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A sample of 210 published data sets were assembled that (a) plotted amount remembered versus

time, (b) had 5 or more points, and ( c j were smooth enough to fit at least 1 of the functions tested

with a correlation coefficient of .90 or greater. Each was fit to 105 different 2-parameter functions.

The best fits were to the logarithmic function, the power function, the exponential in the square root

of time, and the hyperbola in the square root of time. It is difficult to distinguish among these 4

functions with the available data, but the same set of 4 functions fit most data sets, with autobio-

graphical memory being the exception. Theoretical motivations for the best fitting functions are

offered. The methodological problems of evaluating functions and the advantages of searching exist-

ing data for regularities before formulating theories are considered.

At the simplest level, this article is a search for regularities. We
ask whether there is one retention function that can describe all
of memory, or perhaps a different function for each of a small
number of different kinds of memory. At a more abstract level, it
is about the role of theory and data in psychological research.
Can we most rapidly advance psychology as a science by devel-
oping theories at the level that commonly fills psychological jour-
nals such as this one, or should we first try to describe phenomena
that could constrain theories by establishing robust, preferably
quantitative, regularities (Rubin, 1985, 1989, 1995)? A balance
between these alternatives is needed, and here we argue that to

obtain such a balance more description is needed.
Retention offers the ideal topic to make this abstract, philo-

David C. Rubin, Department of Experimental Psychology, Duke

University; Amy E. Wenzel, Department of Psychology, University of

Iowa.

We thank John Anderson, Alan Boneau, John Cerella, Herb Crovitz,

Sean Hinton, Armando Machado, Bennet Murdock, Matt Serra, Har-

old Schiffman, John Staddon, Wayne Wickelgren, and John Wixted for

their suggestions; Richard Palmer for information about the exponen-

tial-power function and its history and use in physics; Michael Reed

for mathematical advice and help with derivations; Robert Terry for

statistical advice; and Jenny Zervakis for help with the figures. Support

was provided by a Duke University Research Council grant and by Na-

tional Science Foundation Grant BNS-9010174. Parts of this research

were presented in Amy E. Wenzel's senior honor's thesis and at the 35th

annual meeting of the Psychonomic Society in St. Louis, MO, in No-

vember 1994.

Although we tried to be exhaustive in our search of the literature on
retention functions, we must have omitted many relevant data sets. We

hope to continue this effort and to maintain as complete a public record

of retention functions as is possible. We therefore would be grateful for

information about any data sets that we failed to find.

Correspondence concerning this article, including requests fora com-

puter-readable copy of the data sets we have assembled, should be ad-
dressed to David C. Rubin, Department of Experimental Psychology,

Duke University, Durham, North Carolina 27708-0086. Electronic

mail may be sent via Internet to rubin@psych.duke.edu.

sophical debate concrete and in doing so to reveal the strengths
and weaknesses of the different approaches. At the theory-
driven extreme are proponents who derive retention functions

from first principles: either differential equations describing
memory mechanisms (Wickelgren, 1972, 1974a, 1974b) or

more global principles of optimization (Anderson, 1990; An-
derson & Schooler, 1991). At the data-driven extreme is the
present attempt to search the literature for as many data sets as
possible and to fit each one with as many functions as can be

practically managed in order to provide the most theory-neutral
empirical description possible.

How should we do science efficiently? When is it most effi-

cient to speculate, when is it most efficient to produce a formal
mathematical model, and when is it most efficient to search the
data and describe regularities? In high school science and in

graduate school experimental design, we are taught to first for-
mulate a theory, to next derive testable hypotheses, and finally
to test them experimentally. We usually write our papers (and

always write our grant proposals) as if we did only this. But
many advances in science have been made by documenting and
accumulating regularities, often quantitative regularities, and
only then developing theories to account for them. Theories so
developed are next tested on novel predictions and altered or
abandoned as needed. In psychology the latter approach is most
often seen in contemporary mathematical modeling; it is the

one favored here. However, in many areas, such as retention, we
are at the stage where the lack of a documented regularity
makes theory formulation inefficient and the phenomenon itself
is ignored in theory building (Brainerd, Reyna, Howe, &
Kingma, 1990;Ratcliff, 1990; Slamecka & McElree, 1983).For
these cases, quantitative descriptions in a form that is as theory-
neutral as possible are needed before theory can be efficiently
developed. The data for such a description have been accumu-
lating for over 100 years.

Among the basic inquiries Ebbinghaus (1885/1964) made
when he began the experimental study of human memory was
an investigation of the shape of the retention function. He
learned lists of nonsense syllables until he could recite them
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twice perfectly and then measured the percentage of time saved

when he tried to relearn them later at delays ranging from 20

min to a month. His data provide the classic retention function:

smooth, monotonic, decreasing rapidly at first, but then level-

ing. Ebbinghaus proposed the function y = 100- a/{ [log(?)]'

+ a} to fit his data but mentions no other functions he consid-

ered. The search has continued in much the same fashion for

the last century, with each researcher considering at most a

handful of data sets and functions.

Here we make an evaluation that is as unbiased as possible of

what we now know. Our work builds on studies testing one or

two theoretically motivated functions on a variety of data sets

(e.g., Indow, 1993; Laming, 1992: Wickelgren, 1972, 1974a;

Woodworm, 1938) and on studies comparing a handful of func-

tions using one (Rubin, 1982) or a handful (Anderson &

Schooler, 1991; Wixted & Ebbesen, 1991) of experimental pro-

cedures. We differ from these earlier careful and informative

studies mainly in our lack of selectivity of functions and data

sets. Unlike most previous attempts, no new data are collected:

we find it inefficient to add to a large database before evaluating

it to find what data are needed. Unlike most previous attempts,

no single function is favored on theoretical grounds; the more

standard scientific approach for our level of knowledge is first

to determine which functions fit the data and only then attempt

to account for these findings theoretically. That is. we initially

view retention as an empirical observation rather than as an

hypothesized process, reserving theory building until the reten-

tion function is described in relatively neutral terms (Slamecka,

1985). Theory is not abandoned; we know a great deal about

retention that is needed for an intelligent investigation. How-

ever, theory must fit the existing data, and for retention there is

considerable existing data.

An Outline

First, we review some fundamental questions that have been

raised in the long history of the study of retention functions. We

do this to guide our analysis of the existing data, to develop a set

of questions we will ask of the data, and to benefit from insights

gained in earlier work.

Second, we describe 210 data sets from the psychological lit-

erature that (a) have a measure of amount remembered as one

variable and time since learning as a second variable, (b) have

5 or more points, and (c) fit at least one of the two-parameter

functions tested with a correlation of .90 or greater. The first

criterion is the definition of a retention function. The second

criterion ensures enough points to differentiate among two-pa-

rameter functions. A straight line can fit any two points per-

fectly. A smooth curved line can usually fit three points per-

fectly if the points are monotonically decreasing and one selects

from as many functions as are used here. We therefore required

two data points beyond this minimum. The third criterion lim-

its our database to smooth plots. Thus we use arbitrary but rea-

sonable, objective, and easy-to-apply criteria to assemble as

large and unbiased a collection of data sets as possible.

Third, we describe the set of 105 two-parameter functions to

which we fit each of the 210 data sets. We include the standard

linear, hyperbolic, logarithmic, exponential, and power func-

tions. We also include some novel ones. However, they are no

stranger than Ebbinghaus' (1885/1964) original attempt, or

\n(y) = ln(a/2.51) - (a2 /2)-(ln(() - b)2, which was among

those considered by Rubin (1982). At this stage no attempt is

made to limit our search to theoretically motivated functions.

If a function fits, the challenge we face is to explore its properties

or to derive it from reasonable principles. Thus even a function

as odd as the one just given is a form of the lognormal distribu-

tion, and it would have theoretical interest if it fit the data.

Fourth, we sort this mass of over 22,000 correlations for pat-

terns. In particular we expect to find that one of the following

three patterns will hold. First, one function (or a small set of

equally good-fitting functions) fits all the retention data; that is,

within experimental error there is one retention function that

describes all procedures and participants tested. Second,

different functions (or different sets of functions) fit different

classes of data sets; for instance, there may be one function for

recall data and another for recognition data. Third, no patterns

emerge; that is, there is no lawful way to generalize over data

sets to provide a quantitative description of retention. The

search for one of these three patterns must be done before any

serious theoretical work. Psychologists have assumed that the

first or second option would hold, but this is an empirical ques-

tion. Because many arbitrary decisions are made in such a de-

scriptive undertaking and because inferential statistics to check

such decisions are not always possible, we make our collection

of data sets available to others so they may try their own

procedures.

Fifth, we review the results in terms of the questions raised

by the initial literature search and in terms of new practical and

theoretical questions that arise. We include theoretical deriva-

tions for the best fitting functions, and we suggest useful studies

that we did not find in the literature. Finally, we examine the

implications of the research approach undertaken and ponder

how psychology can most rapidly advance as a science.

Two notes of caution should be introduced before proceed-

ing. The first is that although the study of retention functions

is often called the study of forgetting, what is remembered is

measured, not what is forgotten. Items not remembered can be

assumed to be forgotten only on the one instance in which the

measurement was made. They may be remembered in a differ-

ent but otherwise similar situation or under different testing

conditions. The second caution is that time is the independent

variable in all studies reported here, but time is not what is im-

portant to retention. How the time is filled is what matters

(Baddeley, 1990; McGeogh, 1932; Rubin, 1995). Time is the

best index we have of the amount of interfering or competing

activity that has occurred in the retention interval. In single-

session studies the activity that fills the retention interval is

known. In multiple-session studies it is assumed to be equal
during the various intervals.

An Example

Before presenting a literature review and an analysis of actual

data sets, idealized data sets are used to provide a graphic indi-

cation of both the functions to be considered and of the good-

ness of fit of various degrees of r2. To accomplish this, two data

sets were formed that were generally smooth and monotonically

decreasing. The goal was not to produce the most scientifically
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informative data sets, but realistic ones in which a lack of fit

could be attributed mostly to the shape of the function rather

than to noise in the data. Data from classic studies in the short-

term memory for material learned in the laboratory were aver-

aged, as were data from a classic study of very long-term mem-

ory for material learned outside the laboratory.

The first data set is an average of the short-term memory

study of Peterson and Peterson (1959) with a replication by

Murdock (1961) for the conditions in which he used trigrams

and word triads (Experiment 1, Sessions 1 and 3). In these ex-

periments participants were presented with three letters or

words, counted backward during the retention interval that

lasted as long as 18 s, and then recalled the three items. Mur-

dock replaced Peterson and Peterson's 15-s retention interval

with an immediate retention interval, and we used Murdock's

intervals in combining data sets.

Murdock (1961) reported his immediate retention interval

as 0 s. When time is computed or plotted on a linear scale, as

Murdock did, zero is a good estimate of "immediate," but when

logarithmic scales are also used, zero is undefined. In experi-

ments, immediate recall is never at zero but is after the partici-

pant is signaled to recall, or turns the page, or looks down to

begin writing, or according to Murdock's description, after a

metronome set to 1 s has sounded. From Murdock's description

of his procedure, we assumed that the total time for his imme-

diate retention interval actually occurred 1 s after learning. Our

results would change only slightly if .1 s or .5 s were chosen

instead of 1 s. but the alternative of omitting the immediate

recall interval results in larger changes and more data loss. Sim-

ilar assumptions were made for all data sets in this article re-

porting a zero retention interval, and our assumed values are

listed in Tables 1 to 9. As the data sets are in the public domain,

alternatives can be freely considered.

The second data set was made by combining all six free recall

measures from Bahrick's (1983) long-term memory study of

recall of campus locations. As with the Murdock (1961) study,

a time had to be assumed for a retention interval for immediate

recall. From Bahrick's procedures we decided that the under-

graduates probably saw the average city or campus location

about 3 days (.008 years) before their "immediate" test. The

100% value at "immediate" is not a ceiling effect but the result

of Bahrick normalizing his data by dividing recall at all reten-

tion intervals by that at the "immediate" one.

Figure 1 presents the two data sets fit to four of the most com-

monly used retention functions. The most striking feature is the

similarity of the appearance of the plots, given that one covers

an 18-s range and the other a 46-year range. For the short-term

memory data set, the exponential function fits well, as claimed

in the original articles. But all functions presented fit well, with

the power function providing a slightly poorer fit than the oth-
ers. For the long-term memory data set, it is easier to distinguish

among the functions, with the logarithmic function fitting best

(as it technically does in the short-term data set) followed by

the power, hyperbolic, and exponential functions, a pattern we

will see again. Both the power and the logarithmic function rise

rapidly to infinity as the retention interval shrinks to zero, and

so for the long-term memory data set, both can more easily fit

the "immediate" data point. A linear function, y — b — mt,

does not fit the short-term and long-term memory data sets as

Short-term Memory Long-term Memory

Hyperbolic y = 1/(mt + b)
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Figure 1. Retention data for an idealized short-term and an idealized
very-long-term memory experiment fit to four common functions. For
this figure and throughout the article, y is always a measure of remem-
bering, / is time from learning, and m and b arc positive, empirically fit
constants.

well as the functions shown with r2s of .821 and .486,

respectively.

Unlike previous studies comparing retention functions (e.g.,

Anderson & Schooler, !991;Rubin, 1982; Wixted & Ebbesen,

1991), the fits presented were made to the untransformed data

as shown in Figure 1 rather than to transformed data. It could

be argued that there is some theoretical (Estes, 1956) or practi-

cal (Newell & Rosenbloom, 1981) reason to transform the data

or not to (Slamecka & McElree, 1983), but transformations do
not make for a fair comparison among different functions. The

logarithmic function would not change, but the hyperbolic

function would be fit as 1 ly = h + m -t, the exponential as ln(y)

= b-m-t, and the power as ln(>-) = b- m- ln( / ) . The param-

eters of the fits and the r2 values differ in the two methods. For

the method used here (y — y)2 is always minimized, where the

indicates the estimate based on the best fitting parameters for

the function. For the approach used in the earlier literature, (y

— y)2 is used for the linear and logarithmic functions, (1 /y —
l/y)2 for the hyperbolic, and [ln(p) — In (y)]2 for the exponen-

tial and power. The r2 values change because they are defined as

one minus these values divided by the variance in y, or 1 /y, and
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ln(>>), respectively. The rank orderings of the rh of the fits for
the four functions in Figure 1 do not change for the two data
sets when the transformed functions are fit, but the values do.
For the short-term memory data sets, the hyperbolic, exponen-
tial, and power fit the transformed data with r2s of .973, .969,
and .932. For the long-term memory data sets, the r2s are .736,
.612, and .881, respectively. Thus, in the transformed data, the
fits are slightly more differentiated.

Some Fundamental Questions

About Retention Functions

Many of the questions about the shape of retention functions
that have been considered in the literature can be divided into
three classes. The first and most theoretically contentious class
of questions concerns how retention functions should be mea-
sured, considered, and compared. The second class of questions
concerns whether there is one retention function for all of mem-
ory or whether there are different functions for (a) different de-
grees of learning and overlearning, (b) short and long intervals,
(c) different participant populations, (d) different materials or
different learning processes, and (e) different memory tasks.
The third class concerns dependent measures.

How Should Retention Be Measured?

Among the first class of questions, several approaches are pos-
sible, and there is no simple consensus. Bahrick (1965) has
noted advantages for plotting functions in units of variance, Sla-
mecka and McElree (1983) have argued for a standard analysis
of variance (ANOVA) technique, Loftus (1985a, 1985b; Loftus
& Bamber, 1990) has developed a theoretical framework based
on comparing functions horizontally instead of vertically, and
Bogartz (1990a, 1990b) has considered splitting the observed
function into underlying unobserved components correspond-
ing to assumed memory processes. The simplest approach, and
the one adopted here, is to fit the empirical data using standard
curve-fitting techniques first and to consider complications only
if necessary.

