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Abstract

The need for large-scale scientific data management is today more

pressing than ever, as modern sciences need to store and process terabyte-

scale data volumes. Traditional systems, relying on filesystems and custom

data access and processing code do not scale for multi-terabyte datasets.

Therefore, supporting today’s data-driven sciences requires the develop-

ment of new data management capabilities.

This Ph.D dissertation develops techniques that allow modern Database

Management Systems (DBMS) to efficiently handle large scientific datasets.

Several recent successful DBMS deployments target applications like as-

tronomy, that manage collections of objects or observations (e.g. galaxies,

spectra) and can easily store their data in a commercial relational DBMS.

Query performance for such systems critically depends on the database

physical design, the organization of database structures such as indexes

and tables. This dissertation develops algorithms and tools for automating

the physical design process. Our tools allow databases to tune themselves,

providing efficient query execution in the presence of large data volumes

and complex query workloads.

For more complex applications dealing with multidimensional and time-

varying data, standard relational DBMS are inadequate. Efficiently sup-

porting such applications requires the development of novel indexing and

query processing techniques. This dissertation develops an indexing tech-

nique for unstructured tetrahedral meshes, a multidimensional data or-

ganization used in finite element analysis applications. Our technique

outperforms existing multidimensional indexing techniques and has the

advantage that can easily be integrated with standard DBMS, provid-

ing existing systems with the ability to handle spatial data with minor

modifications.
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Chapter 1

Overview

Science is becoming increasingly data intensive. Advanced instrumen-

tation, experimental infrastructures and simulation capabilities provide

scientific disciplines with unprecedented volumes of data, that is used

to obtain new insights and fuel new discoveries. The increasing data

volumes pose new challenges to scientific data management.

Recently, a number of senior database researchers argued that database

technology has evolved and is sufficient to support the storage and

querying of terabyte or petabyte-scale scientific databases [28, 27]. This

position is supported by a number of recent, large-scale scientific databases

being successfully deployed using commercial relational DBMS technol-

ogy [40, 63, 35]. Similarly, recent research results in high-performance

computing demonstrate the effectiveness of employing database tech-

niques for data management in large simulations [70].

This dissertation contributes to the ongoing effort to support sci-

entific applications through databases, by focusing on Database Man-

agement System (DBMS) performance. Existing DBMS embody more

that 20 years of research and commercial development and provide suf-

ficient system-level support for managing large datasets, such as opti-

mized index implementations and scalable, parallel execution and disk
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access [28]. However, building an efficient, scalable infrastructure alone

is not sufficient to guarantee efficient query execution. A system whose

data is properly indexed and arranged on the disk is orders of magni-

tude more efficient compared to a system that is equivalent in terms

of hardware and database engine, but lacks the appropriate database

structures, especially for complex querying patterns such as those ap-

pearing in astronomy databases (See [40] for a quantitative analysis of

the performance impact of indexing).

The physical design of a database, the organization of its tables, in-

dexes and materialized views, is a critical factor for query performance

in large systems. For instance, implementing a set of indexes that is

tailored to a specific input workload, makes optimal use of the available

hardware and query execution engine and minimizes query execution

time. A poorly designed database, on the other hand, wastes resources

such as storage and storage bandwidth on structures that are not ef-

fective for a given workload and that also require additional work to

maintain in the presence of data updates. For large data volumes, it

is important to have as good designs as possible: imposing a 200%

storage overhead on our database for indexes might be reasonable for

small database sizes, but is a poor design choice when dealing with

multi-terabyte datasets. 1

This dissertation introduces novel tools for automating the design

of a database. For a given database and query workload, the goal of

automated database design is to determine a set of database structures

(e.g. indexes, materialized views) that optimizes the performance of

the input workload, while satisfying resource constraints such as stor-

age. Our goal is to extend the state of the art in automated physical

design algorithms by improving their quality, essentially allowing them

to provide higher performance with fewer resources. Simultaneously,

1Such overheads are common when using modern automated design tools [61].
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we improve the running times of existing approaches, by allowing them

to scale and process the large and complex query workloads that are

common in scientific applications.

While commercial DBMS can effectively support the requirements

of large datasets with a relatively flat structure, they lack the neces-

sary mechanisms to store and process complex, multidimensional data

structures. Effectively supporting multidimensional queries is a key,

universal requirement for scientific data management [66]. As a result,

extending commercial DBMS with spatial indexing capabilities for sci-

entific data has been the focus of recent research activity [29, 20]. In

addition to recent approaches, there exists a significant body of ear-

lier work on multidimensional indexing [25]. Unfortunately, none of

the existing threads of research provides an indexing solution for the

complex, multidimensional structures used by scientific applications.

Their main problem is that previous work relies on indexing regular

structures, either regular space decompositions [29], or approximations

of more complex geometries (such as Minimum Bounding Rectangles

[31]).

In this dissertation, we introduce a novel indexing and query process-

ing technique for unstructured tetrahedral meshes, a multidimensional

data organization typically used in simulation applications. Besides im-

proving performance compared to existing approaches, our technique

can be efficiently integrated in existing DBMS with little modification.

In addition to indexing, we introduce a novel topology-based approach

for multidimensional data layout, that outperforms existing approaches

based on space-filling curves. While our techniques target the large

class of simulation applications, they can be extended to handle more

general multidimensional data, in a manner similar to [20].

This chapter presents an overview of the scientific applications mo-
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tivating this thesis and their data management requirements. It details

the two main challenges addressed by this thesis and outlines the main

results. The thesis maintained throughout this document is the follow-

ing:

The development of novel automated database physical design tools is

critical for the performance and management of large-scale scientific

databases supported by relational systems. Simulation-driven applica-

tions, for which relational database support is not straightforward, ben-

efit from the development of new and efficient indexing and query pro-

cessing techniques for multidimensional data.

1.1 Challenges in Scientific Data Management

We present application examples that characterize the data manage-

ment requirements of modern sciences. From a database engineering

perspective, we classify scientific applications in two broad categories.

Our classification is not strict, rather it aims in highlighting different

priorities in the design of data management solutions.

The first category comprises applications that can be mapped to the

relational model in an efficient and straightforward fashion. Such ap-

plications typically involve a large set of observations or measurements,

that is queried in a fashion similar to enterprise decision support ap-

plications (see the TPC-H benchmark for a sample decision support

database [67]). Due to their relatively flat structure, such applications

naturally fit into the relational model and can be easily supported by

commercial database management systems, with the Sloan Digital Sky

Survey (SDSS) [40] being a well-known example. Relational databases

already provide storage and query support, so the challenges for this

class are in optimizing database organization in order to maximize the

12



performance benefits of modern query execution engines.

The second category includes applications that process more com-

plicated data structures that are disk-resident due to their volume,

but are not effectively supported by existing database methods. High-

performance computing applications, for example, involve the process-

ing of large-scale multidimensional mesh structures stored on the disk.

Such structures cannot be directly stored in existing relational systems,

at least without resulting in cumbersome, inefficient implementations.

Applications such as high-performance computing and scientific sim-

ulation are challenging in that they require the development of novel

indexing and query processing techniques, that match their complex

multidimensional content.

In the following sections, we discuss the specific key challenges in

each class, that motivate this dissertation.

1.1.1 Relational Database Support for Scientific Applications

Despite the long history of relational database development, using re-

lational technology for scientific data has to address several pressing

problems, as scientific applications typically involve complex query pro-

cessing, massive datasets and frequent, large updates.

The Need for Automated Database Design

Query execution performance for large scale databases critically de-

pends on the design of database structures, such as tables, indexes and

materialized views. The database physical design problem essentially

asks for a set of database structures that optimizes the performance of

an input query workload, while satisfying given resource constraints.

Database design optimization is a difficult problem, as it typically

13



Figure 1.1: An example query from the SDSS database. It computes all the objects

within 30 arcseconds of one another that have very similar colors.

involves analyzing large query workloads, consisting of complex SQL

statements. In addition, the database execution engine is also complex

and the performance of executing a query depends on many factors be-

sides the database design, such as dataset characteristics. Addressing

the combination of the above factors requires in-depth understanding

of database internals, possessed by a few performance experts and even

fewer scientists.

Consider the example of Figure 1.1, depicting an real-world query on

the Sloan Digital Sky Survey (SDSS) database. The query joins three

tables, looking for astronomical objects within a certain distance from

each other, that have similar spectral properties. Naively executing the

query by simply scanning and joining the tables will be very slow, as

each table contains several terabytes of data. On the other hand, using

additional database structures, such as B-Tree indexes with appropriate

keys can considerably speed-up the query. For example, building an

index on the ObjID, u, g, r, i, z columns of the photoPrimary relation

contains only a subset of photoPrimary’s data and thus is much faster

to access 2.

Optimizing performance unfortunately gets more complicated than

selecting a single index. For instance, there exist other indexes that

2photoPrimary is actually a logical view, defined over the SDSS PhotoObj relation [40]
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might be relevant to the query of Figure 1.1. Consider for example two

additional indexes on the Neighbors relation, one on attributes ObjID,

NeighborObjID and one on NeighborObjID, ObjID. The two indexes

provide two alternative orderings of the Neighbors records and enable

efficient merge join algorithms. The disadvantage of this scheme is the

required storage: Neighbors is a very large table and the two indexes

require additional storage that is almost equal to the size of the orig-

inal table3. Making an optimal indexing decision for a query requires

evaluating a number of indexing alternatives, depending among other

factors on the query structure and the available resources.

