functions beforepre-composing.As an (arti�cial) example, consider the code in Figure 14, written in explicitly typed form. Thecomputation proceeds roughly as follows:� The right-hand side for b is processed, yielding an instantiation mapI1 = fg 7! (f0c;0 dg 7! ffint; stringgg)gwhich also serves as the map for the overall declaration of b� The right-hand side for a is processed, yielding an instantiation mapI2 = fg 7! (f0c;0 dg 7! ffint; boolgg)g� I2 is added to I1 to produce the overall map for the declarations of a and bI3 = fg 7! (f0c;0 dg 7! ffint; stringg; fint; boolgg)g� The right-hand side for g is processed, yielding (in several steps) the mapI4 = ff 7! (f0bg 7! ff0cg; f0dgg); List 7! (f0ag 7! ff0cg; f0dgg)g� The composition I3(g)oI4 is computed, yielding the mapI5 = f f 7! (f0bg 7! ffintg; fstringg; fboolgg);List 7! (f0ag 7! ffintg; fstringg; fboolgg) g� I5 is added to I3 to produce the overall map for the declarations of g, a, and b:I6 = f g 7! (f0c;0 dg 7! ffint; stringg; fint; boolgg);f 7! (f0bg 7! ffintg; fstringg; fboolgg);List 7! (f0ag 7! ffintg; fstringg; fboolgg) g21

After possible further expansion by processing of reverse, I6 can be used to guide the thespecialization pass of the algorithm. Two specialized copies are made of function g, correspondingto the two instantiations for ('c,'d); three specialized copies are made of List and f, correspondingto the three instantiations for 'a and for 'b. We omit a detailed description of this pass, which isquite straightforward given the existence of the instantiation map.6.3 DiscussionIn the worst case, the number of cloned versions of a function or datatype may be exponential inthe static nesting depth of the program. However, we have not found code explosion to be a seriousproblem in practice, as most polymorphic functions tend to be small; this is probably because themore polymorphic a function is, the fewer useful things it can do [44]!The idea of removing parametric polymorphism by specialization has received much informaldiscussion, and a small experiment has been attempted for Gofer [19], but we are not aware ofany previous full-scale implementation based on this approach. Analysis of benchmarks run on theTil compiler [41] indicates that the compiler removes essentially all polymorphism as the result ofaggressive function inlining, thus o�ering independent evidence that specialization need not leadto excessive code explosion. However, since Til does not guarantee to produce a monomorphic pro-gram, it cannot take full advantage of having one during later compilation stages, as our translatordoes.7 SequentializationRML has a rich collection of expression forms; our 3GL target languages are have severely limitedexpressions. Also, even where there appears to be a direct correspondence between expression formsin RML and a target language, evaluation order may di�er. Thus, the �rst step in translatingRML is to simplify expressions and name all intermediate results, at the same time explicitlysequentializing the computation in the intended order. We call the resulting language SIL (for\Sequentialized Intermediate Language"); its syntax is speci�ed in Figure 15. Compared withRML, the most important di�erences are that arguments to applications and discriminants incase expressions must be simple, i.e., variables or constants, and there are no anonymous functionexpressions. SIL's type system is monomorphic, since any polymorphism has already been removedat the RML level. This means that types can no longer mention type variables, there are no moretype schemes, and type annotations are dropped wherever they have become redundant (e.g., onvariable mentions); otherwise, imports, exports, and algebraic type declarations are identical toRML. Jump points (label and goto) and their use are discussed in Section 11.Figure 16 gives the details of the RML to SIL translation of expressions and declarations, usingsyntactic continuations. The symbol � introduces a meta-level function, which is applied using @;none of these meta-functions appear in the �nal output. The translation E [[e]] of each expressione generates a SIL-language expression and a simple expression for it; the translation function is22

(types) � ::= K (primitive types)j D (monomorphic algebraic types)j (f�g�)! � (function types)(simple expressions) se ::= (k : K) (primitive constants)j v (variables)(expressions) e ::= se (simple expressions)j v(fseg;) (function applications)j c(fseg;) (constructor applications)j p(fseg;) (primitive applications)j let decs in e (local declarations)j case se of fc(fvg) => eg (destructuring)j goto l(fseg) (jumps to local labels)(variable declarations) vdec ::= val v : � = e(function declarations) fdecs ::= fun fv[inline](fv : �g;) : � = egand (mutually recursive)(jump point declarations) ldecs ::= label fl(fv : �g;) : � = egand (mutually recursive)(declarations) decs ::= vdec (variable declarations)j fdecs (function declarations)j ldecs (jump-point declarations)(top-level declarations) topdecs ::= vdec (variable declarations)j fdecs (function declarations)(mutually recursive decls.) atdecs ::= datatype fatdecgand(algebraic type decls.) atdec ::= D[flat] = fc [of f�g�]gj(exports) export ::= type � "name"j val v : � "name"(components) m ::= export fexportg fatdecsg ftopdecsgFigure 15: SIL syntax.
23

E [[(k : �)]] = ��:�@(k : �)E [[(v : �)]] = ��:�@vE [[e0(feg;)]] = ��:E [[e0]]@(�se:ES [[feg;]]@(�fseg;:let val v : � = se(fseg;) in �@v))(v fresh; � = Codom(Typeof(e0)))E [[(c : �)(feg;)]] = ��:ES [[feg;]]@(�fseg;:let val v : � = c(fseg;) in �@v)(v fresh; � = Codom(�))E [[p(feg;)]] = ��:ES [[feg;]]@(�fseg;:let val v : � = p(fseg;) in �@v)(v fresh; � = Codom(Typeof(p)))E [[fn inl rule]] = ��:let fun v inl RF [[rule]] in �@v (v fresh)E [[let decs in e]] = ��:let D[[decs]] in [[e]]@�E [[case e0 of f(c : �) rulegj]] = ��:E [[e0]]@(�se:let val v : � = case se of fc RC [[rule]]gj in �@v)(v fresh; � = Codom(�))ES [[e0; feg;]] = ��:E [[e0]]@(�se0:ES [[feg;]]@(�fseg;:�(se0; fseg;)))ES[[]] = ��:�@fgD[[val v : � = e]] = val v = E [[e]]@(�se:se)D[[val rec fv : � = fn inl rulegand]] = fun fv inl RF [[rule]]gandRF [[(fv : �g;) => e]] = (fv : �g;) : � = E [[e]]@(�se:se) (� = Typeof(e))RC [[(fv : �g;) => e]] = (fv :g;) => E [[e]]@(�se:se)Figure 16: Transformation from RML to SIL, speci�ed using syntactic continuations. Auxiliaryfunction Typeof reconstructs the type of an RML term, and Codom returns the co-domain of anarrow type.parameterized by a continuation meta-function � that says \what to do" with this simple expression.The translation of expression sequences (ES[[feg;]]) encodes RML's left-to-right evaluation order; itgenerates a sequence of names of the expressions and its continuation meta-function says \what todo" with the sequence of names. The translations for declarations (D) and function or case rules(R) are direct-style and straightforward. This style of translation algorithm, which works in onepass and generates no unnecessary fresh names, is due to Danvy and Filinski [15].As an example, Figure 17 shows the SIL form of the foldl0, reverse and doit functions fromthe monomorphic version (Figure 12) of our running example from Section 2.The semantic correctness of the transformation is straightforward to prove. The one signi�cantdetail to be checked is that left-to-right order of evaluation is correctly encoded in the translationrules, e.g., for ES. Since the RML source is monomorphic type preservation is almost trivial.The essentials of this transformation are well-known; they are very similar to a partialcontinuation-passing-style (CPS) transform [38, 22, 1]. Recently, there has been considerable inter-est in \almost-CPS" translations, which perform the naming and sequentialization steps of a CPS24

fun foldl0 (c:transform * transform -> transform, n: transform) :list_transform -> transform =let fun g (l:list_transform) : transform =let fun f (n: transform, l:list_transform) : transform =case l ofNil_transform => n| Cons_transform(x,r) =>let val n' : transform = c(x,n)in f(n',r)in f(n,l)in gfun foldl1 (c:point * list_point -> list_point, n: list_point) :list_point -> list_point =... same as foldl0 except for types...val reverse : list_point -> list_point =let fun cons (p:point, c:list_point) : list_point = Cons_point(p,c)in foldl1(cons,Nil_point)fun doit (ps:list_point) : list_point =let val whole_t : transform =let fun comp (x:transform,y:transform) : transform = compose (x,y)in let val f : list_transform -> transform = foldl0 (comp,id)in f tsin let fun consapp (x:point,l:list_point) : list_point =let val x' : point = apply (whole_t,x)in Cons_point (x',l)in let val f : list_point->list_point = foldl1 (consapp,Nil_point)in let val ps' : list_point = f psin reverse ps'Figure 17: Initial SIL translation of example program (selections).transform, but don't introduce full-scale continuations [23, 16, 20, 39].8 OptimizationSIL code is optimized by repeated application of rewrite rules that encode \partial-evaluationstyle" improvements. These include propagation of simple expressions (constants and variables),simpli�cation of case expressions over known values,7 elimination of unused function and (pure)value bindings, elimination of unused datatypes, and conservative function inlining. A functionapplication is inlined if� it is the sole application of that function; or7Note that this includes as a special case the selection of �elds from records with known values.25

