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DOMAINS FOR COMPUTATION IN MATHEMATICS,

PHYSICS AND EXACT REAL ARITHMETIC

ABBAS EDALAT

Abstract. We present a survey of the recent applications of continuous domains for pro-
viding simple computational models for classical spaces in mathematics including the real
line, countably based locally compact spaces, complete separable metric spaces, separable
Banach spaces and spaces of probability distributions. It is shown how these models have a
logical and effective presentation and how they are used to give a computational framework in
several areas in mathematics and physics. These include fractal geometry, where new results
on existence and uniqueness of attractors and invariant distributions have been obtained,
measure and integration theory, where a generalization of the Riemann theory of integration
has been developed, and real arithmetic, where a feasible setting for exact computer arith-
metic has been formulated. We give a number of algorithms for computation in the theory of
iterated function systems with applications in statistical physics and in period doubling route
to chaos; we also show how efficient algorithms have been obtained for computing elementary
functions in exact real arithmetic.

§1. Introduction. Domain theory was introduced by Scott [105] in 1970
as a mathematical theory of computation in the semantics of programming
languages. Some earlier ideas of the subject had appeared in the work of
Lacombe [85] in recursion theory. A number of fundamental contributions
to the theory were also made independently by Ershov in the context of
partial computable functionals of finite type [49].
A domain is a structure for modeling a computational process or a data
type with incompletely specified elements. It is a partially ordered set with
the partial order corresponding to some notion of information. In order to
model computational processes as a sequence of finite steps, a domain is
equipped with a notion of finite elements and a notion of limits provided
by a least upper bound operation. A simple example is given by the set of
finite and infinite sequences Σ∞ = Σ∗ ∪ Σù over a fixed alphabet Σ. The
elements of Σ∞ can represent partial or total output of a computation. They
are partially ordered with pre-fix ordering ⊑, that is to say, for x, y ∈ Σ∞

we have x ⊑ y if the sequence x is an initial segment of the sequence y, i.e.,
if x gives less information than y. Every increasing chain of sequences in
Σ∞ has a least upper bound, namely the least sequence with respect to the
prefix ordering which has each sequence in the chain as an initial segment.
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Furthermore, every sequence in Σ∞ is the least upper bound of a chain of
finite sequences which give finite approximations to that sequence.
The Scott model can be described as follows. Given a computation based
on an algorithm, the set of input and the set of output each forms a domain.
The program which carries out the computation is represented as a function
between these two domains. Every new step in the computation results in
an element in the domain of output which provides more information and
a better approximation to the ultimate result. This final outcome may be
attained in a finite number of steps or may only be captured by the limit
of an infinite sequence of steps of computation. Scott’s thesis is that any
computable function is continuous: It preserves the information order (so
that more information as input gives more information as output) and the
limits of infinite computations in the domain (so that the total information
obtainable as output froman infinite sequence of input elementswith refining
information is the sum total of all the information obtained from each input
element).
Programswith the same domains of input and output are in turn pointwise
ordered to yield a domain of functions or a function space. Thereby, one is
able to model higher order functions or higher order programs which can
take a program as input. Any continuous function on a domain with a least
element has a least fixed point as in Tarski’s theorem. This implies that
a recursive program can be captured as the fixed point of a higher order
function which is defined, by the corresponding recursion, on the domain of
all programs of the given type.

There are a number of basic categories of domains according to various
additional properties that they satisfy [79, 2]. Algebraic domains are char-
acterized by a subset of so-called finite or compact elements representing
computational results which can be obtained in a finite number of steps.
The finite elements form a basis of the domain; every element of the domain
is the limit of the basis elements approximating it. An algebraic domain with
a countable basis, called anù-algebraic domain, can be effectively presented
to make the theory constructive and to define the notion of computable
element and computable function. Scott domains form a particularly sim-
ple class of ù-algebraic domains in which every bounded subset has a least
upper bound.

The basis elements can also be regarded as a set of logical propositions
which characterize any element of the domain. This was first noted by
Scott [108] for Scott domains and was later generalized for other classes of
domains: An algebraic domain has a simple presentation in terms of an
information system, a logical structure on the basis elements which gives a
prescription how to construct the elements as the theories of the correspond-
ing logic. The logic underlying an algebraic domain is that of the observable
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properties of the computation process. This “logic of observation” is closely
linked to the Scott topology of domains as noted by Smyth [112] and elabo-
rated by Vickers [118]. A Scott open subset can be viewed as a proposition
about, or a property of, a program. A comprehensive analysis of the under-
lying logic for the cartesian closed category of the so-called bi-finite domains
was developed by Abramsky [1]. Various other categories of domains have
also been studied in logical form [45, 119, 72].

Several cartesian closed categories of algebraic domains, including the so-
called Scott domains, have been employed in the semantics of computation.
They are used to obtain a non-trivial model of the untyped ë-calculus [6]
based on a domain isomorphic to its own function space [106, 107]. They
have also provided a denotational semantics for PCF [95] (Programming
Language for Computable Functions), essentially a typed ë-calculus with
ground types for natural numbers and Boolean values plus constants for
basic operations on these types; PCF can be considered as the theoretical
model for functional programming languages. Domain theory has devel-
oped extensively in the past three decades and is now a major paradigm in
the semantics of programming languages. For a basic introduction to its
theory and applications, see [59, 74, 96, 64, 2, 114].

Algebraic domains have also been used to represent classical spaces in
mathematics in an effective framework. Weihrauch and Schreiber [124] con-
structed an embedding of a Polish space (a topologically complete separable
metrizable space) into an algebraic domain. Stoltenberg-Hansen andTucker
have shown how to represent complete local rings [115] and topological al-
gebras, in a general setting, including locally compact Hausdorff spaces and
the real line, by algebraic domains [116]. Jens Blanck [19] has more recently
shown how to embed a complete metric space into an algebraic domain.
In recent years, a new direction for application of domains in computation
on classical spaces in mathematics has emerged. Continuous domains are
generalizations of algebraic domains and share many of their basic proper-
ties; in fact every continuous domain is a retract of an algebraic domain,
and one can move from a representation by an algebraic domain to one by
a continuous domain and vice versa. However, continuous domains are the
natural setting for continuous mathematics since the representations they
provide are far more direct and straightforward than those by algebraic do-
mains. In fact, Scott in [105] had suggested that the continuous domain
of the compact intervals of the real line can be used as a data type for real
numbers.
In [35], the author presented the notion of a domain-theoretic computa-
tional model for a countably based locally compact Hausdorff space: it was
shown that the continuous domain obtained by taking the non-empty com-
pact subsets of the space, ordered by reverse inclusion, provides a simple and
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effective model for computation on this classical space which is embedded
onto the subspace of the maximal elements of the domain. This domain,
called the upper space, is equippedwith a countable basis of non-empty com-
pact subsets which can be enumerated to give an effective structure for the
domain. An element of the locally compact space identified as a singleton
element can be obtained as the intersection of a shrinking nested sequence
of the basis elements. A computable element of the domain, in particular a
computable element of the locally compact space, is the intersection of an
effective shrinking sequence of basis elements.
This led to a new framework for iterated function systems, measure theory
and integration with applications in fractal geometry and statistical physics.
More specifically, a generalization of the Riemann theory of integration has
been developed which retains the computational and constructive features
of the ordinary Riemann integral: it has provided a new technique for com-
putation of integrals. Later, computational models for complete separable
metric spaces were also constructed. Furthermore, similar computational
models have provided a framework for exact real number computation lead-
ing to efficient algorithms in infinite precision computer arithmetic.

In this article we give an outline of the new applications of continuous
domains in mathematics, physics and real number computation based on
various computational models in these areas. The aim is to give a precise
account of the results obtained which would also be self-contained. We will
only point out some of the basic results in the subject; for proofs, other
basic results and various generalisations the reader is referred to the relevant
papers.
We start in Section 2 by defining the basic tools in domain theory which
we will use to construct our computational models and present them in a
logical form and in an effective framework. We then give, in Section 3, some
basic examples of these models for real numbers, locally compact spaces
and complete metric spaces. In Section 4, dynamical systems on domains
are studied and the domain-theoretic models are used to obtain various new
results in the theory of iterated function systems in fractal geometry. In
Section 5, we construct a computational model for classical measure theory
on locally compact second countable Hausdorff spaces. In Section 6, the
new model for measures is used to give a computational generalisation of
the Riemann theory of integration. Section 7 presents various new results in
the theory of iterated function systems with probabilities. In Section 8, two
applications in computing various quantities in statistical physics and chaos
theory are presented. Finally, in Section 9, we outline the domain-theoretic
approach in exact real number computation.
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§2. Directed complete and continuous posets. In this section, we present
the basic notions of domain theory which we need in this exposition and
explain how continuous domains can be presented in logical form and how
they can be effectively presented. We use the following conventions in this
paper. For any map f : D → E, any point x ∈ D, any subset A ⊆ D and
any subset B ⊆ E, we denote, whenever more convenient, the image of x by
fx instead of f(x), the forward image of A by fA instead of f(A) and the
pre-image of B by f−1B instead of f−1(B). The set of all finite subsets of
the set S is denoted by Pf(S) and the lattice of open sets of a topological
space X by Ω(X ).

2.1. Basic definitions. A non-empty subset A ⊆ P of a poset (P,⊑) is
directed if for any pair of elements x, y ∈ A there is an upper bound z ∈ A
with x, y ⊑ z. An increasing chain is the simplest example of a directed set.
If we think of the posetP as the set of inputs or outputs, then a directed setA
corresponds to a consistent set of inputs or outputs of a given program: for
any two elements in A there exists an element which refines the information
of both. We therefore require that in a domain of computation the total
information in a directed subset should be represented by an element of the
domain, in other words a domain should contain the least upper bounds of
directed subsets. A directed complete partial order (dcpo) is a partial order
in which every directed subset A has a least upper bound (lub), denoted by
⊔

A.
An open set O ⊆ P of the Scott topology of P is a set which is upward
closed (i.e., x ∈ O & x ⊑ y ⇒ y ∈ O) and is inaccessible by lubs of
directed sets (i.e., if A is directed with a lub, then

⊔

A ∈ O ⇒ ∃x ∈ A. x ∈
O). Dually, a closed set C ⊆ P of the Scott topology of a poset P is a set
which is downward-closed (i.e., x ∈ C & y ⊑ x ⇒ y ∈ C ) and is closed
under the lubs of directed subsets (i.e., for any directed subset A ⊆ C with
lub we have

⊔

A ∈ C ). The Scott topology of any poset is T0. The Lawson
topology is a refinement of the Scott topology in which subsets of the form
↑d = {x ∈ P|d ⊑ x} are also closed. Unless otherwise stated, the topology
of a poset in these notes is always assumed to be the Scott topology.

The function spaceD → E of two dcpo’s D and E is the set of continuous
functionsf : D → E with the pointwise ordering: f ⊑ g if ∀x ∈ D. f(x) ⊑
g(x). Then D → E is a dcpo where the lub

⊔

i∈I fi of a directed subset
in D → E is given by (

⊔

i∈I fi)(x) =
⊔

i∈I (fi(x)). It can be shown that a
function f : D → E from a dcpo D to another one E is continuous with
respect to the Scott topology iff it is monotone, i.e., x ⊑ y ⇒ f(x) ⊑ f(y),
and preserves lubs of directed sets, i.e.,

⊔

i∈I f(xi) = f(
⊔

i∈I xi), where
{xi | i ∈ I } is any directed subset of D. From this one obtains a Tarski-like
fixed point theorem: a continuous function f : D → D on a dcpo D with
least element (or bottom) ⊥ has a least fixed point given by

⊔

n≥0 f
n(⊥).
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Given two elements x, y in a poset P, we say x is way-below y, or y is way-
above x, or equivalently x approximates y, denoted by x ≪ y or y ≫ x, if
whenever y ⊑

⊔

A for a directed set A with lub, then there is a ∈ A with
x ⊑ a. An element x ∈ P is compact if x ≪ x. We say that a subset B ⊆ P
is a basis for P if for each d ∈ P the set A of elements of B way-below
d is directed and d =

⊔

A. We say P is continuous if it has a basis; it is
ù-continuous if it has a countable basis. In any continuous poset, subsets of
the form ↑↑b = {x|b ≪ x}where b belongs to a given basis give a basis of the
Scott topology. An (ù-)continuous poset is (ù-)algebraic if it has a basis of
compact elements. A dcpo is bounded complete if any bounded subset has a
lub. By a domain in these notes we mean a dcpo. A dcpo is pointed if it has
a least element. We can always add a bottom element to a domain to make
it pointed.

2.2. Domains in logical form. An ù-continuous domain can be presented
by a logical structure. A continuous information system (cf. an R-structure
[110] and an abstract basis [2]) is a pair (A,⊢) where A is a non-empty
countable set and ⊢⊆ A×A is a binary relation satisfying the following, (for
a finite subset C ∈ Pf(A) we write a ⊢ C if ∀c ∈ C. a ⊢ c),

(i) ∀a, b, c ∈ A. a ⊢ b ⊢ c ⇒ a ⊢ c (transitivity), and
(ii) ∀a ∈ A∀C ∈ Pf(A) [a ⊢ C ⇒ (∃b ∈ A. a ⊢ b ⊢ C )] (interpola-
tion).