Databases such as the SDSS have to simultaneously consider thou-

sands of queries [52] and therefore the number of design alternatives

increases dramatically. Furthermore, the amount of available resources

becomes even more important since, even if we know the optimal in-

dexing solution for each query, there might not be enough space to ac-

commodate all the resulting indexes. Generally, constrained database

design problems typically translate into optimization problems that are

computationally hard [14].

Additional complexity stems from the fact that indexes are not the

only way to improve query performance. In the example of Figure

1.1, significant improvements can be obtained by precomputing the

joins (for instance, finding spatially clustered objects with some degree

of spectrum similarity) and storing the result in a materialized view.

Materialized views have similar behavior to indexes, however they do

introduce additional degrees of freedom that a designer can exploit to

improve performance. Combined search spaces that consist of multiple

design features, such as combinations of indexes and materialized views,

are likely to contain better designs, but are more expensive to explore.

3This fact was actually experimentally verified in [61].
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Quality and Performance Considerations

The development of automated design tools, that offload the complex-

ity of database design from the human database administrators, is cur-

rently a very active research area. Due to their volume and performance

requirements, scientific applications motivate the development of novel

database design systems, that satisfy the following two main goals.

The first goal is improving the quality of the solutions generated by

design algorithms. Ideally, when dealing with large volumes of data, we

would like to find physical designs that maximize query performance,

without requiring an excessive amount of resources. Satisfying resource

constraints such as the available storage space, is a key aspect of phys-

ical design. While in a 10GB database greedily allocating twice that

space or more for indexes that optimize performance is a reasonable

tradeoff, the same does not hold when dealing with a 100TB database.

A similar constraint is imposed by the existence of updates in the query

workload. In applications such as astronomy, updates take the form

of new data that gets appended to the existing. An extreme update

workload example comes from the Large Synoptic Survey Telescope,

which is expected to download 10TBs of data every night [66]. As

new data gets appended, existing indexes and materialized views must

also be updated, resulting in additional computation and I/O over-

heads. Providing close to optimal performance for constrained cases

is a critical requirement for scientific applications a nd can only be

accomplished through the introduction of more sophisticated optimiza-

tion algorithms.

The second goal is to improve the running time of automated de-

sign algorithms. Execution times are important because applications

typically require analyzing massive query logs consisting of thousands

of queries. Large workload sizes, as well as the combinatorial explosion
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Figure 1.2: An earthquake simulation pipeline.

in the number of considered design alternatives result in long running

times and make the design process cumbersome and non-interactive.

Improving the scalability of database design tools can not be accom-

plished simply by reducing the number of design alternatives or queries

considered, as such a reduction would interfere with the primary goal

of improving solution quality.

Note that developing novel database design tools, although moti-

vated by the extreme requirements of scientific applications, affects a

much broader class of applications such as large-scale decision-support

and data warehousing applications running on relational DBMS.

1.1.2 Support for New Data Organizations

Scientific simulation applications introduce new indexing and query

processing requirements. Figure 1.2 shows the architecture of Hercules,

a simulation application developed by the Quake group at Carnegie

Mellon [4, 70, 47], that computes how earthquakes would propagate

for a given ground region and initial conditions. A mesh is a discrete

model of the ground region under consideration, used by the simula-

tor to compute discrete ground velocity values. The input meshes have

typically three-dimensional structures, with explicitly defined topology.

The simulation output has the same multidimensional structure, with

the addition of a time dimension. Both the input and the output are

processed by visualization or general analysis tools.

In modern simulations, mesh models typically consume hundreds
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of gigabytes and simulation output volumes are of terabyte scale [4].

Therefore, developing efficient access methods and query processing

techniques that can deal with large data volumes is critical for the

feasibility of effective simulation applications.

Query Processing Requirements

Simulation datasets are primarily processed using multidimensional

queries. For example, post-processing and visualization applications

compute the value of a simulated parameter (such as the ground ve-

locity for the Hercules example of Figure 1.2) at some random points.

Values at random points are obtained through interpolation, using the

values computed by the simulation at nearby mesh points. Thus ev-

ery point that is of interest to an analysis application corresponds to

a point query on the mesh dataset, that retrieves mesh components

that are “nearby” the point. Similarly, a range query retrieves a set of

mesh components that are contained within a given coordinate range.

The typical processing requirements of simulation applications can be

mapped to sequences of point and range queries that must be efficiently

executed.

Efficiently supporting analysis and visualization applications that

perform point and range queries is a demanding problem. Providing

high query performance is critical for such applications that require

interactive rendering rates of less than 1s per frame [72]. Current ap-

plications rely on storing simulation datasets in main memory, using

machines (clusters or supercomputers) with sufficient aggregate mem-

ory capacity [48]. This solution becomes impractical for terabyte-scale

data volumes. What is required instead, is a method for efficiently

querying large-scale mesh data stored on the disk.
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Figure 1.3: (a) Part of a tetrahedral mesh dataset modeling a mechanical component.

(b) A tetrahedral (pyramid) mesh element and its four endpoints, the nodes.

Databases to the Rescue

Database literature provides a wealth of multidimensional indexing

techniques [25]. However, their application to mesh datasets is not

straightforward, due to the special structure and geometry of mesh

datasets. Figure 6.2 shows an example of an unstructured tetrahe-

dral mesh, a mesh organization consisting of pyramid-shaped elements,

called tetrahedra. Existing techniques do not scale when applied on

arbitrarily complex tetrahedral meshes, because the mesh pyramids

cannot be effectively captured by simple approximations, like the Min-

imum Bounding Rectangle (MBR) used in the popular R-Tree index.

The approximations typically employed in the database literature can-

not effectively address the irregular pyramid shapes, sizes and angles

and have suboptimal performance, incurring high storage overhead and

construction costs.

Efficiently supporting queries on mesh datasets requires the devel-

opment of novel multidimensional indexing techniques, that are not

affected by the complex geometry of mesh data. An additional require-

ment is to integrate query processing on meshes to existing database

systems as tightly as possible. Tight integration enables applications to

exploit advanced performance features on modern databases, such as

parallel data access, instead of re-implementing similar functionality. In
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addition, integration simplifies application development, since it allows

using the same infrastructure for storing both multidimensional and

flat data (such as collections of numerical measurements) and combine

them efficiently.

1.2 Designing for Performance

In this section we outline the contributions of this dissertation in the

area of automated database design. While the development of auto-

mated design tools has recently sparked intense activity in the database

research community, existing tools face limitations in terms of their so-

lution quality and performance. This dissertation develops techniques

that overcome the limitations in previous work to derive new, effective

and efficient physical design algorithms.

1.2.1 Addressing Limitations of Existing Systems

This dissertation improves the state-of-the-art in automated database

design by addressing two main limitations of existing approaches. The

first is their dependence on cost models that are complicated and inef-

ficient to compute. Modern tools spend more than 90% of their time

in evaluating query costs using the query optimizer. Optimizer usage

dominates the execution time of design algorithms and renders database

design a slow and non-interactive process, especially for large workloads

with complicated queries. Furthermore, optimizer usage indirectly af-

fects solution quality, since as only 10% of the available computational

resources is spent in actually examining the search space. The time

spent in repetitively optimizing the same queries should be better spent

in searching for the optimal solution.

The second shortcoming of current approaches is the lack of a formal
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framework, that would be amenable to analysis or to the application of

standard optimization approaches. Instead, the focus is on the devel-

opment of ad-hoc, application-specific search heuristics that are geared

toward enabling practical implementations: The goal is to reduce exe-

cution time by aggressively pruning the search space and by reducing

the number of “expensive” calls to the query optimizer. To achieve the

above goals, existing algorithms employ a myriad of heuristics, based

on simplifying assumptions but with little formal justification.

Currently there exists no analysis (not even an approximate one)

on how the myriad of heuristics employed affects the quality of the

reached solutions. Consequently, when using existing algorithms to

design a system with high performance requirements and stringent re-

source constraints, like a large scientific database, the performance of

recommended designs could be arbitrarily bad.

This dissertation addresses the above shortcomings by developing

new design tools that provide higher performance and solution qual-

ity. First, we develop a novel approach to query cost estimation, that

provides the same precision as the query optimizer, but with signifi-

cantly better performance, thus removing the overhead of query opti-

mization. Second, we introduce a new formal specification for physical

design problems, that allows for the development of practical solutions

without the uncertainty associated with ad-hoc heuristics. We use our

framework to derive physical design tools that are faster and better

compared to existing approaches.

An important contribution of this dissertation is an evaluation of the

benefits of automated physical design, specifically for scientific appli-

cations. We demonstrate how changing the database schema through

automated, workload-aware table partitioning improves both query and

update performance for large-scale databases. We develop an auto-
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mated partitioning tool called Autopart [61] and evaluate it using a

real-world query workload from the Sloan Digital Sky Survey (SDSS)

database, an astronomy application currently deployed using a com-

mercial DBMS.

