
An earlier version of this paper appears in: H.J. van den Herik and L.V. Allis, editors,
Heuristic Programming in Artificial Intelligence 3 – The Third Computer Olympiad.
Ellis Horwood, 1992.

METAGAME: A New Challenge
for Games and Learning

Barney Pell
�

University of Cambridge
Cambridge, UK

E-mail: bdp@cl.cam.ac.uk

Abstract

In most current approaches to Computer Game-Playing, including those
employing some form of machine learning, the game analysis mainly is
performed by humans. Thus, we are sidestepping largely the interest-
ing (and difficult) questions. Human analysis also makes it difficult to
evaluate the generality and applicability of different approaches.

To address these problems, we introduce a new challenge: Metagame.
The idea is to write programs which take as input the rules of a set of
new games within a pre-specified class, generated by a program which
is publicly available. The programs compete against each other in many
matches on each new game, and they can then be evaluated based on their
overall performance and improvement through experience.

This paper discusses the goals, research areas, and general concerns
for the idea of Metagame.

�
Parts of this work have been supported by RIACS, NASA Ames Research Center [FIA],

and a British Marshall Scholarship.

1



1 Introduction
One reason why game-playing is an exciting activity for humans is that it cou-
ples intellectual activity with direct competition: better thinking and learn-
ing generally implies winning more games. Thus we can test out and refine
our intellectual skills by playing games against opponents, and evaluate our
progress based on the results of the competition.

The same motivation accounts for much of the original interest in Com-
puter Game-Playing ( ����� ) as a problem for Artificial Intelligence: programs
which think better, may play better, and so win more games. Thus we can
test out and refine different theories of intelligence by writing game-playing
programs which embody these different theories, and then play the programs
against each other, and consider the more intelligent program to be the one
which wins the most games. In the discussion which follows, we shall call this
link between winning games and presumed intelligent behaviour the compet-
itive performance metric for intelligence.

Unfortunately, most current approaches to ����� , including those employ-
ing some forms of machine learning, rely on the existence of a great degree
of previous human analysis of particular games. This means that the human
researchers usually wind up doing most of the interesting game analysis, and
makes it difficult to evaluate the generality and applicability of different ap-
proaches. In short, the fact that a program wins most of its games is not
actually evidence that the program (and not its programmer) is doing much
interesting from an AI perspective.

To encourage researchers to address the more general issues in game-playing,
while maintaining the competitive performance metric which makes ����� so
attractive as a research problem, we introduce a new challenge: Metagame.
The idea is to write programs which take as input the rules of a set of new
games within a pre-specified class. The programs compete against each other
in many matches on each new game, and the programs can then be evaluated
based on their overall performance and improvement through experience.

Besides being a more general challenge, Metagame presents opportunities
for addressing many interesting research issues in games and learning, in-
cluding opponent modelling, incomplete and imperfect information, utility of
computation, change of representation, strategic analysis, learning from ex-
perience, and discovery.

A companion paper ([Pel92]) presents a definition and generator for a spe-
cific class of games, called symmetric chess-like games, and discusses an ex-
ample game produced by the generator.

The rest of this paper elaborates on the issues presented above. Section 2
substantiates the claim that ����� is too specialised, and discusses why this is
undesirable. Section 3 introduces the Metagame idea, and Section 4 presents
some interesting research issues possible within the context of Metagame.

2



2 The Gamer’s Dilemma
Before discussing the assumptions behind particular methods in ����� , I illus-
trate what I mean by the terms specialisation and game-specific, and explain
why these qualities may be undesirable. I begin with a thought experiment
which I shall call The Gamer’s Dilemma:

Suppose that a researcher is informed that he will soon be given
the rules of a game, � , played by a group of humans and/or pro-
grams. They all are considered to play � at a high performance
level. The researcher is given a fixed amount of time to produce a
program which will compete against random members of the group
(the researcher is not be allowed to communicate with them before-
hand). Finally, the researcher will be paid based on the number
of games the program managed to win (or draw) out of some pre-
specified total amount of games. The researcher’s goal is, of course,
to maximise the money he expects to receive from his program’s
play.