For any ù-continuous domain D with a countable basis B , the pair (B,≫),
where≫ is the restriction of theway-above relation ofD toB , is a continuous
information system. We think of elements of a continuous information
system as propositions or assertions which tell us how to construct the
associated continuous domain. In fact, from a continuous information
system (A,⊢) one can construct its rounded ideal completion I(A) as follows.
A point of (A,⊢) is a subset x ⊆ A such that, (i) x is closed under entailment
(∀a ∈ x∀b ∈ A. a ⊢ b ⇒ b ∈ x) and (ii) any finite set C ⊆ x of
propositions in x is derivable from some proposition in x (∀C ∈ Pf(x)∃a ∈
x. a ⊢ C ). The continuous domain I(A) is the set of points of (A,⊢)
ordered by subset inclusion. If A has an element ∆ with a ⊢ ∆ for all a ∈ A,
then the domain will have a least element {∆}; hence the information system
(A,⊢,∆) represents a pointed domain. If we think of information systems
as a certain logic then the elements of the corresponding domain are in fact
the theories of this logic.
Given information systems (A,⊢A) and (B,⊢B) an approximable relation
R : A→ B is a binary relation R ⊆ A× B such that, (i) ∀a, a ′ ∈ A∀b, b′ ∈
B. a ⊢A a

′Rb′ ⊢B b ⇒ aRb, (ii) ∀a ∈ A∀C ∈ Pf(B). (∀c ∈ C. aRc) ⇒
(∃b ∈ B. aRb ⊢B C ). Any continuous function f : D → E between con-
tinuous domainsD and E with basis A and B , gives rise to an approximable
relation Rf : A → B on the corresponding information systems defined by
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aRfb ⇐⇒ b ≪E f(a). Conversely, any approximable relation between
two continuous information systems induces a continuous function between
the associated domains. In fact, the category of ù-continuous domains and
continuous functions is equivalent with the category of continuous informa-
tion systems and approximable relations.

2.3. Effectively given domains. An ù-continuous domain can be effec-
tively presented with respect to an enumeration of a basis by requiring that
the way-below relation restricted to the basis elements is recursively enu-
merable [123, 47]. This can be stated in terms of information systems. A
continuous information system (A,⊢,∆) with an enumeration of its elements
A = {a0, a1, a2, · · · }, where a0 = ∆, is effectively given with respect to this
enumeration if the entailment relation am ⊢ an is r.e. inm and n, i.e., if the set
{〈m, n〉|am ⊢ an} is r.e. where 〈., .〉 is the standard pairing function. We note
that authors usually require the entailment relation to be recursive in order to
obtain an effective structure on function spaces [110, 96]. An approximable
relation R : A→ B between effectively given information systems with enu-
merations A = {a0, a1, a2, · · · } and B = {b0, b1, b2, · · · } is computable if it
is r.e. with respect to these enumerations, i.e., if the set {〈m, n〉|amRbn} is
an r.e. set. A pointed ù-continuous domain D with an enumerated basis
A = {a0, a1, a2, · · · }, where a0 = ⊥, is effectively given with respect to A if
its associated information system (A,≫,⊥) is effectively given. In such a
domain, an element x ∈ D is a computable element if the set {m|am ≪ x}
is recursively enumerable. Equivalently, x is a computable element if it is
the lub of a recursive chain of basis elements way-below it. For effectively
given ù-continuous domains D and E, a continuous function f : D → E
is computable if the approximable relation Rf on the associated information
systems is computable. The lub of an effective chain of computable elements
is computable and so is the least fixed point of a computable function on
an effectively given domain. As seen in the last subsection, this leads to a
logical presentation and an effectively given computational model.

§3. Some basic computational models. In order to construct computa-
tional models for classical spaces, we seek to embed these spaces onto the
set of maximal elements of continuous domains. We will see below how this
is done for the Cantor space, the real line, locally compact second count-
able Hausdorff spaces and complete separable1 metric spaces, in particular
separable Banach spaces. In each case we present a suitable basis so that
an element of the classical space can be represented as the lub of the basis
elements way-below its image under the embedding.

3.1. The domain of streams. Let Σ be a finite set. Let Σ∗ and Σù be the set
of finite and infinite sequences over Σ respectively and let Σ∞ = Σ∗ ∪ Σù be

1A topological space is separable if it has a countable dense subset.
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the set of streams over Σ. Then Σ∞ with the prefix ordering is anù-algebraic
dcpo and Σ∗ is the set of compact elements, which forms the canonical basis.
Any infinite sequence a0a1a2 · · · is the lub

⊔

n≥0 a0a1 · · ·an of finite sequences.
A basic Scott open set is given by ↑a0a1 · · · an = {x ∈ Σ∞|a0a1 · · ·an ⊑ x}.
The set Σù of the maximal elements with the subspace Scott topology is
the Cantor space Σù with the product topology when Σ is given the discrete
topology.

3.2. The domain of intervals. Let IR be the poset of bounded and closed,
i.e., compact, subintervals of the real line ordered by reverse inclusion. This
poset (with a top element representing the empty interval) was first proposed
by Scott [105] as a data-type for real numbers. In fact, IR is anù-continuous
bounded complete domain: The lub of any directed subset in this poset (i.e.,
any filtered set of compact intervals) is the intersection of the intervals. The
way-below relation is given by a ≪ b iff b is in the interior of a. A countable
basis is given by the set of all intervals with rational end points. A real
number x is therefore approximated by an increasing chain, i.e., a shrinking
sequence of rational nested intervals.
A basic Scott open set is given, for any open subset O ⊆ R, by the col-
lection 2O = {a ∈ IR|a ⊆ O}. The maximal elements of this domain
are the singleton subsets {x} for x ∈ R. The mapping s : R → IR with
s(x) = {x} is an embedding of the real line onto the set of maximal elements
as s−1(2O) = O for any open subsetO ⊆ R; this implies that the Euclidean
topology coincides with the relative Scott topology on the subspace of maxi-
mal elements. Any continuous function f : R → R extends canonically to a
Scott continuous function If : IR → IR, defined on any compact interval a
by (If)(a) = f(a). This is the maximal extension [40] of f on IR, in other
words if the continuous function g : IR → IR satisfies g({x}) = {f(x)} for
all x ∈ R then g ⊑ If. In practice, for convenience, we usually denote the
maximal extension If simply by f.
The continuous domain IR can be equipped with a canonical effective
structure by using the standard enumeration of rational intervals: A com-
putable real number is then the lub of a shrinking sequence of rational in-
tervals which is generated by a master program. This is also exactly how a
computable number in the interval approach to computability on the real
line is characterized as for example by Rogers [102, p. 371]. We can define
a continuous function f : R → R to be computable if it has a computable
extension g : IR → IR. It is shown directly in [47] that our definition of
computable real number and computable real function coincide with the
well-established notion by Pour-El and Richards [101] which is equivalent
to that of Weihrauch [122] and is based on the classical work of Grzegor-
czyk [62, 63]. In fact, it was known from the work of Stoltenberg-Hansen
and Tucker [116] that the computability theory induced on the real line by
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its effective representation with an algebraic domain is equivalent to the
classical computability theory of the real numbers and it can be shown,
from results in [18], that effective presentations by algebraic and continuous
domains are indeed equivalent.
We emphasize that our domain-theoretic notion of a computable real
is weaker than that used in traditional constructive mathematics where a
real number is given as a Cauchy sequence of rational numbers with an
explicit modulus of convergence. For example, in Bishop’s work [17] a
real number is the limit of a sequence of rational numbers 〈xn〉n≥1 with
|xn − xm| ≤

1
n
+ 1
m
. The idea behind the domain-theoretic notion, how-

ever, is that if a real number is given as the intersection of a shrinking
nested sequence of rational intervals then, examining the sequence term
by term, we will eventually obtain an interval whose length is less than a
given size. Of course, in practice it is very useful to know an estimate for
the rate of convergence of the approximating intervals to a real number;
this is in fact essential for complexity analysis. But such an estimate is
almost always very conservative and to use it in order to compute a ra-
tional approximation to the real number up to a given accuracy may lead
us to perform too many unnecessary steps in a computation and there-
fore greatly reduce the efficiency. In contrast, the domain-theoretic model
provides an incremental framework for computation: To approximate the
real number with a rational interval of length less than å, we find the first
interval in the shrinking sequence whose length is less than å. If, subse-
quently, a more precise approximation is required, we will resume the search
for such an interval in the sequence beginning with the earlier approxima-
tion. This is studied in detail in the context of exact real arithmetic in
Section 9.

Finally we note that one can similarly construct the domain of I[x1, x2] of
the compact subintervals of any real closed interval [x1, x2]. Figure 1 depicts
the domain I[0, 1].

3.3. The upper space. For any Hausdorff space X , the upper space UX of
X is the set of all non-empty compact subsets of X with the base of upper
topology given by collections2O = {a ∈ UX | C ⊆ O} for any open subset
O ∈ ΩX [113]. This topology is T0 and its specialisation ordering(see [59,
p. 123] or [74, p. 45]), denoted by ⊑, is reverse inclusion, i.e.,

a ⊑ b
def
⇐⇒ ∀O ∈ ΩX [a ⊆ O ⇒ b ⊆ O] ⇐⇒ a ⊇ b.

(UX,⊇) is a dcpo, in which the lub of a directed set of compact subsets is
their intersection.

Theorem 3.1. [35] When X is locally compact, (UX,⊇) is a continuous
bounded complete dcpo with A≪ B iff B is in the interior of A, and the upper
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Figure 1. I[0, 1].

topology coincides with the Scott topology. If X is also second countable (i.e.,
it has a countable basis) then UX is an ù-continuous dcpo.

The upper space of a second countable locally compact Hausdorff space
was presented originally by the author in [35] as a simple model for compu-
tation in mathematics; we will see several applications of this model in later
sections. A countable basis of UX is obtained as follows. We start with a
countable basis of X consisting of relatively compact open subsets2. In fact,
since a locally compact second countable space is metrizable, one can take as
a basis of X the set of all finite unions of relatively compact open balls with
rational radii centred at points of a countable dense subset of X . Then the
collection of the finite unions of the closures of these basic open sets forms
a countable basis for UX . The maximal elements of UX are the singleton
subsets {x} for x ∈ X . The mapping s : X → UX with s(x) = {x} is an
embedding of X onto the set of maximal elements of its upper space since
s−1(2O) = O. As in the case of the domain of intervals, the Hausdorff
topology on X coincides with the induced relative Scott topology on the
subspace of maximal elements of the upper space. Any continuous function
f : X → X extends to a Scott continuous function Uf : UX → UX de-
fined on any non-empty compact subset C by (Uf)(C ) = f(C ). In fact,
U is a functor from the category of locally compact spaces and continuous
functions to the category of continuous dcpo’s and continuous functions.
See [35] for details. The map Uf is the maximal extension of f and, as
in the case of the domain of intervals, for convenience, we denote it simply
by f. The problem of extending the domain of a map from a subspace to
the space as a whole was first studied by Scott in his work on the so-called
injective spaces [106]. Bounded complete continuous domains, such as UX

2A set is relatively compact if its closure is compact.
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for a locally compact space X , are precisely the so-called densely injective
spaces [59, p. 127]: In the category of T0 topological spaces and continuous
maps, Y is densely injective if, whenever A is a dense subspace of B , any
continuous map f : A → Y extends to a map f̂ : B → Y . Escardó has
recently made a new study of extension of maps for injective spaces [51].

3.4. The space of formal balls of a metric space. Topologically complete
separable metrizable spaces, the so-called Polish spaces, form a fundamental
class of spaces in mathematics which include separable Banach spaces and
in particular separable Hilbert spaces. A Polish space is therefore the under-
lying topological space for a complete separable metric space. These spaces
do not in general have enough compact subsets to provide a computational
model as in the case of a locally compact space.

There are two constructions which embed a metric space into an algebraic
dcpo [124, 19]; but these embeddings are quite involved. The question is
how we can obtain a simple embedding onto the set of maximal elements
of a domain. Kamimura and Tang [80] showed that the set of maximal
elements of a bounded complete continuous dcpo equipped with its relative
Scott topology is a Polish space (topologically complete separablemetrizable
space). Lawson more recently showed the following more general result.
Theorem 3.2. [88] If the relative Scott and Lawson topologies on the set of
maximal elements of an ù-continuous dcpo coincide then the set of maximal
elements equipped with this topology is a Polish space.

He also provided an indirect and rather complicated construction via
an embedding in the Hilbert cube to obtain an ù-continuous dcpo whose
set of maximal elements is a given complete separable metric space; the
construction is not functorial.

The following alternative construction by formal balls given in [41] is
simple, direct, functorial and useful in applications. A formal ball [124]
of a metric space (X, d ) is a pair (x, r) with x ∈ X and r ∈ R

+. The
space BX of formal balls of X is the set of all formal balls with the ordering

(x, r) ⊑ (y, s)
def
⇐⇒ d (x, y) ≤ r−s . If we denote the closed ball with centre

x and radius r by C (x, r), then (x, r) ⊑ (y, s) implies C (x, r) ⊇ C (y, s).
The converse is not true in general but it holds for normed vector spaces.
In other words, in any normed vector space, the poset of formal balls and
the set of closed balls partially ordered by reverse inclusion are isomorphic.
In particular, this holds for any Banach space and consequently for Hilbert
spaces.