fun foldl1 (c:point * list_point -> list_point, n: list_point) :list_point -> list_point =... same as in Figure 17...fun doit (ps:list_point) : list_point =let fun f0 (n: transform,l:list_transform) : transform =case l ofNil_transform => n| Cons_transform(x,r) =>let val n' = compose(x,n)in f0(n',r)in let val whole_t : transform = f0(id,ts)in let fun consapp (x:point,l:list_point) : list_point =let val x' : point = apply (whole_t,x)in Cons_point (x',l)in let val f : list_point->list_point = foldl1 (consapp,Nil_point)in let val ps' : list_point = f psin let fun cons (p:point, c:list_point) : list_point = Cons_point(p,c)in let val g : list_point -> list_point = foldl1(cons,Nil_point)in g ps'Figure 18: Result of optimizing example program (selection).� its body is \small, " i.e., a value, variable, or another application; or� its body has the form of a case expression over an argument, the argument is a known value,and the relevant arm of the case is \small" (we call this case splitting); or� the programmer demands inlining via a source pragma on the function de�nition.To guarantee termination of the inliner, a function is never inlined into its own body. Our choiceand implementation of optimizations was largely inspired by Appel and Jim [3]. We do not performspeculative inlining. Optimization passes are performed repeatedly until no change is observed orsome �xed small number of passes has been reached. We precede these optimizing passes by asingle round of eta-expansion to improve opportunities for inlining.When the initial SIL translation (Figure 17) of our example program from Section 2 is optimized,function foldl0, which is used only once, is in-lined into the body of doit with arguments c andn specialized. Value reverse is eta-expanded into a function which is also inlined into doit. Theresulting version of doit is shown in Figure 18. The body of function foldl1 is unchanged byoptimization.Note that in the body of doit, the local function f0 used to calculate whole t has been hoistedto a more global scope. This is not essential; SIL permits the de�ning expression in a let binding tobe another let binding or a case expression. This exibility keeps SIL closed under the operation offunction inlining; otherwise, it would be necessary to renormalize every inlined expression (e.g., asin [39]). However, though not required, hoisting case expressions out of lets can aid optimization26

by increasing the amount of information available for constant propagation in each case arm. Thegeneral form of the transformation is:let val v = case e0 ofC1({w}) => e1| C2({w}) => e2| : : :| Cn({w}) => enin e
becomes case e0 ofC1({w}) => let val v = e1 in e| C2({w}) => let val v = e2 in e| : : :| Cn({w}) => let val v = en in eIn general, this is a dangerous transformation, since it duplicates the code for e in each casearm. However, it is worth doing if e has the form f(v) and we can perform case splitting on f .Even if case splitting is not possible, code explosion will not a problem so long as e is a \small"expression, so we perform the transformation in just that those circumstances.8 We always hoistlets out of lets, as this never hurts, and may help by exposing more case hoisting opportunities.Each of these hoisting transformations is done as a separate pass following the main simpli�cationpass.Since RML has strict semantics, and templates may include impure operators, the optimizermust guarantee not to duplicate, reorder, or eliminate calls to primitives or to potentially non-terminating functions. In fact, none of the transformations described above induce duplication orreordering, and only \pure" expressions can be eliminated. Pure primitive operators are markedas such in the template de�nition; for simplicity, all user function calls are treated as impure. Amore sophisticated approach would be to perform an e�ects analysis on functions to increase thethe number of eliminable expressions (e.g., [39]).9 Removing Higher-order Functions9.1 ConceptsOur target 3GL's do not directly support �rst-class nested functions; Ada83 does not even supportpointers to top-level functions, and ANSI C does not support nested functions. We therefore mustconvert higher-order programs into equivalent �rst-order programs without nested functions, i.e.,perform closure conversion. For simplicity, we'd like to express the �rst-order programs in a strictsubset of the original language, as in \closure-passing style" [2], where closures are represented asordinary records, and are constructed and accessed using ordinary record operators. In particular,this would allow us to optimize closure manipulation operations using ordinary record optimizations.However, we would also like the closure-converted program to be well-typed according to the rulesof the original language|rules that should also be enforceable in C or Ada. The di�culty in doing8Code explosion could be avoided in the all cases by introducing a continuation function to be applied by eachcase arm. If the continuation function can itself be case-split, this may be worthwhile, but if it cannot, we endup having added function call overhead! Moreover, although these local continuation functions would be naturalcandidates for turning into (much cheaper) jump points (see Section 11), they will have been lifted out to top-levelby the higher-order removal algorithm (see Section 9) before this can happen.27

this is that two functions having the same argument and result type might well di�er in the numberand types of their free variables, and hence have closure records of completely di�erent (structural)type.Minamide, Morrisett, and Harper [27] have treated this problem, but their solutions rely eitheron new language primitives for closure manipulation, which complicate subsequent optimization,or on giving closures existential types, a substantial complication to the compiler's type system.Neither solution leads to typable C or Ada. Moreoever, both solutions continue to make use of(top-level) function pointers.We take a di�erent approach, which relies on having the whole monomorphic program avail-able for analysis and transformation. It derives from the interpretive technique introduced byReynolds [35] and Warren [45] and explored in typed settings by Bell, Bellegarde and Hook [4, 6, 5].The key idea is to represent function closures as members of an algebraic data type (i.e., discrimi-nated union). There is one constructor for each lambda expression in the program; its argumentsare the lambda expression's free variables.9 To convert a program to �rst order, a suitable closuretype declaration is introduced, lambda expressions are transformed into closure constructor ap-plications, and calls to \unknown" (i.e. lambda-bound) functions are transformed into calls to anauxiliary function that dispatches on the constructor to invoke a lambda-lifted version of the correctoriginal function. As usual, calls to \known" (i.e. let-bound) functions need not be converted inthis way | they are simply changed to invoke the lambda-lifted version; if all calls to a functionare known, the construction of a closure datatype value will be removed altogether by the standarddead-code elimination optimization. Figure 19 provides a simple example.In a strongly-typed setting, we cannot make do with just one closure datatype and dispatchfunction: we must have a pair of them for each distinct arrow type in the program. The translationalgorithm chooses the correct dispatch function at each site by inspecting the type of the (original)function. For example, if we alter the above example to use a continuation-passing version ofmap, as in Figure 20, we need two sets of clos datatypes and dispatch functions. Executing thisexample generates a statically unbounded number of distinct list int -> list int closures, oneper member of q, each containing another such closure as a free variable. This is reected in thefact that type clos li2li is recursive. Note that higher-order removal techniques based on codespecialization [13] cannot cope with programs of this sort.9.2 Details of the AlgorithmThe core of the algorithm is a syntax-directed translation of terms to terms, under which� each distinct arrow type is converted to a unique corresponding closure datatype;� each function de�nition is \lambda-lifted" by augmenting its argument lists with new argu-ments representing the function's free variables;9We use a at closure representation in this paper; more elaborate representations could be handled in the sameframework. 28

Original SIL code:datatype list_int = Nil_int | Cons_int of int * list_intfun outer (y:int,q:list_int) : list_int =let fun g1 (x:int) : int = + (x,y)in let fun g2 (x:int) : int = - (x,2)in let fun map (f:int->int,l:list_int) : list_int =case l ofNil_int => Nil_int| Cons_int(h,t) =>let val c1:int = f hin let val c2:list_int = map (f,t)in Cons_int(c1,c2)in map (g1, q)After closure-converting g1 and g2:datatype list_int = Nil_int | Cons_int of int * list_intand clos = G1 of int | G2 (* closure datatype *)fun g1' (x:int,y:int) : int = + (x,y) (* lambda-lifted functions *)and g2' (x:int) : int = - (x,2)and dispatch(c:clos,i:int) : int = (* dispatch function *)case c ofG1 y => g1'(i,y)| G2 => g2'(i)fun outer (y:int,q:list_int) =let val g1:clos = G1 y (* closures *)in let val g2:clos = G2in let fun map(f:clos,l:list_int) : list_int =case l ofNil_int => Nil_int| Cons_int(h,t) =>let val c1:int = dispatch(f,h)in let val c2:list_int = map(f,t)in Cons_int(c1,c2)in map (g1, q)Figure 19: Simple example of typed closure conversion� these augmented functions are renamed and their de�nitions are lifted to top-level;� each original function de�nition in the body of the program is replaced by a binding to anapplication of a freshly chosen closure constructor to the free variables;10� variables bound to function values become variables bound to closure values;� calls to unknown functions become calls to the appropriate dispatch function, passing theclosure datatype value as an extra argument;10Special stub versions of top-level functions are created to avoid changing the signatures of exported values; seebelow. 29