As practitioners in the field of Computer Game-Playing, the question now
is: what advice might we give to assist this hypothetical researcher? Possible
answers to this question reveal the degree of specialisation inherent in exist-
ing game-playing methods. The more general advice we can give, the more
general are our methods.

2.1 Game-Dependent Knowledge in Current Approaches
In what follows, we sketch the advice which might be offered from three main
approaches to ����� : knowledge engineering, database enumeration and ma-
chine learning. �

2.1.1 Knowledge Engineering

Knowledge engineering approaches can be broken into game-specific approaches,
game-tree search, and knowledge-based search.

Game-Specific Engineering Approach The most specialised answer pos-
sible would be to enumerate a list of games and current champion programs
which play these games. This list might contain the following advice:

If the game is Chess, then use the latest version of Deep Thought.
�
Ideally, we would like to hand over a general game-playing program, which could study

any game for a while on its own (to use its time wisely), and which would become an expert
shortly after having encountered this group of players. Although it is unlikely we will ever
have a program which is totally general, it is useful to bear this ideal goal in mind.

3



If the game given to the researcher happens to be on this list, this advice
would be extremely helpful. Unfortunately, if the game falls outside the list,
this advice would be of little use. It is becoming a common perception in Ar-
tificial Intelligence that such a list of advice is all that many researchers in
����� have to offer. �

Game-Tree Search An answer which more accurately reflects the lessons
learned by current approaches advocates the use of a brute-force search method
(e.g., minimax with �

� pruning and singular extensions), combined with ex-
tremely fast routines for updating board positions. Although this technique
has proven effective on several games, it presupposes that the researcher has
a good evaluation function, which requires specific knowledge of the game.

The burden on game analysis thus shifts to the researcher, who must choose
an appropriate set of features and weights for this function. Although there
are some general approaches to learning weights (discussed in Section 2.3),
this approach has offered very little explicit advice about the construction of
appropriate features. However, we are now beginning to understand the im-
portance of some features which may be essential in a variety of games, such
as mobility ([Don92, Har87, LM88]).

Knowledge-Based Search We have learned that exhaustive search may
not be appropriate for all games. Therefore we may also advise our researcher
as follows: first, find some human who can analyse the game at expert level,
then determine an appropriate set of goals and subgoals, and priorities for
these goals, and finally write a knowledge-based search program which ex-
ploits these ([Wil82]). But as in game-tree search, we really have never said
much explicitly about how to find useful subgoals, so again the researcher
must do the difficult game analysis on his own.

2.2 Database Enumeration
While knowledge engineering approaches rely on human analysis by defini-
tion, it might seem much less so when programs construct their own database
by enumerating a large set of possible positions. On the contrary, the human
researcher must perform an extensive analysis of a game to determine at least
the following ([AvdMvdH91, Roy90]):

� How to enumerate positions systematically?
� How to avoid generating impossible and symmetric positions?
� Given the above, are there enough resources to solve the problem?
By the time the human has answered these questions, it could well be ar-

gued again that much of the real work has already been done.
�
The theme of chess-engineering in AI is discussed further in a panel at IJCAI–91

([LHM � 91]).

4



2.3 Machine Learning
Recently, several researchers have investigated the problem of developing com-
puter programs which could learn how to play games ([Len83, Tad89, Eps91,
CBKF91, LM88, LS91, CFR91]). However, this research is difficult to eval-
uate, and even more difficult to use for learning in different games, because
the games, representations, learning methods, and amount of knowledge en-
gineering vary with each researcher. �

In addition, most learning methods are designed to be improved based on
watching or playing against knowledgeable opponents (e.g., [Tad89, Eps91,
CBKF91, LM88, LS91, CFR91]). Although it is certainly important to under-
stand how a program (or person) could learn from good players, it is equally
important to know how those good players became good in the first place. Until
we have an understanding of discovery ([Len83]), progress in machine learn-
ing will not save us from having to preface advice to other researchers with
the statement: “first, find a human expert.”