In any metric space X , we have (x, r) ≪ (y, s) ⇐⇒ d (x, y) < r −
s . Furthermore, the poset BX is continuous and the subsets ↑↑(x, r) =
{(y, s)|d (x, y) < r − s} form a basis of the Scott topology. A metric space
X is separable iff BX has a countable basis (i.e., it is ù-continuous). If
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X is separable, then the formal balls of the form (x, r) where x belongs to
a countable dense subset of X and r is a positive rational number give a
countable basis of BX .
There is also an interesting connection between completeness of a metric
space and that of a poset: a metric space X is Cauchy complete iff BX is
directed complete. The maximal points of BX are precisely the elements
(x, 0) for x ∈ X . The mapping i : X → BX with i(x) = (x, 0) embeds X
onto the maximal elements of the space of formal balls since i−1(↑↑a(x, r)) =
{y|d (x, y) < r}. We therefore have the following main result.
Theorem 3.3. [41] A metric space X is complete and separable iff BX is
an ù-continuous domain.

We can extend B to a functor. Let f : X → Y be a function between
two metric spaces with a Lipschitz constant c ≥ 0, i.e., for all x, x′ in X ,
d (fx,fx′) ≤ cd (x, x′). The collection of pairs (f, c) of a function and a
Lipschitz constant forms a category with composition of morphisms given
by (f, c) ◦ (g, d ) = (f ◦ g, cd ). The functor B is defined on this category by
B(f, c)(x, r) = (fx, cr) for every (x, r) in BX .
This gives a simple computationalmodel for completemetric spaces. Flagg
and Kopperman [58] have developed a variant of the space of formal balls
to obtain an ù-algebraic domain as a computational model for ultrametric
spaces.
For a complete separable metric space X , an effective structure on BX
induces a computability theory for metric spaces which is similar to the
corresponding theory induced from representing the metric space by an ù-
algebraic domain as in the work of Blanck [19]. In [46], it is shown that the
vector space structure of a separable Banach space can also be extended to
the domain of formal balls and be effectively presented. The computability
theory induced on the separable Banach space is equivalent with the classical
theory of Pour-El and Richards [101].

Interestingly, we can obtain a domain-theoretic, i.e., Tarski-like, proof
of the Banach contracting mapping theorem which was first given for an
embedding of a complete metric space into an algebraic domain in [19]: A
contracting map on a complete metric space has a unique fixed point which
is the limit of the orbit of any point in the space. In fact, if f : X → X is a
contracting map with Lipschitz constant c < 1 on the complete metric space
(X, d ), then the function g = B(f, c) : BX → BX is Scott continuous. For
any x ∈ X , and r ≥ d (x,fx)/(1−c), we have d (x,fx) ≤ (1−c)r = r−cr,
whence (x, r) ⊑ (fx, cr) = g(x, r). This implies that gmaps the dcpo ↑(x, r)
into itself. The least fixed point

⊔

n≥0(f
nx, cnr) = (limn→∞ f

nx, 0) of g on

↑(x, r) is a maximal element of BX and is easily seen to be the unique fixed
point of g on BX . It follows that f has a unique fixed point given by
limn→∞ f

nx for any x ∈ X ; see [41] for details.
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Given a metric space (X, d ), one can first construct its completion (X, d )
and then the continuous domain BX which is isomorphic to the rounded
ideal completion I(BX ) of BX . In [66], Heckmann has shown how the
metric d on X can be extended to a partial metric on BX and by continuity
on I(BX ) such that its restriction to the maximal elements of BX ∼= I(BX )
gives the completed metric d on X .

§4. Dynamical systems on computational domains. In this section we in-
vestigate the relationship between dynamical systems on classical spaces and
their counterparts on domain-theoretic models and show that they share
many common properties. In particular we will see that a map is chaotic
on the real line iff it has a chaotic extension to the domain of intervals.
We will then present a domain-theoretic model for iterated function systems
which gives a unifying framework for studying their various properties and
provides a set of new results in the theory and applications of these systems.

A discrete dynamical system is given by the action of a continuous map
f : X → X on a topological space X . The orbit of a point x ∈ X is the
sequence 〈fnx〉n≥0. In the theory of dynamical systems, one is interested in
studying the long term behaviour of orbits. The point x is periodic if there
exists n ≥ 1 with fnx = x. The least such n is called the period of x. If
n = 1 then x is a fixed point. We say f : X → X is chaotic if

(i) f is topologically transitive, i.e., for any pair of non-empty open sets
a, b ⊆ X , there exists n > 0 such that fn(a) ∩ b 6= ∅, and

(ii) the periodic points of f are dense in X .

If X is in fact a metric space, then it can be shown [5] that a chaotic map is
sensitive to initial conditions i.e., there exists ä > 0 such that, for any x ∈ X
and any neighbourhood N of x, there exists y ∈ N and n ≥ 0 such that
d (fn(x), fn(y)) > ä. These three properties are precisely the definition of
a chaotic map in [25] which is widely accepted. For example, it is proved in
loc.cit. that the map x 7→ 4x(1− x) : [0, 1]→ [0, 1] is chaotic.

In [35], it is shown that if f : X → X is chaotic on a metric space X
then the maximal extension Uf : UX → UX is also chaotic; in fact any
continuous extension of f will be chaotic as well. For dynamical systems on
the real line, chaos is preserved and reflected on the domain of intervals:

Theorem 4.1. Let X be the real line or a compact interval [a, b] ⊂ R. A

continuous map f : X → X is chaotic iff it has a continuous chaotic extension
g : IX → IX .

Proof. The ‘only if part’ follows as in the case of the upper space. For
the ‘if ’ part, suppose g : IX → IX is a continuous chaotic extension of f.
Then, the topological transitivity of f follows immediately from that of g.
In order to show that the periodic points of f are dense, letO ⊆ X be open.
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We show that O contains a periodic point of f. Since 2O ⊆ IX is open,
there exists a periodic element [c, d ] ∈ 2O of g. Therefore, there exists some
n > 0 with fn[c, d ] ⊆ gn[c, d ] = [c, d ] ⊂ O. Hence, by Brouwer’s fixed
point theorem [109], fn has a fixed point in [c, d ]. ⊣

4.1. Iterated function systems. An iterated function system (IFS) on a
topological space X is given by a countable set of continuous maps fi :
X → X with i ∈ I . The IFS is denoted by {X ;fi |i ∈ I }. If I is finite with
N elements we write it, for example, as I = ΣN = {1, 2, . . . , N}. For an IFS,
one examines the behaviour of the sequence fi1fi2 · · ·finx for any initial
point x ∈ X and any code sequence i1i2 · · · ∈ I

ù. In the past 15 years, IFS
theory has been a very active area of research in fractal geometry [73, 8, 29,
83, 84, 48, 9] andhas foundapplications in diverse areas such asmathematical
finance, signal processing, computer graphics, image compression, learning
automata, neural nets, statistical physics and real number computation [11,
12, 7, 10, 22, 83, 84, 15, 13, 44].
A simple example of an IFS can be constructed for the decimal represen-
tation of real numbers in [0, 1]. Let

fi : x 7→
x + i

10
: [0, 1]→ [0, 1]

with i ∈ {0, 1, 2, . . . , 9}. Then the decimal representation of any real number
in [0, 1] can be expressed by the IFS {[0, 1];f0, . . . , f9}. In fact suppose
0.i1i2i3 · · · is an infinite sequence of digits ij ∈ {0, 1, 2, · · · , 9} representing
x ∈ [0, 1]. Note that if x has a finite digit representation 0.i1i2 · · · in then it is
represented by the infinite sequence 0.i1i2 · · · in000 · · · . It is now easy to see
that {x} =

⋂

n≥1fi1fi2 · · ·fin [0, 1]. In fact, for each integer n ≥ 0, we have

0.i1i2 · · · in = fi1fi2 · · ·fin(0) ∈ fi1fi2 · · ·fin [0, 1]. Therefore, real numbers
in the decimal representation can be expressed by the infinite composition
of maps of the above IFS. Similarly, the binary signed representation of real
numbers in [−1, 1] can be expressed by the IFS {[−1, 1];f−1, f0, f1} with
fi : [−1, 1] → [−1, 1] where fi(x) = (x + i)/2. As we will see in the last
section of this paper, iterated function systems can be used to represent other
number systems and play a crucial role in one of the main approaches to
exact real number computation.

4.2. Weakly hyperbolic IFS. If X is a complete metric space and the
maps fi are all contracting then the IFS is called hyperbolic. In the early
80’s, Hutchinson [73] used the Banach fixed point theorem to deduce the
existence and uniqueness of an attractor for a hyperbolic IFS, i.e., a fixed
point of the contracting map

F : HX → HX,
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whereHX is the set of non-empty compact subsets of X with theHausdorff
metric and F (A) = f1(A)∪f2(A)∪ · · · ∪fN (A). Recall that the Hausdorff
metric dH on HX is defined by

dH (A,B) = inf {ä | B ⊆ Aä and A ⊆ Bä}

where, for a non-empty compact subset C ⊆ X and ä ≥ 0, the set

Cä = {x ∈ X | ∃y ∈ C. d (x, y) ≤ ä}

is the ä-parallel body of C . The above result easily extends to an IFS
which is eventually contracting [57], i.e., there is some k ≥ 1 such that
the N k maps gi1i2...ik = fi1fi2 . . . fik are contracting for all finite sequences
i1, i2, . . . , ik ∈ ΣkN of length k.

In practice, IFSs are defined on compact metric (or metrizable) spaces.
Assume from now that we have an IFS {X ;f1, . . . , fN} on a compact metric
space X . Consider the extension of the IFS {UX ;f1, . . . , fN} on the upper
space. Recall that, for convenience, we write Uf simply as f. The map

F : UX → UX,

where F (A) = f1(A)∪f2(A)∪ · · · ∪fN (A) is Scott continuous and, hence,
has a least fixed point. This was first noted by Hayashi [65].

The iterates F mX generate a finitary branching tree, called the IFS tree,
depicted in Figure 2 forN = 2. Each node is a subset of its parent node. For
anym, F mX is in fact the union of the nodes on levelm of this tree. The IFS
tree, as we will see, plays a fundamental role in the domain-theoretic study
of IFS.

Using the domain-theoretic model, we can generalize Hutchinson’s results
and deduce the existence and uniqueness of the attractor for a larger class
of IFSs containing maps which are not necessarily contracting. This class is
motivated by a number of applications, for example in neural nets [69, 13, 33],
where one encounters IFSswhich are not hyperbolic. It can arise for example
in a compact interval X ⊂ R if the IFS contains a smooth map f : X →
X satisfying |f′(x)| ≤ 1 but not |f′(x)| < 1. We say an IFS is weakly
hyperbolic [37] if for all infinite sequences i1i2 · · · ∈ Σ

ù
N the set

⋂

n≥1
fi1fi2 . . . finX

contains a single point, or, equivalently, if the diameter of fi1fi2 . . . finX
tends to zero as n → ∞. Clearly, a hyperbolic IFS is weakly hyperbolic and,
hence, we have a generalization of Hutchinson’s framework on compact
metric spaces. In this situation, the maps fi are not necessarily contracting,
and, hence, the map F above is not in general contracting. Furthermore,
a weakly hyperbolic IFS need not be eventually contracting. Therefore,
the Banach fixed point theorem can no longer be employed to prove the
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Figure 2. The IFS tree for N = 2.

uniqueness of the fixed point. This can however be proved using the Plotkin
power domain which was originally constructed to capture the semantics of
non-determinism [96].

The Plotkin power domain of an ù-continuous dcpo can be defined using
the notion of finitely generable sets [111, 114]. Suppose (D,⊑) is any pointed
ù-continuous dcpo andB ⊆ D a countable basis for it. Consider any finitely
branching tree such that each node is an element of B and each child y of
any parent node x satisfies x ⊑ y. Repetitions of elements are allowed so
that an element can appear in more than one node. The set of lubs of all
branches of the tree is called a finitely generable subset of D. We denote
the set of finitely generable subsets of D by F(D). It is easily seen that
Pf(B) ⊆ Pf(D) ⊆ F(D). For A ∈ Pf(B) and C ∈ F(D), the pre-order
≪EM is defined by A≪EM C iff

∀a ∈ A ∃ c ∈ C. a ≪ c & ∀c ∈ C ∃a ∈ A. a ≪ c.

This extends to a pre-order on F(D) by defining C1 ⊑EM C2 iff for all
A ∈ Pf(B) whenever A ≪EM C1 holds we have A ≪EM C2. The Plotkin
power domain or the convex power domain CD of D is then defined to be
the quotient (F(D)/∼= ,⊑EM /∼=), where the equivalence relation

∼= on F(D)
is given by C1 ∼= C2 iff C1 ⊑EM C2 and C2 ⊑EM C1.