There are two reasons to opt for the simplest approach first.
The obvious one is that, until the collection of data sets is con-
sidered, it is not clear that the added complexity will aid our
understanding of the data. If the best fitting function does not
require the y axis to be transformed, the same conclusions will
be drawn under both the ANOVA and curve-fitting approaches,
and thus Slamecka and McElree's (1983) arguments would be
less relevant (jt-axis transformations are irrelevant because time
values never enter into Slamecka and McElree's ANOVAs).
Loftus's horizontal difference proposal has advantages, but
these appear naturally only if the retention function is an expo-
nential, which may or may not occur. Similarly, we may need to
divide our function into one component for initial learning and
one for retention (Bogartz, 1990b, Rubin, 1985),into one com-
ponent that reflects the nature of the retrieval task and one for
retention, or in any of a host of other ways depending on the
differences observed across conditions. Thus, it is most efficient
to wait until the results are examined to make such decisions.

The second reason for choosing the simplest empirical curve-
fitting approach is more subtle and concerns the nature of the

available data. Empirical retention plots are usually aggregates
over both many items and many participants. Ebbinghaus
(1885/1964), Jans and Catania (1980), Nelson and Wasser-
man (1978), Rubin (1982, 1989), White and McKenzie
(1982), and Wickelgren (1968) are some exceptions that do
not group over both dimensions simultaneously. However, be-
cause in most procedures the same item cannot be tested re-
peatedly with the same participant without providing addi-
tional retrieval practice, grouping over either participants or
items is necessary for most questions of interest. Moreover, in
many procedures, such as those involving learning to a crite-
rion or all of Bahrick's very-long-term studies, there are
multiple exposures to the material to be tested. Thus, an im-
plicit average over time is used, with the last time that material
was presented in an assumed learning period taken as the be-
ginning of the retention interval.

Mechanistic models predict what individual participants do
on individual trials (e.g., Staddon, 1993). The difference be-
tween such models and the heavily aggregated data at hand can
be large. Data are lost that would allow the model to separately
consider the time course of each presentation of a multiply pre-
sented item or differences among individual items or partici-
pants. In the extreme case, a set of all-or-none step functions for
individual items or participants could be summed to form any
of the aggregate functions considered here (for a review, see
Kausler, 1974, pp. 8-10, 153-158). Even if all individual par-
ticipants (or items) were described by the same function but
with different parameters, for some functions the resulting ag-
gregated function would not be the same one as the individual
participants' (Estes, 1956). Therefore, it seems more reason-
able initially to be satisfied with an empirical description that
could constrain theorizing of all kinds than to embark on a
search for a more complex theoretical framework that involves
assumptions that would not apply to all models.

Is There One Retention Function for All Conditions?

There is little reason to assume that retention functions will
differ or not differ along any particular dimension until existing
data and theory are examined. The approach used here is to
group the data sets along different dimensions guided by what
we already know about memory and to see if any groupings
produce functions that are more similar within the groups than
between them. The basic questions are whether there is one re-
tention function or many, and if there are many, what charac-
terizes the different kinds (Luh, 1922). If retention is viewed as
an observable, empirical phenomenon as opposed to an in-
ferred mental process (Bogartz, 1990a), then the answer to this
question depends on the function that is chosen as the best em-
pirical description. Different choices of a function could lead to
different conclusions for the same data. Nonetheless, in most
of the debate so far, regardless of theoretical positions on how
retention should be measured, the equation has either been as-
sumed to be y = b'g~"" or has been chosen to fit the particular
data set (Bogartz, 1990a, 1990b; Loftus, 1985a, 1985b; Loftus
& Bamber, 1990). If a retention function (or a set of retention
functions) could be chosen that fit a class of retention data, one
could return to this question using that function.

The particular question that has generated the most debate in
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recent years is whether retention functions differ with the
amount of learning (Bogartz, 1990a, 1990b; Loftus, 1985a,
1985b; Loftus & Bamber, 1990; Slamecka, 1985; Slamecka &
McElree, 1983; Wixted, 1990). Slamecka and McElree (1983)
examined the literature on the effects of degree of learning on
retention and found that

A fair summary of the appearance of forgetting curves from all

sources reviewed is thai they either had equal slopes or slopes that

varied directly with intercept levels. There were no slopes that var-

ied inversely with intercepts, meaning no cases where forgetting

was less at higher degrees of learning. Further where slopes varied

directly with intercepts, floor effects clouded the picture. This

leaves only the finding of equal slopes, (pp. 386-387)

Anderson and Schooler (1991), reanalyzing data from Hellyer
(1962) and Krueger (1929), arrived at a similar conclusion.
Rubin (1985) extended this finding to memory for prose. The
rank order of the units of text from most to least likely to be
recalled was constant over a range of times from immediate to
3-month recall. Thus, for items within the same passage, reten-
tion functions for different levels of initial learning do not cross.

A second dimension is whether the retention function used to
describe forgetting over intervals of up to 30 s is the same as the
retention function for longer intervals. What is at stake here is
whether short-term and long-term memory function the same
or differently (Wickelgren, 1973). Researchers have taken posi-
tions on this issue, arguing for the same (Wickelgren, 1974a) or
for different (Wickelgren, I974b) functions. With the switch
from a 30-s duration short-term memory to a 2-s duration ar-
ticulatory loop for working memory (Baddeley, 1986), much of
the theoretical impetus for this debate has dissipated, but the
empirical question remains as to whether the same or different
functions best fit retention at different intervals. A second mo-
tivation for considering different time intervals comes from
Bahrick's (1984) work on permastore, the claim that forgetting
of certain domains virtually stops after a tew years. Here the
contrast is not between time intervals less than and longer than
30s but between intervals less than and longer than a few years.

A third dimension is whether aspects of the population tested
affect the shape of the retention function, with age being the
factor most often considered. Most researchers report no age
difference (Fajnsztejn-Pollack, 1973; Hulicka & Weiss, 1965;
Morrison, Haith, & Kagan, 1980; Rubin, Wetzler, & Nebes,
1986; Wickelgren, 1975a) or at most small differences
(Giambra & Arenberg, 1993). The major effort to counter to
this general finding comes from Brainerd et al. (1990). To find
an exception, which was their stated goal (pp. 74-75), they
claimed one needs to fulfill five conditions: recall tests, less
memorable material, long retention intervals, learning to a cri-
terion of one or more errorless recalls of all items in a list, and a
Markov model to equate the degree of initial learning and mea-
sure retention. The first three conditions limit the generality of
the exception. The condition of learning a whole list to crite-
rion, which was initially used by Ebbinghaus (1885/1964).
causes known problems in that the more trials a participant
needs to reach criterion, the more overlearned are the first
learned items on the list (Guttentag, 1990; Rubin, 1995). Be-
cause children will take longer than adults to learn a list, this
causes a differential effect with age. The fifth condition of a Mar-

kov model is claimed to overcome this problem, but it requires
the use of a particular model to equate learning, and thus the
counterevidence depends entirely on the validity of the model.
Given these restrictions, the conservative conclusion to the ex-
isting data is that retention, as opposed to initial learning, is not
affected by age over the range of ages tested or is at most affected
under only specific conditions and assumptions.

Similar effects occur with changes other than age. Wickelgren
(1975b) found that mildly intoxicated students had decrements
in memory performance compared with those who were sober,
but they showed no change in the retention function or the rate-
of-forgetting parameter. Wickelgren even noted that the amne-
sic, H.M., had retention functions and slopes that were in the
normal range for times of up to 16s in one study (Wickelgren,
1968) and up to 12 min in another (Wickelgren, 1974a), al-
though H.M.'s data are noisy enough to hide a fairly large
difference.

A fourth dimension is the effect of changes in the material
learned and the learning process on the shape of the retention
function. Limited evidence again supports a simple outcome.
In reviewing the literature, Underwood (1966) found that once
lists are learned to the same level, the course of later retention
is not dependent on any other independent variable measured.
Similarly, Nelson and Vining (1978) showed that retention was
not affected by changing an orienting task from semantic to
structural as long as the level of initial learning was the same.
Although these findings say nothing about the shape of the re-
tention function, they imply that whatever the shape, it will be
constant in terms of both the function and its parameters over a
host of variables if the degree of initial learning is the same.

The fifth dimension is whether different test procedures used
to measure retention require different functions. The early ex-
perimental psychologists most thoroughly investigated this
question. When Burtt and Dobell (1925) compared recall and
recognition of advertising material, they determined that rec-
ognition yielded greater absolute values but that the two func-
tions approximated each other. Luh (1922) had participants
learn lists of words to compare the methods of anticipation, re-
learning, written reproduction (i.e., recall), recognition, and
reconstruction of the serial order given the items. Relearning,
measured in percent savings, fell much less rapidly at longer
time intervals than the other measures, resulting in a differently
shaped plot. Tsai (1924) determined that savings measured in
terms of time, trials to criterion, or number of errors were sim-
ilar, being affected only by the value of the initial amount re-
membered. In summary, different measures of relearning pro-
duce the same retention function, but this function is different
from that produced by recall. All other standard testing proce-
dures, however, appear to yield plots with the same shape as that
of recall.

What Dependent Measure Is Best?

It is possible to use different dependent measures with the
same testing procedures. Converting all data sets to many pos-
sible dependent measures to allow a full study of this issue
would be useful, but it is beyond the scope of this article. How-
ever, eventually some transformation of either the data or the
theoretical predictions will be needed. In particular, the most



100 YEARS OF FORGETTING 739

common dependent measure reported, percentage correct, can-
not be a measure of underlying memory strength in most
models. At a minimum it fails to distinguish degrees of over-
learning at 100% correct and degrees of what might be left
atO%.

The second most common measure after percentage correct
is d', which is used to report many studies of recognition mem-
ory, d' is a measure of sensitivity from statistical decision theory
(Green & Swets, 1966). It is analogous to a t test in that its
numerator is the difference of the means of two distributions
and the denominator is a measure of the standard deviation of
the distributions. The data used to estimate the means of the
distributions are the probabilities of saying that a word that oc-
curred earlier in an experiment when it did occur (i.e., the prob-
ability of a hit), p( hit), and the probability of saying that a word

that occurred earlier in an experiment when it did not (i.e., the
probability of a false alarm), p(fa). Two methods are used in
memory experiments to transform the p(hit) and p(fa) mea-
sures to a scale with a unit standard deviation so that they can
be subtracted to yield d'. In the simplest method, p = .5, which
is the location of the mean of the underlying distribution, is sub-
tracted from both p(hit) andp( fa). These values are converted
to normal deviate scores, or z scores—z(hit) and z(fa)—and
subtracted from each other to produce d'. In the more complex
method, memory operating characteristic curves are formed by
obtaining not only yes-no decisions for each word presented for
recognition but also confidence ratings. A p(hit) and p(fa) for
each level of confidence is plotted on double-probability paper
with normal deviate scales, and d' is determined graphically

(see Wickelgren, 1972, for more details).
In some memory experiments, such as those using continu-

ous recognition, the false-alarm rates are for items not seen be-
fore, and thus they have no retention interval. Researchers using
d' for such experiments therefore assume that the false-alarm
rate does not change with retention interval; that is, for exam-
ple, that participants do not relax their criterion when they
think that an item occurred a long lime ago. Thus the level of
p( fa) used is the same for all retention intervals, and changes in
d' must be due to changes in p(hit) or in the simpler method
described, z(hit). If the transformation from p(hit) to z(hit)
were linear, then d' would be a linear transformation of percent-
age correct. Over the range of p(hit) = 15% to 85%, this is a
fair approximation. In fact, Wixted and Ebbesen (1991), whose
recognition-experiment points all fell in this range, found that
percentage correct and d' yielded the same functions. At more
extreme values, small changes in proportion correct yield large
changes in z scores and thus in d'. Thus, one might expect plots
fit to d' and proportion correct to differ most for y values near
0% and 100%.

Another common dependent measure is log d, which is
used in studies of animal discrimination. Log d is the
log [/>(correct)/p( wrong)] averaged over the two stimuli of the
discrimination experiment. If the animal makes a choice on
each trial, it becomes log[p(correct)/( 1 — p(correct)], which
is the same as the log of the odds measure introduced indepen-
dently into the literature by Anderson and Schooler (1991).
The measure has useful properties for animal research and also
can be seen as a variant of d' (White, 1985; White & McKenzie,
1982). The studies using laboratory animals as subjects tend to

report their data in detail, and we can therefore report analyses
based on proportion correct to allow a comparison with other

studies.
Anderson and Schooler (1991) have used an odds measure

equal to p/( 1 — p) with empirical success. Their measure has

advantages in terms of their theory and lets the dependent mea-
sure go to infinity as ( approaches zero as needed by the two-
parameter logarithmic and power functions.

Bahrick (1965) proposed the ebb as a unit based on percent-
age correct. His argument was as follows. Recall or recognition
data yield a dichotomy of remembered or not remembered.
The proportion remembered represents the proportion of
memories that have a strength above a threshold. The observed
retention function for percentage or proportion correct depends
not only on how these unobserved, inferred strengths weaken
with time, but also on the shape and variance of their distribu-
tion and the position of the threshold relative to the distribution
at t = 0. Without added assumptions, the added factors about
the underlying strength cannot be known. If the weak assump-
tion is made that the distribution is normal, then normal devi-
ate scores can be used to assess the position of the mean strength
from the proportion correct scores, as is done in estimating d'.

In fact, the ebb measure can be seen as the half of the d' measure
based on hits. Because of the shape of the normal distribution,
the ebb measure provides a transformation that separates per-
centage correct scores near 0 and 100% much more than scores
near 50%. Bahrick's ebb measure was not adopted here because
of the desire to first describe the data with as few assumptions
or transformations as possible, but like d', log d, and the odds
ratio, it is a reasonable first step in going from the observed data
to the realm of underlying process needed to evaluate proposed
theoretical mechanisms.

The d', ebbs, and odds ratio can have serious measurement
problems for most psychological data. In retention experi-
ments, changes of .01 in probability are hardly ever reliable.
That is, an observed proportion correct of .99 will result in a
value of .98 or 1.00 on replication, with a probability not much
lower than that of obtaining the original value of .99. Yet the
odds measure can vary dramatically with .01 changes that occur
nearp = 1.00. The odds forp = .50, .51, .52, and .53 go from
1.00 to 1.04 to 1.08 to 1.13 in small, nearly uniform steps so
that a random change among them on replication would not
greatly alter a curve fit. In contrast, the odds for p = .97, .98,
.99, and 1.00 go from 32 to 49 to 99 to infinity. The nonlinearity
is less important in the log d measure used with delayed match-
ing to sample in animals (e.g., White, 1985), because in these
studies individuals and groups rarely approach extreme levels
of performance. But where the probability of retention ap-
proaches 1.00 (or 0.00 for d' and the log odds ratio), care must
be taken to ensure that the confidence intervals around the
points are reasonable for the transformed values. If this is not
possible, the empirical values can be left as percentage correct,
and the theoretical values in terms of d' odds, or ebbs can be
transformed into percentage correct values.

Other dependent measures, including savings (Ebbinghaus,
1885/1964; Finkenbinder, 1913; see Bahrick, 1965, for a
discussion) and discrimination index (Nelson & Wasserman,
1978). are each used in one or more studies but, except for
savings, do not provide enough data for comparisons.
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In summary, the studies to date indicate that aspects of the
participant population and materials have little effect on the
shape of the retention function if the level of initial learning is
controlled. The testing procedures used do have an influence
but, except for the savings, these appear to be relatively minor
in practice. If this conclusion holds on closer investigation and
if it applies to other factors, a relatively simple empirical de-
scription may be available in which the same function (or set
of functions) with the same parameters holds over a range of
conditions once the level of initial learning is controlled. Trans-
formations of the data from percentage correct to d', ebbs, log
d, or odds ratio affect curve fitting to various degrees, but these
mathematical transformations should be viewed separately
from the procedures used to produce the data. Moreover, the
relation of any of these observed measurements and underlying
memory strength cannot be decided outside the context of a
theory. With full reporting of the data, they can be applied at
will depending on the psychometric properties of the data and
the theoretical disposition of the researcher.