Original SIL code:datatype list_int = Nil_int | Cons_int of int * list_intfun outer (y:int, q:list_int) : list_int =let fun g1 (x:int) : int = + (x,y)in let fun g2 (x:int) : int = - (x,2)in let fun id (p:list_int) : list_int = pin let fun map (f:int->int,l:list_int,k:list_int -> list_int) : list_int =case l ofNil_int => k Nil_int| Cons_int(h,t) =>let fun kk(p:list_int) : list_int =let val c1 = f hin let val c2 = Cons_int(c1,p)in k c2in map(f,t,kk)in map (g1,q,id)After closure-converting g1,g2,id, and kk:datatype list_int = Nil_int | Cons_int of int * list_intand clos_i2i = G1 of int | G2 (* int -> int closure datatype *)and clos_li2li = ID | KK of clos_li2li * clos_i2i * int (* list_int -> list_int clos. d.t. *)fun g1' (x:int,y:int) : int = + (x,y) (* lambda-lifted functions *)and g2' (x:int) : int = - (x,2)and id' (p:list_int) : int list = pand kk' (p:list_int,k:clos_li2li,f:clos_i2i,h:int) : list_int = (* k,f,h are free vars of kk *)let val c1 = dispatch_i2i(f,h)in let val c2 = Cons_int(c1,p)in dispatch_li2li(k, c2)and dispatch_i2i(c:clos_i2i,i:int) : int = (* int->int dispatch function *)case c ofG1 y => g1'(i,y)| G2 => g2'(i)and dispatch_li2li(c:clos_li2li,p:list_int) : list_int = (* list_int -> list_int disp. fun. *)case c ofID => id'(p)| KK(k,f,h) => kk'(p,k,f,h)fun outer (y:int,q:list_int) : list_int =let val g1:clos_i2i = G1 y (* closures *)in let val g2:clos_i2i = G2in let val id: clos_li2li = IDin let fun map(f:clos_i2i,l:int list,k:clos_li2li) : list_int =case l ofNil_int => Nil_int| Cons_int(h,t) =>let val kk:clos_li2li = KK(k,f,h)in map(f,t,kk)in map (g1, q, id)Figure 20: Closure conversion at multiple types.30

� calls to known functions become calls to the corresponding lifted function, passing the freevariables as extra arguments.Along the way, the conversion keeps track of the new closure datatypes and data constructors, whichare created incrementally; when all top-level declarations in the component have been converted,this information is used to construct the de�nitions of the closure datatypes and the correspondingdispatch functions. Finally, these de�nitions are combined with the lifted function de�nitions andthe converted terms to form the fully converted component de�nition.A detailed speci�cation of the term conversion algorithm is given in Figure 21. The translationof type � is denoted � . T S translates top-level declarations, E translates expressions, F translatesfunctions, and FS is an auxiliary function for translating recursive sets of functions. Each ofthese translations is explicitly parameterized by an environment k that records those identi�ersin the current scope that refer to known functions; where de�ned, k(v) returns the sequence offree variables of v, which are guaranteed to be in the current scope as well. F and FS arealso parameterized by the function's sequence of free variables. S, which is parameterized by afree variable sequence, produces function stubs from functions, as explained below. A translatesmutually recursive sets of algebraic type declarations.In addition to producing result terms, these translations use side-e�ects to build importantauxiliary structures:i. a mapping Lift from source function names to corresponding lifted function names;ii. an bijective mapping ClosType from source arrow types to corresponding closure datatypenames;iii. a mapping Dispatch from closure datatype names to corresponding dispatch function names;iv. a mapping Stub from source top-level function names to corresponding stub function names;v. a set Lifted of lifted function de�nitions; andvi. a mapping ClosData from closure datatype names tc to sets of tuples (dc; f; ffv : �g), wheredc is a fresh closure data constructor of tc, f is the corresponding (lifted) function name, andffv : �g is the sequence of the corresponding function's free variables and their types.The mappings Lift, ClosType, Dispatch, and Stub are treated as idempotent functions: they generateand return a fresh name when called with a given argument for the �rst time; subsequent callswith that argument return the same result as the �rst call. We also assume auxiliary functionsNewDataCon(), which returns a fresh closure data constructor name each time it is called; Typeof[[e]],which reconstructs the (original) type of any source term e; and FunName[[f]], which extracts thefunction name from a declaration f . The Lifted set and ClosData sets are extended explicitly asa side-e�ect of the F translation. When the term translation is complete, these sets are used togenerate the closure datatype de�nitions and dispatch functions, as described below. Note that the31

K = KD = D(f�g�)! � = ClosType[[(f�g�)! �]]Ek[[se]] = seEk[[v(fseg;)]] = if v 2 Dom(k)then let ffvg = k[[v]]in Lift[[v]] (fseg;, ffvg;)else (Dispatch � ClosType �Typeof)[[v]] (v, fseg;)Ek[[c(fseg;)]] = c(fseg;)Ek[[p(fseg;)]] = p(fseg;)Ek[[let val v : � = e1 in e2]] = let val v : � = Ek[[e1]] in Ek[[e2]]Ek[[let fun ffdecgand in e]] = let ffvg = FVk[[fun ffdecgand]] inlet k' = k + (FunName[[fdec]] 7! ffvg) inFSk'(ffvg)[[ffdecg]][[e]]Ek[[case se of fc(fvg;)=> eg]] = case se of fc(fvg;)=> Ek[[e]]gFSk(ffvg)[[fdecffdecg]][[e]] = let Fk(ffvg)[[fdec]] in FSk(ffvg)[[ffdecg]][[e]]FSk(ffvg)[[]][[e]] = Ek[[e]]Fk(ffvg)[[v inl (fv : �g;) : � = e]] = Lifted := Lifted +(Lift[[v]] inl (fv : �g;, ffv : Typeof(fv)g;) : � = Ek[[e]]);let tc = (ClosType �Typeof)[[v]] inlet c = newDataCon() inClosData := ClosData +(tc 7! (c,Lift[[v]],ffv : Typeof(fv)g));val v : tc = c(ffvg;)A[[datatype fD t = fc[off�g�]gjgand]] = fD t = fc[off�g�]gjgT Sk[[val v : � = e topdecs]] = val v : � = Ek[[e]] T Sk[[topdecs]]T Sk[[fun ffdecgand topdecs]] = let ffvg = FVk[[fun ffdecgand]] inlet k' = k + (FunName[[fdec]] 7! ffvg) infFk'(ffvg)[[fdec]]g fS(ffvg)[[fdec]]g T Sk[[topdecs]]T Sk[[]] =S(ffvg)[[v (fv : �g;) : � = e]] = fun Stub[[v]] (fv : �g;) = v (fv : �g;, ffv : Typeof(fv)g;)Figure 21: Closure conversion of SIL terms.
32

FVk[[fun ffdecgand]] = SfFVk[[fdec]]gFVk[[v inl (fv : �g) : � = e]] = FVk[[e]]�Sffvgg � fvgFVk[[(k : K)]] = ;FVk[[v]] = fvgFVk[[v(fseg;)]] = SFVk[[se]]g [(if v 2 Dom(k) then k(v) else fvg)FVk[[c(fseg;)]] = SfFVk[[se]]gFVk[[p(fseg;)]] = SfFVk[[se]]gFVk[[let val v : � = e1 in e2]] = FVk[[e1]] [(FVk[[e2]]� fvg)FVk[[let fun ffdecgand in e]] = FVk[[fun ffdecgand]] [(FVk[[e]]� fFunName[[fdec]]g)FVk[[case se of fc(fvg)=> eg]] = FVk[[se]] [(SfFVk[[e]]�Sffvggg)Figure 22: Calculation of free variables. To avoid confusion, we use bold brackets (fg) to denotesets and ordinary brackets (fg) to denote syntactic sequences. The notation SfXg denotes the setunion of all the sets X resulting from a calculation on members of a syntactic sequence.order in which side-e�ects are executed to build these structures does not alter the results exceptfor choice of names, so the translation functions in Figure 21 do not have to be read with anyparticular imperative evaluation order in mind. For simplicity, the �gure omits certain variablerenamings required to maintain identi�er uniqueness.Conversion of top-level functions is complicated by the possibility that they might be exportedfrom the SIL component. The types of exported values must not by changed by any transformation;moreover, exported types should never be closures, since the surrounding 3GL context certainlyknows nothing about how to invoke a closure. This implies that the argument and result typesof exported functions must not be arrow types (as we already noted in Section 3), and that theexported functions themselves must not be closure-converted. On the other hand, top-level func-tions might be used as a �rst-class values within the component, and thus do in general need tobe closure-converted. The solution is to closure-convert each top-level function, but also introducea corresponding stub function, which has the original function's signature but a new name, andexport the stub in place of the original. The body of the stub function simply invokes the closure-converted function using the stub's arguments and the free variables (which are guaranteed to bein the top-level scope at the point of the stub's de�nition). Stub functions not needed for exportwill be removed as dead code by the standard optimizer.The auxiliary function FVk[[e]], speci�ed in Figure 22, computes the free variables of expressione assuming the initial known function environment k. As speci�ed, FV returns a set; we assumethat an implementation will produce the members of the set in some deterministic order, which thenbecomes the canonical sequence ordering for the free variables wherever they are used. The freevariable calculation is slightly tricky because we actually need the free variables of the translatedterm, but (because of potential recursion) we need them before the translation has been done! Tobreak the circularity, we observe that the free variables sets of source and translated terms can only33