An example from chess may illustrate this problem. It is well known that
obtaining a passed pawn may increase one’s winning chances in some posi-
tions. While the knowledge engineering approach would build this knowledge
in, a machine learning approach would have a program discover this, pre-
sumably by one player in the game creating a passed pawn, promoting it to a
queen, and going on to win the game. But since it requires many careful moves
to achieve the promotion of a pawn, this will generally not happen unless one
player is actively trying to do so. Now, two lazy learning programs competing
against each other will each try to gain their knowledge from their opponent.
But since neither one has this knowledge yet, they are unlikely to observe it in
practice, so neither is likely to learn this concept. Thus neither program will
become even reasonably good at chess. This only serves to show that learning
approaches which depend on better players to show the way do not address
the important issue of knowledge origins, which must be addressed in order to
develop good game-players without relying on humans to do the real analysis.

2.4 Why Specialisation is Bad
To summarise, focussing on particular games can be disadvantageous for the
following reasons:

� Labour: Much human effort is needed each time we develop a program
to play a different game, with limited advice on the real problems.

� Generalisation: It is difficult to say what we have learned from our
research, beyond performance on particular games.

�
Flann ([FD89]) discusses the “fixed representation trick”, in which many developers of

learning systems spend much of their time finding a representation of the game which will
allow their systems to learn how to play.

5



� Evaluation: It is difficult to evaluate research. Playing a particular
game well often means that the researcher, and not the program, has
analysed the game well. Conversely, a program which does a more gen-
eral analysis may not play well against highly-specialised machines.

� Rule Analysis: We can write successful programs, even learning pro-
grams, without understanding the ability actually to analyse games, pos-
sibly the most interesting issue in game-playing, from an AI perspective.

Thus, despite our being a field full of experts on getting computers to play
games, and having developed world-champion-level game-specific programs,
we are forced to leave most of the real game analysis to be done by the human
researcher, and not by the computer program.

3 A More General Challenge: METAGAME
To summarise, what we would really like to have is some kind of game for
which we can be more certain that playing it well really was evidence of more
intelligent processing. Then we could once again justify the use of performance
in competition as a way of evaluating good work.

This motivates the idea of Metagame: we shift the problem from building
a program to play a particular game, to building one which can play any game
within a class of games. The performance criterion is still competition: all
programs would eventually compete in a tournament, where they would be
provided with a set of games from this class, as produced by a game generator
for this class. The programs would play many contests in each of these new
games against each other, and the winner would be the one which has won the
most contests by the end of the tournament.

Although the abstract idea of Metagame is very simple, a fair amount of
work must be done to develop a concrete problem that can actually be ad-
dressed. First, we need to define an appropriate class of games. Second, we
need a communications protocol through which players can communicate their
moves. Third, we need a game generator which produces new instances in this
class. Finally, we need to determine resource bounds on programs in competi-
tion. The following sections provide some general ideas for addressing each
of these issues. A companion paper ([Pel92]) presents a definition, communi-
cations protocol, and generator for a specific class of games, called symmetric
chess-like games, and discusses a new game produced by the generator, called
Turncoat-Chess.

3.1 Class Definition
Defining a class of games requires deciding what kinds of games will be de-
fined, and how individual games within a class will actually be represented.

6



3.1.1 Desiderata for a Class of Games

Many different variants of Metagame can be played, depending on what class
of games it is based upon. Here we state a few desiderata for classes of games:

� Coverage: A good class should be large enough to include several games
actually played by humans. This encourages us to generalise the lessons
we learned from working on the specific games included.

� Diversity: In addition to known games, a class should be diverse enough
to include arbitrarily many possibly different games, to discourage re-
searchers from exhaustively analysing each possible game and still build-
ing their own analysis into the program.

� Structure: A class should still be small enough to represent the struc-
ture which at first blush makes the individual games appear similar.
While chess-like games and trick-taking card games seem like appro-
priate generalisations of existing games, the class of arbitrary theorem-
proving games appears to be too general.