The Data Sets

General Criteria and Procedures

The literature was searched to assemble a sample of data sets'
that each had five or more data points consisting of a measure
of the amount remembered as one value and the time since
learning as a second value and that fit at least one of the two-
parameter functions tested with a correlation of .90 or greater.
These data sets are organized in Tables 1 to 9 according to major
divisions that might cause differences in their retention func-
tions. Other important features of the data sets are listed along
with identifying information so that the reader can entertain
some alternative hypotheses from the tables and can formulate
others by examining the full description of the studies in their
original publications. Data sets in Tables 1 -9 are labeled with
the number of the figure or table in the original article from
which the data were extracted. If more than one data set was
taken from the figure or table, then we added a one- or two-letter
code to distinguish between the specific data sets. Some of these
codes may seem opaque here but are easier to interpret in the
context of the original articles. In a few cases two data sets rep-
resented the same conditions but were tested in terms of two
different tasks (e.g., Bahrick, 1984, Figure 6). In this case, the
labels arc identical, and the data sets can be distinguished by the
task column.

We did not convert the data sets to common units. The ex-
ceptions are that all values for percentage correct, proportion
correct, and number correct are reported as percentage correct.
The units of time are those reported in the original studies. We
kept the original units to allow the reader to more easily match
and compare our description of the data with that in the original
articles, to avoid the awkwardness of having to report values
tliat are difficult to understand, such as 1.46 X 109 s for the
46.33-year retention interval of Bahrick (1983), and because
the unit change does not affect the r2 values reported.

There are two exceptions to our attempt to be as inclusive as
possible. First, we did not search for data sets that had a longest
retention interval of shorter than a few seconds. Second, we did

not include studies that explicitly studied reminiscence because
such studies often use repeated testing of participants and score
performance differently from most retention studies (see Roe-
diger & Payne, 1982, and Wheeler & Roediger, 1992, for
reviews). For example, Ballard (1913) obtained reminiscence
in part because, for each retention interval, he counted answers
correct if students answered them correctly in that or in previ-
ous retention intervals.

Data Sets From the Laboratories of Bahrick and

Wickelgren

Two laboratories were responsible for many of the data sets.
We list these separately to assess how much variability can be
expected among studies performed in the same manner. The
variability within each laboratory provides a baseline against
which differences among laboratories and techniques can be
compared. For these purposes it is fortunate that the two labo-
ratories differ so greatly in their methods. We cannot do justice
to the amount of effort and importance of the work done in
these two laboratories, or in the studies from other laboratories
that enter as a line or two in a table here. Rather we provide just
enough information to allow interpretation of the results and to
provide concrete examples of the kind of studies involved.

The research from Bahrick's laboratory reported here in Ta-
ble 1 is mostly of material learned outside the laboratory while
participants were growing up in the United States and then later
tested, usually under controlled conditions. A range of materials
has been used, including the names and faces of high school
classmates, information about the layout of the city in which
college was attended, and Spanish learned in school. Dependent
measures varied as needed to test the material and included free
and cued recall, recognition, matching names and locations or
names and faces, and Spanish reading comprehension. As with
many laboratory studies, different participants were tested at
each retention interval, but here the participants were not ran-
domly assigned. To produce a large range of retention intervals,
typically from 3 months to 50 years, the age of the participant
at the time of testing and retention interval were confounded.
For instance, all participants learned the names of their high
school classmates in high school. Therefore participants tested
at the longer retention intervals were older than those tested at
the shorter retention intervals. In many laboratory studies of
retention, the material is presented once in the laboratory and
tested once in the laboratory, either for its contents or for the
fact that it occurred within the laboratory session. In contrast,
in the Bahrick studies the material was presented and tested
many times in the course of life outside the laboratory and then
tested once in a laboratcry-like situation.

The research from Wickelgren's laboratory reported in Table
2 provides a contrast in that it uses a procedure and dependent
measure Bahrick did not use, usually uses the same participants
at all time intervals, and has its longest retention intervals
shorter than most of Bahrick's shortest retention intervals. In a
typical study, participants were presented with a series of words,

' A computer-readable copy of the data sets is available from David

C. Rubin.
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Table 1

Descriptions of Data Sets From Bahrick's Laboratory With Fits to Selected Functions

Range

Study'

Bahrickctal.(l975)
4
4n

Bahrick(l983)
8
8
8
9ca
9ca
9ci
9ci
9ci
9ca
10s
10s
lOi
101
Ida

Bahrick(1984)
6sv
6sv
6ev
6ev

6g
6g
6i
6i
6

M

Task

FR
MG

FR
MG
CR
FR
CR
CR
FR
MG
MG
FR
CR
FR
CR
FR

CR
RG
CR
RG
CR
RG
CR
RG
WO

Time

3 mo-48 y
3 mo^lS y

3 d-46 y
3 d-46 y
3 d-46 y
3 d-46 y
3 d-46 y
3 d-46 y
3 d-46 y
3 d-46 y
3 d-46 y
3 d-46 y
3 d !̂6 y
3 d-46 y
3 d-4(, y

3 d-46 y

. mo-50 y

. mo-50 y

. mo-50 y

. mo-50 y

. mo-50 y

. mo-50 y

. mo-50 y

. mo-50 y

. mo-50 y

% correct

47-20
90-59

100-31
100-23
100-7
100-39
100-28
100-1
100-16
100-45
100-59
100-15
100-20
100-35
100-36
100-43

57-22
62-45
66-21
69-47
57-14
56-22
12-6
39-16
32-10

Lin

.90

.89

.20

.41

.33

.67

.57

.53

.69

.56

.79

.16

.22

.59

.47

.79

.39

.19

.33

.36

.47

.45

.27

.60

.59

.50

Hyp

.87

.85

.73

.92

.96

.88

.92

.92

.97

.80

.88

.93

.84

.78

.73

.88

.53

.21

.56

.40

.79

.52

.31

.73

.64

.74

f fit of selected functions

Exp

.89

.87

.43

.76

.88

.78

.78

.80

.88

.68

.84

.95

.69

.69

.58

.84

.45

.20

.41

.38

.62

.48

.29

.66

.62

.66

Log(m)

.73(3.9)

.55(4.7)

.86(9.3)

.92(10)

.94(11)

.85 (7.2)

.88(9.1)

.91(11)

.82(9.6)

.73(7.1)

.73(4.5)

.83(12)

.89(10)

.87(7.3)

.85(7.7)

.80(5.9)

.90(1.3)

.75 (.32)

.89(1.6)

.80 (.39)

.96(1.6)

.90 (.54)

.81 (.19)

.95 (.38)

.81 (.3.3)

.84

Pwr

.69

.52

.84

.85

.91

.78

.79

.82

.71

.66

.68

.85

.92

.82

.80

.74

.88

.77

.88

.79

.92

.90

.83

.91

.78

.80

EP

.83

.75

.74

.93

.95

.96

.95

.93

.97

.86

.95

.92

.84

.88

.84

.95

.72

.40

.72

.60

.88

.69

.50

.88

.75

.82

HP

.80

.72

.88

.95

.95

.97

.96

.92

.92

.88

.95

.88

.92

.91

.90

.94

.83

.44

.86

.64

.97

.76

.56

.94

.78

.85

Hi

.90

.94

.98

.95

.98

.97

.96

.93

.97

.87

.95

.95

.92

.91

.90

.95

.93

.87

.97

.84

.97

.91

.88

.97

.83

.93

Note. The participants were adults, and 9 points were fit. Lin = linear; Hyp = hyperbolic; Exp = exponential; Log - logarithmic; m = slope
parameter; Pwr = power; EP = exponential power; HP = hyperbolic power; Hi = the highest of the 105 functions fit; CR = cued recall; FR - free
recall; MG - matching; RG = recognition, WO = word order; mo = month; d = day; y = year.
a Subentries are the number of the figure or table in the study from which the data were extracted. If more than one data set was taken, a one- or two-
letter code was added to distinguish them from each other.

one every few seconds. They judged whether the word presented

was also presented earlier in the experiment. By varying the

spacing between repetitions of a word in this continuous recog-

nition task, retention intervals of between 1 s and 2 hr were

typically obtained in a single session, with intervals of up to 2

weeks achieved by having additional sessions. The participants

were often undergraduates, but as mentioned earlier, people of

different ages; an amnesic patient (H.M.), and students while

sober or intoxicated were also tested. All results are reported in

terms of the signal-detection measure, d'. Unlike Bahrick's tests

for the content of semantic memory of materials learned over

many presentations, Wickelgren's test was for the episodic

memory of whether there was a previous presentation of a well-

known word within the experimental context.

Data Sets Sorted by Task and Species

The remaining data sets are grouped thematically rather than

by laboratory. Recognition and recall data sets are reported in

Tables 3 and 4. Savings and sensorimotor tasks are reported in

Tables 5 and 6. Two recognition studies require added clarifi-

cation. Luh (1922) presented recognition data in three separate

tables. However, the recognition data from the 100% learning

condition in his Table 15 were not included in our analysis be-

cause they were the same values as the data for the second set of

experiments in his Table 11. In Spitzer (1939), participants

were tested two and sometimes even three times. Although re-

peated testing did occur, recognition monotonically decreased,

and we included the data.

Studies of retention in animals are reported in Table 7. The

most common procedure for these studies is delayed matching

to sample. Subjects indicate that one of two choices represents

the most recently presented target stimulus. Variants exist, but

in one form, animals are presented with a target stimulus (e.g.,

either vertical or horizontal lines) on a central key. After a brief

delay, comparison stimuli (i.e., horizontal and vertical lines)

appear on left and right keys, and the animal is rewarded for

indicating which occurred earlier. In delayed symbolic match-

ing to sample, the stimulus present at testing is not identical to

the one i nitially presented but either stands for it or notes a pat-

tern in it. These procedures and their variants have a variety of

names including delayed paired comparison and delayed condi-

tional discrimination. In one case we changed the dependent

measure because the one the experimenters reported increased
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Table 2

Description of Data Sets From Wickelgren 's Laboratory With Fits to Selected Functions

Method

Study1

Begg& Wickelgren (1974)
lal
lah
Ibl
Ibh
21
2h

Fajnsztejn-Pollack (1973)
la
It
Is
If
2a
2t
2s
2f
3a
3t
3s
3f

Wickelgren (1968)
Isdt
I t

Wickelgren (1972)
Isw
Itcdw
1
3h
3m
31
51
5f
5s

6h
61
7h
71

80

8to
8tt
8tn

Wickelgren (1974a)
2n

Wickelgren (1975a)
la
le
Ic

Wickelgren (1975b)
Is
la

M

P

u
u
u
u
u
u

H
H

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

u

u
o
c

a
a

RI

14
14
13
13
13
13

5
5
5
5
5
5

5
5

5
5

5
5

6
6

8
6
6
8
8
8

12
12
12
15
15
5
5
7
5
6
6

12

10
10
10

12
12

Rant

Time

7.5 s-2 hr
7.5 s-2 hr
7.5 s-2 hr
7.5 s-2 hr
15s-2hr
1 5 s-2 hr

2-49 w
2-49 w
2-49 w
2-49 w
2-49 w
2-49 w
2-49 w
2-49 w
2-49 w
2-49 w
2^19 w
2-49 w

1-6 s
.25-4s

.9-23 s

.9-12 s

.9-12 s

.9-23 min

.9-23 min

.9-23 min
5 min-7 hr
5 min-7 hr
5 min-7 hr
5hr-14d
5hr-14d
10-1 10 w
10-1 10 w
1-60 min
3-61 min
4-62 min
12-70 min

7-700 s

2- 120 min
2- 120 min
2- 120 min

2m-l4d
2 m - l 4 d

,e r2 fit of selected functions

d'

5.0-1.8
4.4-23
4.4-1.2
4.6-1.9
1.8-0.4
.6-0.4

4.0-1.4
3.3-1.0
2.6-0.6
2.7-0.4
3.0-0.9
2.4-0.6
.8-0.2
.7-0.2
.8-0.2
.2-0.2
.3-0.2

0.9-0.0

2.1-0.6
1.5-0.4

4.3-2.8
3.2-2.0
1.4-0.5
6.0-5.0
4.0-2.6
3.2-1.8
4.2-2.2
3.6-1.6
2.4-0.9
2.7-0.7
1.4-0.4
2.8-13
1.0-0.6
1.8-1.8
3.2-1.8
3.0-1.4
3.2-2.0

4.5-2.1

2.2-1.0
1.4-0.7
0.8-0.3

2.8-0.2
2.6-0.2

Lin

.68

.60

.69

.76

.57

.63

.94

.92

.90

.93

.69

.61

.78

.84

.57

.27

.43

.46

.87

.83

.68

.78

.73

.51

.54

.68

.78

.82

.87

.75

.55

.83

.76

.66

.76

.86

.75

.73

.58

.44

.38

.48

.48

.68

Hyp

.81

.71

.76

.85

.81

.80

.97

.96
1.0
.94
.96
.91
.99
.99
.94
.82
.97
.99

.92

.65

.78

.85

.90

.54

.66

.76

.84

.86

.92

.88

.80

.96

.86

.86

.85

.91

.78

.84

.72

.57

.47

.90

.92

.84

Exp

.76

.68

.72

.81

.68

.72

.96

.96

.98

.96

.86

.76

.96

.96

.82

.64

.88

.99

.95

.73

.73

.82

.82

.52

.59

.72

.82

.85

.90

.82

.68

.90

.82

.76

.80

.88

.76

.79

.65

.50

.42

.78

.82

.79

Log (m)

.89 (.42)

.83(35)

.82 (.41)

.83(35)

.92 (.21)

.85 (.17)

.94 (.75)

.95 (.67)

.99 (.63)

.94 (.66)

.97 (.70)

.92 (.52)

.99 (.49)
1.0 (.44)
.88 (.45)
.60 (.26)
.80(34)
.83(37)

.94 (.95)

.51(34)

.95 (.47)

.86 (.61)

.93(36)

.83 (.21)

.81 (.57)

.82 (.43)

.88 (.43)

.87 (.44)

.95(30)

.93 (.45)

.84 (.28)

.98 (.66)

.93 (.18)

.97 (.40)

.98 (.46)

.96(39)

.85 (.53)

.85 (.49)

.89 (.28)

.78(.18)

.66 (.09)

.94 (.26)

.95 (.23)

.88

Pwr

.85

.80

.78

.78

.92

.82

.88

.88

.91

.82

.98

.99

.96

.94

.97

.84

.98
1.0

.90

.43

.97

.85

.96

.84

.83

.81

.87

.85

.92

.90

.85

.99

.94

.97
1.0
.95
.86

.82

.93

.84

.74

1.0
.99
.89

EP

.89

.82

.84

.91

.86

.84

.97

.96

.99

.94

.96

.91
1.0
.99
.92
.73
.93

1.0

.93

.59

.88

.86

.91

.68

.74

.80

.88

.88

.95

.91

.81

.97

.90

.92

.93

.95

.82

.87

.80

.67

.55

.90

.92

.87

HP

.91

.84

.85

.91

.92

.86

.93

.93

.95

.88

.99

.98

.96

.96

.98

.88

.99

.98

.88

.69

.92

.87

.96

.70

.79

.82

.89

.88

.95

.93

.86

.99

.93

.96

.97

.96

.84

.87

.87

.76

.62

.97

.98

.90

Hi

.91

.84

.85

.91

.92

.86

.98

.98
1.0
.98
.99

1.0
1.0
1.0
.98
.96

1.0
1.0

.95

.99

.98

.88

.96

.93

.84

.82

.89

.88

.96

.93

.86

.99

.94

.97
1.0
.96
.89

.87

.95

.91

.88

1.0
.99
.94

Note. The task was always recognition. P = participants; RI = retention interval (number of points fit); Lin = linear; Hyp = hyperbolic; Exp =
exponential; Log = logarithmic; m - slope parameter; Pwr = power; EP - exponential power; HP = hyperbolic power; Hi = the highest of the 105
functions fit; a = adults; c = children; H = the amnesic, H.M.; o = older adults; u = undergraduate students; w - weeks; d = days.
1 Subentries are the number of the figure or table in the study from which the data were extracted. If more than one data set was taken, a one- or two-
letter code was added to distinguish them from each other.