1.2.2 Efficient Use of the Query Optimizer for Automated

Database Design

The effectiveness of physical database design tools depends crucially

on their ability to efficiently and accurately estimate query costs for a

given candidate design. State-of- the-art tools rely on the systems query

optimizer for cost estimation: The query optimizer can capture the

full complexity of query execution (for instance data distributions) and

thus compute query costs with maximum accuracy. Furthermore, since

the optimizer has the final decision on whether to use a physical design

structure, ignoring the optimizer during the physical design process will

most likely lead to designs that will not be used during query execution.

Unfortunately precision comes at a price: Query optimization (an

optimization problem by itself!) has a significant cost, as the follow-

ing simple experiment illustrates: We measured the average time per

optimizer call for a commercial index selection tool. The tool was con-

figured to select indexes for a subset of the TPC-H workload and ran on

a high-end Xeon 3.0GHz server. Using a server profiler tool, we found

that an optimizer call took on average 647ms. At this rate of half a

second per call, iterating only once over a set of 100 candidates for a

workload of 100 queries would require 1.5 hours!

Our work is motivated by the fact that the query optimizer sig-

nificantly and unnecessarily limits the scalability of modern automated

physical design tools. Reducing the number of expensive optimizer calls

during tuning without sacrificing estimation precision will benefit every

22



aspect of physical design algorithms. The immediate result of eliminat-

ing optimizer calls is a reduction in the running time of existing tools

by orders of magnitude. Improved performance translates directly to

more interactive tuning, which increases the flexibility of the database

administrator in exploring more alternative design options. Improved

performance also reflects on the size of the problem sizes we are able to

handle: Workloads consisting of hundreds or thousands of queries are

not uncommon and the only way to handle them currently is through

workload compression techniques [3]. Eliminating optimizer calls en-

ables existing database design algorithms to handle much larger work-

loads, alleviating the need to develop additional workload processing

tools, making them relevant only for extreme workload sizes.

Limited scalability due to expensive optimizer calls is also respon-

sible for the wealth of heuristics trying to minimize the number of

physical design candidates evaluated by current algorithms. We ar-

gue that aggressive pruning heuristics and approximations limit the

solution quality achievable (in terms of workload cost improvement)

because they restrict the optimization to only a small portion of the

overall search space. Intuitively, given the computational complexity of

the problem, the more alternatives an algorithm can examine within a

given time, the better the chances of reaching a high quality solution.

To minimize the overhead of query optimization, we introduce a

novel technique for the efficient reuse of optimizer computation dur-

ing the physical design process. We develop the INdex Usage Model

(INUM) a framework that allows us to “cache” previous query optimizer

output and reuse it to compute new query estimates “on-the-fly” with-

out further optimizer invocation. INUM is based on the observation

that although the index selection algorithm evaluates a large number

of candidate configurations, the optimal plan for a given query does not

necessarily change from one configuration to the next. INUM captures
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exactly the conditions that cause the transition from one optimal plan

to the other, when the selection of indexes changes. By eliminating

the optimizer overhead, INUM offers significantly improved scalability

allowing candidate sets with thousands of indexes and simpler enumer-

ation algorithms.

We implemented and validated INUM with a real commercial DBMS

and its optimizer. We present experimental results that demonstrate

how the INUM can improve the running time of existing index selection

algorithms by orders of magnitude. In addition, for the first time (to

our knowledge) we present experimental results from a tuning session

involving 100K candidate indexes, a capability way beyond state-of-the-

art optimizer based approaches. Our results from an extremely simple

enumeration algorithm suggest that considering a large set of candidate

indexes can improve recommendation quality by up to 30%.

1.2.3 An Integer Linear Programming Approach to Auto-

mated Database Design

A major difficulty in the development of practical physical design al-

gorithms is dealing with the huge number of design features, such as

indexes or materialized views, that are relevant to an input workload

and must be considered. A second difficulty is determining, given a

(pruned) search space of candidate features, a combination that pro-

vides optimal performance for the workload that also satisfies resource

constraints such as available storage. Theoretical studies in index and

materialized view selection prove that determining optimal solutions is

computationally hard [14].

Existing techniques develop fully engineered tools that involve a mul-

titude of application- specific heuristics. Modern physical design tools

select promising candidates by separately analyzing each query in the
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workload [15, 2] and traverse the pruned search space in a cost-based,

greedy fashion, during which additional candidates can be generated

[9]. In addition, to address the overhead of query optimization, sev-

eral approximation schemes are employed that provide upper or lower

bounds to the actual query cost values and are used to guide their

heuristic search.

Although heuristics have led to practical implementations, they have

an unpredictable impact on solution quality. For example, the greedy

search heuristic might be fast, but considering one (or a few) design

features at a time ignores the interaction between features and could

therefore easily reach suboptimal solutions. By the same token, gen-

erating new candidates in parallel with the search is prone to missing

important candidates. The above inaccuracies are made worse by cost

model approximations, that can easily mis-guide the search into sub-

optimal paths. There is currently no general analysis on the tradeoff

between algorithm performance and solution quality, as the tradeoff is

considered a necessary condition for practical tools.

This thesis develops a radically different approach to database physi-

cal design. Instead of immediately addressing the engineering of practi-

cal algorithms using heuristics we take a step back and model database

physical design as a standard combinatorial optimization problem, that

must in principle be optimally solved. Our model opens the way for

the application of a huge body of work in combinatorial optimization

and operations research, that is successfully deployed for real-world,

large-scale optimization problems in countless other domains, but not

in databases.

We model physical design using an Integer Linear Programming

(ILP) formulation, that captures the full complexity of the design prob-

lem, while admitting practical implementations. We couple our ILP
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abstraction with general,industry strength optimization tools, such as

CPLEX, that can find optimal solutions for very large problem in-

stances occurring in practice.

Our ILP formulation offers several advantages to automated design

tools both in terms of performance and quality. In terms of perfor-

mance, using industry-strength optimization engines allows us to pro-

cess large problem instances, simultaneously considering hundreds of

thousands of design alternatives, in less than a minute. The overall

performance of our approach also benefits from the integration with

the Index Usage Model (INUM).

In terms of quality, our ILP formulation outperforms approaches

based on greedy search heuristics. First of all, unlike greedy search,

the algorithms employed by ILP solvers are optimal. Furthermore, in

order to handle large problem instances, our ILP-based approach ad-

mits heuristics that improve performance, similarly to existing work.

The difference from previous work is that the mathematical structure

of the ILP formulation allows us to estimate solution quality loss. Be-

ing able to estimate quality degradation, allows us to apply heuristics

in a much more informed fashion, avoiding unnecessary simplifications

that impact quality beyond a specific threshold. Finally, the quality

of our approach indirectly benefits from the boost in performance: By

being able to examine more alternatives compared to existing tools, it

is unlikely that potentially important alternatives will be “missed”.

1.2.4 Workload Driven Schema Partitioning

Relational database systems employ indexes and materialized views to

improve query performance. The data volume and query complexity of

databases like the Sloan Digital Sky Survey (SDSS) astronomy database

[40, 63] make the proper selection of indexes and materialized views
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crucial for the effectiveness and usability of the entire system.

Large-scale scientific databases with many users need to make heave

use of indexes and views in order to account for the diverse user query

workloads. The down-side of the obtained improvements in query per-

formance improvements is increased redundancy. Indexes and views

replicate data from the database tables. Therefore they require ad-

ditional storage and must be updated whenever the base tables are

updated. For scientific datasets, the cost of those update operations

and the storage overheads can be very high.

We propose table partitioning as an alternative performance opti-

mization for scientific databases. Partitioning directly modifies the

database tables and does not introduce redundancy. No additional

storage is required and updates do not require additional work. We

employ partitioning as the first step in a two-step database design pro-

cess. The second step consists of designing indexes on the partitioned

tables. By first optimizing query performance through partitioning,

significantly less indexing effort is required to improve performance.

We developed AutoPart [61],an algorithm for table partitioning based

on a representative input workload. AutoPart combines vertical with

a form of horizontal partitioning called categorical partitioning. We

incorporate AutoPart in an automated physical design tool that in-

terfaces to commercial systems, similar already available to index and

materialized view selection tools [2, 15, 16, 32].

We experiment with AutoPart in the context of the SDSS database

[], running on SQL Server 2000. We use SQL Server’s Index Tuning

Wizard to design indexes on top of the partitioned schema and we

compare the performance of the SDSS workload between the original

and the partitioned schemas. Our experimental results demonstrate

the benefits of partitioning: In the context of indexing and update
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statements, partitioning improves query performance by 20%, while at

the same time achieving a five-fold improvement in update performance

and requiring half the index space.

1.3 Efficient Query Processing for Simulations

Supporting large-scale simulation applications, requires the develop-

ment of efficient indexing techniques for new data organizations. Simu-

lation applications typically represent application domains by unstruc-

tured tetrahedral meshes.

Tetrahedral meshes are powerful modeling tools, as they can have

varying resolutions and can model arbitrary shapes with high precision.

The fact that meshes consist of elements with highly variables shapes,

angles and sizes, makes tetrahedral meshes very popular for simulation

applications, but also very difficult to index using techniques based on

geometric approximations.

The processing performed on tetrahedral mesh datasets by applica-

tions such as visualization can be modeled as generic point and range

queries. A point query asks for the mesh element containing an arbi-

trary input point, while a range query asks for the elements contained

within an input rectangular range, or the elements intersected by it.