Now let D be UX where X is, as before, a compact metric space and
{X ;f1, . . . , fN} an IFS. The IFS tree generates an element of CUX . Let
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F : UX → UX be as before and consider the Scott continuous map f :
CUX → CUX which is defined on the basis Pf(UX ) by the monotone map

f : Pf(UX ) → CUX
{Aj | 1 ≤ j ≤M} 7→ {fi(Aj) | 1 ≤ j ≤M, 1 ≤ i ≤ N}.

The set of nodes at level n of the IFS tree is then represented by fn{X}.

For A ∈ UX , let

S(A) = {s(x) | x ∈ A} = {{x} | x ∈ A} ⊆ UX.

Then, S(A) is a finitely generable subset of UX and the following result can
be shown.

Theorem 4.2. [37] If the IFS {X ;f1, . . . , fN} is weakly hyperbolic, then
the two maps F : UX → UX andf : CUX → CUX have unique fixed points
A∗ =

⋂

n≥0 F
nX and SA∗ respectively.

Therefore, the existence and uniqueness of the fixed point is proved
domain-theoretically without finding a suitable metric and applying the con-
tracting mapping theorem.

4.3. IFS algorithms. The IFS tree can be used to deduce an algorithm
to generate the attractor of a weakly hyperbolic IFS [37] which extends
the corresponding algorithm for a hyperbolic IFS [71]. We will make the
assumption that, given å > 0, we can determine a node for each branch of
the IFS tree whose diameter is less than å. For a hyperbolic IFS we have

|fi1fi2 . . . finX | ≤ si1si2 . . . sin |X |,

where si is the contractivity factor of fi , and, therefore, we can clearly
determine such a node. Another important case in which this can be done
is when the IFS consists of monotone maps on R.

Let å > 0 be given and fix x0 ∈ X . We construct a finite subtree of the
IFS tree as follows. For any infinite sequence i1i2 · · · ∈ Σ

ù
N , the sequence

〈|fi1fi2 . . . finX |〉n≥0 is decreasing and tends to zero, and, therefore, there is
a least integerm ≥ 0 such that |fi1fi2 . . . fimX | ≤ å. We truncate the infinite
branch 〈fi1fi2 . . . finX 〉n≥0 of the IFS tree at the node fi1fi2 . . . fimX which
is then a leaf of the truncated tree as depicted in Figure 3, andwhich contains
the distinguished point fi1fi2 . . . fimx0 ∈ fi1fi2 . . . fimX .
By König’s lemma, the truncated tree has finite depth. Let Lå denote
the set of all leaves of this finite tree and let Aå ⊆ X be the set of all
distinguished points of the leaves. For each leaf l ∈ Lå , the attractor A

∗

satisfies l ⊇ l ∩ A∗ 6= ∅ and A∗ =
⋃

l∈Lå l ∩ A
∗. On the other hand, for

each leaf l ∈ Lå , we have l ∩ Aå 6= ∅ and Aå =
⋃

l∈Lå l ∩ Aå . It follows

that dH (Aå , A
∗) ≤ å. The algorithm therefore traverses the IFS tree in some

specific order to obtain the set of leavesLå and hence the finite setAå which is
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Figure 3. A branch of the truncated IFS tree.

the required discrete approximation. For the hyperbolic case, the complexity
of the algorithm is O(N h) where h is the height of the truncated tree and is
given by h = ⌈log(å/|X |)/ log s⌉, where s is the largest contractivity factor
of the maps fi , |X | is the diameter of X and ⌈a⌉ is the least non-negative
integer greater than or equal to a.

The domain-theoretic model has also inspired an algorithm to estimate
the Hausdorff dimension of self-affine sets which has proved to be a hard
problem in fractal geometry. A self-affine set is the attractor A of a hyper-
bolic IFS consisting of n affine mapsf1, f2, · · · , fn onR

k. Falconer [53, 55]
constructs an upper bound d for the Hausdorff dimension [54] of a self-
affine set when the linear parts of the affine maps are non-singular and
shows that for almost all choices of the translation part of these maps with
respect to the Lebesgue measure on R

nk the Hausdorff dimension is ac-
tually equal to d . He also defines a number d− which is a lower bound
for the Hausdorff dimension of the self-affine set provided that the union
A = f1(A) ∪ f2(A) ∪ · · · ∪ fn(A) is disjoint. However, there are no tech-
niques to compute the values of d and d−. In [94, 36], an algorithm is
presented to generate a shrinking nested sequence of intervals, i.e., an in-
creasing chain in the domain of intervals, with intersection [d−, d ]. Themth
interval, which gives an approximation from below to d− and an approxi-
mation from above to d , is obtained from the nm compositions fi1fi2 · · ·fim
with ij ∈ Σn, i.e., from the maps on the mth level of the IFS tree. In
practice, this gives a reliable estimate for the dimension of a self-affine
set.

§5. A computational measure theory. In the previous sections, we con-
structed computational models for classical spaces using continuous dcpo’s
and showed some applications in IFS theory. In this section, we show how
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to construct computational models for spaces of measures or probability
distributions on classical spaces.
Recall that for a topological space X the class BX of Borel subsets of X is
the smallest collection of subsets ofX which contains the open subsets and is
closed under taking complements and countable unions. A Borel measure is
amappingì : BX → [0,∞] withì(∅) = 0 andì(

⋃

i≥0 Bi) =
∑

i≥0 ì(Bi) for

disjoint Borel subsets Bi (i ≥ 0). The set of Borel measures on X is denoted
by MX ; the set of probability measures (or probability distributions), i.e.,
measures ì with ì(X ) = 1, is denoted byM1X . Each bounded real valued
continuous function g : X → R defines a functional Fg : M

1X → R with
Fg(ì) =

∫

g dì, the latter being the Lebesgue integral of g with respect to
ì. (See Section 6 for the definition of the Lebesgue integral.) The weak
topology onM1X is the coarsest topology which makes all these functionals
continuous.

A continuous valuation [16, 104, 86, 75, 67] is like a finite measure but
is defined on open subsets. More precisely, a continuous valuation on a
topological space Y is a mapping í : ΩY → [0, 1] with

(i) í(U ) + í(V ) = í(U ∪ V ) + í(U ∩ V ).
(ii) í(∅) = 0.
(iii) U ⊆ V ⇒ í(U ) ≤ í(V ).
(iv) For any directed subset A ⊆ Ω(Y ) (with respect to ⊆) of open sets of
Y ,

í

(

⋃

O∈A
O

)

= sup O∈Aí(O).

The probabilistic power domainPY ofY is the set of continuous valuations

on Y ordered pointwise, i.e., í ⊑ í ′
def
⇐⇒ í(O) ≤ í ′(O) for all open subsets

O ⊆ Y . For any x ∈ Y we have the point (or Dirac) valuation äx with
äx(O) = 1 if x ∈ O and äx(O) = 0 if x /∈ O. Any linear combination
∑n

i=1 riäxi with xi ∈ Y and positive numbers ri satisfying
∑n

i=1 rn ≤ 1 gives
rise to a continuous valuation; it is called a simple valuation as it takes only a
finite number of values. In fact, any continuous valuation on a continuous
domain which takes only a finite number of values is a simple valuation [81].

For any topological space Y , the poset PY is a dcpo in which lubs of
directed subsets are computed pointwise. If Y is an ù-continuous dcpo
with a countable basis B , then PY is an ù-continuous dcpo with a basis
of simple valuations of the form

∑n

i=1 riäxi with xi ∈ B and rational ri >
0 [76]. Furthermore, Saheb-Djahromi [104], Lawson [86] and Norberg [93]
have independently shown that continuous valuations on different classes
of domains have unique extensions to Borel measures. It has recently been
shown that any continuous valuation (and more generally any continuous
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ó-finite valuation) on a continuous domain has a unique extension to a
measure [3].
Wenow letY be the upper spaceUX of a second countable locally compact
space X . The singleton map s : X → UX takes open or closed subsets of
X into Gä subsets (i.e., countable intersection of open subsets) of UX and
Borel subsets to Borel subsets. We have:

Theorem 5.1. [35] For a locally compact second countable Hausdorff space
X , the mapping

ì 7→ ì ◦ s−1 :M1X → PUX

is an embedding into the set of maximal elements of PUX ; the image of the
embedding is precisely the set of valuations í ∈ PUX which are supported on
the setmax(UX ) of themaximal elements of UX , i.e., í((UX )\max(UX )) =
0.

We often identify any probability distribution with its image under the
above embedding. We then get:

Corollary 5.2. For any probability distribution ì ∈M1X , there exists an
increasing chain of simple valuations íi ∈ PUX with ì =

⊔

i≥0 íi .

The above chain of simple valuations can be explicitly constructed if the
measure is given on a countable basis of open sets closed under finite unions
and intersections [39, 42]. In fact the result is true for locally finitemeasures,
i.e., those which are finite on compact subsets; see [42]. We will illustrate
this in the case of a compact metric space X . Assume ì ∈ M1X is a given
probability measure on X . Let A = 〈A1, A2, . . . , AN 〉 be any ordered open
covering of the compact metric space X , i.e., Ai ⊆ X is open i = 1, . . . , N
and X =

⋃N

i=1Ai . Denoting the closure of a set A by A, let

ìA =
N
∑

i=1

riäAi ,

where ri = ì(Ai \
⋃

j<i Aj). Then, we have ìA ∈ P1UX with ìA ⊑

ì ◦ s−1. For two ordered open coverings A = 〈A1, A2, . . . , AN 〉 and B =
〈B1, B2, . . . , BM 〉, the refinementA∧B ofA byB is the ordered open covering
with subsets of the formC(i,j) = Ai∩Bj , 1 ≤ i ≤ N and 1 ≤ j ≤M , ordered
lexicographically, i.e., (i, j) < (i ′, j ′) iff either i < i ′ or i = i ′ and j < j ′.
Then, ìA ⊑ ìA∧B. Assume Bn is an ordered covering of open subsets of X
with diameters less than 1/n for n ≥ 1. Define An for n ≥ 1 inductively by
A1 = B1 and An+1 = An ∧ Bn+1. This gives an explicit construction of an
increasing chain of simple valuations and we have:

Theorem 5.3. [39] ì =
⊔

m≥1 ìAm .
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So far, we have only considered second countable locally compact Haus-
dorff spaces; similar results in fact hold for the other computational models
presented in this paper. More precisely, the embedding

ì 7→ ì ◦ s−1 :M1R → PIR

and, for any separable complete metric space X , the embedding

ì 7→ ì ◦ s−1 :M1X → PBX

are onto the set of maximal elements of the corresponding probabilistic
power domains [41]. It was conjectured in [35] that the embedding in The-
orem 5.1 is onto the set of maximal elements of PUX . This conjecture was
later proved by Lawson in the following more general result.

Theorem 5.4. [87] If the relative Scott and Lawson topologies on the set of
maximal elements of an ù-continuous domain D coincide, then the maximal
elements of PD are precisely those continuous valuations ì on D which are
supported on the setmax(D) ofmaximal elements ofD, i.e.,ì(D\max(D)) =
0; furthermore, the relative Scott andLawson topologies onmax(PD) coincide.

All the computational models treated in this paper satisfy the condition in
Theorem 5.4. In particular, it follows that the embedding in Theorem 5.1 is
also onto the set of maximal elements. We also have the following general
theorem:
Theorem 5.5. [39] If a separable metric space is homeomorphic to a Gä
subset of anù-continuous dcpo equipped with its Scott topology, then the space
of probability measures of the metric space equipped with the weak topology

is homeomorphic with a subset of the maximal elements of the probabilistic

power domain of the ù-continuous dcpo.

Therefore, in this general setting, the weak topology on the set of proba-
bility measures of a separable metric space coincides with the subspace Scott
topology on a corresponding probabilistic power domain.

Example 5.6. Let ë be the Lebesgue measure on the unit interval [0, 1]
and let P : 0 = x0 < x1 < · · · < xN = 1 be a partition of this interval with
norm ‖P‖ = max1≤i≤N (xi − xi−1). Then

ìP =
N
∑

i=1

(xi − xi−1)ä[xi−1,xi ] ∈ PI[0, 1],

with ìP ⊑ ë. If P is refined to a partition P′ then ìP ⊑ ìP′ . Furthermore,
if 〈Pn〉n≥0 is a refining sequence of partitions of [0, 1] with ‖Pn‖ → 0 as
n → ∞, then

⊔

n≥0 ìPn = ë.
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§6. The generalised Riemann integral. We use the results of the previous
section to develop a theory of integration which is indeed a generalisation
of the Riemann theory. We confine ourselves to integration on a compact
metric space X . Assume f : X → R is bounded and ì ∈ M1X is a
probability measure. LetP1UX be the subdcpo of the normalised valuations
on UX . This is again an ù-continuous dcpo with a basis of normalised
simple valuations [32].

For any dcpo Y which has bottom, in particular for UX when X is
compact, the information ordering on simple valuations in P1Y has an
interesting physical interpretation. For two simple valuations

ì1 =
∑

b∈B
rbäb ì2 =

∑

c∈C
scäc

inP1Y , whereB,C are finite subsets ofY , we have by the splitting lemma [76,
32]: ì1 ⊑ ì2 iff, for all b ∈ B and all c ∈ C , there exists a non-negative
number tb,c such that

∀b ∈ B

(

∑

c∈C
tb,c = rb

)

∀c ∈ C

(

∑

b∈B
tb,c = sc

)

and tb,c 6= 0 implies b ⊑ c. We can consider any b ∈ B as a source with mass
rb , any c ∈ C as a sink with mass sc , and the number tbc as the flow of mass
from b to c. Then, the above property can be regarded as conservation of
total mass.