as retention decreased. After training animals to transverse a

runway more quickly when a discriminative stimulus signals

food, S+, than when it signals no food, S ~, Alescio-Lautier and

Soumireu-Mourat (1986) used the sum of the S' times divided

by the sum of the S + times plus the S times as their dependent

measure. However the S* times increase as the animal treats the

S+ and S~ more equally. Instead we report as the dependent

measure the difference between the S+ and the S~ times, which
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Table 3

Description of Recognition Data Sets With Fits to Selected Functions

Method

Study-

Burtt &Dobcll( 1925)
1

Fioravanti & Di Cesare ( 1 992)
2v

Gehringetal.(1976)
2p
2w
2km

Glasnappetal. (1978)
2kn
2cn
2an

Luh(1922)
6
11

15o
15s
15t

Spitzer(1939)
la
lu

Squire (1989)
la

Strong (191 3)
3

M

P

u

a

u
u
u

u
u
u

g
g
g
g
g

c
c

a

a

RI

5

6

6
6
5

5
5
5

5
5
7

5
5

7
7

15

14

Range

Time

5 min-4 w

2-48 hr

10 min-3 mo
10 min-3 mo
4-16 mo

4-16 mo
4-16 mo
4-16 mo

20 min-48 hr
20 min-48 hr
20 min-48 hr
20 min-48 hr
20 min-48 hr

5 min-63 d
5 min-63 d

1 y - I S y

1 5 s-7 d

% correct

88-51

82-79

74-20
52-14
66-58

65-48
73-60
44-50

98-72
96-.79
98-73
93-62
73-26

52-42
52-25

77-58

92-57

Lin

.90

.58

.61

.53

.97

.80

.20

.81

.89

.78

.97

.96

.91

.74

.40

.88

.28

.72

Hyp

.97

.59

.84

.84

.98

.82

.23

.82

.93

.82

.97

.97

.91

.78

.59

.92

.33

.78

i2 fit of selected functions

Exp

.94

.59

.73

.69

.98

.81

.20

.82

.91

.80

.97

.97

.92

.76

.48

.90

.30

.75

Log(m)

.85(3.8)

.89(1.4)

.99 (5.7)

.99 (4.2)
1.0 (.56)

.85(1.0)

.36 (.47)

.67 (.17)

.90 (5.6)

.90 (4.0)

.87(7.0)

.91(6.2)

.92 (8.4)

.75 (.22)

.98 (.70)

.96(7.9)

.94(2.9)

.87

Pwr

.83

.89

.95

.95
1.0

.85

.39

.68

.88

.89

.85

.88

.89

.73

.97

.95

.92

.85

EP

.98

.75

.93

.91
1.0

.84

.30

.76

.97

.91

.94

.98

.94

.94

.79

.96

.60

.85

HP

.96

.76

.98

.98
1.0

.85

.32

.77

.97

.92

.93

.98

.93

.95

.88

.96

.67

.87

Hi

.98

.89

.99

.99
1.0

.85

.85

.87

.97

.92

.97
1.0
.96

.95

.98

.96

.95

.95

Note. The task was always recognition. P = participants; RI = retention interval (number of points fit); Lin = linear; Hyp = hyperbolic; Exp =
exponential; Log - logarithmic; m - slope parameter; Pwr - power; EP = exponential power; HP = hyperbolic power; Hi - the highest of the 105
functions fit; a = adults; c = children; g = graduate students; u = undergraduate students; w - weeks; mo = months; d - days; y = years.
a Subentries are the number of the figure or table in the study from which the data were extracted. If more than one data set was taken, a one- or two-
letter code was added to distinguish them from each other.

is abbreviated as run time in Table 7. Furthermore, although

most animal researchers present retention data using group

means, a few studies included data for individual subjects (Jans

& Catania, 1980; Nelson & Wasserman, 1978; White & Mc-

Kenzie, 1982). To make these studies consistent with the others

and because individual data were often too noisy to meet our

requirement that one fit be at least r = .9, we averaged data from

the individual subjects for our analyses.

The miscellaneous category of Table 8 contains several data

sets that require explanation. Bean (1912) and Luh (1922)

used a reconstruction procedure. In this task, participants first

learned a list of words. Next, they were given cards in a scram-

bled order with the words written on them. The participants

were scored on the extent to which they reproduced the order

of the words presented during learning (see Serra & Nairne,

1993, for a recent application of this method). Conway, Cohen,

and Stanhope (1991) used a grouping task in which partici-

pants categorized cognitive psychology terms of similar mean-

ings. Rovee-Collier (1993) measured retention using the kick-

ing rate of infants to the sight of a mobile divided by their kick-

ing rate immediately after training with the mobile. Although

implicit memory is a major area of research in which strong

claims have been made about retention (see Roediger & Mc-

Dermott, 1993, for a review), the completion data sets provided

by Sloman, Hayman, Ohta, Law, and Tulving (1988) are the

only implicit memory data that met our criteria for inclusion.

These researchers used fragment completion procedures with

percentage correct as the dependent measure. An additional

sixth retention interval was included in their Experiment 2, but

we did not include it because it was based on much less data

than the earlier five.

Several researchers adopted a dating procedure. Performance

was measured by the absolute number of days away from the

target date that participants dated events. Such measures in-

crease over time because amount of dating error increases over

time. Two dating data sets were included for Thompson (1982)

for the same experiment because it had two different dependent

measures. The mean of each participant's median dating error

is the dependent measure in Thompson (1982, Experiment 2)

and the mean percentage of events dated correctly is used in

Thompson (1982, Experiment 2). Finally, MacLeod (1988)-

4ns was included in the miscellaneous category because Mac-

Leod (1988) used a mix of recognition and savings. The data

set that met our criteria is the percentage of pictures recognized

that were forgotten during the retention interval but relearned

in one trial.

The autobiographical memory data sets reported in Table 9

are included here because they have been claimed to be reten-
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Table 4

Description of Recall Data Sets With Fits to Selected Functions

Method

Study'

Bean (1912)
6

Bregman(l968)
las
lag
lap
lac
Ibs
Ibg
Ibp
Ibc

Burtt&Dobell(l925)
1

Conwayetal. (1991)
2c

Fioravanti & Di Cesare (1992)
2s

Krueger(1929)
2o
2of
2t

Lavach(1971)
11

Longmore & Knight ( 1 988)
Ic
Id
I k

Luh(1922)
6
6
11
15o
15s
15t

Murdock(1961)
I c
Iw
Iwt
3z
3lh
3s
3n
3t

Nelson et al. (1980)
la

Peterson & Peterson (1959)
3

Rubin(1989)
1

Runquist(1983)
Ht
lot
Itu
lou

Schonfield(1969)b

lya
lea

Staatsetal. (1970)
IP
In

Turvey&Weeks(1975)
1
3s
3r

P

u

u
u
u
u
u
u
u
u

u

a

a

g
g
g

u

a
a
a

g
g
g
g
g
g

u
u
u
u
u
u
u
u

u

u

a

u
u
u
u

a
a

u
u

u
u
u

Task

SR

CR
CR
CR
CR
CR
CR
CR
CR

CR

CR

SR

AR
AR
AR

CR

FR
FR
FR

AR
SR
SR
SR
SR
SR

FR
FR
FR
FR
FR
FR
FR
FR

CR

FR

FR

CR
CR
CR
CR

FR
FR

CR
CR

FR
FR
FR

RI

6

8
8
8
8
8
8
8
8

5

12

7

6
6
6

5

5
5
5

5
5
5

7
5

5

6
6
6
6
6
6
6
6

5

6

11

6
6
6
6

5
5

5
5

6
5
5

Range

Time

1-28 d

3-288 s
3-288 s
3-288 s
3-288 s
3-288 s
3-288 s
3-288 s
3-288 s

5 min-4 w

3-125 mo

5 min-48 hr

1-28 d
1-28 d
1-28 d

5 min-30 d

.l-18s

.l-18s

.l-18s

20 min-48 hr
20 min-48 hr
20 min-48 hr
20 min-48 hr
20 min-48 hr
20 min-48 hr

1-ISs
l - l8s
1-ISs
l - l8s
1-ISs
l-18s
l-18s
l - l8 s

1-7 w

3-1 5s

.l-2.3y

20min-21d
20min-21 d
20min-21d
20min-21d

.5-18 s

.5-l8s

5 min-4 w
5 min-4 w

l-25s
2-30 s
2-30 s

% correct

89-79

80-25
91-7
74-14
70-3
92-14
88-17
86-12
78-1

43-2

60-75

97-68

26-0
38-2
49-3

36-1

100-45
100-7
100-13

68-10
88-27
91-40
88-31
86-25
68-14

94-16
98-84
93-23

100-91
100-82
98-80
98-83
97-82

42-14

53-5

37-1

100-33
98-57
89-17
75-21

93-18
66-10

30-7
41-7

92-27
91-42
68-51

Lin

.62

.54

.60

.50

.44

.47

.53

.50

.28

.59

.60

.91

.43

.65

.69

.76

.82

.82

.75

.78

.84

.78

.80

.92

.84

.79

.92

.74

.90

.63

.92

.82

.80

.82

.92

.85

.93

.65

.63

.41

.61

.61

.92

.94

.59

.47

.47

Hyp

.64

.86

.87

.89

.96

.92

.84

.85

.96

1.0

.81

.94

.97

.99

.98

.80

.97

.98

.99

.96

.96

.90

.97

.97

.94

.96

.93

.97

.90

.69

.95

.86

.83

.94

.90

.93

.98

.80

.94

.58

.93

.91

.96

.96

.89

.50

.70

i2 fit of selected functions

Exp

.63

.64

.75

.78

.94

.78

.73

.67

.98

.99

.70

.93

1.0
.98
.98

.78

.91
1.0
.97

.90

.91

.84

.91

.96

.90

.97

.93

.92

.90

.66

.94

.84

.82

.94

.98

.93

.98

.70

.88

.81

.79

.90

.97

.98

.82

.49

.55

Log(m)

.92(3.3)

.92 (.13)

.90 (.17)

.88 (.15)

.86 (.15)

.87 (.17)

.89 (.14)

.86 (.15)

.68 (.14)

1.0 (4.7)

.93(9.5)

.69(2.6)

.81(1.2)

.96(1.4)

.97(1.7)

.84(.18)

.92(3.0)

.94(5.1)

.98 (4.8)

.99(11)

.99(13)

.98(11)

.98 (20)

.96(11)

.99(10)

.95 (30)

.75(5.2)

.95 (26)

.84 (.03)

.84 (.08)

.98 (.06)

.93 (.06)

.86 (.06)

.94(15)

.97 (.29)

.95(10)

.73(8.7)

.65 (6.9)

.95(11)

.86(9.2)

.92(22)

.91(17)

.84 (.29)

.81 (.30)

.86 (.23)

.72 (.05)

.76 (.20)

Pwr

.92

.94

.94

.91

.93

.97

.95

.95

.96

.99

.95

.67

.98

.97

.95

.82

.87

.86

.92

.97

.94

.97

.96

.91

.96

.89

.73

.93

.84

.84

.97

.92

.86

.93

.89

.88

.58

.56

.85

.81

.94

.90

.80

.77

.85

.75

.82

EP

.80

.88

.88

.88

.95

.89

.86

.84

.96

1.0

.87

.92

.99
1.0
.99

.84

.98

.97

.99

.98

.99

.96

.98

.98

.97

.96

.87

.96

.91

.79

.99

.93

.88

.94

.94

.94

.94

.82

.98

.88

.94

.93

.94

.93

.88

.60

.72

HP

.81

.94

.94

.92

.92

.97

.94

.94

.93

.99

.93

.91

.94

.95

.94

.83

.96

.90

.95

.98

.99

.98

.98

.97

.98

.89

.86

.94

.91

.81
1.0
.94
.88

.90

.84

.88

.86

.82

.98

.85

.92

.83

.90

.87

.86

.63

.81

Hi

.93

.96

.94

.93

.96

.97

.95

.96

.98

1.0

.95

.95

1.0
1.0
1.0

.87

.98
1.0
.99

.99

.99

.99

.98

.99

.99

.98

.93

.97

.93

.84
1.0
.94
.88

.95

1.0

.96

.98

.82

.98

.99

.95

.95

.98

.98

.89

.89

.88
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Table 4 (continued)

Method

Study"

Waugh& Norman (1965)
lo
I f

Wixted&Ebbeson(1991)
I f
lo

M

P

u
u

u

u

Task

CR
CR

FR
FR

RI

9

9

5
5

Range

Time

1-125

.5-18s

2. 5-40 s
2. 5-40 s

% correct

95-1
93-14

77-55
58-40

Lin

.87

.88

.76

.75

.71

Hyp

.93

.81

.82

.83

.89

r2 fit of selected functions

Exp

.97

.93

.79

.79

.86

Log(m)

.95 (.35)

.90 (.45)

.98 (.08)

.97 (.06)

.89

Pwr

.86

.56

.99

.98

.88

EP

.94

.85

.91

.91

.91

HP

.85

.71

.94

.94

.90

Hi

.97

.98

1.0
.99
.96

Note. P = participants; RI = retention interval (number of points fit); Lin = linear; Hyp = hyperbolic; Exp = exponential; Log = logarithmic; m =
slope parameter; Pwr - power; EP - exponential power; HP - hyperbolic power; Hi = the highest of the 105 functions fit; a = adults; g = graduate
students; u = undergraduates; AR = anticipation recall; CR = cued recall; FR = free recall; SR = serial recall; d ~ days; w - weeks; mo = months;
y = years.
" Subentries are the number of the figure or table in the study from which the data were extracted. If more than one data set was taken, a one-or two-
letter code was added to distinguish them from each other.
b Cited in Kausler (1982, p. 434).

tion functions (Conway & Rubin, 1993; Rubin, 1982; Rubin,

Wetzler, & Nebes, 1986). Each has different methods and anal-

yses, but in all of them undergraduates or older adults were

asked to recall autobiographical memories from their lives and

later were asked to date them. These memories were then sorted

into time bins, such as decades, or 20 equal intervals on a loga-

rithmic scale spanning the participants' lives, or the time mark-

ers used in English (e.g., 1 to 24 hrs, 1 to 7 days, . . . 1 to 70

years). For each bin in the resulting histogram, two measures

were obtained: the number of memories per hour and time. If it

is assumed that on the average people encode an equal number

of memories each day of their lives, these values are a retention

function. In previous studies, such data sets were fit well by a

power function and better by it than by the other classic two-

parameter retention functions, agreeing with what Wickelgren

had claimed for laboratory retention at the time (Rubin, 1982).

The Functions

Psychologists have suggested many functions to describe the

monotonic loss of information with time. Five of the most com-

monly considered functions are the linear, hyperbolic, exponen-

tial, logarithmic, and power functions. In the form used here,

all are two-parameter functions, but in many curve-fitting situ-

ations each function has only one free parameter because there

is often the added constraint that the immediate recall be set to

100% or that the area under the curve equals the total amount

recalled.