Point queries are used primarily for interpolation, as the information

stored at the nodes of the containing element are used to compute sim-

ulated values at arbitrary points within the tetrahedron. Range queries

have general applicability, for instance for selecting and loading a region

of elements in main memory.

Database literature provides a wealth of spatial indexing techniques

[25]. Existing techniques do not scale when applied on arbitrarily com-

plex tetrahedral meshes, because the pyramids cannot be effectively
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captured by geometric approximations like the Minimum Bounding

Rectangle (MBR). Approximations using more complex, regular shapes

can still not fully capture arbitrarily shaped tetrahedra. Such tech-

niques typically have also complex implementations, incurring unnec-

essary storage and construction overheads. Furthermore, specialized

multidimensional indexing techniques are not integrated to existing

database management systems and therefore can not take advantage

of features such as standardized interfaces, efficient low-level storage

management and parallel data access, without implementing such func-

tionality from scratch.

We develop Directed Local Search (DLS), an efficient query process-

ing technique for point and range queries on unstructured tetrahedral

meshes. DLS avoids the complexity involved in capturing mesh geome-

try, by utilizing the connectivity between mesh elements. It uses a novel

application of the Hilbert curve to obtain an initial approximate solu-

tion, which is then “refined” through searching locally, in the vicinity

of the initial solution. Our technique relies on the distance preserv-

ing properties of the Hilbert curve and on an efficient representation

of connectivity information to provide significantly better performance

compared to traditional techniques that rely only on geometric ap-

proximation. Furthermore, DLS does not require the development of

radically new access method. It is based on B-Trees and can therefore

be easily integrated with existing DBMS and take advantage of the

features and efficient implementations they provide.

We extend the idea of relying on mesh topology for query processing,

by using it to cluster mesh elements on the disk. Clustering refers to

arranging mesh elements on disk pages, so that “regions” of connected

elements get retrieved with the minimal number of page accesses. A re-

gion in a mesh can be defined either through a rectangular range query,

or can have a more general, arbitrary shape. We call the latter shapes
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features and the corresponding queries feature queries. In the earth-

quake analysis example, a feature query might ask for all the elements

that belong to the ground surface. The retrieval performance for a set

of mesh features depends on the way the elements that belong to the

queried features are arranged on disk pages.

Previous approaches for clustering multidimensional data on the disk

rely on space-filling curves. While space-filling curves perform well for

rectangular (and particularly cube)-shaped queries, they are not suited

for more general feature queries. We propose a novel layout technique

for feature queries, that is based on graph partitioning. We model the

mesh as a graph, with the “neighbor” relationships between elements

corresponding to graph edges and use a graph partitioning algorithm

to distribute the graph nodes ( the mesh elements, that is) in page-

sized partitions. We demonstrate that with a suitable assignment of

edge weights to the graph, graph partitioning outperforms space-filling

curves for arbitrary feature queries.
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Chapter 2

Related Work

This chapter presents related work, broadly covering three major re-

search areas:

1. Systems for large-scale scientific data management.

2. Automated database physical design and self-tuning architectures

3. Multidimensional indexing.

2.1 Systems for Large-Scale Scientific Data Man-

agement

In this section we review prevailing approaches in managing large scale

scientific datasets. We roughly classify them into those using DBMS

technology and those based on (indexed) file organizations.

Although DBMS-based approaches are more recent and not yet widely

accepted, there is an ongoing effort to integrate them with traditional

file-based techniques, combining the best of both worlds [28, 18].
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2.2 Managing Scientific Data using a DBMS

The first encouraging results from the application of DBMS technology

in scientific data management come from Jim Gray’s pioneering work

on the Sloan Digital Sky Survey (SDSS) database [40, 63]. The SDSS

is the largest astronomy survey ever undertaken, aiming to create a

three-dimensional map of a quarter of the sky. It stores information

for hundreds of millions of astronomical objects and is expected to

reach the size of 15TB of formatted information. The SDSS data is

stored in the SkyServer, a system using Microsoft’s SQL Server 2005

relational DBMS for data storage and Microsoft’s web services infras-

tructure for making data available for querying on the web 1. Queries

can be submitted to the system through SQL, form-based an graphical

user interfaces.

The SDSS deployment demonstrates two major advantages of using

relational DBMS technology over the traditional file-based approach:

1. Ease of application development and portability. Traditional file-

based approaches dictate the development of application-specific

tools for extracting and processing data. Developing such tools re-

quires that scientists/astronomers possess programming skills and

is a slow and cumbersome process. Furthermore, the resulting

tools are tied to specific data formats, which are often poorly doc-

umented and are difficult to distribute and share.

Using a relational DBMS, on the other hand, allows scientists to

express their data processing requirements in a declarative fashion,

using SQL. Developing SQL queries requires some initial training,

however it has been observed that it considerably reduces appli-

cation development time. The reason is that SQL allows users to

1http://cas.sdss.org/dr5/en
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focus on specifying the the information they are interested in at

a high level, without concerning themselves with implementation

details, such as file access, memory management, algorithms etc.

Furthermore, using SQL helps in creating portable applications

because, as long as the database specification remains the same,

the applications are independent of how the database back-end is

implemented.

2. Performance There is strong indication that DBMS performance

features, currently primarily used to manage hundreds of terabytes

of commercial data, is directly applicable to scientific applications

[28]. Using a DBMS has the advantage that the database sys-

tem and not the scientist’s code, is responsible for performance.

Modern DBMS offer a variety of ways to efficiently query large

volumes of data, such as optimized and flexible indexing, auto-

matic inter-query parallelism and parallel I/O and facilities such

as distributed query processing and replication. Such facilities,

while nearly impossible to incorporate into custom applications,

at least without reinventing the wheel, are readily available to the

scientists through using a standard commercial DBMS.

The performance and usability advantages of modern DBMS tech-

nology and the successful SkyServer deployment has sparked a number

of follow-up research projects. A major challenge is extending the ex-

isting relational DBMS infrastructure to support complex data types,

such as spatial and multidimensional data. The motivation for this

work is that, while most existing DBMS do not directly provide mul-

tidimensional access methods, such structures can be “simulated” by

smartly combining B-Tree indexes and custom application code, im-

plemented as external libraries. The reasoning behind this approach

is that using existing structures exploits the DBMS facilities for data
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storage and query processing.

[29] develops the Hierarchical Triangular Mesh (HTM) index, a reg-

ular decomposition technique for querying spatial (astronomy) data

organized in spherical coordinates. [20] presents implementations of

multidimensional indexes and search algorithms, such as nearest neigh-

bor search in a traditional relational DBMS settings and reviews case

studies using SDSS data and SQL Server. [51] reports on a galaxy clus-

tering application using DBMS and Grid technologies, that is an order

of magnitude faster compared to traditional, scripting-based method-

ologies. Finally [52] develops a system for managing user queries and

system resources in large scale astronomy databases.

Besides astronomy, recent work uses DBMS technology to support

Finite Element Analysis (FEA) applications [35, 36, 37]. The au-

thors argue that DBMS technology is advantageous in supporting FEA

workflows, compared to more traditional file-based approaches. First,

they use the expressive power of the relational model to specify a

logical schema of the data involved in an FEA application, that can

be easily documented and shared with users. A key aspect is also

implementation-independence: The schema and thus the applications

that use it do not need to change when the physical data storage

changes. Even changes to the schema (schema evolution) can be rela-

tively easily masked through logical views if necessary. Given a logical

data specification, visualization, analysis and sharing tools can be lay-

ered on top of the database, using SQL statements to extract data. The

applications do not need to worry about physical access to the data or

performance: the DBMS implements physical access transparently, us-

ing indexing and parallel I/O and query processing for performance.
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2.3 Non-DBMS Architectures

The work on Computational Databases [70, 68, 69] uses database ac-

cess methods to support scientific computing applications with massive

(terabyte-scale) datasets. Their goal is to support mesh management

tasks, such as mesh generation and partitioning, for large meshes com-

prising more than a billion of elements. Traditional simulation architec-

tures that are based on main-memory processing do not scale for large

mesh sizes of tens or hundreds of gigabytes, as standard workstations

or even small clusters do not have the necessary physical memory. The

computational database approach is to move mesh generation to the

disk, using database techniques and specialized processing algorithms.

The proposed disk-resident approach is currently used to support large

scale earthquake modeling and simulation [4].

Despite the success of Computational Databases and of the DBMS-

based approaches described in Section 2.2, database techniques are not

yet widely adopted. The majority of scientific applications stores their

data in files, formatted according to specifications such as NetCDF [56]

or HDF [64]. Existing scientific data formats provide standardized rep-

resentations and support for basic data types such as integers, floats,

strings and multidimensional arrays. Their purpose is to provide stan-

dardized and efficient storage for structured data that are not efficiently

supported by relational databases, such as multidimensional arrays and

time series [65].

File-based approaches lack standardized indexing mechanisms, as

indexing is performed with custom, application specific code. Fur-

thermore, modern scientific applications need to process information

scattered over millions of files, a requirement nearly impossible to effi-

ciently support given the scalability and metadata capabilities of cur-

rent filesystems, unless of course filesystems become databases! [28]. To
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address the first disadvantage, several projects are underway to provide

general indexing facilities for HDF file formats [24].