M[[export {export} {atdecs} {topdecs}]] =(Lift := ;; CloseType := ;; Dispatch := ;; Stub := ;;Lifted := ;; ClosData := ;;let {atdec'} = Flatten {A[[atdecs]]} inlet {topdecs'} = T S;[[{topdecs}]] in(* at this point all mappings have been built *)let {closure_atdec} ={tc = {dc of {�}�}j j tc 2 Codom(ClosTypes); {(dc; _; {(_; �)})} 2 ClosData(tc)} inlet {dispatch_fun} = {Dispatch[[tc]] (v0 : tc; {v : �};) : � =case v0 of{dc ({fv : �}) => f({v};, {fv};)}jj tc 2 Codom(ClosTypes); {(dc; f; {fv : �})} 2 ClosData(tc);({�}�) -> � = ClosType�1(tc); v0, {v} fresh }let {lifted_fun} = {f j f 2 Lifted} inlet {export'} = {X [[export]]} inexport {export'}datatype {atdec'}and and {closure_atdec}andfun {dispatch_fun}and and {lifted_fun}andtopdecs')X [[type � "name"]] = type � "name"X [[val v : � "name"]] =let v0 = if v 2 Dom(Stub) then Stub[[v0]] else vin val v0 : � "name"Figure 23: Closure conversion of SIL components. The notation fs j s 2 Sg should be read as asequence comprehension, i.e., the sequence of s values drawn from set S. Auxiliary function Flattenconverts a sequence of sequences into a single sequence.di�er due to the replacement of a known function application f(fvg;) by the corresponding liftedapplication Lift[[f]](fvg;,ffvg;), where ffvg are the free variables of f . In this case the target freevariable set should not include f , but should include the ffvg.11The top-level conversion functionM for components is shown in Figure 23. This function mustbe read imperatively, since the construction of the closure datatypes and dispatch functions and thetranslation of the export list rely on the auxiliary data structures built as a side-e�ect of the T S andAS translations. A datatype declaration and dispatch function are built for each closure datatypeinvented by ClosType, i.e., corresponding to each arrow type in the source program. Note thatit is possible for a closure datatype to end up with no constructors; the corresponding dispatchfunction body is a case with no arms and hence no well-de�ned type. These dispatch functionsare never actually applied; in most cases, the dead-code eliminator will remove them.In general, it is possible for freshly-created closure datatype declarations to refer to the convertedversions of source program datatype declarations (since free variables may belong to datatypes)11We discovered this formulation of the free variable calculation in Xavier Leroy's Gallium compiler.34

and vice-versa (since source datatypes may include �elds of arrow type, which are converted toclosure types). Therefore, the converted component has a single mutually recursive set of algebraictype declarations including both closure datatypes and converted source datatypes. For similarreasons, the converted component groups all the freshly-created closure dispatch functions andthe lifted versions of the source program functions into a single mutually recursive declaration,followed by the translations (i.e., ordinary value declarations, closure value declarations, and stubfunction declarations) of the original top-level declarations. Identi�er uniqueness guarantees thatit is harmless to declare any set of declarations as mutually recursive; a post-processing step is usedto separate both datatypes and functions into their true mutually-recursive components.As a further example, Figures 24 and 25 show the result of applying the conversion algorithmto our running example. For compactness, we omit some datatype and value declarations thatare completely unreferenced and hence immediately known to be dead code; the code is otherwiseunoptimized. There are two closure datatypes; one (for point * list point -> list point)describes the possible arguments to foldl1; the other (for list point -> list point) describesthe possible results of partially applying foldl1 (which is curried). Notice that this latter datatypecontains closure constructor for doit (because it has a matching type) even though doit neveractually escapes; this constructor will be removed by the standard optimizer. Function doit'' isthe exported stub generated to replace the original doit.9.3 DiscussionBecause of the need for per-type dispatch functions, our algorithm depends critically on havingmonomorphic source code, but we believe a similar algorithm could be given for polymorphic pro-grams with the addition of a typecase construct [28]. Bell, Bellegarde and Hook [5] have speci�eda more elaborate algorithm for polymorphic source programs that performs type specialization andhigher-order removal simultaneously, and may leave parts of the program polymorphic where thatis possible. Their approach is thus more powerful, but it is also signi�cantly more complicated, andhas not been implemented.We also depend on having the full source program available; this restriction can be lifted if wepermit extensible datatype declarations, i.e., datatypes for which the data constructor declarationscan be scattered throughout the program, even in separate compilation units. Supporting suchdatatypes requires only a small extension to the type system (Standard ML treats the built-inexception type constructor in this way), but requires a somewhat more expensive implementationof case, and precludes the optimizations discussed in the next section.10 Optimization of First-order CodeAfter �rst-order conversion and a pass back through the optimizer, a typical call to an unknownfunction has become a known call (to a dispatch function) followed by a case dispatch. This sequenceis probably less e�cient than the single indirect jump that would be performed by a conventionally35

exports... val doit'' : list_point -> list_point "doit" ...datatype pxlp2lp_clos = (* point * list_point -> list_point closure datatype *)Ccons| Cconsapp of transformand lp2lp_clos = (* list_point -> list_point closure datatype *)Cdoit of list_transform| Cg1 of pxlp2lp_clos * list_pointfun dispatch_pxlp2lp (c: pxlp2lp_clos, x:point, l: list_point) : list_point =case c of (* point * list_point -> list_point dispatch function *)Ccons => cons'(x,l)| Cconsapp whole_t => consapp'(x,l,whole_t)and dispatch_lp2lp (c:lp2lp_clos, ps:list_point) : list_point =case c of (* list_point -> list_point dispatch function *)Cdoit(ts) => doit'(ps,ts)| Cg1(c',l) => g1'(ps,c',l)and consapp' (x:point, l:list_point, whole_t: transform) : list_point = (* free var: whole_t *)let val x' : point = apply (whole_t,x)in Cons_point (x',l)and cons' (x:point, l: list_point) : list_point = Cons_point(x,l)and f1' (n: list_point, l: list_point, c: pxlp2lp_clos) : list_point = (* free var: c *)case l ofNil_point => n| Cons_point(x,r) =>let n' : list_point = dispatch_pxlp2lp(c,x,n)in f1'(n',r,c)and g1' (l0; list_point, c : pxlp2lp_clos, n: list_point) : list_point = f1'(n,l0,c)(* free vars: c,n *)and foldl1' (c: pxlp2lp_clos, n: list_point) : pl2pl_clos = Cg1(c,n)and f0' (n:transform, l:list_transform) : transform =case l ofNil_transform => n| Cons_transform(x,r) =>let val n' = compose(x,n)in f0' (n',r)Figure 24: Results of closure-converting example program (beginning).
36

and doit' (ps:list_point,ts: list_transform) : list_point = (* free var: ts *)let val whole_t : transform = f0'(id,ts)in let val consapp : pxlp2lp_clos = Cconsapp(whole_t)in let val f : lp2lp_clos = foldl1 (consapp,Nil_point)in let val ps' : list_point = dispatch_lp2lp(f,ps)in let val cons : pxlp2lp_clos = Cconsin let val g : lp2lp_clos = foldl1(cons,Nil_point)in dispatch_lp2lp(g,ps')...val ts : list_transform = Cons_transform(...)fun doit''(ps : list_point) : list_point = doit'(ps,ts) (* stub function for export *)Figure 25: Results of closure-converting example program (conclusion).closure-converted program.12 However, there are many potential performance advantages to beobtained from the \interpreted" style of the converted program, deriving from the fact that it isan explicitly �rst-order program.Figure 26 shows the e�ect of optimizing the code in Figure 24. Function foldl1 has been uncur-ried, removing the intermediate closures constructions f and g in doit', and dead code eliminationhas then removed the lp2lp clos datatype and the associated dispatch function altogether, allow-ing g1' to be eliminated and doit' to be inlined into doit''. Function dispatch pxlp2lp, havingalready absorbed consapp' and cons', has been inlined into f1'. The remaining closure datatypepxlp2lp clos can be represented \at" and hence need not be heap-allocated. The remainder ofthis section describes these points in more detail.10.1 UncurryingThe general-purpose optimization rules that inline \small" functions and perform \case splitting"also work together on the explicit closure form to mimic the e�ect of a standard uncurrying trans-formation, with no extra implementation e�ort. Consider a curried functionf (x1:t1) (x2:t2) : t = eexpressed in SIL as:fun f (x1:t1) : t2 -> t =let fun f2 (x2 : t2) : t = ein f2A fully-applied instance ((f e1) e2) is expressed in SIL as:12In C, which supports indirect jumps to top-level functions, we could convert from our representation back to aconventional closure representation as a �nal compilation step, by choosing the lifted functions' code pointers to bethe closure type's constructor tags. (This works because each closure value is cased over only once, by the relevantdispatch function.) Of course, we would need to add unsafe casts to the C code.37

exports...val doit'' : list_point -> list_point "doit"...datatype pxlp2lp_clos flat = Ccons | Cconsapp of transformfun f1' (n: list_point, l: list_point, c: pxlp2lp_clos) : list_point =case l ofNil_point => n| Cons_point(x,r) =>case c ofCcons =>let val n' :list_point = Cons(x,n)in f1'(n',r,c)| Cconsapp(whole_t) =>let val x' : point = apply(whole_t,x)in let val n' : list_point = Cons(x',n)in f1'(n',r,c)fun f0' (n:transform, l:list_transform) : transform =case l ofNil_transform => n| Cons_transform(x,r) =>let val n' = compose(x,n)in f0' (n',r)...val ts : list_transform = Cons_transform(...)fun doit''(ps : list_point) : list_point =let val whole_t = f0'(id,ts)in let val consapp : pxlp2lp_clos = Cconsapp(whole_t)in let val ps' : list_point = f1'(Nil_point,ps,consapp)in f1'(Nil_point,ps', Ccons)Figure 26: Optimized �rst-order code.let val g1 : t2 -> t = f e1in g1 e2This code is much less e�cient than an application of an arity-2 function would be, due to the costof building and entering an intermediate closure. An uncurrying transformation reduces the costby introducing an arity-2 function f' and rede�ning f to call f' (note that e is not duplicated).fun f'(x1:t1,x2:t2) : t = efun f (x1:t1) : t2 -> t =let fun f2 (x2 : t2) : t = f'(x1:t1,x2:t2)in f2 38