Linear

The simplest function is >• = — m-t + b. In theory, there is an

added condition. For t > b/m, y = 0, which prevents negative

values of y for large values of t. In actual curve-fitting proce-
dures, negative observed values of y never occur, so the function

without the restrictions rarely becomes negative over the range

of times to which it is applied. Having degrees of unobserved

negative values that are expressed behaviorally as not remem-

bering can be useful in situations in which the same added re-

trieval cue can produce retrieval at short but not long intervals.

A problem with such use of negative values, however, is in de-

fining where the "true zero" of no prior learning would be (W.

Wickelgren, personal communication, January 1996). Similar

constraints and boundary conditions occur with many two-pa-

rameter functions, either at large values of t or an ( = 0. The

positive constant, m, is the slope, and larger values ofm indicate

a more rapid loss of memory. The equation can be used success-

fully over short intervals of time, but because retention func-

tions typically drop more rapidly over their shorter retention

intervals, it does not fit data well over the complete range from

initial recall to when recall approaches zero.

Hyperbolic

The function y = \/(m-t + b)—or alternatively, y = m/(t

+ b)—appears most often in studies of animal learning (e.g.,

Harnett, McCarthy, & Davison, 1984; Staddon, 1983, Equation

12.1). If a visual perception metaphor is used with time, (, being

the distance; the height, s, being the strength of the memory; the

size of the projected image, y, on the retina being its probability

of recall; and the retina at a distance, e, from the present; then y

shrinks with time according to the single-parameter hyperbolic

function, y= l /mf ,wherem = e-s, as shown in Figure 2 (see

Staddon, 1983, for this idea in terms of duration instead of

strength).

A plausible mechanism for the hyperbola follows from the

idea, based on interference theory, that items can be recalled to

the extent that they can be distinguished from all other items in

memory (Rubin, 1995). The idea of inability to distinguish the

target has been applied to the temporal dimension by Bjork and

Whitten (1974), Glenberg and Swanson (1986), and Turvey,

Figure 2. A graphic derivation for a hyperbolic function based on ;
perceptual metaphor of memory.
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Table 5

Descriptions of Savings Data Sets With Fits to Selected Functions

Study-

Boreas (1930)
2
3

Ebbinghaus(1885/1964)
Finkcnhindcr(l9l3)

2
Kruegcr(1929)

3o
3of
3t

Luh(1922)
6

Radosavljevich(1907)
2nb"

M

Method

P R]

a 11
a 12
s 7

a 1 1

g 6
g 6
g 6

g 5

a 1 1

Range

Time

lOmin- lOmo
9 hr-2 v
19min-31d

30 min-72 h

1-28 d
1-28 d
l-28d

20 min-48 hr

5min- l20d

r' fit of selected functions

Savings

82-0
67-32
58-21

75-52

22-2
36-20
47-25

75-48

98-3

Lin

.66

.43

.35

.82

.38

.65

.54

.62

.57

.56

Hyp

.87

.69

.51

.87

.96

.81

.72

.66

.81

.77

Exp

.85

.47

.40

.84

.98

.73

.62

.64

.80

.70

Log(m)

.88(4.7)

.86(6.3)

.94(4.5)

.96(4.3)

.77(6.0)

.93(5.3)

.90(7.1)

.93(5.1)

.86(7.7)

.89

Pwr

.80

.81

.98

.95

.96

.95

.94

.96

.80

.90

EP

.94

.80

.69

.96

.98

.88

.81

.79

.85

.85

HP

.91

.89

.82

.97

.94

.93

.89

.82

.84

.89

Hi

.92

.95

.98

.97

.99

.95

.96

.98

.89

.96

Note. The task was always relearning. P = participants; RI - retention interval (number of points fit); Lin = linear; Hyp = hyperbolic; Exp =
exponential; Log = logarithmic; m = slope parameter; Pwr = power; EP = exponential power; HP = hyperbolic power; Hi = the highest of the 105
functions fit; a = adults; g = graduate students; s = self.
a Subentries are the number of the figure or table in the study from which the data were extracted. If more than one data set was taken, a one- or two-
letter code was added to distinguish them from each other.
" Taken from Finkenbinder (1913).

Brick, and Osborne (1970) and has been used by Baddeley

(1990) to argue that the 30-s duration of short-term memory is

really an artifact of how the measurements are made. Assume

that nontarget items are recorded uniformly over time at a rate

of one every a seconds and that among them, at time t ago, was

the target item. Assume, to simplify the proof, that all items

recorded arc of equal strength and are equal in strength to the

target event under the experimental cuing conditions. Moreover,

assume Weber's law for the limits of temporal discrimination

such that the window of error in judging the time ago that an

event occurred is c-t, where c is a positive constant (Bjork &

Whitten, 1974; Rubin & Baddeley, 1989). The number of non-

target items in the window for lack of temporal discrimination

that could be confused with the target item is c- t/a. The prob-

ability of recalling the target, >; is equal to one over the total

number of items in the lack-of-discrimination window. If we let

m = c/a,theny= \/(m-t+ 1), which is a hyperbolic with one

free parameter. This form of the hyperbolic function is similar

to the one on which Laming (1992) based his theory of short-

term retention.

Table 6

Description ofSensorimotorData Sets With Fits to Selected Functions

Method Range r'

Study"

Ammonsetal. (1958)
If
I t
2o
2e

Bean (1912)
14"

Tsai(1924)
2

M

Task

MS
MS
TR
TR

TP

MZ

RI Time

6 1 min-704 d
6 1 min-695 d
5 21hr-706d
5 22 hr-884 d

7 1-35 d

6 1-9 w

Savings

68-6
92-70

100-57
100-90

83-15

81-50

Lin

.74

.41

.59

.87

.90

.91

.74

Hyp

.78

.42

.70

.87

.97

.94

.78

Exp

.80

.43

.64

.87

.96

.92

.77

fit of selected functions

Log(m)

.85 (3.9)

.92(1.8)

.99(6.6)

.87(1.3)

.96(19)

.94(14)

.92

Pwr

.68

.91

.99

.86

.88

.93

.88

EP

.90

.69

.86

.92

.97

.95

.88

HP

.92

.69

.90

.92

.92

.94

.88

Hi

.95

.97

.99

.94

.98

.95

.96

Note. The participants were undergraduates. RI = retention interval (number of points fit); Lin = linear; Hyp = hyperbolic; Exp = exponential;
Log Logarithmic; m -- slope parameter; Pwr = power; EP = exponential power; HP = hyperbolic power; Hi = the highest of the 105 functions fit;
MS = motor skill; MZ = maze; TR - tracking; TP = typing; d - days; w = weeks.
a Subentries are the number of the figure or table in the study from which the data were extracted. If more than one data set was taken, a one- or two-
letter code was added to distinguish them from each other.
b The dependent measure in this study was percentage correct, not savings.
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Table 7

Description of Data Sets From Tests Using Animals With Fits to Selected Functions

Study"

Alescio-Lautier & Soumireu-
Mourat(l986)

lb

Denny etal. (1989)
Id

Harnett etal. (1984)
ap.b

Jans & Catania (1980)
Is
la
2,
2s
2a

Jarrard&Moise(1970)
1

Moise(l970)
17.

lo
It

Nelson & Wasserman (1978)
2C

Roberts & Grant (1978)
Id
Ih

Shimp&Morntt(1977)
2b
2o
2bt
2ot

Tsai(1924)
9"

White(1985)
la
lb
5t
5f
60
6f
7d
7h
8f
8t

White & McKenzie ( 1 982)
2s
2r

41
4s

Wilson &Boakes( 1985)
If
3j
3p

M

P

r

r

P

P
P
P
P
P

m

m
m
m

P

P

P

P

P

P

P

r

P
P
P
P
P
P
P
P
P
P

P
P
P
P

P
j
P

Method

Task

RU

DM

DS

DS
DS
DS
DS
DS

DM

DM
DM
DM

DS

DM
DM

DS
DS
DS
DS

MZ

DM

DM
DM

DM
DM
DM
DM
DM
DM
DM

DS
DS
DS
DS

DS
DS
DS

Range

RI

5

5

9

5
5
5
5
5

11

5
5
5

8

7
7

8
8
8
8

7

5
5
5

5
5

5
5
5
5
5

10
10
10
10

6
6
6

Time

1-30 d

.l-12s

.06-20 s

.5-6 s

.5-6 s

.5-6s

.5-6s
,5-6s

2-28 s

.5-30s

.5-30 s

.5-30s

l^tOs

. -12s

. -12s

. -32s

. -32s

. -32s

. -32s

1-12 w

.5-20 s

.5-20 s

.5-20 s

.5-20 s

.5-20 s

.5-20 s

.5-20 s

.5-20 s

.5-20 s

.5-20 s

.4-2 I s

.4-21 s

.4-2 I s

.4-21s

2-22 s
2-38 s
2-38 s

% correct

7-1

88-46

89-50

92-58
82-52
99-80
98-71
79-57

90-62

100-74
100-68
100-65

95-54

92-76
92-52

93-56
91-51
94-58
93-53

90-57

96-58
98-65
98-63
88-55
82-59
96-64
97-66
94-50
98-56
96-54

99-82
95-75
99-76
96-75

91-21
93-39
75-31

Lin

.97

.86

.82

.76

.33

.96
1.0
.72

.86

.97

.98

.79

.88

.86

.63

.66

.48

.42

.22

.87

.96

.98

.93

.64

.86

.92
1.0
.71
.93
.67

.98

.86

.96

.96

.89

.89

.97

.82

Hyp

.84

.96

.90

.86

.38

.94

.98

.79

.92

.97

.99

.85

.96

.89

.76

.72

.58

.52

.27

.91

1.0
1.0
.98
.74
.91
.96

1.0
.80
.96
.79

.97

.87

.98

.97

.92

.78

.96

.85

r2 fit of selected functions

Exp

.93

.91

.87

.81

.35

.95

.99

.75

.89

.97

.99

.82

.92

.88

.69

.69

.53

.46

.16

.84

.98

.99

.96

.68

.89

.94
1.0
.75
.95
.72

.97

.87

.97

.97

.93

.83

.97

.83

Log (m)

.78(1.8)

.95(8.6)

.92 (6.9)

.96(14)

.57(9.3)

.77(7.2)

.88(10)

.87(11)

.99(11)

.79 (5.6)

.86(7.1)

.96(8.1)

.88(12)

.90(3.5)

.99 (8.5)

.99 (.06)

.96 (.07)

.92 (.07)

.77 (.06)

.91(13)

.90 (.10)

.81 (.09)

.88 (.10)

.97 (.09)

.96 (.07)

.85 (.09)

.79 (.08)

.95 (.11)

.81 (.12)

.85 (.12)

.75(3.9)

.79 (4.8)

.87 (6.0)

.83(5.3)

.94(28)

.63(14)

.90(14)

.87

Pwr

.48

.92

.88

.98

.62

.75

.85

.87

.99

.76

.83

.95

.83

.88

.99

.99

.98

.94

.84

.90

.86

.76

.84

.98

.94

.80

.75

.96

.74

.83

.73

.77

.85

.81

.89

.57

.84

.84

EP

.82

1.0

.97

.91

.47

.87

.95

.84

.97

.92

.97

.93

.94

.97

.89

.86

.76

.71

.46

.93

.99

.95

.97

.87

.98

.95

.94

.89

.92

.85

.90

.87

.97

.95

.93

.72

.94

.88

HP

.72

.99

.98

.95

.51

.85

.93

.86

.98

.91

.95

.94

.92

.97

.94

.90

.84

.79

.52

.92

.97

.92

.96

.92

.99

.93

.91

.92

.88

.87

.89

.86

.96

.94

.90

.66

.90

.88

Hi

.99

1.0

.98

1.0
.95

1.0
1.0
.96

.99

.97

.99

.97

.96

.97

.99

.99

.98

.95

.98

.93

1.0
1.0
.99
.98
.99
.99

1.0
1.0
.97
.87

.98

.88

.98

.97

.94

.99

.98

.97

Note. P = participants; RI = retention interval (number of points fit); Lin = linear; Hyp = hyperbolic; Exp = exponential; Log = logarithmic; m =
slope parameter; Pwr = power; EP = exponential power; HP = hyperbolic power; Hi = the highest of the 105 functions fit; j = jackdaws; m =
primates; p = pigeons; r = rats; DM = delayed matching to sample; DS = symbolic delayed matching to sample; MZ = maze; RU = run time; d =
day.
a Subentries are the number of the figure or table in the study from which the data were extracted. If more than one data set was taken, a one- or two-
letter code was added to distinguish them from each other.
b The dependent measure is the difference in running times.
c The dependent measure is a discrimination index.
d The dependent measure is savings.
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Table 8

Description of Miscellaneous Data Sets With Fits to Selected Functions

Method

Study-

Bean (19 12)
7

Conwayetal. (1991)
4

King(1963a)
11

King(1963b)
I f

Union (1975)
14"

I ,uh( l922)
6
1 1
15o
15s
15t

MacLeod (1988)
4ns

Rovee-Collier(1993)
4C

Rubin &Baddeley( 1989)
2b

Slomanetal. (1988)
2f
2t

Thompson (1982)
1"
2

M

P

u

a

u

u

s

g
g
g
g
g

u

b

a

u
u

u
u

Task

SC

GR

RP

RP

DT

CN
CN
CN
CN
CN

RG

KR

DT

CM
CM

DT
DT

RI

6

12

6

6

8

5
5
7
5
5

5

11

5

14
5

5
9

Range

Time

l-28d

3-125 mo

2 min-28 d

2 min-28 d

2-192 d

20 min-48 hr
20 min-48 hr
20 min-48 hr
20 min-48 hr
20 min-48 hr

2-10w

.84-28 d

.27-2.2 y

14-196 s
1 8 min-23 w

1.6-12w
3d- l3w

% correct

89-77

57-35

92-78

81-59

0-10

92-39
89-44
88-44
92-32
76-20

91-86

94-35

78-359

85-70
27-4

2-15
67-9

Lin

.70

.46

.61

.23

.55

.91

.84

.80

.87

.79

.80

.71

.99

.85

.64

.99

.66

.73

Hyp

.71

.57

.65

.20

.30

.98

.95

.88

.88

.95

.79

.85

.89

.83

.89

.83

.97

.77

r2 fit of selected functions

Exp

.70

.49

.63

.16

.41

.96

.90

.86

.88

.88

.79

.83

.97

.84

.79

.91

.85

.76

Log(m)

.91(3.2)

.79(6.5)

.76(1.6)

.05 (.58)

.89 (-3.3)

.96(11)

.94(10)

.83(17)

.92(10)
1.0 ( 1 1 )

.71 (.08)

.79 (.25)

.91 (-126)

.70 (.05)

.98 (.02)

.97 (-6.2)

.95(16)

.83

Pwr

.91

.82

.75

.01

.77

.90

.90

.78

.90

.98

.69

.71

.98

.69

.93

.99

.98

.81

EP

.82

.69

.79

.12

.57

1.0
.98
.86
.92
.98

.76

.83

.99

.79

.96

.96

.96

.82

HP

.83

.75

.80

.11

.45

.99

.98

.83

.92
1.0

.74

.77

.94

.78

.98

.89

.98

.81

Hi

.92

.84

.84

.88

.98

1.0
.98
.88
.94

1.0

.92

.88

.99

.87

.99

1.0
.98
.93

Note. P = participants; RI = number of points fit; Lin = linear; Hyp = hyperbolic; Exp = exponential; Log = logarithmic; m = slope parameter;
Pwr = power; EP = exponential power; HP = hyperbolic power; Hi = the highest of the 105 functions fit; a = adults; b = babies; g = graduate
students; s = self; u = undergraduates; d = days; mo = months; w = weeks, y = years; CM = completion; CN = reconstruction; DT = dating; GR =
grouping; KR = kicking rate; RG = recognition; RP = reproduction; SG = serial recognition.
' Subentries are the number of the figure or table in the study from which the data were extracted. If more than one data set was taken, a one- or two-
letter code was added lo distinguish them from each other. " The dependent measure is absolute error in days. c The dependent measure is the
ratio of kicking rate to rate at training.