A more comprehensive approach is to integrate scientific data for-

mats with the database. Integration is enabled by new database fea-

tures that allow storing and retrieving large binary objects as part of

a database record (at least conceptually), or use actual pointers to the

file system. Such objects are opaque to the DBMS and can be used to

store entire HDF files or parts thereof. Another key capability of mod-

ern DBMS in integration with user defined code: This allows the DBMS

to incorporate specialized accessed methods, if necessary. Integrating

scientific file formats with the database allows for “hybrid” systems

that will be combine the advantages of both approaches. Exploring the

combined design space is still at its first steps [28, 18].

2.4 Automated Database Design

This section discusses related work in automated physical design and

self-tuning databases. We discuss the main approaches proposed in

the literature for selecting indexes, materialized views and for perform-

ing table partitioning. We then present related work on other related

database configuration problems.

2.4.1 Index Selection

The problem of index selection in relational databases was the first

physical design problem to be comprehensively studied by the database

community and to lead to actual commercial implementations. The

index selection problem is defined as follows (adapting the specification

from [14]):

“Given a workload W consisting of SQL statements and a storage space
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of S bytes, determine a set of indexes that minimizes the cost of exe-

cuting the statements in W and requires a total storage that is less than

S.”

The work in [15, 32] introduces the basic approach to index selection.

The ideas in [15, 32] are important, as they form the foundation for the

physical design algorithms currently employed in commercial systems.

Although the systems in [15, 32] were developed independently, they

are similar in that they introduce three distinct components for index

selection systems. Candidate Selection computes a set of “candidate”

indexes, that the algorithm will examine. The Search module searches

through the space of possible index combinations, to find the subset of

candidates that minimizes workload cost. Finally, Cost Estimation is

responsible for estimating workload costs under different index subsets,

so that the optimal solution can be identified. We next describe the

three components in more detail.

Candidate Selection

The goal of candidate selection is to perform an initial pre-selection of

indexes, that are “candidates” for inclusion in the final design. Pre-

selection is necessary as the unrestricted set of all the indexes that are

potentially relevant to the workload could be very large. For instance,

the number of all possible indexes on a table with n attributes is given

by the following formula [32]

n∑

k=1

2k ×
n!

(n − k)!
(2.1)

Candidate selection is typically performed in a per-query fashion.

One approach is to determine the optimal set of indexes for each query

individually [15] and compose the candidate set by joining the resulting

“per-query” optimal indexes. Optimizing each query individually is
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an easier task, as the number of indexes that are relevant to a single

query is much smaller compared to the number of indexes that are

relevant for the entire workload. [15] optimizes each query individually

by trying out a set of different index combinations (computed through

syntactic analysis) and selecting the best. [32] first computes a number

of syntactically relevant indexes per query and submits all of them

to the query optimizer. The plan selected by the optimizer will by

definition use the optimal set of indexes.

Search

Once a set of candidates is determined, the next step is to compute the

subset that minimizes workload costs. The problem can be formally

specified as follows:

“Given a set I = I1, I2, ..., Ik of candidates, select a set Imin ⊂ I that

minimizes the cost of workload W subject to
∑

i∈Imin
storage(i) ≤ S”.

As it is impractical to exhaustively enumerate all possible subsets of

I, both approaches fall back to simple search heuristics. The greedy(m, k)

approach of [15] forms a solution in an incremental fashion, by per-

forming several passes over the candidate set I and returning a subset

consisting of at most k indexes. The solution is formed by first exhaus-

tively computing the best possible subset of m indexes. This “seed” is

extended by adding indexes in a greedy fashion, picking at each step the

index that provides the largest improvement in workload performance

compared to the current state.

An alternative approach is to exploit the similarity of the index

selection problem to the 0-1 knapsack problem [32]. The algorithm in

[32] computes for each index in I its benefit, defined as the improvement

in estimated execution time that an index contributes to all queries that

exploit it. Then, the indexes are sorted in a decreasing ratio of benefit
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to size and are added to the solution until the storage constrained has

been reached.

The limitations of the proposed search strategies are also described in

the literature. The greedy search theoretically can produce arbitrarily

bad results [15]. In addition, considering one index at a time ignores

cases where indexes benefit workload performance only when selected

together. Ignoring index interactions can cause the greedy search to

miss useful indexes and thus form suboptimal solutions. This is why

the greedy(m, k) involves a small exhaustive selection phase. To control

execution time, the value of m is relatively small, 1 or 2.

Knapsack-based approaches [32] lack theoretical justification, as the

index selection problem can not correctly be mapped to a knapsack

problem. The problem is that while in the knapsack formulation, the

benefit of each object under consideration is well-defined, the benefit

of an index also depends on the other selected indexes, due to the

same index interaction effect, and cannot be independently assigned

to indexes. Therefore, there are no guarantees about how close the

knapsack heuristic can get to the optimal solution. [14] presents a

heuristic for reassigning benefit values to indexes, that can in some

cases help to compute per-instance quality guarantees.

Cost Models

An important component of automated design tools is their cost model,

the method they use to estimate the workload cost for the various sets

of indexes under consideration. The ideal way to estimate workload

performance for a given set of indexes is to implement the indexes in

the database, load them with data, execute the queries and measure

the improvements in query execution time. This is an impractical pro-

cedure, since ideally we would like to try out hundreds or thousands
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different index sets before making a choice

The alternative adopted by automated design tools is to estimate

workload costs using the cost estimation facilities provided by the query

optimizer [58]. The query optimizer is the most accurate way to esti-

mate workload costs, as it is designed to take into account details such

as the costs of various operators and the effect of data distributions.

In order to avoid actually building the indexes under consideration, in-

dex selection tools introduce “what-if” interfaces [15], that “simulate”

the existence of indexes simply by making their statistical information

available to the query optimizer.

Although using the query optimizer is more efficient than actually

implementing the indexes under consideration, query optimization is

still a very expensive process, especially since the optimizer is contin-

uously invoked by the index selection tool. To minimize the number

of calls to the optimizer, index selection tools use additional heuristics

to compute approximate query costs [15]. Specifically, proposed tech-

niques approximate the cost of a query Q for a set of indexes I1 using

previously computed cost values for Q, under a different index set I2.

Extensions

We now present follow-up work, aiming to improve the basic architec-

ture described in the previous sections. One limitation of the basic

framework is the limited number of candidates selected by the per-

query-optimal approaches of [15, 32]. Consider an index that improves

performance for all the queries in the workload, but is not optimal for

any of the queries. This index will not be included in the candidate

set, although it could be part of the optimal solution. Index merging

[16] is a strategy for extending the per-query index set by combining

(merging) candidates. Merging generates new candidates that can still
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improve query costs, although they are not optimal for any query. The

advantage of merged candidates is that they make better use of the

space, as the same index is usable by several workload queries.

Merging is only one of many ways to extend a set of candidate in-

dexes. [9] introduces several index transformations beyond merging.

For example, the prefixing transformation generates, from index I, a

thinner index Iprefix containing only the k first columns of I. The thin-

ner index might perform worse than the original, however it occupies

less space and thus might still be useful.

Blindly using transformations is likely to cause an explosion in the

number of candidates, that are output by the candidate selection phase.

[9] proposes a combination of candidate selection and greedy search.

At each step in the search, the already selected partial solution is ex-

tended by considering several transformation and selecting the best.

The transformed solution becomes the starting point for the next step.

The transformations in [9] are designed to always reduce the storage

requirements or the update costs of a given set of indexes. Therefore

the algorithm is guaranteed to terminate after a finite amount of trans-

formations, as eventually the problem constraints will be satisfied by

the reached solution.

2.4.2 Materialized Views and Partitioning Selection

After indexes, the next step in the development of automated database

design tools was to add support for materialized view selection. [2,

73]. In terms of physical design algorithms, materialized views are very

similar to indexes. A set of candidate views can be selected from the

workload, first by determining per-query optimal views and then by

augmenting the view set through index merging. The resulting set of

candidate views is added to the set of candidate indexes and the joint
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search space is explored by a search strategy similar to those developed

for indexes2.

Supporting multiple design features in an integrated fashion, as de-

scribed above, generates very large search spaces, increasing the num-

ber of solutions that must be examined. A solution to this problem

would be to select multiple features in stages, with each stage focus-

ing on a single feature. For example, the INDFIRST strategy of [2]

first computes a solution consisting only of indexes and then augments

this solution with materialized views. Staged approaches are attractive

because they naturally restrict search spaces and are more modular,

because different algorithms can be used for different features.

Staging has the disadvantage of ignoring interactions between in-

dexes and views: cases where a combination of one or more indexes

or views is more beneficial compared to its members considered in iso-

lation. Since combinations of different features are not considered in

a staged approach, it is possible that opportunities for positive inter-

actions might be lost. [73] proposes a hybrid approach, where both

staged (called “iterative” in [73]) and integrated algorithms co-exist.

[73] presents an analysis of physical design features, classifying their

pair-wise interactions as “strong” or “weak”. Intuitively, strong inter-

actions require integrated algorithms, while weak interactions admit

staged solutions without significant penalties.

[3] adds vertical and horizontal partitioning to the physical design

tool described in [2]. The main focus is on extending the basic approach

of per-query candidate selection and merging to handle partitioning.