Now fully-applied instances of f are altered to call f' directly instead; partially-applied or escapinginstances of f are not changed. A similar transformation is desirable for curried functions of morethan two arguments, whenever they are called with two or more actuals.Uncurrying is ordinarily performed prior to closure conversion. Appel [1] noted that uncurryingcan be achieved simply by introducing the de�nition of f', as above, and relying on standard inliningheuristics to inline f and f2 (whose bodies are small), yielding a direct call to f'. Our observation isthat closure conversion already performs the same transformation that Appel suggests, introducinga lifted version of f2. By applying a round of our standard optimizations after closure conversion,we get uncurrying \for free." Here is the result of closure conversion on the example above:datatype t2_t_clos = Cf2 of t1 | ...fun f'(x1:t1) : t2_t_clos = Cf2(x1)fun t2_t_dispatch (c:t2_t_clos, x2:t2) : t =case c ofCf2 x1 => f2'(x2,x1)| ...and f2'(x2:t2,x1:t1) : t = elet val g1 : t2_t_clos = f'(e1)in t2_t_dispatch(g1,e2)Now, the standard optimizer proceeds as follows: it inlines the call f'(e1), since the body of thefunction is \small," which yields:let val g1 : t2_t_clos = Cf2(e1)in t2_t_dispatch(g1,e2)Now the call to t2 t dispatch can be \case split," resulting in the inlining of the dispatch andyielding the direct n-ary call f2'(e2,e1)! Note that the success of this inlining strategy doesn'tdepend on the number of cases in this dispatch function, which might be arbitrarily large. Nor doesit depend on a sizing heuristic; even our conservative inliner will always judge the relevant functionbodies to be small enough. It also works correctly for functions of more than two arguments.10.2 Implicit Type-based Closure AnalysisHigher-order functions complicate compilers by making ow analysis much more di�cult: dataow and control ow become interdependent, so analyses from the conventional 3GL compilerworld won't work without modi�cation. Many partial-evaluation-based optimizations, such asvalue propagation and dead-code elimination, require the compiler to determine an (approximationof) the set of fn-expressions that might be invoked at each application site in the program. Existingimplementations of this so-called closure analysis use an abstract interpretation involving a �xpointcalculation [36, 37] or a constraint-based mechanism [9, 30]. Surprisingly, closure analysis does notappear to have been implemented for typed languages, despite the fact that typing obviously39

provides a good �rst cut at the analysis \for free." Also, existing closure analysis algorithms donot express their results within the language itself, and so cannot feed subsequent general-purposeoptimizations.Our closure conversion algorithm can be seen as the encoding of a simple type-based closureanalysis. Type inference tags each application site with a type; only lambdas of that type canpossible be invoked at that site, and set of such lambdas is explicit in the dispatch function called atthat site and in the corresponding closure datatype. Standard partial-evaluation style optimizationssuch as constant propagation and dead code elimination, as described in Section 8, work directlyon this representation. In addition, there are potential optimization payo�s if the number of dataconstructors for a particular closure type is small. A singleton set of constructors is ideal: theoptimizer knows precisely which function will be called, and can arrange to call it directly or (if itsmall enough) inline it [18]. Inlining is also possible (with some risk of code blow-up) for sets withjust a few constructors, although we have not implemented this.If a closure datatype must be built, the compiler can use the fact that it knows all the construc-tors to choose an optimized representation. The standard datatype representation tricks [10, 1] willavoid building heap records for closure constructors with no free variables. It is also useful to sup-port \at" (i.e., unboxed) variant types (see Section 12.2) to avoid heap allocation for non-recursiveconstructors that have just a few free variables.The payo� from these optimizations depends on the precision of the underlying type-basedclosure analysis, and this in turn depends on source program types. To the extent that these typesrepresent structural distinctions among values, they are essentially �xed by the programmer's choiceof data structures and algorithms. However, source languages that support a name-equivalencemodel for types allow programmers to distinguish between di�erent uses of structurally equivalenttypes. In RML (as in Standard ML), for example, this can be done by using \transparent" datatypedeclarations, e.g.,datatype farenheit = F of integerdatatype centigrade = C of integerOrdinarily, programmers do this in order to make their program text clearer and to obtain helpfrom the compiler's typechecker in detecting logical errors. For example, lambda-bound functionsof type farenheit -> farenheit can be reliably distinguished from those of type centigrade ->centigrade, etc., reducing the risk of accidentally confusing the two kinds of quantities. Underour closure conversion scheme, these two functions will go into distinct closure datatypes, eachhaving fewer constructors than would a datatype for their common structural type int -> int,and hence possibly o�ering more optimization opportunities at their call sites. Thus users have afurther motive for making �ne typing distinctions: they may thereby enable better optimization,more e�cient closure representations, and better performance!
40

10.3 Explicit Closure AnalysisThe translator can also perform its own forms of ow analysis explicitly, and record the results in theform of a more specialized typing, which the closure converter will take into account when collectingconstructors into closure datatypes, and produce a larger number of datatypes each containingfewer constructors. We have built one such analyzer, structured as a variant of type inferencing.Beginning with a copy of the original SIL program in which every expression is annotated with anexplicit (monomorphic) type, the analyzer tags each occurrence of an arrow type (on a fn expressionor a variable) with a unique integer. It then performs a standard type-checking traversal of theprogram, with one adjustment: whenever the type-checker uni�es two arrow types, the integertags on these types are placed in the same equivalence class. In particular, this guarantees thatif a fn expression (l : �1!i�2) is among those that might possibly be applied at an application(a : �1!j�2)(b : �1), then the tags i and j are necessarily in the same equivalence class. On theother hand, arrow tags are not placed in the same equivalence class merely because their argumentand result types match. Thus the classes are a re�nement on ordinary types. This analysis issimple, given that we already have the typed intermediate form in hand, and is almost linear (itscomplexity is dominated by the union-�nd algorithm). It produces essentially the same analysisas the constraint-based approach described by Bondorf and J�rgensen [9] and further analyzed byPalsberg [30].An important point about our framework is that the result of an automated analysis like this canbe expressed directly in SIL, and used as the basis of a (�ner-grained) closure conversion. This isdone by rewriting the SIL program. For each equivalence class �1!i�2, the analyzer simply inventsa new unary datatype Di = Ci of �2 and replaces all instances of �1!i�2 by �1 ! Di, adding thenecessary coercions to the program. These amount to a Ci construction around the body of eachfunction of this type and a case on the result of each application of such a function. The resultingprogram is fed directly to the ordinary closure converter.The coercions just mentioned carry no runtime cost (since the Di are \transparent" constructors),but they do inhibit some further SIL optimizations. We have therefore developed a clean-uptransformation, to be applied after closure conversion, that gets rid of all transparent datatypes.13As ongoing work, we are trying to apply conventional (FORTRAN-world) optimizers to ourclosure-converted code, particularly to take advantage of well-developed dataow frameworks thatdon't rely on inlining to propagate information.13In fact, it may prove useful to get rid of all non-structural typing distinctions at this point, rewriting the programto use a set of structurally-distinct canonical datatypes. We have yet to implement this idea.
41

11 Eliminating Tail CallsFunction calls are generally expensive in standard implementations of our target 3GLs.14 So it isvaluable to avoid making recursive calls where possible, and it is particularly desirable to removetail calls in favor of jumps, especially when such calls are recursive. Tail calls are frequent inSIL, both in user functions derived from the original RML code, and in the dispatch functionsgenerated by higher-order function removal.To make it possible to express calls as jumps, SIL includes a facility for de�ning labeled jumppoints and corresponding gotos within a function [20]. Jump points are declared similarly to lo-cal functions, with a label name, formal parameters, de�ning expression, and scoped-over bodyexpression; gotos are similar to function applications, with a target jump point label and actualparameters. However:� goto expressions can only appear in tail position;� jump point labels can only be mentioned as the targets of gotos (i.e., they are not �rst classvalues); and� the scope of a jump point label does not extend into function declarations nested inside thebody expression.These restrictions guarantee that the target label of a goto is always in the same function as thegoto itself. Hence, when SIL is translated to a target 3GL, SIL jump point labels can becomeordinary labels, their parameters become ordinary variable declarations scoped at the functionlevel, and a SIL goto translates to a set of assignments to the parameter variables followed by anordinary 3GL local goto. Here's an example in SIL together with the corresponding C code:fun f(x:int) : int =label g(y:int) = y+1in let val b : bool = x > 8in case b oftrue => g x| false => g 0 int f(int x){ int y;{int b = x > 8;switch (b) {case 1: y = x;goto g;case 0: y = 0;goto g;}};g: return (y+1);}Because gotos must be in tail position, code that uses jump points is not amenable to simplifyingrewrites like inlining. Therefore, we introduce such code only at the very last minute, after �rst-order conversion and all optimizations are completed, and just before conversion to MIL.14Deeply recursive nests of calls are particularly expensive on SPARC processors when register windows are used(as they are by most 3GL compilers). 42