Table 9

Descriptions of Autobiographical Memory Data Sets With Fits to Selected Functions

Methods

Study' P

Crovitz & Schiffman ( 1 974)
1 u

Rubin (1982)
1 u
2 u

Rubin etal . ( 1986)
t u
s o

M

RI

59

58
48

10
10

Range

Time

1 hr-!7y

1 hr-15y
1 hr-12v

37hr-13y

37hr-13y

Frequency

77-.0007

1.9-.0001
.71-.0002

.35-.0002

.19- .0001

Lin

.03

.09

.04

.07

.07

.06

Hyp

.97

.89

.93

1.0
1.0
.96

r2 fit of selected functions

Exp

.95

.59

.86

.17

.99

.71

Log (m)

.22(1.4)

.40 (.06)

.45 (.03)

.46 (.03)

.44 (.01)

.39

Pwr

.97

.97

.95

1.0
1.0
.98

EP

.96

.98

.90

1.0
.99
.96

HP

.97

.90

.96

1.0
1.0
.96

Hi

.97

.99

.96

1.0
1.0
.98

Note. The task was always providing autobiographical memories to cue words. P = participants; RI = number of points fit; Lin = linear; Hyp =
hyperbolic; Exp = exponential; Log — logarithmic; m = slope parameter; Pwr = power; EP = exponential power; HP = hyperbolic power; Hi = the
highest of the 105 functions fit; o = older adults; u - undergraduates; y = years.
"Subentries are the number of the figure or table in the study from which the data were extracted. If more than one data set was taken, a one- or two-
Jetter code was added to distinguish them from each other.
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Exponential

Perhaps the most commonly used retention function is >• =
b-e~m, where e is the base for the natural logarithm. The equa-
tion is simple, has mathematical properties that make it easy to
use in models, and has been successfully fit to many short-term
memory experiments (Peterson & Peterson, 1959; Wickelgren.
1974a, 1974b). It is the equation for radioactive decay; loss is
proportional to the amount that is left (Simon, 1966). No
matter how much time has passed since initial learning, each
time an additional .69 /m, or half-life, passes, the amount re-
membered is cut by half.

Logarithmic

The function y = b — m- ln( / ) , where In is the base e, or
natural, logarithm also needs boundary conditions. At long
times the logarithmic function, like the linear function, be-
comes negative as opposed to reaching an asymptote at >' = 0.
Because the ln(0) is undefined, when t = 0, the value of y is
undefined. However, values of zero are never included in the
data; "immediate" recall is actually recall after a brief period.
Moreover, if ratios of time are what matters for the logarithmic
function, as will be argued shortly, then ratios involving zero in
the denominator are meaningless and should be excluded on
theoretical grounds. The same ( = 0 boundary problem holds
for the power function where one solution offered is to change
the independent measure so that it also goes to infinity instead
of to 100% (Anderson & Schooler, 1991) by using d', or ebbs, or
an odds ratio. Although some textbooks and journal articles
remark that Ebbinghaus used a logarithmic retention function,
as noted, he actually combined the logarithm, hyperbola, and
power to form his complex retention function. However, the log-
arithmic function was favored by several early researchers (see
Luh, 1922, for a review) and by Woodworth (1938) as the best
simple empirical fit to the half-dozen data sets he plotted, in-
cluding Ebbinghaus's.

There is an easy way to arrive at the logarithmic function if
in psychological terms equal ratios of time, not equal intervals,
are important. Assume that the psychological difference be-
tween the 3 to 4 ratio of 3 and 4 s is the same psychological
difference as that between 30 and 40 min, or 8 and 24 hr, or 3
and 4 decades. On a logarithmic scale these differences are all
equal to ln(3) — ln(4), or -0.29, though on a linear scale the
differences range for 1 sto 1 decade (i.e., from 1 sto3 X 108s).
The ratio view, which justifies a logarithmic transformation, is
also supported by the observation that errors in dating follow
Weber's law (Rubin & Baddeley, 1989), as well as by research
leading to measures of distinctiveness based on the logarithmic
transformation of temporal and order scales (Helson, 1964;
Johnson, 1991; Murdock, 1960). The simplest function to de-
scribe retention is the linear function, y = -m-x + b. If one
uses the logarithm of time, as suggested by the equal ratio ob-
servation, instead of time for x, this equation becomes the loga-
rithmic equation, y = -m-ln(t) + b.

Thus, according to the logarithmic function, forgetting is lin-
ear with the ratio of time not the difference in time as it is in the
linear equation; equal ratios of time cause equal amounts of loss
in remembering. If there are four times, t,, t2, t), and U, such

that / ] / (2 = h I to . tnen tne corresponding recalls will follow the
equation y\ — yi = yj — y*. For example, if there is a drop in
retention from 90% to 80% between 1 and 5 s, then there also
should be a drop of 10% between 10 and 50 years. Using the
same rationale, one could say that the exponential is a function
for which equal intervals of time result in equal ratios of loss in
remembering.

Power Function

The function y = b-t~m, was first suggested as a retention
function by Wickelgren in a series of experiments on complex
retention functions derived from mathematical models of
memory (e.g., Wickelgren, I974a, 1975a, 1975b) and was not
directly compared with a range of other functions until it was
used in studies of retention in autobiographical memory
( Rubin, 1982). More recent empirical work has also supported
the power function ( Anderson & Schooler, 1991;Wixted, 1990;
Wixted & Ebbesen, 1991 ). Itimplies that if there are fourtimes,
ti, t-i, f3, and (4, such that /i/(2 = t3/tt, then the corresponding
recalls will follow the equation y\ly^ = y$/yt. In words, equal
ratios of time result in equal ratios of recall. The power function
provides an excellent empirical fit in at least two major areas
of research outside retention. It is the best description of the
relationships between the judgment of perceptual magnitude,
such as brightness, loudness, or salinity, and their underlying
physical dimensions (Stevens, 1975), though the logarithmic
function also provides a good fit. It describes the relation be-
tween the amount of practice and the time taken to perform a
host of tasks ( Newell & Rosenbloom, 1981), though a form of
the hyperbolic also provides a good fit ( Mazur & Hastie, 1 978 ) .

The Other 100 Functions

There are an infinite number of less studied two-parameter
functions. A commercially available program, TableCurve
(1994), includes 105 two-parameter functions. These are
formed by letting y equal z, 1 /z, z2, Vz, and e2, where z takes

each of the following 21 expressions: b + m-t, b +
> 5 2 2 25

,
m-t-ln(t),b + m-l>5,b + m-l2,b + m-t2ln(t),b + m-t25,b
+ m-t!,b + m-e', b + m-r*ln(t), b + m-[ln(0]2, b + m-t/
ln(r), b + m-f*, b + m-ln(t), b + m/ln(t), b + m-t'6, b +
m - \ n t t b + mtb + m - r l i b + m-]nt-r2b +
and b + m-e~'. Although not exhaustive, these 105 functions,
which include the five classic ones, provided a reasonable initial
search set and one that was chosen without awareness of the
purposes of this project.

We limited the search to two-parameter functions, although
theoretically motivated three-parameter functions exist (e.g.,
Indow, 1993; Wickelgren, 1974a) and other functions with
three or more parameters could be formulated. We did this first
because the large number of reasonable functions with three or
more parameters would have greatly expanded the scope of our
initial search to the point where it would have become unwieldy.
Second, comparisons among functions of different numbers of
parameters are difficult because functions with three or more
parameters usually fit better than two-parameter functions.
Third, differentiating among functions with three or more pa-
rameters should have data sets with more points than many of



750 RUBIN AND WENZEL

the ones included here. Fourth, most recent debate has centered
on two-parameter functions. Nonetheless, a function with three
or more parameters could be the best theoretical function, es-
pecially if the parameters could be identified with concepts in
the theory or if they varied systematically across experimental
conditions, such as amount of initial learning or the dependent
measure of remembering. Our decision was to postpone such
an expanded search until the two-parameter functions could be
evaluated to see whether any obvious addition of parameters,
such as in Wickelgren's (1974a) function that multiplies an ex-
ponential and a power function factor, would provide more ex-
planatory power for the data. Nonetheless, it could be argued
that the problem of retention is complex enough to warrant at
least three parameters. One parameter is needed for the level of
initial learning. One parameter is needed to scale the time range
of the experiment. Finally, a third parameter is needed to say
something about the shape of the function and how it changes
with conditions.

110

105

100

95

90

85

80

75

- x

- XX

logarithmic

y = (b - nrln(t))2

y = be
y = l/
power

= ft>-

Basic Results

Determining the Best Fitting Functions

In fitting many functions to many data sets, the first check
that has to be made is whether the results can be accounted for
by a random process. Figure 3 is a histogram. Each of the 105
functions appears as one point. The number of data sets, out of
a possible 210 data sets, in which each function was among the
best fitting 10 functions is given by the values on the left axis.
The classic five retention functions and some other successful
equations are given at the right of the histogram. The most suc-
cessful function by this ranking measure is the logarithmic,
which appears as one of the best lOfunctionsin 109of2IOdata
sets.

The number of times a function should be in the top 10 by
chance is (10/105) X 210, or 20. The standard deviation of
such a binomial distribution is (npq)'5, or [(210)(10/
105 )(95/105 )]•', which equals 4.25. If the distribution shown
in Figure 3 were the result of random processes, it would be
symmetrical around a mean of approximately 20. It is not.
Rather, Figure 3 shows that there are a few functions that are
successful by the ranking measure but that most functions are
not. The successful functions are not just one tail of a binomial
distribution but are outliers.

Several functions appear among the most successful that have
not been considered by psychologists. One, y=[b- m-\n(t)}2,
is the logarithmic function squared. When expanded it becomes
y - b2 - m-b-\n(t) + m2-ln(t)2.lfm is smaller than b (it is in
most fits by about a factor of 10), the m2 term may be small
enough to be ignored, and the equation could be rewritten as y
= b' - m' -\n(l), where b' - b2 and m' - m-b. That is, ifm is
small enough, the equation approximates the logarithmic equa-
tion. Both equations appear together or are absent together from
the best fitting 10 equations in 180 of the 210 data sets. In the
remaining 30 data sets in which one function is in the top 10
and the other is not, the equation that is not appears in the top
twenty 25 times and in the top thirty 4 times. Moreover, the b'
= b2 and m' = m • b equations were good approximations for the
data sets examined. Thus, if the logarithmic equation fits, y =

: xx hyperbolic
- x

- x

- X

exponential

X

XX

70

65

60

55

50

45

40

35
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25

20

15
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05
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Figure 3. A histogram showing the number of times each of 105 func-

tions was one of the best 10 fits to the 210 data sets. Each mark repre-
sents one function. The commonly used five functions are labeled ver-

bally, other successful functions are labeled with their formulas. The

maximum possible value is 210. chance is 20 (SD = 4.25).
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[b - m-ln(r)]2 also fits with a similar intercept and slope and
so is considered a more complex form of the logarithmic equa-
tion. In addition, for very long times, the value of y will increase
with time for this equation. For these reasons the equation is not
pursued further. However, if theoretically motivated, it could be
used in place of the logarithmic equation.

Many of the other novel functions come from the five
equations based on the expression b + m- rfi. The success of so
many functions based on the square root of time was a surprise.
However, it should be noted that the square root was the only
power less than 1 included in the 105 functions tested, and so
its success does not argue for its superiority over other fractional
powers of time and suggests that such powers should be investi-
gated further. The two most successful square-root-of-time
functions are y = b-e~"^' and y= 1 /(b + m- V/). These two
equations can be seen as the standard exponential and hyper-
bolic equations with the square root of time substituted for (.
They therefore have well-defined intercepts of b and 1 /b at ( =
0 and asymptote to 0 at long times. The third most successful
function, which fits approximately as well as the power func-
tion, is y = (b - m- W)2. When expanded to y = b2 + rrft -
mb-^l, the equation looks like the standard linear equation
with an added V/ term, but it is not in that the coefficient oft is
positive. The function decreases smoothly for a while but then
starts to increase and does so at a much faster rate than the
quadratic equation in ln(() discussed earlier. Because of this
property and because the function adds little empirically to the
other functions in ]/t, it is not considered further.

It was suggested that the best fitting functions may just be the
most flexible ones, the ones most able to change their basic
shapes to fit any data sets by changing their parameters. This
concern is not a problem for the best fitting functions found

here. First, all functions tested have only two parameters limit-
ing their flexibility. Second, each can be transformed into a
straight line by one particular combination of transforming the
y axis to y, \n(y), or 1 /yand the x axis to t, ln( t), or Vf. In these
transformed versions, it can be seen that there is little flexibility
available to change the basic shape of the functions; the two free
parameters determine the slope and the intercept of a straight
line.

How Well Do the Same Functions Fit All Data Sets?

The top-10 measure, more commonly used to quantify pop-
ularity in music, is sufficient to show that some of the 105 func-
tions tested often worked well whereas others rarely did, but it
is not the best way to compare fits. Tables 1 to 9 contain the
fit of all 210 data sets to the five classic functions and the two
nonclassic best fitting functions just discussed, the exponential
and hyperbolic in V/, using r2 as measure of amount of variance
accounted for for each function. The rightmost column con-
tains the highest r2 obtained with any of the 105 functions. It
therefore can be viewed as an approximate upper bound of what
could be expected from a wide range of two-parameter func-
tions. At the end of Tables 1 to 9 are rows for the average r2

values of each function. The histogram was based on fits chosen
by the program that resulted in approximations for the hyper-
bolic and two functions in the square root of t. Here slower iter-
ative solutions were used for these functions, which resulted in
an occasional increase in their r2 values.

Table 10 is a summary that averages the values of the fits from
Tables 1 to 9. In addition we present the same summary but
from calculations of linear fits to transformations of the data.
We do this to provide a comparison to the most commonly used

Table 10
Summary of Tables 1 to 9

Table

Source r2 fit of selected functions

Description Lin Hyp Exp Log Pwr EP HP Hi

Average of data sets reported in tables 1-9

1-9
1-8

Grand mean
Grand mean, without Table 9a

.68

.69
.83
.83

.79

.79
.86
.87

.86

.86
.87
.87

.88

.88
.95
.95

Average of data sets using tranformed dependent measures

1
2
3
4
5
6
7

8
9

1-9
1-8

flahrick

Wickclgren
Recognition
Recall
Savings/ relearning
Sensorimotor
Animal
Miscellaneous
Autobiographical memory
Grand mean
Grand mean, without Table 9a

.50

.68

.73

.71

.56

.74

.82

.73

.06

.68

.70

.61

.84

.81

.82

.73

.79

.86

.75

.86

.80

.79

.57

.78

.78

.80

.66

.77

.84

.76

.52

.76

.76

.84

.88

.87

.89

.89

.92

.87

.83

.39

.86

.87

.73

.88

.83

.86

.88

.84

.85

.81

.97

.84

.84

.71

.87

.86

.88

.81

.87

.89

.82

.73

.84

.85 .

.69

.88

.86

.84

.84

.82

.89

.79

.82

.83

.83

Note. Lin = linear; Hyp = hyperbolic; Exp - exponential; Log = logarithmic; Pwr = power; EP = expo-
nential power; HP = hyperbolic power; Hi = the highest of the 105 functions fit to the untransformed data.
' Because the autobiographical memory data sets differ from the other data sets, we also provide means
without them.
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method in the literature. The basic conclusions remain the

same, but the nonlinear fits to the untransformed data do pro-

vide slightly higher r2 values (about .02 higher on the average).

The difference, however, can sometimes be large, especially for

the hyperbolic and hyperbolic in ]fi.