�

� Varying Complexity: The generated games should be of varying de-
grees and dimensions of complexity, such as decision complexity and search
complexity ([AvdHH91]), so that different games afford different analysis
methods. This also enables interesting experiments to test the utility of
alternative methods with respect to varying degrees of complexity.

One type of game which has been studied extensively is positional games,
in which pieces are never moved or removed once they are played. This class of
games has been the domain for several general game-learning systems ([Eps91,
Kof68]), and could easily serve as a Metagame class definition.

However, this class is both simple and regular (thus falling short on several
desiderata), and there are well-researched games which fall outside this re-
stricted class. In particular, it would be interesting to play Metagame based on
a class complex enough to include the chess-like games, which have received
much of the attention thus far in ����� . A companion paper ([Pel92]) devel-
ops the necessary components to play Metagame in the class of symmetric
chess-like games.

3.1.2 Representation

In order to write programs which can accept a set of different games, we must
specify how these games will be represented. Although fully-general represen-
tation languages are possible (like first-order logic or Turing Machines), it is
likely that classes of games will be much more specific, especially those which
can actually be produced by a generator. So, any representation language can

�

The class of mathematical games ([BCG82]) is also fully general, which suggests that this
class might be inappropriate for Metagame in the near future.

7



be used, so long as the games produced are guaranteed to be unambiguous
in the chosen representation, and so long as the semantics corresponding to
the representation is clear. A natural method of representation, pursued in
([Pel92]), is by means of a game grammar.

3.2 Communications Protocol
Now, assuming that we have a way of defining and generating games within
a known class, there must be a protocol through which the playing programs
can communicate. Two issues arise in this context. First, since all gener-
ated games are new, there must be a defined language, in which to express
a player’s choice of moves, which will be adequate and unambiguous for any
game within the entire class. This could be either a list of state properties
which are added and deleted as the effects of a move, or a more specialised
and concise move grammar, which might be useful for recording games. In a
companion paper ([Pel92]), the latter choice is adopted.

3.2.1 Humans In The Loop?

The second issue in this context is whether programs would communicate di-
rectly with each other, or via humans. As in the case of human or computer
game generators, both options have positive and negative aspects.

The simplest option is to communicate via humans, as is the practice for
most computer-game tournaments. However, a Metagame tournament is dif-
ferent from traditional tournaments. First, learning systems are very likely
to compete, so it would be preferable for the programs to play many contests
in each game type against each opponent. Second, many different new games
will be played over the course of the tournament, as a variety of games pro-
vides more data. Together, these factors suggest that such a tournament would
be better if a large number of contests could take place. However, if humans
are required to make the moves for their programs, this could either slow the
tournament down, causing fewer contests to be played, or prove very boring
for the humans, causing the tournament to be less fun.

If we take humans out of the loop, this necessitates interfacing many differ-
ent programs. Although not discussed in this thesis, the workbench developed
as part of this research provides an interface for programs to communicate
over the Internet. This still requires having a form of Ethernet to which all
programs could be attached, which might be impractical given the wide range
of platforms and programming languages used to develop computer games
today.

�

�

If we do take humans out of the loop, what do they do in the meantime? One suggestion
is have them play Metagame also on the new games, and the winning human can play the
winning computer for a real test of human vs. machine!

8



3.3 Game Generator
Given a class of games, there are two ways to produce new instances within
this class: we can either use human-generated games, or program-generated
games.

3.3.1 Human Game Generators

The easiest way of obtaining games would be to have some humans design a
set of games within the class. They must provide the games to the programs
once the competition has begun, i.e., the developers of these programs can no
longer help in the game-specific analysis. This procedure has the advantage
that the game designers could try out their games in advance, and make sure
that they are interesting and playable. However, this also has a major disad-
vantage, in that it forces playing-program developers to predict which types
of games these humans will actually produce. Since human game designers
may be very creative, they are an unknown variable from the perspective of
scientific experiments. Thus, while we would hope that our programs could
play human-generated games within a class, and we may even test our own
programs against games we design, the unknown human element may cloud
research issues, at least in the short term.