fun f0' (n:transform, l: list_transform) : transform =let label jp0 (n0:transform, l0:list_transform) =case l0 ofNil_transform => n0| Cons_transform(x,r) =>let val n' = compose(x,n0)in goto jp0 (n',r)in goto jp0 (n,l)...fun doit''(ps : list_point) : list_point =let val whole_t = f0'(id,ts)in ... Figure 27: Insertion of jump points into example code.When can a tail-call be turned into a goto? Since all functions have been lifted to top levelat this point, at least one call to every (non-dead) function must be from the body of di�erenttop-level declaration. Thus, it is never possible to convert a function de�nition and its calls directlyinto a jump point and corresponding gotos; the original function must be preserved for the sakeof the external (non-recursive) caller. But we are free to introduce a jump point at the top of thefunction body, for use by recursive tail calls; external and non-tail recursive calls continue to usethe original function. As an example, Figure 27 shows how a jump point is introduced at the topof f0' in the code of Figure 26.This approach works well for removing simple tail-recursion; the only added cost is the extragoto associated with calls to the original function.15 The same approach can be extended to handletail-calls among mutually-recursive functions, though at a signi�cantly increased cost. In order tomake the nested labels have the proper scoping, the functions must be combined into a singlefunction with simulated multiple entry points. A jump point is established inside the combinedfunctions for each of the original functions, and the combined function gets an extra discriminantargument used to dispatch control to the appropriate label. The discriminant is encoded as adatatype, in a manner very similar to the closure datatypes introduced during higher-order functionremoval. For example:let fun f (x:t1) = ... g zand g (y:t2) = ... f w ... f qin g rbecomes15This expense could be reduced by a simple algorithm for ordering code blocks; decent 3GL compilers already dothis.
43

datatype D flat = F of t1 | G of t2let fun f_or_g (d:D) =let label f (x:t1) = goto g zand g (y:t2) = ... f_or_g (F w) ... goto f qin case d ofF x' => goto f x'| G y' => goto g y'in f_or_g (G r)Under this transformation, a non-tail call to one of the original functions requires constructinga discriminant datatype value, passing it to the combined function, and performing an immediatecase dispatch on it. Fortunately, the added datatype can always sensibly be declared flat, sinceit cannot be recursive, and its values are always consumed immediately at the top of the combinedfunction and never escape. In most target 3GL compilers, the net e�ect is to push the datatype tagand parameters (i.e., the original functions' arguments) on the stack. In principle, good compilerscould pass them in registers. Still, this transformation is costly in code size and execution time(for non-tail calls), so it is performed only if there is at least one tail-recursive call in the set ofde�nitions. But it is well worth including in our repertoire, because mutual tail-recursion betweendispatch functions and the lifted functions they invoke is quite common.12 Generating Imperative Code12.1 MILThe translation of �rst-order, optimized SIL code into our target 3GLs is mediated by a translationto a common imperative intermediate form called MIL, whose syntax is given in Figure 28. MILis built around imperative statements in which assignments update the values of variables. Inparticular, the body of each SIL function becomes a MIL statement, which in turn becomes thebody of the corresponding 3GL function. Statements are de�ned recursively in such a way thatthey group into sequences. In addition to assignments, sequences may contain case statements thatdispatch on the tag of an algebraic type, or nested statement blocks. Each sequence terminateswith an explicit return, which exits from the enclosing function, or with a goto to some locallyde�ned label; sequences never \fall through" one to another. A block is used to declare a set oflocal variables and (mutually recursive) labeled statement sequences. The blockblock var v1 : �i : : : vn : �n lab l1 : st1 : : : lm : stm begin stcorresponds to these C and Ada blocks
44

(types) � ::= K (primitive types)j D (monomorphic algebraic types)(simple expressions) se ::= (k : K) (primitive constants)j v (variables)j v:a (record selections)(expressions) e ::= se (simple expressions)j f(fseg;) (function applications)j c(fseg;) (constructor applications)j p(fseg;) (primitive applications)(statements) st ::= return sej v := e ; stj goto lj case v of fc => stgjj block var fvdecg lab fjdecg begin st(variable declarations) vdec ::= v : �(function bindings) fdec ::= f(fv : �g) : � = st(labeled statement bindings) jdec ::= l : st(mutually recursive decls.) atdecs ::= datatype fatdecgand(algebraic type decls.) atdec ::= D = rep fc of (fa : �g)g(algebraic type representations) rep ::= enumj valuej [flat] recordj [flat] variantrecordj oneNull c rep(exports) export ::= type � "name"j val v : � "name"(components) m ::= export fexportg fatdecsg fvdecsg ffdecg stFigure 28: MIL Syntax. Note that all jdecs in a given let are treated as mutually recursive, as are all fdecsin a component. 45

{�1 v1; : : :; �n vn;st;l1:st1: : :lm:stm}
DECLAREv1 : �1; : : :; vn : �n;BEGINst;<<l1>>st1: : :<<lm>>stmEND;Variables do not have associated initializing expressions; legal programs must take care toinitialize any variable before using it.Argument and return values must be simple expressions, i.e., constants, simple variables, ordereferenced �elds of constructed values (see below); application expressions can appear only asthe right-hand sides of assignments. In particular, this guarantees that primitive applicationsappear only in the context of assignments v := p(fse;g), so there will always be a suitable targetvariable into which the primitive's template code can store the result.Algebraic data types are speci�ed in more detail than in RML or SIL; their declarations includerepresentation information (see Section 12.2) and the individual �elds of each constructor are namedand can be dereferenced using dot notation. Such dereferences can legally occur only within anappropriate arm of case over some value of the corresponding data type.The top level of a MIL component consists of a list of exports; a set of algebraic type declarations,which must include de�nitions of all exported types; a set of variable declarations and a (mutuallyrecursive) set of function declarations, which between them must include de�nitions of all exportedvalues; and an initializing statement, which �lls in the values of the top-level variables and whichthe surrounding 3GL driver must arrange to execute (once) before any exported value is used.A slightly simpli�ed formulation of the translation of SIL to MIL is speci�ed in Figure 29. Thecore of the translation scheme is the function E(v0; st0)[[e]], which converts the SIL expression einto a MIL statement, in a context where the expression should be assigned to variable v0, and theimmediately following statement should be st0. Thus, statement sequences are built up in reverseorder. The root argument for st0 is either a return statement, as speci�ed in the FS rule, whichtranslates functions, or a goto statement.Each SIL ldec generates a MIL block with local variables corresponding to the ldec's argu-ments and a labeled statement sequence corresponding to the ldec's body. The translation of acorresponding SIL goto (which must always be in tail position) is a parallel assignment of theactual parameter expressions to the variables representing the formal parameters, terminated bya MIL goto to the label; the st0 parameter is ignored. Since the actual parameters may refer tothe current values of the formal parameters, it is in general necessary to introduce new temporarynames for the actual values; once the temporaries have all been de�ned, they can be safely used tooverwrite the formals. Here and elsewhere, the translation as presented is rather proigate in itsgeneration of fresh variables; in practice we use a somewhat more complex translation that avoids46

E(v0; st0)[[se]] = v0 := se; st0E(v0; st0)[[f(fseg;)]] = v0 := f(fseg); st0E(v0; st0)[[c(fseg;)]] = v0 := c(fseg); st0E(v0; st0)[[p(fseg;)]] = v0 := p(fseg); st0E(v0; st0)[[let v : � = e1 in e1]] = block var v : � begin E(v; E(v0; st0)[[e2]])[[e1]]E(v0; st0)[[case v of fcaltsg]] = block lab l : st0 begin case v of fR(v; v0; goto l)[[calt]]g(l fresh)E(v0; st0)[[let label ldecs in e]] =block lab l : st0 begin block LS(v0; goto l)[[ldecs]] begin E(v0; goto l)[[e]](l fresh)E(v0; st0)[[goto l(fseg;)]] = block var fv : �g begin fv := se;g fx := v;g goto l(fvg fresh; fx : �g = Args(l))R(v1; v0; st0)[[c(fvg;) => e]] = c => block var fv : �g begin fv:=v1:a;g E(v0; st0)[[e]](fa : �g = Fields(c))LS(v0; st0)[[fl(fv : �g;) : � = egand]] = var ffv : �gg lab fl : E(v0; st0)[[e]]gFS[[fun ff inl (fv : �g;) : � = egand]] =ff(fv : �g;) : � = block var v0 : � begin E(v0; return v0)[[e]]g(v0 fresh)T S [[val v : � = e topdecs]] = let (vs; fs; st) = T S[[topdecs]] in (v : � vs, fs, E(v; st)[[e]])T S [[fdecs topdecs]] = let (vs; fs; st) = T S[[topdecs]] in (vs, FS[[fdecs]] fs, st)T S[[]] = (; ; return null) (null an arbitrary constant)Figure 29: Transformation of SIL expressions and declarations to MIL statements. Auxiliaryfunction Args returns and names and types of the formal parameters to a label, and Fields returnsthe names and types of the �elds of a data constructor.making unnecessary copies of variables, but in any case we assume that the 3GL compiler will doa good job of coalescing unnecessary copies.The translations for SIL case and let ldecs expressions must arrange to perform the \nextstatement" st0 in each subexpression. This aim could be achieved simply by duplicating st0 ev-erywhere it is needed, but at the potential cost of a code explosion if st0 is large. Therefore, thetranslation generates a fresh \join point" label for each such expression, and arranges for eachsubexpression to jump to it. In practice, we use a slightly more complex translation that avoidsgenerating such join points when st0 is simple enough that it can be duplicated without danger ofa code explosion, which is often the case; this optimization avoids generating lots of unnecessaryjumps to jumps. 47