For any simple valuation í =
∑

b∈B rbäb ∈ P
1UX , the lower sum of f with

respect to í is defined as

Sℓ(f, í) =
∑

b∈B
rb inf f[b].

Similarly, the upper sum of f with respect to í is defined as

Su(f, í) =
∑

b∈B
rb sup f[b].

Furthermore, for a choice function î : B → X with îb ∈ b for each b ∈ B ,
the sum

Sî(f, í) =
∑

b∈B
rbf(îb)

is said to be a generalised Riemann sum for f with respect to í. Note that
we always have:

Sℓ(f, í) ≤ Sî(f, í) ≤ S
u(f, í).

If í is replaced by a simple valuation í ′ with greater information, i.e.,
í ⊑ í ′ then the lower sum increases and the upper sum decreases. This is
exactly the situation with the Darboux sums for ordinary Riemann theory
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when a partition is refined. Furthermore, if í1 ≪ ì and í2 ≪ ì then there
exists, by the property of the way-below relation, a simple valuation í3 with
í1, í2 ⊑ í3 ≪ ì. Therefore, we have Sℓ(f, í1) ≤ S

ℓ(f, í3) ≤ S
u(f, í3) ≤

Su(f, í2). In other words, as long as we work with simple valuations way-
below ì, any lower sum is less than or equal to any upper sum. This is again
similar to the ordinary Riemann theory.

We then proceed to define the generalised Riemann integral as follows.
The lower R-integral of f with respect to ì on X is

R

∫

fdì = sup
í≪ì
Sℓ(f, í).

Similarly, the upper R-integral of f with respect to ì on X is

R

∫

fdì = inf
í≪ì
Su(f, í).

The lower integral is always less than or equal to the upper integral. We say
f is R-integrable with respect to ì if these two integrals are equal in which
case this common value is defined to be the R-integral of f with respect to
ì.
The main results are the following [32]:

Theorem 6.1. R-integration has all the basic properties, including linearity,
of an integral.

Theorem 6.2. IfX = [0, 1] ⊆ R, thenf will be R-integrable with respect to
the Lebesgue measure iff it is Riemann integrable and the two integrals, when

they exist, are equal.

Theorem 6.3. A bounded real valued function f will be R-integrable with
respect to a probability measure ì on X iff the set of discontinuities of f has
ì-measure zero.

Theorem 6.4. If f is R-integrable, then it is Lebesgue integrable and the
two integrals are equal.

The last three theorems generalise those of Lebesgue regarding Riemann
integration early this century. R-integration has also been extended to locally
finite measures (i.e., those which are finite on compact subsets) on countably
based locally compact Hausdorff spaces [42].

6.1. Computation of integrals. The computational significance of the R-
integral is in the following property. If ì =

⊔

i≥0 íi and if f is continuous
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almost everywhere with respect to ì then,

Sℓ(f, íi)ր

∫

f dì, Su(f, íi)ց

∫

f dì.

Sîi (f, íi)→

∫

f dì.

In other words, the intervals [Sℓ(f, íi), S
u(f, íi)], i ≥ 0, contain the Rie-

mann sums and shrink to the value of the integral. Moreover, for any
í =

∑

b∈B rbäb ∈ P
1UX , if the variation of f on all b ∈ B is less than å, i.e.,

∀b ∈ B∀x, y ∈ b |fx − fy| ≤ å, then for any Riemann sum Sî(f, í) we
have:

∣

∣

∣

∣

∫

f dì− Sî(f, í)

∣

∣

∣

∣

≤ å.(1)

In order to use this property in computation, we need an effective approx-
imation of a given measure by simple valuations. This is provided by the
effective version of the following proposition.

Proposition 6.5. [39] Suppose A ⊆ P1UX is a directed set of simple valu-
ations. We have

⊔

A ∈M1X iff for all positive integers n and m, there exists
∑

c∈C rcäc ∈ A with
∑

|c|≥1/m rc < 1/n, where |c| is the diameter of c.

We now say that an increasing chain 〈ìi〉i≥0 of simple valuations in P
1UX

with lub ì ∈ M1X is an effective approximation of ì if for all positive
integers m and n there exists i ≥ 0, recursively given in terms of m and n,
such that ìi =

∑

c∈C rcäc satisfies
∑

|c|≥1/m rc < 1/n. For example, for any

ì ∈M1X , which is given by its values on a countable basis ofX closed under
finite unions and intersections, the increasing chain 〈Ai〉i≥0 constructed in
Theorem 5.3 is an effective approximation to ì.

Suppose ì ∈M1X is effectively given with an effective approximation by a
chain of simple valuations 〈íi〉i≥0. Assume that we have aHölder continuous
function f : X → R, i.e., there are constants k > 0 and h > 0 such that
|f(x)− f(y)| ≤ k(d (x, y))h for all x, y ∈ X . (If h = 1, the number k is a
Lipschitz constant forf.) We can then compute the expected value off with
respect to ì up to any given accuracy as follows. Let å > 0 be given. Choose
the positive integers m and n with 1/m < (å/2k)1/h and 1/n < å/(2k|X |h),
and let the integer i be such that íi =

∑

c∈C rcäc satisfies
∑

|c|≥1/m rc < 1/n.
We have

Sℓ(f,ìi) ≤

∫

f dì ≤ Su(f,ìi), Sℓ(f,ìi) ≤ Sî(f,ìi) ≤ S
u(f,ìi)

where Sî(f,ìi) is any generalised Riemann sum for ìi . For any c ∈ C we
have supf[c] − inf f[c] ≤ k|X |h; whereas for c ∈ C with |c| < 1/m we
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have supf[c]− inf f[c] < å/2. Hence,
∣

∣

∣

∣

∫

f dì− Sî(f,ìA)

∣

∣

∣

∣

≤ Su(f,ìi)− S
ℓ(f,ìi)

=
N
∑

c∈C
rc(supf[c]− inf f[c])

=
∑

|c|≥1/m
rc(supf[c]− inf f[c])

+
∑

|c|<1/m

rc(supf[c]− inf f[c])

≤ å/2 + å/2 = å.

Therefore, any Riemann sum for ìi gives the value of the integral up to å
accuracy. Hence:

Theorem 6.6. The expected value of any Hölder continuous function with
given Hölder constants on a compact metric space can be obtained up to any

given accuracy with respect to any normalised measure which has an effective

approximation by an increasing chain of normalised valuations on the upper

space of the metric space.

6.2. The Lebesgue integral via the R-integral and Daniell theory. The the-
ory of R-integration is, in a sense, dual to Lebesgue integration. In order to
see this, recall the definition of the Lebesgue integral [103]. If X and Y are
topological spaces then we say a map f : X → Y ismeasurable if the inverse
image of any Borel subset of Y is a Borel subset of X . A simple function
h : X → R on X is one which takes only a finite set of values, i.e., one
which we can write h =

∑n

i=1 ai÷Ai where ai ∈ R, Ai ⊆ X and ÷A : X → R

is the characteristic function of A ⊆ X defined by ÷(x) = 1 if x ∈ A and
÷(x) = 0 otherwise. The Lebesgue integral of a simple measurable function
h =

∑n

i=1 ai÷Ai is defined by
∫

h dì =
∑n

i=1 aiì(Ai), with the convention
0 · ∞ = 0. For a positive measurable function g : X → R, the Lebesgue
integral is defined by

∫

g dì = sup

{
∫

h dì | h simple measurable, h ≤ g

}

.

The Lebesgue integral of any measurable function g is defined as
∫

g dì =
∫

g+ dì −
∫

g−dì, whenever this difference exists as an extended real num-
ber, where g+ and g− are the positive and negative parts of g respectively.
Therefore in theLebesgue theory the functionwhich is integrated is approx-
imated from below by simple functions, whereas in theory of R-integration
the measure with respect to which integration is performed is approximated
from below by simple measures.
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Clearly the Lebesgue integral is more general than the R-integral, since the
latter only exists for functions which are continuous almost everywhere with
respect to the measure and these functions are, in general, a proper subclass
of Lebesgue integrable functions. The question, therefore, is whether by
starting with the R-integral one can obtain the Lebesgue integral of all
Lebesgue integrable functions. The answer is in fact positive. We can
construct the Lebesgue integral fromR-integration using Daniell theory [30]
as follows. The idea is that we start with the R-integral of all continuous
functions on a compact metric space and then extend the R-integral stage
by stage to all Lebesgue integrable functions. Let C (X ) denote the set of all
real-valued continuous functions on the compact metric spaceX . Any finite
measure ì on X gives rise to a continuous functional

Fì : C (X ) → R

f 7→
∫

f dì.

One then extends Fì to the set of all lower semi-continuous functions f
on X , with f(x) > −∞ for all x ∈ X , which with the pointwise ordering
of functions is indeed an ù-continuous dcpo. This is achieved by continuity
as any such lower semi-continuous function f is the pointwise supremum of
continuous functions below it; one therefore defines

Fì(f) = sup{Fì(g) | f ≥ g ∈ C (X )}.

Dually,Fì is extended to theù-continuous dcpoof all upper semi-continuous
functions with f(x) <∞ for all x ∈ X . As in the general theory of Daniell
integration, in the second stage, Fì is extended to all Lebesgue integrable
functions with finite integral and in the third and final stage to all Lebesgue
integrable functions.

6.3. The Henstock integral. Apart from the R-integral which we have de-
scribed above, there are two other notions of generalized Riemann integrals
which have developed since the early sixties, namely, the McShane and the
Henstock integrals [70, 60]. These are basically integrals for real valued
functions on R. Their generalisations to R

n also exist but they are more
involved. The basic McShane integral is equivalent to the Lebesgue inte-
gral with respect to to the Lebesgue measure in the sense that a real-valued
function is Lebesgue integrable with respect to to the Lebesgue measure
iff it is McShane integrable. The Henstock integral (sometimes called the
Henstock-Kurzweil integral) is a generalization of the McShane integral
(and hence of the Lebesgue integral) in the sense that any McShane in-
tegrable function is Henstock integrable but not conversely, i.e., there are
functions which are Henstock integrable but not Lebesgue integrable. The
Henstock integral has the property that every continuous, almost everywhere
differentiable function can be recovered by integration from its derivative.
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This property, which does not hold for theRiemann or the Lebesgue integral,
was historically the motivation behind the definition of this integral.
The reason theMcShane and theHenstock integrals are called generalized
Riemann integrals is that, similar to the ordinary Riemann integral and in
contrast to theLebesgue integral, they are definedbypartitioning the domain
[a, b] of the integrand function f. However, a more sophisticated notion of
partitioning is used as follows. A (Perron) tagged subinterval of [a, b] is a pair
(x, [c, d ]), with [c, d ] ⊆ [a, b] such that x ∈ [a, b] (x ∈ [c, d ]). A (Perron)
tagged partition of [a, b] is a finite collection of (Perron) tagged subintervals
(xi , [ci , di ]) (1 ≤ i ≤ n) of [a, b] such that [a, b] =

⋃

i [ci , di ]. A tagged
partition is subordinate to a positive function ä : [a, b] → R

+ if [ci , di ] ⊆
(xi−ä(xi), xi+ä(xi)) for all 1 ≤ i ≤ n. Then one definesf to be (Henstock)
McShane integrablewith valuek if for all å > 0 there exists a positive function
ä such that |k−

∑n

i=1(xi+1−xi)f(xi)| < å for all (Perron) tagged partitions
of [a, b] subordinate to ä. The resulting integration theory however is, like
the Lebesgue theory, non-constructive and non-computational.
In contrast, the domain-theoretic generalization of the Riemann integral
works generally for integration of functions with respect to Borel measures
on Polish spaces (topologically complete separable spaces) which include
locally compact second countable spaces of which R

n is a special case. Here,
one also deals with the domain of the function rather than its range. But
now one goes beyond the notion of partitions and uses finite covers by open
subsets to approximate themeasure by simple valuations on anù-continuous
domain as shown in the construction leading to Theorem 5.3. As we have
seen in Section 6.1, this gives a notion of an effectively given measure with
respect to which we can compute the integral of any Hölder continuous
function up to any desired accuracy.

§7. IFS with probabilities. An IFS with probabilities is an IFS fi : X →
X (i ∈ ΣN = {1, . . . , N}) such that each map fi is associated with a

probability weight pi > 0 with
∑N

i=1 pi = 1. TheMarkov operator

T :M1X →M1X(2)

on the setM1X of normalised Borel measures on X takes a Borel measure
ì ∈M1X to a Borel measure T (ì) ∈M1X given by

T (ì)(B) =
N
∑

i=1

piì(f
−1
i (B))

for any Borel subset B ⊆ X . Hutchinson [73] proved the existence and
uniqueness of the fixed point of T for a hyperbolic IFS with probabilities
on a complete metric space X . In fact, he used the Banach fixed point
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theorem again by showing that T is contracting with respect to the so-called
Hutchinson metric rH onM

1X defined by

rH (ì, í) = sup

{
∫

X

fdì−

∫

X

fdí | f : X → R,

|f(x)− f(y)| ≤ d (x, y),∀x, y ∈ X

}

.