One of the biggest surprises from Figure 3 and Tables 1 to 9

was how well the same functions fit different data sets. The ta-

bles have a restricted range of r2 values because they contain the

five classic functions, most of which were good predictors in the

past, and two added functions chosen for their fit. Nonetheless,

although there are exceptions, the same functions fit most data

sets. One way to describe the degree of similarity is to consider

the five classic functions, eliminating for the moment the two

that were included in the tables based on the same data that are

to be examined. The overall rank order of most to least vari-

ance-accounted-for measure given in Table 10 is the same as

measure of the number of data sets fit in the top 10 functions in

Figure 3: logarithmic, power, hyperbolic, exponential, and lin-

ear. Except for the autobiographical memory data, this rank

order occurs in all of the tables, with minimal exceptions. In

particular, the logarithmic and power functions are inverted in

Wickelgren's and the savings data, the power and hyperbolic

functions are inverted in the recall and animal data, the expo-

nential and linear functions are inverted in the sensorimotor

data, and the hyperbolic and exponential functions are inverted

in the miscellaneous data. Considering that most of these

differences would not be statistically significant, the stability is

notable.

The exponential and hyperbolic in the square root of time fit

consistently well, occurring as two of the best fitting four func-

tions in Tables 1 to 9. Their exact ordering is less consistent,

with both sometimes doing better than the five classic functions

(as i n the overall means, recall, and animal studies data), some-

times between the best and second best of the classic five func-

tions (as in the sensorimotor, miscellaneous, and autobiograph-

ical memory data), and sometimes with one of the square-root

functions being the best and the other third or fourth best (as in

the Bahrick, Wickelgren, and recognition data).

Autobiographical Memory

The autobiographical memory data sets are clearly different

from the other data sets, but there is also clear agreement among

them indicating that this difference is not by chance. As noted

in Rubin (1982), the power function is the best fitting of the

classic five functions, accounting for 97% of the variance,

whereas the logarithmic function accounts for only 39%. We

therefore separate the autobiographical memory data sets from

the rest. The autobiographical memory procedure is different

from that in most other experiments in that no particular mem-

ory is required; the participants can produce any memory they

want from their lives. Thus, autobiographical memory involves

much more sampling from among memories and is more sub-

ject to the ease of availability than other procedures (Rubin,

1982; Rubin, Wetzler, & Nebes, 1986).

One possible reason for the difference is that the extreme

range of times, typically from 1 hr to 18 years, is causing the

difference. To see whether this can be the case, the five autobio-

graphical memory data sets were divided into two time in-

tervals. The first approximated a typical laboratory study that

had 1 hr as its shortest interval by including all data up to I

week. A second interval, which was more like that used by Bah-

rick, included times from beyond 1 week to 20 years. The

transformed versions of the hyperbolic, exponential, and power

functions were used for these analyses so that an exact fit could

be obtained without iterations. For the two Rubin et al. (1986)

data sets, this meant that there were only two points in the short

interval and only the long interval could be used. For the other

three data sets, both the short and long intervals had a mini-

mum of 22 points, except the Rubin (1982) data set, which had

seven points in the short interval. Although the values for

amount of variance accounted for the power function de-

creased from 97% to 85% and 88% for the short and long in-

tervals when the data sets were divided and increased for the

logarithmic function from 39% to 51% and 65%, the superiority

of the power function remained substantial. The differences ob-

served in the autobiographical memory data sets cannot be at-

tributed to just an artifact of their large range of retention

intervals.

Another technical reason for differences between the auto-

biographical memory data sets and the others is the range of the

dependent variable. In most data sets considered here, the range

is about one order of magnitude, but for the autobiographical

memory data sets it is three or four orders of magnitude. Three

of the autobiographical memory data sets had enough points to

be divided: Crovitz and Schiffman (1974, Experiment 1), Ru-

bin (1982, Experiment 1), and Rubin (1982, Experiment 2).

Two were each divided into four data sets, with a range of one

order of magnitude in their dependent variable. The third, Ru-

bin (1982, Experiment 2), was divided into three data sets be-

cause it had only one value that was beyond a range of three

orders of magnitude. With these divisions, which are smaller

than those just used to investigate the time-range problem, the

superiority of the power function compared with the logarith-

mic shrunk dramatically. Averaging over the 11 data sets with a

single order of magnitude, the power accounts for 76% of the

variance; the logarithmic, 707o; the hyperbolic, 70%; the expo-

nential, 66%; and the linear, 50%. When the three source data

sets are not divided, these average figures for amount of variance

accounted for are 96%, 36%, 84%, 58%, and 5%. Thus it is pos-

sible that the differences noted in the autobiographical memory

data sets are caused by the expanded range of their dependent

variable.

If the range explanation holds then, in an ideal world where

reliable values of percentage remembered in laboratory tasks

could be extended from 99% down three orders of magnitude

to 0.1%, the power function also might provide a much better

fit than the logarithmic for laboratory learning. Data on this

issue are lacking, and so two possibilities remain. One is that

the retention function of autobiographical memory is different

from that of laboratory tasks. This possibility is supported by

the power function's consistent, though reduced, superiority

over the logarithmic function in all analyses. The second is

that the retention function of autobiographical memory is the

same as that of laboratory tasks, but that laboratory studies to

date have only tapped a small section of their range that is bet-

ter fit by logarithmic and other functions than the whole range

would be.
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Other Issues

The data sets that used savings as a dependent measure also
differ from the others, but less dramatically than the autobio-
graphical memory data sets. Luh had a similar conclusion. He
found recognition, reconstruction (serial ordering), recall, and
anticipation all had parallel plots, but that "relearning does not
satisfy quite the same type of equation as the other memory
processes" (1922, p. 28).

Another minor exception to the general pattern occurred in
the animal studies. Here the relative order of success in terms of
rank was roughly the same as in other tables, but there was little
variability in how well each of the individual five classic func-
tions fit, with the best accounting for 87% of the variance and
the worst, 82%. The small difference in fits could be due to
difference in the stimuli, the general procedures (which in most
cases resulted in six or fewer retention intervals), the species,
the range of times (which with two exceptions had their longest
retention interval less than 45 s), or the percentage recalled val-
ues (which because of the methods used were rarely below
50%). In any case, a replication of the animal studies, changing
the species to humans and using stimuli that are difficult to la-
bel, might be one first step to investigate this difference.

The power function has recently been argued to be the best
retention function (Anderson, 1990, 1995; Anderson &
Schooler, 1991; Rubin, 1982; Wixted & Ebbesen, 1991). The
superiority of the logarithmic function, as foretold by Wood-
worth (1938), is therefore a challenge that requires further in-
vestigation. If the r2 values of the 205 nonautobiographical
memory data sets of Tables 1 to 8 are compared, with each data
set being considered as an independent observation, then the
logarithmic function is a better fit than the power function,
((204) = 3.20, accounting for 1.5% more of the variance. The
logarithmic function does even better if the normally used lin-
ear fit to transformed data is applied, t( 204) = 5.68, accounting
for 3.2% more of the variance. Such differences may not be
enough to draw a clear conclusion, but they are enough to say
that the power is not a better fit for the percentage correct
measure.

Slopes

In Tables 1 to 9 we give the slopes for the logarithmic func-
tion. We choose this function because it is the best fitting of the
common five functions and because it has two useful properties.
First, the slope does not depend on the units of measurement of
time. Thus all studies using the same dependent measure, such
as percentage recalled or d', can be directly compared. Second,
the dependent measure does not have to be transformed to use
a linear fit, and thus the type of fit previously used in the litera-
ture was used here. The slope values allow the rate of loss among
conditions in one study to be contrasted, and if caution is used,
trends across studies can be made, though comparisons of stud-
ies that use different dependent measures are not meaningful.
The values given also serve to demonstrate in a concrete fashion
the seriousness of our concern that a function needs to be cho-
sen before questions about rate of loss can be raised.

Consider two studies that claim that slopes do not change
with the age of the participant. Using a modified power func-

tion, y = b( 1 + .22-0'™, Wickelgren (1975a) found slopes of
.26, .26, and .24 for children, adults, and older adults, respec-
tively, whereas we found corresponding slopes of .09, .28, and
.18 with the logarithmic function. Rubin et al. (1986), using a
power function, found slopes of .93 and .96 for 20- and 70-year-
olds, whereas here we found slopes of .03 and .01 with the loga-
rithmic function. If the pattern of results of slopes with the log-
arithmic function is examined in these studies and in the two
other developmental studies (Fajnsztejn-Pollack, 1973; Schon-
field, 1969, as cited in Kausler, 1982), it is clear that the loga-
rithmic function gives a steeper slope when the level of initial
learning is higher, independent of the age of the participant. In
agreement with Slamecka and McElree (1983), under either
analysis there is no evidence of less loss with increases in the
initial learning level. However, there is a consistent trend to
more loss with increased initial learning level if the slope is cal-
culated from the logarithmic function.

The point of this analysis is that conclusions drawn about
rate of loss depend in dramatic ways on the function used to
describe retention. The concern of those involved in the debate
reviewed earlier on how to measure retention and to decide
whether loss is different for different degrees of initial learning
is warranted. Questions about rate of loss can be answered only
in the context of a particular retention function (Wixted,
1990). Alternatively, one could choose the retention function
to make the slopes behave in a desired fashion. Thus the power
function could be favored over the logarithmic, because the rate
of loss does not change with age even when the level of initial
learning does (Anderson & Schooler, 1991). Because of the de-
pendence of interpretations of slope values on the function gen-
erating the slope, further interpretations should await a decision
about a function.

Theoretical Motivations for the Exponential and

Hyperbolic-Power Functions

General Properties

Having described and summarized the basic quantitative
findings, now is the time to consider a theory, or competing the-
ories, that could account for them. As the logarithmic and
power functions have been described earlier, we concentrate on
the exponential in ]ft and the hyperbolic in Vf. When the .5
power of the square root is replaced by the parameter c, these
become

= b-em''' and y= \/(b + m-tc). d)

The first equation was called the exponential-power function
by Wickelgren (1972), and by extension we call the second the
hyperbolic-power function. Alternative forms exist for both
functions. Replacing m by (1 / T)cchanges these functions into

y= b-e and y= (2)

For the exponential power when t = 0, y = b and when t = T, y
= b/e. For the hyperbolic power when t = 0, y = 1 /b and when
/ = T,y = l/(b+ 1). At all other values of t, yis a function of
c. Thus both functions have clear intercepts (b and l/b,
respectively) and both have a parameter Tthat is related to their
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slopes, because when ( goes from 0 to T, the functions drop a
set amount, b(e - l)/e = .636 and \/b(b + 1), respectively.
For both functions, the c parameter indicates the degree of cur-
vature of the function.

In searching for regularities, we limited ourselves to two-pa-
rameter functions and found two such functions that are actu-
ally three-parameter functions with one parameter set to .5. An
attempt was made to allow the exponent c in the exponential-
power and hyperbolic-power functions to vary from .5, chang-
ing the two-parameter function into a three-parameter func-
tion. With the data sets assembled, we reached the same conclu-
sion that Wickelgren (1972) did over two decades earlier. No
clear pattern emerged. One reason was that most data sets had
too few points to allow three-parameter functions to be easily
distinguished. A second reason was that the functions them-
selves do not differ dramatically over the range of c from. 1 to .9
that we examined. There is some trend, which was clearer in the
data sets with more points, for powers of less than .5 to fit better
for the exponential-power function. However, given the data
available, we leave the powers fixed at .5.

The Exponential-Power Function

Before examining theoretical motivations for the exponen-
tial-power function, its simpler mathematical properties need
to be noted. Assume for the rest of the paragraph that the values
of b and T remain constant. When c = 1, the exponential power
is the exponential. Graphing the functions shows that with pow-
ers greater than 1, it is an S-shaped function that stays near its
initial level for a while and then drops sharply before leveling.
The larger the value of c, the more the function looks like a step
function, remaining above the exponential for t < T and below
the exponential for t > T. For powers less than 1, like the square
root, the function begins by dropping faster than the exponen-
tial until t - T but then drops more slowly and remains above
the exponential. Palmer and Stein (1989a, 1989b) noted that
with c < 1 for large values o f f , the function drops faster than
the power or logarithmic functions.

The exponential-power function was first derived as a reten-
tion function by Wickelgren (1972). He derived the three-pa-
rameter function for long-term memory from the following
three axioms: (a) The rate of change of strength of the trace
with respect to time is equal to -1 multiplied by the force of
decay acting on the trace divided by the resistance of the trace;
(b) the force of decay is proportional to the similarity of the
material currently being studied multiplied by the strength of
the trace; and (c) the resistance is equal to a positive constant
multiplied by time raised to a power between 0 and 1. The axi-
oms were supported by brief reviews of retrograde amnesia and
interference theory. The set of three axioms is interesting, espe-
cially the axiom that the resistance of memories increases with
time, but they are not well supported in their quantitative form.
Although Wickelgren derived a three-parameter function, he
analyzed his data with a two-parameter function by using the
special case of c = .5, apparently because the square root was
the simplest value of c between .4 and .8, which is where the
best empirical fits occurred (pp. 419-420). Thus, the finding
that >' = b-e ™" fits a wide range of data offers support for
Wickelgren's theory, although he abandoned the function in fa-

vor of others derived from different axioms. Besides Wickel-
gren's theoretical mechanisms, other possible motivations for
the exponential power exist because of the function's long and
distinguished history outside psychology.

The exponential-power function was first used by Kohlrausch
in 1854 to describe the decay of a static-electric charge in a
Leyden jar (Bendler & Shlesinger, 1987). The exponential
power has since been used in many different fields, where it goes
by many names, including the extreme value distribution, the
fractional exponential, the Kohlrausch-Williams-Watts law,
the stretched exponential, the third asymptotic distribution, and
the cumulative Weibull distribution. For an example Banks
(1994) used it to describe a problem in technology transfer:
the rate at which diesel and electric locomotives replaced steam
locomotives in the United States. Gumbel (1958) applied the
distribution to account for extreme values distributions, such as
in analyzing droughts on the Colorado and Connecticut Rivers.
Earlier applications by Weibull (1951) were for the study of dy-
namic breaking strength in materials and machines (i.e., how
long material lasts until failure). Palmer and Stein (1989a,
1989b) used the function to describe the slow relaxation of ma-
terials after a step-function stress is applied. In this guise, values
of c between .5 and .7 are common for glasses and values of .3
for polymers. It has also been used to describe creep in rubber
fibers, dielectric relaxation, return to randomness after nuclear
magnetic resonance, and optical scattering (Bendler & Shle-
singer, 1987). As Weibull (1951, p. 293) noted, "It is utterly
hopeless to expect a theoretical basis for distribution functions
for random variables such as strength properties of materials
or machine parts or particle sizes, the 'particles' being fly ash,
Cyrtoideae, or even adult males, born in the British Isles."
Nonetheless, a function with so many varied applications might
have a derivation or mechanical analog that could be adapted
for a theory of retention.

Weibull's (1951) derivation of the exponential power is based
on the model of a chain made of n links, where n is large. If any
one link breaks, the chain fails. If the probability that a link will
break by time t is p, then the probability that it will not break
by time; is (1 — p), and the probability that none of the n links
will break is (1 — p)". By starting in this way and choosing a
distribution function for the individual links that happens to
yield the correct result, the exponential-power function is ob-
tained. Cox (1962, pp. 109-110), starting with the same (1 -
p)" idea and different distributions, arrived at the same answer.
Indow (1993) used the weakest-link chain idea to produce a
model of retention by assuming that if any one feature of a
memory trace changed, then with the cues available the mem-
ory would not be accessed.