The DS rules describe how to translate the top-level declarations of a SIL component intothe corresponding MIL sequence of variable declarations, function declarations, and initializingstatement. The primary complication arises from the need to separate out the declaration andinitializing de�nition of each SIL value declaration.Figure 30 shows the MIL equivalent to the function f0' from Figure 27, just as it would begenerated by the translation rules described here (without optimizations). The equivalent C codeis shown in Figure 31. Figure 6 shows similar Ada code, based on MIL code generated with theoptimizations mentioned above.12.2 Choosing Representations for Algebraic TypesAny algebraic type can be given a default representation as a heap-allocated (\boxed"), taggedvariant record, with each n-ary data constructor in the type corresponding to a tagged variantwith n �elds. Such types can be de�ned in a straightforward manner in each target 3GL. However,many types can be given much more e�cient representations [1, 10]. In particular, it is oftenpossible to avoid boxing small records, since in a monomorphic setting there is no reason to requirethat all types be representable in a single word. The only signi�cant restriction on our choice ofrepresentations is that they must be typable in the target 3GL.Our translator automatically chooses optimized target-language representations in the followingcases, which correspond to the possible values of rep in the MIL syntax description.� If no data constructor carries values, an (unboxed) enumerated type is used.� If there is only one data constructor, a simple (untagged) boxed record can be used. Moreover,if the data constructor carries only a single value, there is no need to box a singleton record;the value itself can be used.� If there is exactly one nullary data constructor (one that doesn't carry a value), and the otherconstructors require a boxed representation, the nullary constructor can be represented bythe null pointer.16 Any nullary constructor can be represented by a pointer to a statically-allocated address.� If a type that would normally be boxed is non-recursive and its values occupy a su�cientlysmall space, it can be represented as unboxed (or at), i.e., manipulated directly by valuerather than being heap-allocated and manipulated by reference. The user can also explicitlymark datatypes in the source program as flat.The use of unboxed records carries both bene�ts and costs. The major bene�t is reducingthe use of the heap, with consequent reductions in allocation, garbage collection, and data accesscosts. On the other hand, unboxed records are more expensive to move around than boxed ones,16When generating C, we might be tempted to extend this trick [1] to represent multiple nullary constructors asdistinct \small" integers (i.e., integers that cannot be confused with pointers), but this would require casting.48

fun f0 (n: transform, l: list_transform) : transform =blockvar n9 : transformlab JoinPoint0:return n9beginblockvar n0: transform l0: list_transformlab JumpPoint0:blocklab JoinPoint1:goto JoinPoint0begincase l0 ofCons_transform =>blockvar x: transform r: list_transformbeginx := l0.Cons_list_0; r := l0.Cons_list_1;blockvar n5 : transformbeginn5 := compose(x,n0);blockvar n4: transform l4 : list_transformbeginn4 := n5; l4 := r;n0 := n4; l0 := l4;goto JumpPoint0| Nil_transform =>blockbeginn9 := n0;goto JoinPoint1beginblockvar n7 : transform l7 : list_transformbeginn7 := n; l7 := l;n0 := n7; l0 := l7;goto JumpPoint0Figure 30: MIL code for example function.
49

transform f0 (transform n, TransList l) {transform n9;{ transform n0; TransList l0;{ transform n7; TransList l7;n7 = n; l7 = l;n0 = n7; l0 = l7;goto JumpPoint0;};JumpPoint0:{ if (l0 != NULL){ transform x; TransList r;x = l0->Cons_list_0; r = l0->Cons_list_1;{ transform n5;n5 = compose(x,n0);{ transform n4; TransList l4;n4 = n5; l4 = r;n0 = n4; l0 = l4;goto JumpPoint0;}}}else{ n9 = n0;goto JoinPoint1;};};JoinPoint1:goto JoinPoint0;};JoinPoint0:return n9;} Figure 31: C equivalent of MIL code for example.as each move requires that the entire contents of the record be copied. Thus use of the unboxedrepresentation obviously should be restricted to fairly small records; we make the threshold size atunable parameter of the translator.Our translator supports unboxed representations even for variant records, unlike other func-tional language compilers known to us. These are particularly useful for avoiding heap-allocationof small closures. Of course, unboxed values always occupy the space needed for the largest possiblevariant, and hence waste space (and copying time) for smaller variants, so it is again importantthat the largest variant not be too large.One potential advantage of using unboxed values is that they need not, in principle, be storedin memory at all; they can often be pro�tably spread over registers (at least on machines thathave lots of registers). Unfortunately, our target 3GL compilers are generally reluctant to handleunboxed records this way; in particular, they insist on passing and returning unboxed records on50

the stack. We cannot improve on this without direct access to machine code. Even so, choosingunboxed representations o�ers measurable improvements in the performance of some benchmarks,as discussed in Section 14.13 Generating Ada or CSince MIL represents a \lowest common denominator" of ANSI C and Ada83, translation to theselanguages is quite straightforward. If C is the target, the MIL component is translated into asingle �le containing one top-level declaration for each component value and function, and a specialfunction Initialize containing the component-level statement code. If Ada is the target, the MILcomponent generates an Ada package in two �les: a package speci�cation �le, which contains thede�nitions of exported types, the de�nitions of exported values, and the declaration signatures ofexported functions; and a package body �le, which contains the de�nitions of all functions and theinitialization code.We have used the gcc compiler for ANSI C compilation and the Sun/Verdix Ada compiler(version ??) for Ada83 compilation. We rely on the 3GL compilers to do several important tasks,including register allocation and copy propagation, peephole optimization of jumps, and generationof good code for case statements. In practice, the two compilers we use vary considerably in thequality of their code, with gcc generally doing a better job, especially on copy propagation.In a few cases, the semantics of the target language cause subtle performance problems. Forexample, in Ada83 a local variable slated to contain a variant record must be initialized with adefault value, even if it is immediately overwritten by an assignment; these initializations makefunction entry much more expensive than the simple stack pointer adjustment one might epect.We have also had to deal with a number of complications arising from arbitrary limitations inthe Verdix Ada compiler. For example, there is a hard internal limit on the depth of syntacticallynested blocks; this has required us to perform a transformation on MIL function bodies that lifts allnested blocks to the top of the function. Unfortunately, this transformation broadens the syntacticscope of local variables and thus substantially increases the stress on the Ada compiler's registerallocator.14 BenchmarksSimple benchmark results indicate that our compiler generates code that is quite competitive inquality with the well-established Standard ML of New Jersey compiler. We also measure the e�ectsof using more re�ned closure analysis and of using unboxed closure representations. A summary ofthe benchmark results is given in Table 1. life is an implementation by Reade [34] of Conway'sGame of Life making makes heavy use of higher-order functions; the inner loop processes a list ofpairs of integers which we mark as flat. fft is an implementation of the Fast Fourier Transform dueto Xavier Leroy; it is based on a template that supports simple operations arrays of reals. interpd51

life fft interpd interpcline count 302 237 113 119smlnj time (sec) 2.0 5.8 2.3 3.0standard time (sec) 0.8 2.7 2.0 4.7max closure size (words) 3 1 1 1flow-flat time (sec) 0.8 2.7 1.7 4.6flow-boxed time (sec) 1.0 2.7 2.0 5.1max closure size (words) 3 1 5 7flow-flat-nogc time (sec) 0.5 2.6 1.2 2.4heap alloc (MB) 2.4 0 6.6 29.9flow-boxed-nogc time (sec) 1.6 2.7 1.3 2.6heap alloc (MB) 3.9 0 8.5 34.9Table 1: Benchmark results.and interpc are lambda-calculus interpreters evaluating the factorial function; the former is indirect style and the latter in continuation-passing style; they are taken from Bondorf [8].All tests were performed on a 133MHz Pentium processor with 80MB memory running underLinux. Row smlnj represents the behavior of Standard ML of New Jersey version 109.27, with thecompilation settings reducemore := 0 and rounds := 0 to encourage thorough optimization ofsmall programs. The other rows represent the behavior of our compiler generating C under a varietyof compilation settings; the resulting C was then compiled using gcc version 2.7.2.1 with option-O3, and (unless otherwise noted) linked with the Boehm-Demers conservative garbage collector [7]version 4.11. Row standard represents the standard con�guration of our compiler. In particular,at (non-heap) datatype representations are used for all non-recursive closure types. Executiontimes for our compiler are within a small factor of those of SML/NJ, and substantially better insome cases.flow-flat represents a con�guration in which we invoke the more explicit closure analysisdescribed in Section 10.3 and continue to use the (often larger) at representations for all closuretypes; flow-boxed does the same analysis but uses boxed representations for all closure types.Comparing these �gures indicates that the re�ned closure analysis is sometimes worthwhile (e.g.,for interpd), but only in conjunction with the at representation for closure types.17These comparisons of at vs. boxed closure representations may be skewed by our use of therelatively slow Boehm-Demers collector, which probably penalizes heavy heap allocation dispropor-tionately more than a system with an e�cient built-in allocator. To get better evidence that atclosures types are worthwhile, we linked the generated code for flow-flat and flow-boxed againsta very low-overhead heap memory management implementation: allocation from a single large ar-ray and no garbage collection. The results are shown as flow-flat-nogc and flow-boxed-nogc.17The apparent anomaly of interpc's increased execution time under flow-boxed is due to the optimizer's failureto clean up fully after the introduction of the arti�cial datatypes that encode the closure analysis rsult.52