Using the domain-theoretic model we can deduce the existence and unique-
ness of the invariant measure for weakly hyperbolic IFSs with probabilities
where the Banach fixed point theorem can no longer be applied.

7.1. The invariant measure. For a weakly hyperbolic IFS with probabili-
ties, we define the map

H : P1UX → P1UX
ì 7→ H (ì)

by H (ì)(O) =
∑N

i=1 piì(f
−1
i (O)). Note that H is defined in the same way

as the Markov operator T above. Then, H is Scott continuous and has,
therefore, a least fixed point given by

⊔

mH
mäX , where äX is the bottom

element of P1UX and the mth iteration is given explicitly by

HmäX =
N
∑

i1,i2,...,im=1

pi1pi2 . . . pimäfi1fi2 ...fimX .

These iterates generate the IFS tree with probabilities, as in Figure 4 with
N = 2. Each node of the tree is weighted by the product of the probabilities
on the branch segments leading from the root X to that node. Themth level
of the tree therefore corresponds toHmäX .

One can show that the least fixed point
⊔

mH
mäX is a maximal element

of P1UX and is, therefore, the unique fixed point; it defines a probability
measure on X .

Theorem 7.1. [37] The map H has a unique fixed point
⊔

mH
mäX which is

the unique invariant measure of the weakly hyperbolic IFS with probabilities.

The support3 of this invariant measure is precisely the attractor of the IFS.

We can also obtain an algorithm to compute the invariant measure of
a weakly hyperbolic IFS with probabilities, extending the corresponding
result for a hyperbolic IFS with probabilities in [71]. As in the deterministic
case, described in Subsection 4.3 the algorithm finds all the leaves of the
truncated IFS tree and, this time, computes the mass of each leaf. The set
of all weighted leaves of the truncated IFS tree represents a simple valuation

3A point is in the support of a measure iff the measure of each open neighbourhood of the
point is non-zero.
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Figure 4. The IFS tree with probabilities for N=2.

which is a discrete approximation to the invariant measure. One can also
extend the deterministic and the probabilistic algorithms to obtain their
digitised versions, i.e., to plot the attractor and depict the invariant measure
on a computer screen with a given resolution. See [37].

7.2. Expected values. Since the invariant measure ì is obtained as the lub
of simple valuations HmäX , one can use the generalised Riemann integral
to compute the expected value of well-behaved functions; this extends the
corresponding result for a hyperbolic IFS with probabilities [71]. Suppose
g : X → R is continuous almost everywhere with respect to ì and let x ∈ X
be any given point. Then for the simple valuation HmäX we can define the
choice function îm for a generalized Riemann sum by îm(fi1 . . . fimX ) =
fi1 . . . fimx so that

Sîm(g,H
mäX ) =

N
∑

i1,...,im=1

pi1 . . . pimg(fi1 . . . fimx).

It follows that

Sîm(g,H
mäX )→

∫

g dì

as m → ∞. If the maps fi are contracting with contractivity factor si and
if g satisfies a Hölder condition, then we can obtain a algorithm to calculate
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the integral to any given accuracy as follows [37]. Suppose there exist h > 0
and k > 0 such that g satisfies

|g(x)− g(y)| ≤ k(d (x, y))h

for all x, y ∈ X . Let å > 0 be given. Then
∣

∣

∣

∣

S(g,HmäX )−

∫

gdì

∣

∣

∣

∣

≤ å(3)

form = ⌈log((å/k)1/h/|X |)/ log s⌉, where s = maxi si is the contractivity of
the IFS.

In many applications, we can directly estimate the length

N
∑

i1,··· ,im=1
pi1 · · ·pim(sup g(fi1 · · ·fimX )− inf g(fi1 · · ·fimX ))

of the interval

[Sℓ(g,Hmä), Su(g,Hmä)]

which contains the value of the integral and, therefore, obtain a much more
efficient algorithm. We will see an example of this in the next section.
One can also obtain the natural generalisations of the above IFS results for
the so-called recurrent IFS, i.e., an IFS which is equipped with a stochastic
matrix rather than just a probability vector, and also for the so-called vector
recurrent IFS [34] which is the basis of Barnsley’s software for fractal image
compression using measures [10].
The domain-theoretic framework for IFS, as we have indicated in Section 4
and in this section, has the unifying feature that several aspects of the theory
of IFS, namely (i) the proof of existence and uniqueness of the attractor
of a weakly hyperbolic IFS and that of the invariant measure of a weakly
hyperbolic IFS with probabilities or recurrent IFS, (ii) the algorithms to
approximate the attractor and the invariant measures (iii) the complexity
analysis of these algorithms, and (iv) the computation of the expected value
of almost everywhere continuous functions, orHölder continuous functions,
with respect to these invariant measures, are all integrated uniformly within
the model. In contrast, the classical theory uses very different, unrelated
and often ad hoc techniques in order to obtain the corresponding results for
the special class of hyperbolic IFSs.

§8. Applications in physics. There have been so far three areas of applica-
tion of the domain-theoretic integration techniques in physics, namely in the
one-dimensional random field Ising model (1dRFIM) [15, 31], in forgetful
neural nets [13, 33, 43] and in periodic doubling route to chaos [56, 38, 39].
We will present the first and the third here.
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8.1. The random field Ising model. The Ising model was introduced by
Ising as amodel for ferromagnetism some seventy years ago; it also describes
such systems as lattice gases, binary alloys and “melting” of DNA and has
been recently studied intensively in the context of complex systems [23]. The
model deals with the configuration of a system of interacting objects, say
two-valued spins, situated at the sites of a d -dimensional lattice (grid) in
thermal equilibrium with a reservoir. The basic assumption in the Ising
model is that objects interact only with their nearest neighbours as well as
possibly with an external field.

�
��

�
��

�
��

�
��

�
��

�
��

s1 s2 s3 sN

Figure 5. The one-dimensional 1
2
spin Ising model.

Consider a one-dimensional chain of N Ising spins 〈sn〉
N
n=1 with sn = ±1

for each 1 ≤ n ≤ N as in Figure 5. Each state of the system is determined
by a given set of values of the spins sn = ±1. Assume now that there is a
random magnetic field hn at each site n ≥ 1. For convenience, we assume
the field takes only two values hn = ±h with equal probabilities. Then, we
can write the energy or the Hamiltonian of the system in any state 〈sn〉

N
n=1

as

HN = −
N−1
∑

n=1

Jsnsn+1 −
N
∑

n=1

hnsn

where J > 0 is the coupling constant. This equation says that the only
interactions which contribute to the energy of the system are between neigh-
bouring spins on the one hand and between each spin and the magnetic field
on the other hand. In statistical physics, the basic statistical information
about a system is given by the canonical partition function which is defined
by

Z =
∑

i

e−âåi ,

where åi is the energy of the state i and the summation is over all the possible
states i of the system. Here, â = (kBT )

−1, where T is the temperature of
the system and kB is the universal Boltzmann constant. The probability of
finding the system in state i is given by e−âåi/Z, and if K(i) is the value of
the physical quantity K in the state i , then the average value of K is given
by

〈K〉 =
∑

i

K(i)e−âåi/Z.
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For our random Ising model, the partition function is

ZN =
∑

s1,...,sN=±1
expâ

(

N−1
∑

n=1

Jsnsn+1 +
N
∑

n=1

hnsn

)

.

The summation over s1, s2, s3, . . . , sN−1 can be carried out to obtain:

ZN =
∑

sN=±1
exp â

(

îN sN +
N−1
∑

n=1

B(în)

)

,

where the stochastic variable în is defined by

î1 = h1, în = hn + A(în−1) (2 ≤ n ≤ N ),

and the real functions A,B : R → R are given by

A(x) = (2â)−1 log(coshâ(x + J )/ coshâ(x − J )),

B(x) = (2â)−1 log(4 coshâ(x + J ) coshâ(x − J )).

Therefore, the partition function is reduced to that of a single spin sN . Behn
et al [15] have studied this stochastic equation in the past decade.
The dynamics of în, we can say, is based on the IFS with probabilities
f+, f− : R → R defined byf+(x) = h+A(x) andf−(x) = −h+A(x) with
probabilities p+ = p− = 1/2. Each fó , where ó = ±, satisfies |f′

ó(x)| ≤
tanh âJ < 1, and is hence contracting. Also eachfó has a unique fixed point
xó , with

x+ = −x− = h/2 + (2â)
−1 arcsinh(e2âJ sinh âh) > 0.

Furthermore fó[x−, x+] ⊆ [x−, x+] for ó = ±. The graphs of f+ and f− in
[x−, x+] are shown in Figure 6 on page 433.

Various physical quantities of the system can be expressed as expected
values of certain continuous functions with respect to the invariant measure
of the IFS. We illustrate this for the simplest case, i.e., the free energy density
of the system as N → ∞. In statistical physics the free energy is given by
FN (â) = − 1

â
logZN . Therefore, the free energy density for our system is

f(â) = lim
N→∞

FN (â)

N
= −

1

â
lim
N→∞

logZN
N

= − lim
N→∞

1

N
log(2 cosh âîN ) − lim

N→∞

1

N

N−1
∑

n=1

B(în)

= − lim
N→∞

1

N

N−1
∑

n=1

B(în).
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h+A(x)

xx- +o

-h+A(x)

Figure 6. The graphs of f+ and f− in the interval [x−, x+].

To evaluate the above limit we use the following theorem. Let

(f1, . . . , fN ;p1, . . . , pN )

be a hyperbolic IFS with probabilities on a metric space X with invariant
measure ì. Suppose i1, i2, . . . is a sequence of independent, identically
distributed random variables on {1, 2, . . . , N} with probabilities

P(in = k) = pk (1 ≤ k ≤ N )

for all n ≥ 1. Let x0 ∈ X , and put xn+1 = fin(xn) for all n ≥ 0. Then Elton’s
ergodic theorem states that the time average of any real-valued continuous
function is the same as its phase averagewith respect to the invariantmeasure
ì:

Theorem 8.1. [48] Let g : X → R be a continuous function and suppose

x0 ∈ X . Then, for almost all sequences i1, i2, . . . ,

lim
k→∞

1

N

N−1
∑

n=0

g(xn) =

∫

g(x) dì(x).

Therefore, the free energy density is given by

f(â) = − lim
N→∞

1

N

N−1
∑

n=0

B(în) = −

∫

B dì.
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A simple calculation shows that B : [x−, x+] → [x−, x+] is contracting
with contractivity factor c = B ′(x+) =

1
2
(tanhâ(x++J )+tanhâ(x+−J )) <

1. One can therefore use Equation (3) to compute an integer n such that
Sîn(B,H

näX ) gives us the value of the above integral up to any degree of
accuracy å.
However, the integer n obtained in this way is in general quite conservative
for the given accuracy å. A much better technique can be used here. Since
f−, f+ : [x−, x+] → [x−, x+] are both monotone maps and B : [x−, x+] →
[x−, x+] is piecewise monotone, one can directly compute the length

N
∑

i1,··· ,im=1
pi1 · · ·pim(sup B([fi1 · · ·fimx−, fi1 · · ·fimx+])

− inf B([fi1 · · ·fimx−, fi1 · · ·fimx+])),

of the intervals

[Sℓîm(B,H
mä), Suîm(B,H

mä)]

for successive integers m ≥ 0. When for some m ≥ 0 the length of the
interval is less than å, we have our required estimate of the integral.

Other physical quantities can be similarly computed. For example, the
magnetisation density is obtained by

m(â) =

∫ ∫

tanhâ(x + A(y)) dì(x)dì(y),

which canbe computedusing the doubleR-integralwith the twodimensional
version of the Elton’s ergodic theorem [31]. Numerical computation of
magnetisation and entropy at finite temperatures in the model has been
carried out in [14] based on the generalized Riemann integral.

8.2. Period doubling route to chaos. Feigenbaum’s discovery of the period
doubling route to chaos is one of the great scientific achievements of the
recent decades [56]. The period doubling route to chaos is a universal way
a dynamical system can become chaotic; it arises in various fields of science
and engineering. The prototype of a dynamical system following this route
to chaos is provided by the Logistic family,

fc : [0, 1] → [0, 1]

x 7→ cx(1− x)

where c is a real number which increases from 1 to 4.
For 1 < c < 3, the orbit 〈fnc (x)〉n≥0 of any x ∈ (0, 1) converges to the
unique attracting fixed point c−1

c
of fc . At c = c1 = 3, a period doubling

bifurcation takes place: The attracting fixed point loses its stability and
becomes repelling; at the same time an attracting periodic orbit of period
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two is born nearby. For c1 < c < c2, where c2 ≈ 3.499, the ù-limit set
4 of

the orbit of any point

x ∈ (0, 1) \

{

c − 1

c

}

is the period-two orbit. At c = c2, the family goes under another period
doubling bifurcation. The period-two orbit becomes repelling and at the
same time an attracting period-four orbit is created nearby.