Analogs for memory also follow from two different models
of the study of the relaxation of glassy materials. In the first
formulation, Bendler and Shlesinger (1987) assumed a three-
dimensional lattice of polarizable glassy material made of indi-
vidual dipole moments. At t = 0 the field is turned off and the
frozen-in dipoles start to relax. The average correlation of their
current position with their position when the field was on decays
by the exponential-power law. Frozen-in dipoles relax when
they are contacted by a mobile defect. The defects are scattered
throughout the lattice and move independently and randomly
with time, but activation barriers with a distribution of heights
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Figure 4. A toy model adapted from Palmer and Stein (1989b). The

restricted moves of the toy lead to a loss of information in the position

of the pieces that approximate the exponential-power function.

must be jumped for the defects to move. With the proper choice
of the distribution of barrier heights, the desired equation is
reached. Moreover, if both shallow dipole traps and frozen-in
dipoles are considered, the distribution starts out as exponential
and then changes to exponential power, [f one envisions memo-
ries, or aspects or features of memories, as being distributed in
an abstract space with random noise spreading through the
space and changing values of the memories they contact, such a
mechanism could be adapted for memory. Bendler and Shle-
singer's model will not be pursued because the second glassy-
material formulation seems easier to apply.

The second model of glassy material relaxation does not use
defects or barriers. The model is for relaxation following me-
chanical stress, temperature, electric field, or some other step
function change. Instead of barriers to impede the random
movement, paths are removed to produce constrained dynam-
ics. Before tackling this more abstract formalism directly, con-
sider what is technically termed in the physics of complex sys-
tems a toy model, which in this case is the toy shown in Figure
4. Palmer and Stein (1989b) noted that many models with con-
strained dynamics produced the exponential-power function,
so they tried a relatively simple two-dimensional model. The
standard toy shown in Figure 4 has an area of L2 squares, of
which L2 - 1 are filled. As anyone who has tried the puzzle
knows, the paths that can be taken by a labeled square are lim-
ited, and moving a labeled square from a particular location
to another requires other squares to be moved opening a path,
slowing the movement of all squares in the puzzle. If glass were
deformed, molecules might not be able to relax to a lower en-
ergy position until neighboring molecules moved. In simula-
tions, which produced the exponential-power function, the
open square was allowed to move randomly, L was much larger
than 4, and the measure of the amount of decay was the city
block distance between the original and current locations of
each square. Equilibrium, which would be analogous to no
memory, would occur when this distance no longer systemati-
cally increased because all information of the original position
was lost.

A more general form of this class of models is the diluted

hypercube. An .^-dimensional hypercube has 2 " points or states
and A'. 2 " / 2 edges. The state of the system is denned by the AT-
tuple of ones and zeros defining the location of a marker. The
marker moves randomly along the edges of the hypercube, but
in the diluted hypercube most edges have been removed, mak-
ing transition from one state to another slower, as in the puzzle
analog. Again, under many conditions, the ability to predict the
current position from the original position follows the exponen-
tial-power function. In many instances, the exponent tends to-
ward Vs. If one were to consider memories as n-tuples of zeros
and ones, or equivalently ones and minus ones, and were to de-
grade them by randomly changing the sign of one feature every
t seconds, one could build a model of memory (e.g., Hintzman,
1986), It may be possible in such a model to incorporate the
constrained dynamics idea by generating such random changes
but acting on only those that occur along existing edges of the
hypercube. Alternatively, the states of the system could be lim-
ited instead of the edges (Palmer & Stein, 1989b). For a model
like Hintzman's, retention would be calculated from an average
of all stored traces.

In a model of memory the paths or states could be limited to
those that really exist as entities in the world, which need not be
true of every combination of features a random change of sign
might produce (Rubin & Wallace, 1989). Similar mechanisms
might be able to produce appropriate retention functions
within the framework of other models of memory. The reason
retention would show an exponential-power function is that the
dynamics of loss are constrained. A greater movement from the
original "location" could still be remembered as the original
position if better or broader cuing were used.

The Hyperbolic-Power Function

Having provided theoretical frameworks for the logarithmic,
power, and exponential-power function, none could be found

for the hyperbolic-power function. Nonetheless, its simpler
mathematical properties can be noted. Assume for the rest of
the paragraph that the values of b and T remain constant. When
c = 1, the hyperbolic power is the hyperbolic. With powers of
less than one, a parallel situation exists to that in the exponen-
tial power. The function begins by dropping faster than the hy-
perbolic until / = 7", where it would cross the standard hyper-
bolic, but then it drops more slowly and remains above it. With
powers of greater than one, the opposite is true.

Three Omissions

A Study of Prediction

How well one can predict future forgetting? For instance, if
one knows that a group of students studied a lesson until they
just knew it perfectly and that 1 hr later they remembered 80%,
can more be said about remembering 1 week later than it will
be between 0 and 80% most of the time? How much would an-
other test at 1 day add to our ability to predict? If we had the
immediate and 1-day test and could add a third test between
them, when should it be given to most improve our prediction?
How much would be gained by a well-placed fourth or fifth test?
The answers will depend on the function chosen, and the ones
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that produce the best fits may not produce the best extrapola-
tions over long gaps.

A comprehensive way to begin would be to sec how the best
fitting parameters for the best fitting functions change as we re-
move data points from each data set. starting with those for the
longest retention intervals and moving sequentially toward the
most recent. To the extent that the parameters do not change,
the extrapolation would be as good as the interpolated curve
fitting. 1 f systematic changes occur in the parameters, they could
be compensated for, thereby reducing the error. The same pro-
cedure could be used to see what range and spacing of short
retention-interval points are most useful in predicting the lon-
gest retention-interval points (see Baron & Cerella, 1993, for a
similar logic applied to acquisition).

If the data fell perfectly on a known function, none of this
would be necessary. Once n of the points were known, a curve
with n free parameters could be fit and would make perfect pre-
dictions. However, with less than perfectly fitting functions and
with noisy data, having an estimate of how accurate prediction
is given known variability in the data, a given number and place-
ment of points, and the gap in time between them and the to-
be-predicted retention interval would be of practical interest.
At the least, it would allow us as experimental psychologists to
offer advice on estimating loss of knowledge with time and to
know how good that advice is.

A Study Contrasting Dependent Measures

With minor exceptions, we report data in the units used by
the original authors. But for most theories, one specific measure
is best. For instance, to test Anderson's (1990) claims, we
should use the odds ratio. For theories that assume that memory
strength is continuous and that remembering is a matter of
whether a threshold in that strength is reached, d', ebbs, or other
measure of underlying strength would be more appropriate. In-
cluding all such measures here would have greatly expanded al-
ready lengthy analyses. An efficient way to test several theories
that use different dependent measures would be to keep one de-
pendent measure and transform the retention functions to be
tested. Thus, instead of testing the power function against odds-
ratio-lransformed data, one could keep the percent-recalled
data and transform the power function to (6-?~m ) / (1 +b-t'"')
(J. R. Anderson, personal communication, November 1994).

A Study Discriminating the Best Fitting Functions

There are no existing data sets that can distinguish among the
best fitting functions. The following six criteria would define
such a data set.

1. There should be nine or more retention intervals, which
would allow nonlinear iterative fits of functions with two or
three parameters to be made and discriminated.

2. The study should have small confidence intervals for each
of these retention intervals, which should be publicly reported
with the means (Loftus, 1993). Functions that do not remain
within the obtained confidence intervals could be rejected. In
the existing literature, confidence intervals are rarely reported,
cannot be calculated from reported statistics in most proce-
dures, and when they can they are too large to reject functions.

The study need not have the same number of observations at
each retention interval, but rather should obtain near-equal
confidence intervals at each retention interval. If a measure
such as d', odds ratio, or ebbs was the main measure, the near-
equal confidence intervals should be in terms of this measure.

3. To distinguish among the four most successful functions,
which are based on logarithmic (or logarithmic-like) scales, the
study should have a large ratio of the most to least amount re-
membered and a large ratio of the longest to shortest retention
intervals without obtaining indeterminate amount-recalled val-
ues of 0% or 100%. Except for the autobiographical memory
studies, the dependent measure in existing studies of retention
usually ranges over a ratio of less than 10 to 1. This ratio could
be expanded to a ratio of 90 to 1. The analysis of the autobio-
graphical memory data sets suggested that increasing the range
of values of the dependent measure may allow the logarithmic
and power functions, in particular, to be more easily
distinguished.

4. For the time between presentation and testing to be unam-
biguous, each item should be presented only once, but if
multiple presentations are used, they should be spaced close to-
gether compared with the shortest retention interval in order to
keep the length of the retention intervals well defined.

5. The activity that fills the retention intervals should be con-
stant throughout the experiment so that time is proportional to
the amount of intervening material.

6. Ideal data would allow retention functions (with larger
confidence intervals) to be plotted for individual participants
to guard against attributing to the aggregate data a retention
function that does not describe individuals.

One method to meet these requirements would be a general-
ization of Wickelgren's continuous recognition procedure
(Wickelgren, 1972, 1974a) adapted to cued recall, recognition,
and implicit memory. The method produced relatively smooth
curves for Wickelgren, even when he used only six participants.
Because over the course of the experiment each participant is
tested at each retention interval, it would be possible to obtain
fits for each participant individually. To test whether this kind
of procedure could distinguish among the four best fitting func-
tions, we assumed that one of them—the logarithmic func-
tion—was correct, and we generated ideal data from it. With
nine points spread evenly on a logarithmic lime scale, we could
reject the other three functions if the confidence intervals on the
data points were ±2%. Thus, from a data set that meets the six
properties described, it would be possible to distinguish among
our top four functions or possibly to reject all four and have
enough data points to distinguish among alternative three-pa-
rameter functions. From a set of such data sets, it would also be
possible to test whether one function could hold over a range of
tasks. In addition, it would be useful to have a comparison
within one experiment between conditions that presented and
tested each item only once and conditions that presented items
more than once at carefully chosen intervals. In the literature,
the dimension of whether items are presented once or many
times is not salient, yet the distinction is central to building a
model of memory in which each presentation is considered as
a separate event. Such a study would by necessity merge the
literatures on spaced practice and retention functions.
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Discussion

An Evaluation of Description Before Theory

Cognitive and experimental psychology has long been domi-
nated by the inferential-statistics hypothesis-testing approach
(Meehl, 1978) that has provided much of the data reviewed.
Nevertheless, we argued by example that this approach has hin-
dered the uncovering of theoretically useful and practically im-
portant regularities. It has encouraged researchers to formulate
and test hypotheses on their own new data rather than to exam-
ine existing data. It has also encouraged researchers to ignore
the important cases where there are no differences when condi-
tions are changed (Greenwald, 1975;Rubin, 1989). This article
demonstrates that psychology can note quantitative regularities
that are far more useful than rejected null hypotheses. Although
sophisticated mathematical models of memory exist (e.g., Gil-
lund & Shim-in, 1984; Hintzman, 1986; Murdock, 1982), they
do not make strong predictions about the mathematical form
of the retention function. Even Anderson's adaptive model that
favors the power function is only committed to the claim that
retention and recurrence of events in the environment are sim-
ilar (Anderson, 1990; Anderson & Schooler, 1991).

There is a circular problem that our approach has begun to
solve. Because no adequate description of the empirical course
of retention exists, models of memory cannot be expected to
include it. Because no current model predicts a definite form
for the retention function, there is no reason for individual
model makers to gather retention data to test their models. Here
the description of the empirical course of retention was made
both for its own sake and as a challenge and impetus to inclusion
in model building.

We explicitly considered and rejected an alternative strategy.
We could have proposed a theory that explains only the shape
of the retention function and attempted to test it. Our findings
indicate that progress was much less likely that way for at least
two reasons. The first reason is the incompleteness of the set
functions that happen to be derived from theoretical principles.
No theory we could find posited the hyperbola in the V(, even
though it turns out to be one of the best fitting retention func-
tions and even though it may have a reasonable derivation and
interpretation within an existing model of memory. The second
reason is the problem of testing alternative derivations of such a
function. Another one of the four best fitting retention func-
tions, the exponential in the V/, has at least four totally indepen-
dent derivations that do not share common underlying mecha-
nisms. Because all four theories or mechanisms arrive at the
same function, there is no way for the retention data to distin-
guish among them.

A more fruitful course is to add to the shape of the retention
function to the collection of other observations that mathemat-
ical models of memory already attempt to explain. Models that
can also account for these other observations are much less
likely to be consistent with all mechanisms that can be used
to derive a function and thus can be used to eliminate some
derivations. Thus the preferred approach is to provide a unified
theory that accounts for the shape of the retention function and
other memory phenomena. Deciding on whether or not it is rea-
sonable to assume one retention function for a wide range of

conditions and deciding on an adequate mathematical descrip-
tion of that retention function are the first two steps in this
process.

An Evaluation of the Four Best Fitting Functions

One problem of describing data without guidance from a
strong theory is interpreting that data. We have argued for four
functions as descriptions of retention. How can we choose
among these four, assuming their fits do not distinguish among
them and that we do not want to wait for a comprehensive the-
ory of memory? If one prefers (a) a simple two-parameter func-
tion, that (b) fits the data well, with (c) a verbal description that
is consistent with a host of other data besides retention, that can
be (d) quickly described to students, and (e) quickly computed
on a hand calculator, the logarithmic function is best. However,
colleagues in physics and mathematics will not agree. The first
properties they consider are the boundary conditions, and at
both t = 0 and ; = infinity the logarithm is not well behaved.
In addition, it cannot easily be derived from a mechanism as
opposed to a principle.

The power function has the same advantages and disadvan-
tages as the logarithmic function. It provides a somewhat poorer
fit than the logarithmic function except for the savings and the
autobiographical memory data sets. Its empirical disadvantage,
however, may disappear if the range of the dependent measure
of retention is large. It has the advantage of being consistent
with an integrated attempt to understand human memory
(Anderson, 1990, 1995; Anderson & Schooler, 1991), but
within this attempt the power function is only favored because
it appears to fit change in the environment, and other functions
might do this as well.

The exponential-power function does not have all the advan-
tages of the logarithmic or power functions, but it has none of
their disadvantages. The exponential power is well behaved at
the boundary conditions. It can be derived from mechanisms;
we offered four to choose from, and there are more to be found
in the literature. Moreover, it makes sense on an intuitive level
in that it is like the exponential, long favored by psychologists,
but is just different enough to fit the data. It routinely turns up
in disparate fields that try to fit distributions (Indow, 1993),
which should be a comfort to some and a worry to others. The
hyperbolic-power function has the boundary condition and in-
tuitive-sense advantages of the exponential-power function, but
it lacks a derivation from a mechanism or a verbal explanation.
Thus it has the advantage of providing a challenge to those in-
clined to find such derivations.

Our hope is that in considering retention functions in partic-
ular and memory in general the data sets assembled here serve
as one basis for debate. They represent the empirical effort of
those who have considered the problem of retention over the last
century. Recently, debate about retention has occurred without
much reference to data. The 210 data sets assembled here could
change that. Each has advantages for some questions. Each is
described fully in a published article or technical report. The
data to make methodological and theoretical improvements on
this attempt to understand retention exist in the assembled data
sets. If criticisms or corrections are to be made, it would be
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both efficient and rhetorically elegant to use the data we have

assembled to make them.

Conclusion

Psychologists once formulated laws to account for regulari-

ties in behavior, such as Fechner's law, Herrnstein's matching

law, Jost's laws, Stevens' law, and Weber's law. Such lawmaking

has gone out of style in cognitive psychology. Perhaps the term

law seems pretentious for the act of documenting quantifiable

empirical regularities of broad application and sometimes ini-

tially weak theoretical underpinnings. But laws have uses be-

sides providing instructors with easy-to-write short-answer

questions. They formalize the regularities that students of the

field should know in a way that theories can use. We have estab-

lished a law: the logarithmic-loss law. Given our current state of

knowledge, we must offer it in three alternative mathematical

formulations: the power law, the hyperbola-in-the-square-root-

of-J forgetting function, and the Rubin-Wenzel-Wickelgren-

Weibull-Williams-Watts exponential-power law. Our law in

any of its mathematical forms summarizes what we now know

about the quantitative course of forgetting. It will serve its pur-

pose either if it remains a fact of nature or if it suggests advances

that rapidly render it obsolete.
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