3.4 Programmed Game Generators
The alternative is to develop a program to generate new games within a class.
If the program is transparent and available to all researchers, this has the ad-
vantage that everyone will know what kind of games to expect, which is more
desirable from a research perspective.

�

However, this also has a potential
disadvantage, in that the generated games may not actually be interesting.
Three points may be made in connection with this concern.

3.4.1 Intelligent Game Design

First, this concern introduces an important and general issue, for which there
is no simple answer. This is that intelligent game design is an interesting and
difficult research issue in its own right. Games which survive ([AvdHH91]) do
so because they provide an intellectual challenge at a level which is neither too
simple to be solvable, nor too complex to be incomprehensible. Understanding
the processes by which games are created and evolve, from a computational
perspective, would be a valuable complement to the analysis of strategies for
playing games which has been the focus of research in computer game-playing

�

Another way of stating this is that writing programs to play any games generated by
humans may result in researchers attempting to hit a moving target. A transparent generator
is needed to make the problem well-defined.

9



thus far.
�

3.4.2 Interestingness requires intelligence

Second, although this will matter to human observers, it will not make much
difference to the programs whether they are playing interesting or boring
games. In fact, if we could develop a program which, upon consideration of
a particular game, declared the game to be uninteresting, this would seem to
be a true sign of intelligence! So when this becomes an issue, we will know
that the field has certainly matured.

�

3.4.3 Fairness is simpler

Third, it should be possible to develop a class and generator in a manner which
increases the chances that generated games within this class will at least be
fair for both players, so that the games will be more interesting to human
researchers. A companion paper ([Pel92]), attempts to achieve this goal by
defining a class in which all the rules are symmetric between both players.

3.5 Resource Bounds
The final practical issue which must be addressed is the amount of resources
which will be available to programs in competition. The most important re-
source, and the one which we shall consider here, is that of time constraints.
First, there must be a limit on the amount of time given to programs after they
are given the rules of the new games, but before they are forced to play the new
games against opponents. Second, there must be limits on the amount of time
used by programs to play the games, which can be a fixed amount of time per
move, or per contest (or even for the entire tournament). Third, there must
be a limit on the amount of time they have between games, so that they can
reflect on their experience.

The issue of time limits is more subtle than the corresponding problem for
known games, as we have no way of knowing how much time is necessary
to make each move in a new game. If all programs are limited to the same
amount of time, and the games are new, perhaps it does not really matter how
much time they have in particular. An arbitrary suggestion which seems rea-
sonable would be to allow 24 hours for analysis before competition, 20 minutes
per game for playing, and 3 minutes for between-game analysis.

�

The link between game-evolution and game-playing may be even tighter than we imagine.
Games often change when strategic analysis has rendered them either too difficult or too
boring, and each change to a game introduces new opportunities for strategic analysis, so
that games and their strategies evolve together.

�

It would be interesting to allow programs to negotiate over draws, to avoid them play-
ing out games that neither player can win. However, this ability complicates the rules of
competition, and so will be left as an idea for the future.

10



A concern which arises if we decide on fixed limits in real time is that power-
ful computers would have an advantage. It could be argued that a Metagame
tournament is a chance to require all programs to have equivalent resources,
as it would again be unfortunate to have clever programs defeated by brute-
force programs running on vastly more powerful machines. However, limits in
real time are probably unavoidable, as it would be very difficult to make this
comparison across different architectures.

���

Further, the presence of powerful
machines in a tournament presents the possibility for interesting confronta-
tions between sophisticated and brute-force game-playing methods.

4 Research Areas
4.1 The Full Issues
So Metagame encourages researchers to consider the full issues behind game-
playing. Because the games are possibly new, we cannot provide our programs
with many ready-made features other than the rule-system defining the games
and the goals. Because the programs have resource limits, and the games have
grossly varying search spaces, we cannot assume that a fixed search strategy
(like minimax) will necessarily be applicable. So good programs will modify
their search strategies to meet the new games. Because they are not playing
against experts, they cannot assume that the moves played by the winner were
necessarily better, and learning systems must begin to address the problems
of discovery. Further prominent issues to be addressed in this context are the
tradeoff between exploration and exploitation ([Pel91]), opponent modelling,
transfer of learned knowledge across games, and limited rationality. Perhaps
most importantly, in this general context it would be very interesting to eval-
uate the tradeoff between knowledge and search: can a brute-force program
still defeat knowledge-based reasoners, even in Metagame?