Even with very cheap heap management, and despite the fact that gcc doesn't generate particularlygood code for handling at structures, the substantially lower heap allocation requirements of theflat approach lead to measurable speed improvement. We conclude that at closure allocation isworth further investigation as an optimization technique for functional language compilers.15 ConclusionsVersions of the compiler described here have been in use within our overall translation system fornearly two years. It generates working Ada83 and ANSI C code with respectable performancerelative to established functional language compilers, and an unimpeachable level of type safety. Ithas cheerfully handled RML input programs of up to 20,000 lines. Generated Ada components havebeen integrated into the US Air Force's Generic Command Center demonstration environment, thusmeeting the speci�c goals of the project for which this work was originally undertaken.More broadly, we believe our approach is a promising alternative to existing interoperabilityschemes for strongly-typed functional languages. We would like to perform more detailed compar-isons between our work and existing non-functional \glue" languages like Tcl.We have tried to construct our compiler from the best known technologies for FL compilation.We have found the staged approach to compilation very e�ective for managing a complex group oftransformations. Like other researchers [41, 32] we have found the ability to type-check intermediaterepresentations invaluable in uncovering bugs in the course of compiler development. Moreover, wehave developed new uses for type information in late-stage optimization of programs.The most signi�cant restriction of our system is that it requires access to the entire RMLprogram, because both the polymorphism removal and higher-order removal algorithms are \whole-program" transformations. However, we believe that this problem can be at least partly addressedby providing separately compiled components a digest of the relevant type and function informationfrom the other components.

53

References[1] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.[2] A. W. Appel and T. Jim. Continuation-passing, closure-passing style. In Sixteenth ACM Symp.on Principles of Programming Languages, pages 293{302, New York, 1989. ACM Press.[3] A. W. Appel and T. Jim. Shrinking lambda expressions in linear time. Journal of FunctionalProgramming, 1997. (to appear).[4] J. M. Bell. An implementation of Reynold's defunctionalizationmethod for a modern functionallanguage. Master's thesis, Oregon Graduate Institute, Jan. 1994.[5] J. M. Bell, F. Bellegarde, and J. Hook. Type-driven defunctionalization. In Proc. 2nd Inter-national Conference on Functional Programming, June 1997.[6] F. Bellegarde and J. Hook. Substitution: A formal methods case study using monads andtransformations. Science of Computer Programming, 23(2{3):287{311, 1994.[7] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative environment. Software|Practice and Experience, 18(9):807{20, 1988.[8] A. Bondorf. Automatic autoprojection of higher order recursive equations. Science of ComputerProgramming, 17(1{3):3{34, May 1990.[9] A. Bondorf and J. J�rgensen. E�cient analyses for realistic o�-line partial evaluation. Journalof Functional Programming, 3(3):315{346, 1993.[10] L. Cardelli. Compiling a functional language. In Proc. 1984 ACM Conference on Lisp andFunctional Programming, pages 208{217, Aug. 1984.[11] L. Cardelli. Basic polymorphic typechecking. Science of Computer Programming, 8:147{172,1987.[12] E. Chailloux. An e�cient way of compiling ML to C. In Proc. ACM Workshop on ML and itsApplications, pages 37{51, June 1992.[13] W.-N. Chin and J. Darlington. Higher-order removal: A modular approach. Unpublishedwork, 1993.[14] R. Cridlig. An optimizing ML to C compiler. In Proc. ACM Workshop on ML and itsApplications, pages 28{36, June 1992.[15] O. Danvy and A. Filinski. Representing control, a study of the cps transformation. Mathe-matical Structures in Computer Science, 2(4):361{391, 1992.54

[16] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with continu-ations. SIGPLAN Notices, 28(6):237{247, June 1993. Proceedings of the ACM SIGPLAN '93Conference on Programming Language Design and Implementation.[17] L. Huelsbergen. A portable C interface for Standard ML of New Jersey. Available athttp://cm.bell-labs.com/who/lorenz/papers/smlnj-c.ps, Jan. 1996.[18] S. Jagannathan and A. K. Wright. Flow-directed inlining. In Proceedings of the ACM Con-ference on Programming Language Design and Implementation, pages 193{205, May 1996.[19] M. P. Jones. Partial evaluation for dictionary-free overloading. Technical ReportYALEU/DCS/RR-959, Yale University Dept. of Computer Scinece, Apr. 1993.[20] R. A. Kelsey. A correspondence between continuation passing style and static single assignmentform. In Proc. ACM SIGPLAN Workshop on Intermediate Representations, pages 13{22, Jan.1995.[21] R. B. Kieburtz, F. Bellegarde, J. Bell, J. Hook, J. Lewis, D. Oliva, T. Sheard, L. Walton,and T. Zhou. Calculating software generators from solution speci�cations. In TAPSOFT'95,volume 915 of LNCS, pages 546{560. Springer-Verlag, 1995.[22] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams. Orbit: An optimizingcompiler for Scheme. SIGPLAN Notices, 21(7):219{233, July 1986. Proceedings of the ACMSIGPLAN '86 Symposium on Compiler Construction.[23] J. L. Lawall and O. Danvy. Separating stages in the continuation-passing style transforma-tion. In Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium onPrinciples of Programming Languages, pages 124{136, Charleston, South Carolina, Jan. 1993.[24] X. Leroy. The ZINC experiment: an economical implementation of the ML language. TechnicalReport 117, INRIA, 1991.[25] X. Leroy. The Caml Light System. INRIA, 0.7 edition, 1995.[26] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The De�nition of Standard ML (Revised).MIT Press, Cambridge, MA, 1997.[27] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion. In Conference Recordof POPL '96: 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-guages, pages 271{283, Jan. 1996.[28] G. Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University, Dec. 1995.Available as TR CMU-CS-95-226.
55

[29] G. Morrisett, M. Felleisen, and R. Harper. Abstract models of memory management. InFPCA '95 SIGPLAN-SIGARCH-WG2.8 Conference on Functional Programming Languagesand Computer Architecture, pages 66{77, June 1995.[30] J. Palsberg. Closure analysis in constraint form. ACM Trans. Prog. Lang. Syst., 17(1):47{62,Jan. 1995.[31] S. L. Peyton Jones. Implementing lazy functional languages on stock hardware: the SpinelessTagless G-machine. Journal of Functional Programming, pages 127{202, 1992.[32] S. L. Peyton Jones. Compilation by transformation: A report from the trenches. In EuropeanSymposium on Programming (ESOP'96), volume 1058 of LNCS, pages 18{40, Jan. 1996.[33] S. L. Peyton Jones, C. Hall, K. Hammond, W. Partain, and P. Wadler. The Glasgow Haskellcompiler: a technical overview. In Proc. UK Joint Framework for Information Technology(JFIT) Technical Conference, Keele, 1993.[34] C. Reade. Elements of Functional Programming. Addison-=Wesley, 1989.[35] J. C. Reynolds. De�nitional interpreters for higher-order programming languages. In ACMNational Conference, pages 717{740. ACM, 1972.[36] P. Sestoft. Replacing function parameters by global variables. Master's thesis, University ofCopenhagen, Oct. 1988. DIKU Master's thesis no. 254.[37] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie-MellonUniversity, Pittsburgh, PA, May 1991. CMU-CS-91-145.[38] G. L. Steele. Rabbit: a compiler for Scheme. Technical Report AI-TR-474, MIT, Cambridge,MA, 1978.[39] D. Tarditi. Design and implementation of code optimizations for a type-directed compiler forStandard ML, Dec. 1996. Technical Report CMU-CS-97-108.[40] D. Tarditi, P. Lee, and A. Acharya. No assembly required: Compiling Standard ML to C.ACM Letters on Programming Languages and Systems, 1(2):161{177, June 1992.[41] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directedoptimizing compiler for ML. In Proceedings of the ACM SIGPLAN '96 Conference on Pro-gramming Language Design and Implementation, pages 181{192, June 1996.[42] D. Volpano and R. B. Kieburtz. Software templates. In Proceedings of the Eighth InternationalConference on Software Engineering, pages 55{60. IEEE Computer Society, Aug 1985.[43] D. Volpano and R. B. Kieburtz. The templates approach to software reuse. In T. J. Biggerssta�and A. J. Perlis, editors, Software Reusability, pages 247{255. ACM Press, 1989.56

[44] P. Wadler. Theorems for free! In Proceedings 4th Int. Conf. on Functional ProgrammingLanguages and Computer Architecture, pages 347{359, Sept. 1989.[45] D. Warren. Higher-order extensions to PROLOG: are they needed? In J. Hayes, D. Michie,and Y.-H. Pao, editors, Machine Intelligence 10, pages 441{454. Edinburgh University Press,1982.[46] A. K. Wright. Simple imperative polymorphism. Lisp and Symbolic Computation, 8(4):343{356, Dec. 1995.

57