This period doubling scenario is repeated at infinitum at

c1 < c2 < c3 < · · · < cn < · · · ,

such that at cn (n ≥ 1) the attracting orbit of period 2
n−1 becomes repelling,

but in its neighbourhood an attracting orbit of period 2n is created. We have

c∞ = lim
n→∞
cn ≈ 3.569.

For c > c∞, the system can exhibit chaotic behaviour. This means that the
ù-limit set of the orbit of a typical point is a strange attractor: the orbit
wanders around an attracting infinite set and the orbits of two close points
will eventually diverge from each other. Figure 7 depicts the attractor of the
system as c increases from 1 to c∞.
At c = c∞ the map fc∞ is at the edge of chaos and is an example of
a Feigenbaum map, the prototype of an infinitely renormalizable map [24,
p. 113]. We will now study the dynamics of this map. For convenience, we
put f = fc∞ . The dynamics of f is determined by the orbit xn = f

nx0

Figure 7. The period doubling of the attractor of the Logistic family.

(n ≥ 0) of the critical point x0 = .5 where the derivative of f vanishes. See
Figure 8.

4The ù-limit set of a sequence is the set of limits of all its convergent subsequences.
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Figure 8. The orbit of the critical point 0.5 in the Feigenbaum map.

For each n ≥ 0, the 2n+1 points 〈xi〉
2n+1

i=1 of the orbit of the critical point
induce 2n disjoint closed intervals I nj , with end points

xj = f
j(.5) and xj+2n = f

j+2n(.5) (1 ≤ j ≤ 2n)

such that

fI nj = I
n
j+1 (j ≥ 1, mod 2n).

The intervals

I n+1j (1 ≤ j ≤ 2n+1)

are nested in the intervals

I nj (1 ≤ j ≤ 2n)

for each n ≥ 0, as in Figure 9. This is similar to the way the Cantor set is
constructed.

Figure 9. The sequence of nested intervals produced by the orbit of
the critical point.
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The orbit of any x ∈ (0, 1) is eventually trapped in I n =
⋃

1≤j≤2n I
n
j for

each n ≥ 0. The length of the longest interval among I nj (j = 1, . . . , 2
n)

tends to zero as n → ∞. The intersectionA =
⋂

n≥0 I
n is a Cantor set which

is the strange attractor of the system.

It is known [24, Theorem1.6] that there exists a unique probabilitymeasure
ì ∈ M1[0, 1] which is invariant with respect to f, i.e., it is a fixed point of
the map

M1f : M1[0, 1] → M1[0, 1]
ì 7→ ì ◦ f−1.

The support ofì is the strange attractorA andì is the uniqueBowen-Ruelle-
Sinai measure for f, i.e., it satisfies,

lim
n→∞

1

n

n
∑

i=1

φ(f ix) =

∫

φ dì,

for any continuous function φ : [0, 1]→ R and almost all x ∈ [0, 1].

Using our domain-theoretic model, we obtain this invariant measure ì as
the lub of a chain of simple valuations on I[0, 1] and present an algorithm to
compute

∫

φ dì for a Hölder continuous function φ up to a given threshold
of accuracy å >0. For n ≥ 1, put

ín =
1

2n

2n
∑

j=1

äI nj .

Then, ín ⊑ ín+1 and each ín is a fixed point of

P1If : P1I[0, 1] → P1I[0, 1]
ì 7→ ì ◦ f−1.

It follows that ì =
⊔

n≥1 ín is also a fixed point of the above map. Since
limn→∞maxj |I

n
j | = 0, it can be shown, by Proposition 6.5, that ì gives a

probabilitymeasure on [0, 1]. Using the uniqueness of the invariantmeasure,
one then deduces:

Theorem 8.2. [39] The unique invariant measure of the Feigenbaum map f
is given by ì =

⊔

n≥1 ín.

Assume that φ : [0, 1]→ R is a Hölder continuous function satisfying

|φ(x)− φ(y)| ≤ k(|x − y|)h

for all x, y ∈ [0, 1] for some k > 0 and h > 0. Let å > 0. To compute
∫

φ dì
up to å accuracy, we obtain the least n ≥ 0, say nå , such that the length of
the longest interval among

I nj (1 ≤ j ≤ 2n)
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is less than (å/k)1/h, i.e.,

|fj(.5)− fj+2
n

(.5)| ≤ (å/k)1/h

for all j = 1, 2, . . . , 2n. By the Lipschitz condition, it follows that the
variation of f on the intervals I nåj (1 ≤ j ≤ 2n) is less than å. A Riemann
sum for ínå is given by

Så =
1

2nå

2nå
∑

j=1

φ(fj(.5)).

It follows as in Equation (1) that |Så −
∫

φ dì| ≤ å. Therefore Så is the
required approximation. The results of this section can be generalized to a
broad class of Feigenbaum maps and can be extended to some other classes
of one-dimensional maps; see [39].

§9. Exact real number computation. Nearly every computer programming
language provides floating-point numbers for real number computation.
However, as it is well-known, they can give rise to serious problems such
as round-off errors and input-error propagation, which for complex appli-
cations could indeed become critical.
There have been two main alternatives to limited precision arithmetic
which have been extensively studied in the past. Interval analysis [91], by
using intervals with floating endpoints, provides explicit bounds of error for
all computations but it does not support exact computation. Rational arith-
metic [82] performs exact computation over rational numbers by allowing
unbounded integers to represent the numerator and the denominator but
it cannot handle basic operations such as the square root or exponential
function.

In the late 1980’s two frameworks for exact real number computation were
proposed. In the approach of Boehm and Cartwright [21, 20], developed
and implemented recently by Valerie Menissier-Morain [90], a computable
real number is approximated by B-adic numbers of the form k/Bn where B
is the base, n is a natural number and k is an integer. For any basic func-
tion in analysis, a feasible algorithm has been presented in order to produce
an approximation to the value of the function at a given computable real
number up to any threshold of accuracy. This technique is based on the
standard å − ä analysis of elementary functions. However, the computation
is not incremental in the sense that to obtain any more accurate approx-
imation one has to compute from scratch. Furthermore, the algorithms
are constructed using various different techniques and therefore, except for
the simplest arithmetic operations, it is difficult to verify their correctness.
Vuillemin [120], proposed a representation of computable real numbers by
redundant continued fractions and, using the earlier work of Gosper [61],
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presented various incremental algorithms for basic arithmetic operations and
some transcendental functions. This has been implemented by Lester [89].
However, this representation is rather complicated and the resulting algo-
rithms are relatively inefficient. Nielsen and Kornerup [92] have developed
a general framework for representing a real number as an infinite product of
matrices or as an infinite composition of linear fractional transformations
(lft).

Following Scott’s idea of the domain of intervals as a representation of
real numbers [105], a number of authors have worked on the notion of a
real number data type. The programming language PCF (Programming
Language for Computable Functions [95]) is a suitable setting to define
such a data type. In his Ph.D. work [26, 27], Di Gianantonio presented an
extension of PCF with a real number data type interpreted as an algebraic
domain whose compact elements are isomorphic with the set of dyadic
intervals ordered by reverse inclusion. A real number is then represented by a
shrinking sequence of dyadic intervals, which can be regarded as approximate
reals. The domain contains a representationof each real number but there are
three representations for each dyadic rational. New constants are included
in the language for addition and subtraction of reals by one, multiplication
and division by 2, a predicate for comparison of reals with zero and a parallel
conditional. The binary signed digit representation of real numbers can be
embedded in this framework. He showed that any computable real function
can be defined in this language, and later proved that the operational and
denotational semantics are equivalent and that the language, equipped with
the existential quantifier, is universal in the sense that every computable
functional can be defined in it [28]. Escardó [50] developed an extension
of PCF with a real number data type interpreted as the continuous domain
of intervals IR. New constants are included representing contracting affine
maps with rational coefficients and their left inverses as well as the predicate
for comparison of intervals with zero and the parallel conditional. This
language again enjoys the equivalence of its operational and denotational
semantics and, equipped with the existential quantifier, is also universal [52].
Moreover, in [40], it is shown that Riemann integration can be introduced
in the language. The above two approaches address the issue of formal
computability rather than efficient computation. A fundamental question
is whether a feasible setting for exact computation can be developed so that
basic numerical calculations can be performed without round-off errors.
A practical framework for exact computation using lft’s and based on
domain theory has been introduced in [99, 100, 44]. It unifies the three fun-
damental approaches to exact computation, namely redundant digits, the
B-adic numbers and the continued fractions. This approach has been effec-
tively implemented in programming languages Caml and C++; moreover,
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Figure 10. The stereographic projection.

an extension of PCF for this framework has also been developed [97]. A set
of efficient and strict algorithms for elementary functions in this framework
has now been developed by Potts [98]. We will explain this approach below.

9.1. The new representation of real numbers. We consider a real number as
the intersection of a shrinking nested sequence of rational intervals; then the
real number is computable if there is a master program which generates all
these rational intervals. It is well-known that the usual predicates such as =,
≤ and< on computable real numbers are not decidable. Consequently, since
there is no test for zero, we have to deal with the problem of dividing say 1
by 0. Of course, test for zero is semi-decidable and one can always check
before any division that the denominator is non-zero. However, this scheme
is not practical as it greatly reduces the efficiency of algorithms. Therefore,
any suitable framework for exact real arithmetic must allow ∞ to be the
output of a program. Although the most proper framework to handle∞ is
the two-point compactification of the real line, in this article we will work
with the simpler model of the extended real lineR

∗ regarded as the one-point
compactification of R. A simple representation for R∗ is the unit circle S1 in
the plane with its centre at the origin equipped with the subspace Euclidean
topology of the plane. Given any point x ∈ R lying on the horizontal axis,
the line joining the top point of S1 and x intersects S1 at a unique point s(x)
as in Figure 10. We define s(∞) to be the top point of S1. Then the map
s : R∗ → S1 is a homeomorphism and is called the stereographic projection.
The usual ordering of the real numbers induces the anti-clockwise orien-
tation on S1. The interval [a, b] ⊂ S1 is defined to be the closed arc going
anti-clockwise from a to b. A suitable metric on S1 is defined as follows. For
extended reals x and y which are both non-negative or both non-positive,



DOMAINS FOR COMPUTATION IN MATHEMATICS, PHYSICS AND EXACT . . . 441

we put

ñ(x, y) =

∣

∣

∣

∣

|x| − 1

|x|+ 1
−

|y| − 1

|y|+ 1

∣

∣

∣

∣

.

Otherwise, if x and y have different signs, then

ñ(x, y) = min(ñ(x, 0) + ñ(0, y), ñ(x,∞) + ñ(∞, y)).

Similar to terms like 1/0, we also cannot avoid expressions such as∞−∞,
0/0 and 00 which must all be denoted by ⊥ = R

∗. This leads us naturally
to the domain IR∗ = {[a, b] ⊂ R

∗} ∪ {R
∗} of the intervals of R∗ ordered by

reverse inclusion. Any continuous function f : R
∗ → R

∗ has a canonical
extension f̂ : IR∗ → IR∗, given by f̂(A) = f(A) = {f(x)|x ∈ A}. For

convenience, we always write f̂ simply as f and often denote f(A) simply
by fA.

We will use the class of lft’s or Möbius transformations with real coeffi-
cients to encode any sequence of shrinking nested intervals and, hence, any
real number. The choice of lft’s for this purpose is crucial to develop efficient
and elegant algorithms via continued fractions for all elementary functions
in this framework. In fact, mathematicians have, in the past two centuries,
worked out continued fraction expansions for various functions using Padé
approximants, i.e., approximation by rational functions, and studied their
convergence properties [121, 4, 78].
Any continued fraction expansion of a real number can be expressed as an
infinite composition of lft’s of the form

f : x 7→
ax + c

bx + d
: R∗ → R

∗,(4)

whereR
∗ is the real line extended with the point at infinity and a, b, c, d ∈ Z.

In fact, a continued fraction expansion

r = a0 +
b0

a1 +
b1

a2 +
b2

a3+
.. .

of a real number r can be expressed as r = φ0(r0) with

r0 = a1 +
b1

a2 +
b2

a3+
.. .
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andφ0(x) = a0+
b0
x
. Iterating the above scheme,weobtain r = φ0φ1 · · ·φn(rn)

with

rn = an+1 +
bn+1

an+2 +
bn+2

an+3+
.. .

and φi(x) = ai +
bi
x
for 0 ≤ i ≤ n. One can therefore identify the original

continued fraction for r with the infinite composition φ0φ1φ2 · · · . Such a
representation of real numbers was already present in [120].

The set of all real lft’s, denoted by M, consists of maps f given in Equa-
tion (4) with a, b, c, d ∈ R and ad − bc 6= 0. An lft is a homeomorphism
of R∗; it is orientation preserving if ad − bc > 0 and orientation reversing if
ad − bc < 0.