The unavoidable increase in search space size is avoided by integrating

candidate selection with the search: In a manner similar to [9], the

partial solution computed after a search step is used to compute more

2The candidate set is also extended by a set of indexes on the materialized views.
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candidates to be evaluated by the subsequent search step.

2.4.3 Other Research on Physical Design

Besides the “traditional” database physical design problems described

above, there is significant work on other aspects of database design,

dealing with different systems, physical design structures or design sce-

naria.

[55] describes an approach for workload-aware partitioning database

tables in the context of a parallel DB2 database. The difference from

single-node database design is that in a parallel system, multiple nodes

are involved in query execution. Each node can process local or re-

mote data, depending on how the data is partitioned or assigned to

nodes. The data allocation and the query plans determines the num-

ber of nodes participating in query execution along and the potential

communication costs, which are parameters that did not exist in the

single-node case. The goal is to determine a table partitioning method

(based on key ranges, key hashing, or even replication) that optimizes

the performance of a given query workload. Despite the slightly differ-

ent specification, the approach followed to solve the problem is similar

to the single-node design algorithms. Query execution costs are mod-

eled using the query optimizer, that is also responsible for recommend-

ing a number of partitions on a per-query basis. This initial population

of partitions is then processed using transformation heuristics (includ-

ing a genetic algorithm) to derive a design with a minimal cost. The

optimizer is used in every step to evaluate different design alternatives.

[46] uses a similar approach to determine a set of clustering attributes

in DB2’s Multi-Dimensional Clustering Tables (MDC).

A problem related to automated database design is that of deal-

ing with changes in the workload or the data. Ideally, we would like
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the database to monitor the query workload and adapt the existing

database design to workload changes. [10] presents a “database de-

sign alerter”, a system whose goal is to monitor an incoming query

workload for new queries that might not perform well with the exist-

ing physical design. In the event of such workload changes, the system

can either alert the database administrator, so that a full-blown design

session is executed, or recommend changes providing upper bounds for

the achievable performance. The focus of the paper is on efficiency:

The tool should identify queries that would benefit from changes to

the current physical design while the system is in normal operation.

Therefore, the alerter should refrain from using the optimizer for cost

estimation and consume minimal processing resources.

[11] follows a different design approach, where the focus is on bal-

ancing index creation costs and query execution costs when the future

queries are unknown. The idea is that constructing an index repre-

sents an investment in system resources, that is amortized through the

efficient execution of multiple queries that use the index. Generat-

ing (and dropping) highly specialized indexes very frequently is poten-

tially expensive, on the other hand conservative index creation results

in suboptimal query execution. The authors model the problem as an

online problem, seeking an index selection strategy that bounds the

performance losses introduced by the lack of knowledge about future

queries. The idea is to execute an index after observing x queries that

could potentially use it, where x depends on the relative index creation

and query costs. They provide an “idealized” 3-competitive algorithm,

however, due to implementation issues their approach deteriorates to a

simple “reactive” mechanism, with additional heuristics for preventing

phenomena such as “oscillations”.

44



2.4.4 Theoretical Approaches

Not surprisingly, automated design problems have also attracted the-

oretical attention, since they typically translate to optimization prob-

lems. [17] shows that under certain assumptions, the materialized view

selection problem has an exponential lower bound in the number of al-

ternative materialized views that must be examined. [34, 42] deal with

the problem of building materialized views on data cubes and prove

that the problem is NP-hard.

[38] deals with the problem of automated index selection. It de-

scribes an approach based on Integer Linear Programming (ILP), mak-

ing the assumption that a query can use only a single index and that

the cost of accessing and index and its storage cost are related. To

solve their resulting ILPs, they introduce a randomized rounding algo-

rithm that achieves optimal workload performance with high probabil-

ity, with a near-optimal storage requirement. Their approach however

is not applicable to index selection scenaria in real database manage-

ment systems, as multi-table queries can typically use more than one

indexes, the query cost is not directly related to the index storage and

there also exist update costs.

The work described in Chapter 4 of this dissertation is very sim-

ilar to [12]. Their ILP formulation accounts for queries using more

than one indexes and also models index update costs. They also pro-

vide a specialized branch-and-bound procedure for its solution. How-

ever, they ignore the existence of storage constraints and thus it is not

clear whether their branch and bound procedure is valid. Our work is

based on the same ILP formalism, but is concerned with applying it to

real-world problems, that involve commercial systems and databases.

Specifically, we resolve issues related to generating an ILP instance from

a real database and workload, where it is impossible to capture the full
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complexity of the problem and approximation is a necessity. We also

provide solutions to the problem of efficiently computing query costs

and characterize the effect of query cost approximation. Finally, we rely

on commercial ILP solvers and compare our ILP-based systems with

existing, real-life index selection tools on commercial database systems

and workloads.

2.5 Multidimensional Indexing

Existing techniques for multidimensional indexing become relevant for

the part of this dissertation dealing with indexing scientific data and in

particular with the problem of dealing unstructured tetrahedral meshes

(Chapter 6). Database literature in fact provides a wealth of multidi-

mensional indexing techniques: An excellent survey is [25].

R-Tree based approaches approximate objects by their Minimum

Bounding Rectangles (MBRs) and index them with an R-Tree [31] vari-

ant. The R-Tree search for a query starts from the root level and follows

a path of internal nodes whose MBR intersects the query range or con-

tains the query point. If multiple nodes at one level match the query

criteria the search will follow all possible paths, requiring more page

accesses. There exists a large body of research on improving perfor-

mance by minimizing the area of R-Tree nodes and the overlaps that

lead to multiple paths. Dynamic techniques like the original R-Tree

construction algorithm [31] and the R* tree [6] maintain an optimized

tree structure in the presence of data updates. Static techniques like the

Hilbert-packed R-Tree [41], the Priority R-Tree [5] and others [57, 21]

attempt to compute an optimal R-Tree organization for datasets that

do not change.

Extensions like the P-Tree [39] attempt to improve R-Tree perfor-
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mance by using Minimum Bounding Polyhedra. The P-Tree relies on

polyhedra with faces aligned to a fixed set of d orientations. Such ’con-

strained’ polyhedra will likely still lead to overlaps, as they do not ex-

actly capture a tetrahedral element. Also, more sophisticated bounding

elements require more storage and reduce the tree fan-out (As pointed

out also in [25], the study on P-Trees [39] suggests that 10 dimen-

sions are required for efficiently storing two-dimensional objects with

arbitrary orientations). Finally, computing the polyhedra orientations

that have optimal performance for a given dataset requires complicated

preprocessing [8].

A clever solution to the problem of overlaps is to use non-overlapping

regions. The R+ Tree [59] ensures non-overlapping tree nodes by gen-

erating disjoint MBRs during node-splitting and replicating the objects

that cross MBR boundaries. The search algorithm then accesses only

useful nodes, those that really contain a part of the query reply. On

the other hand, the set of nodes retrieved will contain multiple pointers

to the same objects, wasting I/O bandwidth and requiring additional

post-processing. The R+ Tree trades query performance for higher

storage requirements and higher construction time. The construction

complexity is higher, because a single inserted object might result in

a large number of replicated object insertions and essentially a large

number of random I/O operations.

More sophisticated clipping-based techniques like the cell-tree [30]

partition the indexed space into disjoint convex polygons. This solu-

tion is ineffective for tetrahedral mesh datasets for two reasons. First,

the cell-tree construction algorithm does not preclude objects crossing

partition boundaries that have to be replicated, like in the R+ Tree

case. Furthermore, the space overhead of keeping the polygon descrip-

tions in the tree nodes is much higher compared to that of storing MBRs

and leads to poor storage utilization for large datasets.
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Another approach is to overlay a rectilinear grid over the indexed

domain and approximate each object by one or more grid cells. The

cells are arranged and indexed using coordinate transformations like

the Z-order [53, 54].

Finally, another family of techniques translates MBRs into points of

a higher dimensional space and uses a point access method to index

them [25]. Transformation-based approaches have the well known dis-

advantages of transforming point queries into open-ended range queries,

of decreasing the uniformity of the indexed domain and of destroying

spatial locality. Furthermore, since multiple MBRs overlap with the

query region (or contain the query point), those techniques retrieve

a potentially large superset of the query answer, which, after paying

a high I/O retrieval cost, must be post-processed to obtain the final

answer [25]
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Chapter 3

Efficient Use of the Query

Optimizer in Automated Database

Design

3.1 Introduction

Algorithms for automated design and performance tuning for databases

are gaining importance, as database applications are getting larger and

more complex. A database design tool must select a set of design

objects (e.g. indexes, materialized views, table partitions) that min-

imizes the execution time for an input workload while satisfying re-

source constraints, such as the available storage. Design tasks typically

translate to hard optimization problems for which no efficient exact al-

gorithms exist [14] and therefore current state-of-the-art design tools

employ heuristics to search the design space.

Figure 3.1 outlines the two-stage approach typically employed by

database design tools [2, 15, 32, 73]. The candidate selection stage

has the task of identifying a small subset of “promising” objects, the

Candidates, that are expected to provide the highest performance im-

provement. The enumeration stage processes the candidates and selects
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Figure 3.1: Database design tool architecture.

a subset that optimizes workload performance while satisfying given re-

source constraints.