4.2 Incremental Progress Through Future Competitions
4.2.1 Initial Goals: Learn By Playing

Research on Metagame could also proceed in several stages. Initially, the pro-
grams would have to be able to accept formal systems and play legal, if ran-
dom, games. They might at first ignore past experience, and play the same
every game. Better programs might learn with respect to particular oppo-
nents in particular games, and still better ones might try to generalise across
opponents, but taking peculiarities into account. Still better programs would
try to generalise across different types of games. Some programs might work
backward from the end, some might work forward from the start. Some might

���
Restricting entrants to a certain class of architectures also seems impractical.

11



pre-compile search knowledge, while others might refine after playing. An en-
tire spectrum of game-learning strategies could be compared and tested in a
performance context of competition.

4.2.2 Eventual Prospects: Instruction

When some of the issues in learning-by-playing have become better under-
stood, later tournaments could move on to address other themes, such as in-
struction and communication. For instruction, the programs could be given a
set of games played before by programs. Or they could be given a hand-selected
set of training examples. In either case, these would only be delivered after
the program is registered in the competition, when the programmer could no
longer tamper with his creation.

4.2.3 Eventual Prospects: Communication

The theme of communication of knowledge in this context is even more ex-
citing. We could eventually allow researchers to send a team of programs to
compete. After each game, programs in the same team would have a certain
amount of time or bandwidth to communicate with each other. Programs could
of course refuse to communicate, but it would be interesting to see the advan-
tages presented by intelligent communication, even within a single tourna-
ment. Since the games would still be new to the programs (and researchers),
the communication language would have to be independent of the particu-
lar game. Thus researchers would need to investigate symbolic communi-
cation (or architecture-specific communication), if they wanted to give their
programs this potentially powerful competitive edge. In such a tournament,
in addition to transcripts of the games, we could analyse transcripts of the
team conferences, to examine the knowledge and structures which emerged
and were communicated.

5 Conclusion
So, Metagame presents a framework and a test bed for addressing many in-
teresting and important questions about game analysis, which until now has
largely been performed by humans and built directly into programs. This pa-
per has presented the general problems and concerns with this new challenge,
and a companion paper ([Pel92]) addresses the specific issues involved in con-
structing the necessary components to play it in a particular class of games.

Leaving instruction and communication to future research, then, the next
step in Metagame is to have a game-learning tournament, where programs
compete against different opponents in widely-varying games, analyse new
games without the help of human game-specific knowledge, learn by play-
ing and exploring, and trade off chances of gaining useful information with
chances of winning a present game.

12



In conclusion, meeting the challenge of Metagame may shift the field of
computer game-playing back from an engineering to a research discipline,
wherein winning a game would again be a sign that the program, and not
simply its programmer, is doing something intelligent.

6 Acknowledgements
Thanks to Victor Allis, Nick Flann, Mike Frank, Innes Ferguson, Robert Levin-
son, Karl MacDorman, Dan Pehoushek, Mark Torrance, Prasad Tadepalli, and
David Wilkins for interesting discussions. Thanks also to Jaap van den Herik
for careful proofreading. Thanks especially to my supervisors, Steve Pulman
and Manny Rayner, and to my mentor-in-absentia, Peter Cheeseman.

References
[AvdHH91] L.V. Allis, H.J. van den Herik, and I.S. Herschberg. Which

games will survive. In D.N.L. Levy and D.F. Beal, editors,
Heuristic Programming in Artificial Intelligence 2 – The Sec-
ond Computer Olympiad. Ellis Horwood, 1991.

[AvdMvdH91] L.V. Allis, M. van der Meulen, and H.J. van den Herik.
Databases in awari. In D.N.L. Levy and D.F. Beal, editors,
Heuristic Programming in Artificial Intelligence 2 – The Sec-
ond Computer Olympiad. Ellis Horwood, 1991.