We will study the IFS (S1,M). First recall some elementary properties of
Mwhich are similar to those of complex lft’s given for example in [77, Chapter
2]. Under composition of maps, M is a group of homeomorphisms of R

∗.
If GL(2,R) denotes the general linear group of 2× 2 non-singular matrices
with real coefficients, then the mapping Θ : GL(2,R)→ M which maps the
matrix ( a cb d ) to the lft φ with φ(x) =

ax+c
bx+d

is a group-homomorphism. The
kernel K of Θ consists of all matrices of the form ëI where ë 6= 0 and I
is the identity matrix. Therefore, M ∼= GL(2,R)/K . All this means that
we can identify any lft up to scaling with a 2 × 2 matrix. Furthermore, R∗

can be identified with the projective real line, i.e., the set of one dimensional
subspaces of R

2. In fact, any such subspace V is spanned by a vector
v =

(

k
l ) ∈ V with k, l ∈ R not both zero. The ratio k/l ∈ R

∗ is independent

of the choice of v ∈ V . Hence, one can identify V with k/l . The vector
(

k
l )

is said to represent x = k/l ∈ R
∗ in homogeneous coordinates. The action of

an lft in these coordinates is reduced to matrix multiplication. Indeed, for
the lft φ above, we have φ( k

l
) = ak+cl

bk+dl
, which in homogeneous coordinates

can be simply written as multiplication by a representative matrix:

(

k
l

)

7→

(

ak + cl
bk + dl

)

=

(

a c
b d

)(

k
l

)

.(5)

Thus, we can freely move, on the one hand, between k/l ∈ R
∗ and its

homogeneous representation
(

k
l ) and on the other, between the lft x 7→ ax+c

bx+d

and its matrix representation ( a cb d ) which represents a linear map from R
2

to R
2. In both cases the representation is unique up to scaling.

A basic property of the group M is that for any pair of distinct triples
(x1, x2, x3) and (y1, y2, y3) with xi , yi ∈ R

∗ (i = 1, 2, 3) there exists a unique
lft φ ∈ M with yi = φ(xi) for i = 1, 2, 3. We then have:
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Proposition 9.1. [44] Given two non-trivial intervals [p, q] and [r, s] with
p 6= q and r 6= s , there exists an lft φ ∈ M with φ([p, q]) = [r, s].

It follows that if we fix a base interval, then we can express, or encode, all
other non-trivial intervals as the image of this base interval under an lft. The
most efficient base interval is [0,∞] as no computation is needed to determine
the lft in the proposition. If [r, s] is a rational interval [ a

b
, c
d
], then the maps

x 7→ ax+c
bx+d
and x 7→ cx+a

dx+b
have integer coefficients and map [0,∞] onto [ a

b
, c
d
]

respectively reversing and preserving the orientation. Next, we would like to
express shrinking sequences of nested rational intervals in terms of lft’s. An
lft φ ∈ M is said to refine an interval [p, q] ⊂ R

∗ if φ[p, q] ⊆ [p, q]. Consider
the interval [0,∞]. LetM+ ⊆ M be the set of lft’s whose coefficients are all
non-negative or, equivalently, all non-positive.

Proposition 9.2. [44]M+ is the set of refining lft’s of [0,∞].

Now consider [0,∞] as the base interval; we characterize the refinement
of intervals when they are expressed as images of [0,∞] under lft’s.

Proposition 9.3. [44] For lft’s φ and ø we have φ[0,∞] ⊇ ø[0,∞] iff
ø = φã with ã ∈ M

+.

It follows that for any shrinking sequence of nested intervals [p0, q0] ⊇
[p1, q1] ⊇ [p2, q2] ⊇ · · · we have [pn, qn] = φ0φ1 · · ·φn[0,∞] where φ0 ∈ M

and φi ∈ M
+ for 1 ≤ i ≤ n. Therefore, the sequence can be expressed as

an infinite composition of lft’s, or equivalently infinite product of matrices,
φ0φ1φ2 · · · . We have therefore shown that any real number can be represented
as the intersection

⋂

n≥0 φ0φ1φ2 · · ·φn[0,∞] with φ0 ∈ M and φi ∈ M
+

(i ≥ 1) such that φn has integer coefficients for all n ≥ 0. If φn : x 7→ anx+cn
bnx+dn

,
then in matrix notation, the real number can be expressed as the infinite
product

(

a0 c0
b0 d0

)(

a1 c1
b1 d1

)(

a2 c2
b2 d2

)(

a3 c3
b3 d3

)

· · · .

We call this a normal product. It gives a simple representation of the com-
putable reals: finite segments of the above matrix product give incremental
interval approximations to the real number represented by the matrix prod-
uct. More specifically the first matrix tells us that the result is contained in
the interval [ a0

b0
, c0
d0
] or [ c0

d0
, a0
b0
] according to the sign of the determinant of the

matrix. The other matrices will successively refine this interval to give better
and better approximations to the real number. The first matrix is called a
sign matrix whereas the other matrices are digit matrices. The information
contained in an lft φ : x 7→ ax+c

bx+d
: R∗ → R

∗ is defined by info(φ) = φ[0,∞].

9.2. Exact floating point. So far our representation allows arbitrary nor-
mal products of integer matricesM0M1M2 · · · withM0 ∈ M andMi ∈ M

+
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for i ≥ 1. This, in practice, results in somemajor problems. Firstly, intervals
will be refined at an arbitrary rate, making any analysis of complexity of al-
gorithms practically impossible. Secondly, matrix multiplication can quickly
produce huge integers in a matrix quite disproportionate to the information
contained in it.
In analogy with floating point formats, where number representations in a
given base are generated by two sign symbols and a finite number of digits,
we restrict the sign and digit matrices to a finite set of specific matrices. Sign
matrices are rotations of S1 whereas digit matrices are contractingmaps with
respect to the metric ñ on R

∗.

We start with signmatrices. The information in signmatricesmust overlap
and coverS1. Ifwe further assume that they have the same lengthwith respect
to ñ and are evenly placed on S1, then they will be generated by rotations

of S1. The lft φexp iè : x 7→
x cos è2+sin

è
2

−x sin è2+cos è2
rotates S1 by è. Moreover, φexp iè

generates a finite cyclic group iff è is a rational multiple of 2ð. Our choice
will be further restricted if the lft is required to have integer coefficients.

Proposition 9.4. [44] Suppose è is a non-integral rational multiple of 2ð.
Then the lft φexp iè will have integer coefficients iff è =

ð
2
or è = ð.

For è = ð, we get the cyclic group of order 2 consisting of φexp ið : x 7→ − 1
x

and the identity lft Id : x 7→ x. This gives the two intervals info(φexp ið) =
[∞, 0] and info(Id) = [0,∞] which are not overlapping. For è = ð/2 we get
the cyclic group of order 4 with elements

φexp ið2 : x 7→
x + 1

−x + 1
, φexp ið : x 7→ −

1

x
,

φexp 3ði2 : x 7→
x − 1

x + 1
, Id : x 7→ x,

with information [1,−1], [∞, 0], [−1, 1] and [0,∞] respectively. The simplest
matrices representing these lft’s are, respectively:

S∞ =

(

1 1
−1 1

)

S− =

(

0 1
−1 0

)

S0 =

(

1 −1
1 1

)

S+ =

(

1 0
0 1

)

.

We therefore take these as our sign matrices.

We now select an appropriate set of digit matrices from M
+. Since com-

positions of digit matrices are required to represent shrinking sequences of
intervals, we will look for matrices which contract distances in [0,∞] with
respect to the metric ñ. Digit matrices must overlap and cover [0,∞].

Note that S0 is a homeomorphism from [0,∞] to its image S0[0,∞] =
[−1, 1]. Let φ ∈ M

+ and consider the restriction φ : [0,∞]→ [0,∞]. Then
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S0φS
−1
0 is a homeomorphism from [−1, 1] onto itself. For x, y ∈ [0,∞] we

have ñ(x, y) = |S0(x)− S0(y)| and we get:

Proposition 9.5. [44] The map φ : [0,∞] → [0,∞] is contracting with
respect to the ñ-metric iff S0φS

−1
0 : [−1, 1] → [−1, 1] is contracting with

respect to the Euclidean metric.

It follows that for any base b > 1, the signed digit representation on [−1, 1]
in base b induces via the homeomorphism S0 a suitable set of digit matrices
inM

+.
The signed digit system in base b > 1 in [−1, 1] is generated by an IFS on
[−1, 1] with contracting maps

fk : [−1, 1] 7→ [−1, 1]

x 7→
x + k

b

with k ∈ Dig(b) = {−b + n, b − n|n ∈ N, 1 ≤ n ≤ ⌊b⌋}, where ⌊b⌋ is the
integral part of b. Here, b can be allowed to be a rational or an irrational

number. The case b = 3/2was consideredbyBrouwer and the case b = 1+
√
5

2
,

the golden ratio, has been studied by Di Gianantonio [26]. We now define
the digit matrices in base b as the IFS on [0,∞] with ñ-contracting maps:

Dk = S
−1
0 fkS0 =

(

1 + b + k −1 + b + k
−1 + b − k 1 + b − k

)

.

For example, for base 2, we have the four sign matrices S+, S∞, S−1 and
S0 together with the three digit matrices which had already appeared in the
work of Nilsen and Kornerup [92]

D−1 =

(

1 0
1 2

)

D0 =

(

3 1
1 3

)

D1 =

(

2 1
0 1

)

.

Exact floating point in base b is defined as the representation of real num-
bers by infinite composition of lft’s, or, equivalently, infinite product of
matrices, such that the first matrix is one of the sign matrices above and
the subsequent matrices are digit matrices. For each finite composition
Dk1Dk2 · · ·Dkn of digit matrices we have:

S0Dk1Dk2 · · ·Dkn [0,∞] = fk1fk2 · · ·fkn [−1, 1].

Therefore, for every infinite composition of digit matrices, we obtain
⋂

n≥0
S0Dk1Dk2 · · ·Dkn [0,∞] =

⋂

n≥0
fk1fk2 · · ·fkn [−1, 1].

This gives us:
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Proposition 9.6. [44]A real number with signed digit expansion .k1k2k3 · · ·
(withkj ∈ Dig(b) for j ≥ 1) is represented in exact floating point by the infinite
product

S0Dk1Dk2Dk3 · · · .

9.3. Computation of elementary functions. Algorithms for computing el-
ementary functions in this framework were first developed in [99, 100] using
lft’s with two arguments as proposed initially by Gosper [61]. Consider a
map f : S1 × S1 → S1 where

f(x, y) =
axy + cx + ey + g

bxy + dx + fy + h
.

In the same way that in homogeneous coordinates an lft is represented by a
linear map from R

2 to R
2 as in Equation (5), an lft with two arguments is

represented in homogenous coordinates by a bi-linear map from R
2 × R

2 to
R
2, which we call a tensor [117]:

[(

x
x′

)

,

(

y
y ′

)]

7→

(

axy + cxy ′ + ex′y + gx′y ′

bxy + dxy ′ + fx′y + hx′y ′

)

=

(

a c e g
b d f h

)[(

x
x′

)

,

(

y
y ′

)]

.

The information in f is the interval info(f) = f([0,∞], [0,∞]). By choos-
ing the coefficients of the above appropriately, we can obtain all basic arith-
metic operations in terms of a tensor; for example, addition corresponds
to choosing c = e = h = 1 and a = b = d = f = g = 0. The
value of f(x, y), for x = Di1Di2 · · · and y = Dj1Dj2 · · · , is represented by
T (Di1Di2 · · · , Dj1Dj2 · · · ). This is a simple example of an expression tree
where T is the root and there are two possibly infinite branches correspond-
ing to x and y. To evaluate the expression tree one absorbs information from
the two input arguments, i.e., the two branches of the tree, into the tensor
and emits a sign matrix followed by digit matrices from the tensor as output.
The absorption and emission rules reflect the composition of lft’s with two,
one or zero arguments corresponding, respectively, to tensors, matrices and
vectors. Since at each step one can absorb information either from the left
or from the right argument of a tensor, a fair strategy is employed which
gives a sequential algorithm for evaluating the expression tree; see [100].
The evaluation of the expression tree is performed in a lazy way, i.e., new
information from the input is extracted only if it is needed to evaluate the
expression tree up to a given accuracy.

One can construct continued fraction expansions with integer coefficients
for all algebraic and transcendental functions [121, 4, 78]. For example, the
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function arctan has the following expansion

arctanx =
x

1 +
x2

3

1 +
4x2

15

1+
. . .

,

which can be transformed into

arctanx =
∞
∏

n=1

(

0 x
n2x 2n − 1

)

.

This is an infinite composition of lft’s with non-negative coefficients but
now each lft has x as a parameter, i.e., it is a function of two arguments. In
fact in homogeneous coordinates we have:
(

0 x
n2x 2n − 1

)(

y
1

)

=

(

0 1 0 0
n2 0 0 2n − 1

)[(

x
1

)

,

(

y
1

)]

.

To compute such functions, we will therefore need lft’s of two arguments.
The above expansion of arctanx, for x ∈ [0,∞], is reduced to the following
expression tree:

arctanx

=

(

0 1 0 0
1 0 0 1

)[

x,

(

0 1 0 0
4 0 0 3

)[

x,

(

0 1 0 0
9 0 0 5

)

[x, · · · ]

]]

.

See [98] for a set of algorithms for elementary functions in this framework.
These algorithms are efficient in time but their space complexity in general
grows exponentially. More specifically, Heckmann [68] has shown that the
size of integers in a tensor after a total number of n absorptions or emissions
grows as O(2n).
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