Although tools differ in how they implement Figure 3.1’s architec-

ture, they all critically rely on the query optimizer for comparing dif-

ferent candidates, because it provides accurate estimates of query ex-

ecution times. The downside of relying on the optimizer is that query

optimization is very time-consuming. State-of-the-art tools spend most

of their time optimizing queries instead of evaluating as many of the

“promising” candidates or candidate subsets as possible. Quoting from

a recent study [9]: “...we would require hundreds of optimizer’s calls per

iteration, which becomes prohibitively expensive”. Our experiments

show that up to 90% of the running time of an index selection algo-

rithm is spent in the query optimizer.

This dissertation presents a way to minimize the overhead of query

optimization for automated design tools, without sacrificing precision.

We present the INdex Usage Model (INUM), a framework for caching

and reusing optimizer results. The intuition behind the INUM is that

although design tools must examine a large number of alternative de-

signs, the number of different optimal query execution plans and thus

the range of different optimizer outputs is much smaller. Therefore it

makes sense to reuse the optimizer output, instead of repeatedly com-

puting the same plan.
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The INUM works by first performing a small number of key optimizer

calls per query in a precomputation phase and caching the optimizer

output (query plans along with statistics and costs for the individual

operators). During normal operation, query costs are derived exclu-

sively from the precomputed information without any further optimizer

invocation. The derivation involves a simple calculation (similarly to

computing the value of an analytical model) and thus is significantly

faster compared to the complex query optimization code.

Our experiments with INUM using a commercial optimizer and real

workloads show that it provides three orders of magnitude faster query

cost estimation for index selection algorithms, while the returned cost

estimates are equal or in the worst case very close to those that would

have been returned by an actual optimizer call.

We present our solution to cost estimation for physical design in the

context of index selection algorithms, however it is important to note

that our approach is also applicable to other physical design features

(e.g. materialized views, table partitions).

3.1.1 Contributions

Our work makes several contributions to the area of automated index

selection algorithms:

1. Improved running time for existing index selection tools. The

INUM can be directly integrated into existing tools and database

systems, because it simply provides a cost estimation interface

without any further assumptions about the algorithm used by the

tool. Our experiments demonstrate that an index selection algo-

rithm with INUM provides three orders of magnitude faster cost

estimation. When factoring in the precomputation phase that in-
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volves the optimizer, we measured execution time improvements

of 1.3x to 4x and this without implementing any of the techniques

proposed in the literature for optimizing the number of cost estima-

tion calls. Another aspect of faster cost estimation is that it allows

an INUM-enabled tool to process larger workloads compared to an

optimizer-based tool, in the same time.

2. Better scalability in terms of the number of candidate indexes ex-

amined. Existing candidate selection heuristics aggressively prune

the space of candidates in an effort to maintain reasonable exe-

cution times. INUM allows existing search algorithms, such as

the greedy search of [15, 2] to examine orders of magnitude more

candidates. Evaluating more candidates benefits solution quality

because it reduces the number of “promising” candidates that are

overlooked as a result of pruning.

Using INUM we were able to evaluate a candidate set of more than

a hundred thousand indexes for a TPC-H based workload, perform-

ing the equivalent of millions of optimizer invocations within a cou-

ple of hours, a prohibitively expensive task for existing optimizer-

based tools. The solution derived from this “‘power” test improved

the solution given by a commercial tool by up to 20%.

3. Improved flexibility and performance for new index selection algo-

rithms. Recent work on index selection improves solution quality

by dynamically generating candidates, based on a set of trans-

formations and partial enumeration results. The relaxation-based

search in [9] generates thousands of new candidates combinations,

a number that makes optimizer evaluation prohibitively expensive.

The INUM can replace the approximation logic currently used [9],

allowing the algorithm to use exact query costs, as opposed to

upper bounds, thereby avoiding estimation errors and the corre-
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sponding quality degradation.

4. Improved performance for online design tools. Online monitoring

[10] and tuning [11] tools respond to changes in the workload or the

database by alerting the administrator or automatically adapting

the design. Online algorithms run frequently and during normal

operation, therefore it is critical that the resource-intensive query

optimizer is used as rarely as as possible. INUM’s cost estima-

tion is lightweight (since the optimizer is not involved after the

initial precomputation phase) and accurate, improving on existing

techniques that are based on upper-bounding query costs using

“locally-optimal” plans [10].

Online environments are a particularly good match for INUM’s

plan caching framework because, unless the workload changes dra-

matically, a large fraction of the cached computation will be reusable

among multiple sessions, amortizing the initial setup cost.

The rest of the chapter is organized as follows: Sections 3.2 and 3.3

present the foundation for the Index Usage Model. Sections 3.4 and 3.5

describe our algorithms for caching and reusing query execution plans.

Section 3.6 presents the extensions to basic INUM that are essential

for handling the full complexity cost estimation. Sections 3.7 and 3.8

present our experimental results and Section 5.7 concludes.

3.2 INUM Fundamentals

We show how the INUM accurately computes query costs while at the

same time eliminating all (but one) optimizer calls, under certain re-

strictive assumptions on the indexes input to the INUM. This section

sets the stage for the complete description of the INUM in the next

sections.
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3.2.1 Setup: The Index Selection Session

Consider an index selection session with a tool having the architecture

of Figure 3.1. The tool takes as input a query workload W and a storage

constraint and produces an appropriate set of indexes. We will look at

the session from the perspective of a single query Q in W . Let Q be a

select-project-join query accessing 3 tables (T1,...,T3). Each table has a

join column ID, on which it is joined with the other tables. In addition,

each table has a set of 4 attributes (aT1
, bT1

, cT1
, dT1

, etc.) on which Q

has numerical predicates of the form x ≤ aTi
≤ y.

During both the candidate selection and enumeration phases, the

tool generates calls to the optimizer requesting the evaluation of Q

with respect to some index configuration C. For the remainder of this

chapter we use the term “configuration” to denote a set of indexes,

according to the terminology in previous studies [15].

We require that the configurations submitted by the tool to the

optimizer have the following two properties:

1. They are restricted to non-join columns. No index in any config-

uration contains any of the ID columns and the database does

not contain clustered indexes on ID columns. This is an artificial

restriction, used to facilitate the example in this section only.

2. They are atomic. We use the notion of an atomic configuration

exactly as previously used [15]:

Definition 3.2.1 A configuration C is atomic with respect to query Q

if there is a possible query execution plan that uses all the indexes in

C.

We assume the configurations submitted to the optimizer and to the

INUM involve at most one index per table and have the form: (T1:
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IT1
, T2: IT2

, T3: IT3
) where any of the ITi

values can be empty. Query

costs for any configuration C can be derived from its constituent atomic

configurations [15] and current index selection tools take advantage of

this fact by submitting only atomic configurations to the optimizer.

Notice that we do not handle atomic configurations with more than

one index per table. Our techniques can be extended to handle this

case by modeling the index intersection operator. Such extensions are

part of our ongoing work.

The optimizer returns the optimal query execution plan for Q, the

indexes in C utilized by the plan and the estimated cost, along with

costs and statistics for all the intermediate plan operators (Figure 3.2

(a) shows an example optimal query plan). There will be multiple op-

timizer calls for query Q, one per configuration examined by the tool.

Ideally we would like to examine a large number of configurations, to

make sure that no “important” indexes are overlooked. However, opti-

mizer latencies in the order of hundreds of milliseconds make evaluating

large numbers of configurations prohibitively expensive.

Existing tools employ pruning heuristics or approximations (deriving

upper bounds for the query cost [9]) to reduce the number of optimizer

evaluations. In the next sections we show how through reasoning on

optimizer operation we can obtain accurate query cost estimates effi-

ciently, without any query optimization overhead.

3.2.2 Reasoning About Optimizer Output

Assume we have already performed a single optimizer call for query

Q and a configuration c1 and obtained an optimal plan p1. We show

that we can reuse the information in plan p1 to compute Q’s cost for

any other configuration c2 that satisfies the non-join column restriction

from the previous section. We precisely define plan reuse using the fol-
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Figure 3.2: Illustration of plan reuse. (a) The optimal plan p1 for configuration C1.

(b) The cost for C2 is computed by reusing the cached internal nodes of plan p1 and

adding the costs of the new index access operators, under the assumptions of Section

3.2.

lowing algorithm.

Input: Query Q, plan p1 from the optimizer (for configuration c1), new

configuration c2.

Output: New cost for query Q for configuration c2.

1. Compute the internal subplan ip1 from p1. The internal subplan is

the part of the plan that remains after subtracting all the opera-

tors relevant to data access (table scans, index scans, index seeks

and RID lookups). The internal structure of the plan (e.g. join

order and join operators, sort and aggregation operators) remains

unchanged.

2. For every table Ti, construct the appropriate data access operator

(index scan or seek with optional RID lookup) for the correspond-

ing index in c2 (or a table scan operator if the index does not exist).

Add the data access operator to ip1 in the appropriate position.

3. Q’s cost under c2 can be computed by adding the total cost for ip1

(which is provided by the optimizer) to the cost of the new data
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Figure 3.3: (a) Cost estimation with INUM for the example of Section 3.2. (b)

Complete INUM architecture.

access operators corresponding to the indexes in c2.