[BCG82] E.R. Berlekamp, J.H. Conway, and R.K. Guy. Winning Ways
for your mathematical plays. Academic Press, 1982.

[CBKF91] Gregg Collins, Lawrence Birnbaum, Bruce Krulwich, and
Michael Freed. Plan debugging in an intentional system. In
Proceedings of the 12th International Joint Conference on Arti-
ficial Intelligence, 1991.

[CFR91] James P. Callan, Tom E. Fawcett, and Edwina L. Rissland.
Adaptive case-based reasoning. In Proceedings of the 12th In-
ternational Joint Conference on Artificial Intelligence, 1991.

[Don92] Ch. Donninger. The relation of mobility, strategy and the mean
dead rabbit in chess. In H.J. van den Herik and L.V. Allis, ed-
itors, Heuristic Programming in Artificial Intelligence 3 – The
Third Computer Olympiad. Ellis Horwood, 1992.

[Eps91] Susan Epstein. Deep Forks In Strategic Maps. In D.N.L. Levy
and D.F. Beal, editors, Heuristic Programming in Artificial In-
telligence 2 – The Second Computer Olympiad. Ellis Horwood,
1991.

13



[FD89] Nicholas S. Flann and Thomas G. Dietterich. A study of
explanation-based methods for inductive learning. Machine
Learning, 4:187–226, 1989.

[Har87] D. Hartmann. How to Extract Relevant Knowledge from Grand
Master Games, part 1. ICCA-Journal, 10(1), March 1987.

[Kof68] Elliot B. Koffman. Learning games through pattern recogni-
tion. IEEE Transactions on Systems Science and Cybernetics,
SSC-4(1):12–16, 1968.

[Len83] Douglas B. Lenat. The role of heuristics in learning by discov-
ery: Three case studies. In R.S. Michalski, J.G. Carbonnel, and
T.M. Mitchell, editors, Machine Learning: An Artificial Intelli-
gence Approach, volume 1. Morgan-Kaufman, 1983.

[LHM
�

91] Robert Levinson, Feng-Hsiung Hsu, T. Anthony Marsland,
Jonathan Schaeffer, and David E. Wilkins. Panel: The role of
chess in artificial intelligence research. In Proceedings of the
12th International Joint Conference on Artificial Intelligence,
1991.

[LM88] Kai-Fu Lee and Sanjoy Mahajan. A pattern classification ap-
proach to evaluation function learning. Artificial Intelligence,
36:1–25, 1988.

[LS91] Robert A. Levinson and R. Snyder. Adaptive, pattern-oriented
chess. In Proceedings of the Ninth National Conference on Ar-
tificial Intelligence, 1991.

[Pel91] Barney Pell. Exploratory Learning in the Game of GO: Initial
Results. In D.N.L. Levy and D.F. Beal, editors, Heuristic Pro-
gramming in Artificial Intelligence 2 – The Second Computer
Olympiad. Ellis Horwood, 1991. Also appears as University of
Cambridge Computer Laboratory Technical Report No. 275.

[Pel92] Barney Pell. Metagame in Symmetric, Chess-Like Games.
In H.J. van den Herik and L.V. Allis, editors, Heuristic Pro-
gramming in Artificial Intelligence 3 – The Third Computer
Olympiad. Ellis Horwood, 1992. Also appears as University
of Cambridge Computer Laboratory Technical Report No. 277.

[Roy90] A. J. Roycroft. Expert Against Oracle. In D. Michie, editor,
Machine Intelligence 11, pages 347–373. Ellis Horwood, Chich-
ester, 1990.

[Tad89] Prasad Tadepalli. Lazy explanation-based learning: A solution
to the intractable theory problem. In Proceedings of the 11th

14



International Joint Conference on Artificial Intelligence, pages
694–700, 1989.

[Wil82] David E. Wilkins. Using knowledge to control tree search. Ar-
tificial Intelligence, 18:1–51, 1982.

15