Given p1 and a new configuration c2, replacing the optimizer call by

the above reuse procedure dramatically improves performance. Since

we have already computed plan p1 (optimal for c1), most of the work

is already done. The only additional cost is computing the costs of the

data access operators in the third step of the reuse procedure: this can

be done efficiently and precisely by invoking only the relevant optimizer

cost models, without necessitating a full-blown optimization. The reuse

procedure is more efficient than an optimizer call because it avoids the

overhead of determining a new optimal plan. Figure 3.2 (b) shows how

plan p1 is reused with a new configuration c2 and the new query cost.

If the internal structure of plan p1 (the subplan ip1) is optimal for

c2, then the cost returned by the reuse procedure is equal to the cost

that would have been returned by the optimizer.. For our particular

scenario, we prove that there exists a single optimal subplan for Q,

regardless of the configuration c2, as long as all the non-join column

constraint of Section 3.2.1 is satisfied. Thus one invocation of the opti-

mizer is enough to obtain the optimal plan p1, which can then be reused

according to our reuse procedure. (Note that the reuse procedure will
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yield incorrect results, when used with configurations that violate the

non-join column restriction). We intuitively justify this argument by

considering how the indexes in c2 affect the query plan cost: Without

the join column, there is no reason for c2 to “favor” a particular join

order or join algorithm, other than those in p1. Since the indexes in c2

are not more “powerful” than those in c1, there is no reason for p1 to

stop being optimal. We formalize using the following theorem:

Theorem 3.2.1 For a query Q, there is a single optimal plan for all

the configurations that do not contain indexes on Q’s join attributes.

Proof We prove theorem 3.2.1 by contradiction. Let plans p1 and p2

be optimal plans for configurations c1 and c2 respectively and let p1, p2

differ in their internal nodes (different join order, for instance). Let ip1

and ip2 be the internal subplans of p1, p2 and cost(ip1), cost(ip2) their

total costs, with cost(ip1) < cost(ip2).

We first show that the cost of accessing the indexes in c1 and c2

is independent of the internal structure of the plan chosen. Since the

join attributes are not indexed, any operator in ip1 and ip2 will access

its corresponding index (or table) with an optional RID lookup. The

cost of the scan depends only on the columns of the index and the

selectivities of relevant query predicates and is the same regardless of

the plan. Thus the index access costs for the indexes in c1 and c2 are

the same for plans p1 and p2.

Next, we show that the internal subplans ip1 and ip2 can be used

with the indexes of both c1 and c2 (according to the reuse procedure)

and that their costs will be the same: Since we assume no join columns,

there is no reason why ip1 cannot use the indexes in c2 and vice-versa.

In addition, since c1, c2 do not involve join orders, the only other way a

data access operator can affect the internal subplan is through the size

58



and the cardinality of its output, which is the same regardless of the

access method used.

Thus ip1 and ip2 can use the indexes in c1 and c2 interchangeably and

the index access costs and internal plan costs remain the same. Since

cost(ip1) < cost(ip2) and the index access costs are the same, using ip1

for c2 is cheaper than using ip2, and thus p2 is not the optimal plan for

c2. A contradiction.

Theorem 3.2.1 means that only a single call is sufficient to efficiently

estimate Q′s cost for any configuration, under the no-join column re-

striction. Our result can be generalized using the notion of an interest-

ing order:

Definition 3.2.2 An interesting order is a tuple ordering specified by

the columns in a query’s join, group-by or order-by clause [58].

Definition 3.2.3 An index covers an interesting order if it is sorted

according to that interesting order. A configuration covers an inter-

esting order if it contains an index that covers that interesting order.

We can extend the approach presented in this section to queries

involving aggregation, group-by and order-by clauses. Theorem 3.2.1

applies, as long as the input configurations do not cover any of the

interesting orders in the query. Intuitively, this non-interesting order

restriction implies that no configuration is fundamentally more “pow-

erful” than the others and therefore there is no reason for more than

one optimal plans.

Figure 5.8 (a) shows the cost estimation architecture for the re-

stricted tuning session of this section. For every query there is a setup

phase, where the single optimal plan is obtained through an optimizer
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call with a representative configuration. The representative configura-

tion could contain any set of indexes satisfying the non-join or non-

interesting order column restrictions (we could even use an empty con-

figuration). The resulting internal subplan is saved in the INUM Space,

which is the set of optimal plans maintained by the INUM.

Whenever we need to evaluate the query cost for some input con-

figuration C, we use the Index Access Cost Estimation module (which

could be implemented with analytical formulas or the appropriate opti-

mizer modules) to estimate the cost of accessing the indexes in C. The

sum of the index access costs for C is added to the cost of the internal

subplan to obtain the final query cost.

3.3 INUM Overview

Unlike the scenario of Section 3.2, in a real index selection session the

“no join column” restriction is invalid. In fact, join columns are among

the primary candidates for indexing. The key difference with the pre-

vious section is that the assumptions supporting Theorem 3.2.1 are not

valid and thus there might exist more than one optimal plans for a

given query.

To see why configurations that cover interesting orders lead to more

than one optimal plans, consider the example query of Section 3.2 and

assume a configuration C1 with indexes on T1.ID and T2.ID. The

optimal plan for C1 first joins T1 and T2 using a merge join and then

joins the result with T3 using a hash join. Now assume a configuration

C2, with indexes on T2 and T3. The optimal plan in this case could be

different, first joining T2 and T3 with a merge join.

Figure 5.8 (b) shows the architecture of INUM used to address the

general case. The INUM takes as input requests from an index selection
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tool consisting of a query and an atomic configuration for evaluation.

The output is the optimal plan for the query under this configuration

and the query cost.

The INUM Space contains for each query the set of precomputed

plans that are used to derive the query costs. In the simplified example

of Section 3.2, the INUM Space contained only a single plan. If we

remove the restrictions discussed in Section 3.2 the INUM Space is likely

to contain more plans per query. The Precomputation module populates

the INUM Space at initialization time, by invoking the optimizer in

order to reveal the set of optimal plans that need to be cached per

query. When invoking the INUM, the Matching module first maps the

input configuration to its corresponding optimal plan and derives the

query cost without going to the optimizer, simply by adding the cached

cost to the index access costs computed on-the-fly.

The INUM Space is a central component of INUM. It is a cache

of all the plans (per query) that could potentially be returned by the

optimizer as optimal for some input configuration. More precisely:

Definition 3.3.1 The INUM Space for a query Q is a set of internal

subplans such that:

1. Each subplan is derived from an optimal plan for some configura-

tion.

2. The INUM Space contains all the subplans with the above property.

Definition 3.3.1 implies that after Precomputation there is no more

need to invoke the optimizer, because for any configuration input to

the INUM the optimal plan can be found in the INUM Space. In order

to make the INUM Space practical, we address the following problems:
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1. Efficiently computing the INUM Space. For plan reuse to be effec-

tive, the size of the INUM Space must be much smaller than the

number of configurations that must be examined. After verifying

that the INUM Space actually has this property, we must provide

an algorithm to compute the family of optimal plans specified by

Definition 3.3.1.

2. Efficiently locating the optimal plan in the INUM Space for an

input configuration.

The key intuition behind the INUM is that during the operation of

an index design tool, the range of different plans that could be output

by the optimizer will be much smaller than the number of configura-

tions evaluated by the tool. In other words we take advantage of the

fact that an index design tool might consider thousands of alternative

configurations for a query, but the number of different optimal plans

for that query is much lower. different optimal for that query.

To see why the number of potentially optimal plans is small, consider

a query accessing n tables. The total number of plans for this query is

O(n!), but this does not imply that every plan has the potential to be

optimal for some configuration. For example, plans that construct huge

intermediate results will never be optimal. In addition, the optimality

of the plan does not change very easily by changing index configura-

tions, as it is strongly dependent on additional parameters, such as the

intermediate result sizes. Thus an optimal plan for configuration c1

might in fact remain optimal for a set of configurations that are “simi-

lar” to c1. We show that the degree of plan reuse is such that the effort

in precomputing the set of optimal plans is easily amortized by the huge

number of optimizer calls that can be performed almost instantly af-

terward. Furthermore, we characterize the “families” of configurations

that share each optimal plan and use this characterization to efficiently
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identify the optimal plan that corresponds to a given input configura-

tion.

In the remainder of this chapter we develop the INUM in two steps.

In the first step we exclude from consideration query plans with nested-

loop join operators, while allowing every other operator (including sort-

merge and hash joins). We call such allowable plans MHJ plans. After

presenting our results for MHJ plans, Section 3.6 extends our approach

to include NLJ plans.

Our two-step approach is necessary because there are differences in

the way an index configuration affects the cost of NLJ and MHJ plans.

We prove a linear formula to compute the cost of any MHJ plan given

the index access costs. Linearity simplifies both the INUM construction

and the selection of the optimal plan and we choose to present those

results first. NLJ plans do not exhibit this linear dependence and accu-

rate cost estimation requires more knowledge of the optimizer internal

operation. We present a solution in Section 3.6.

3.4 Using Cached MHJ Plans

We derive a formula for the query cost given an index configuration and

use it to match an input conf iguration to its corresponding optimal

MHJ plan.

3.4.1 A Formula for Query Cost

Consider a query Q, an input configuration C containing indexes IT1
..ITn

for tables T1..Tn and an MHJ plan p in the INUM Space, not necessarily

optimal for C. The reuse procedure of Section 3.2.2 describes how p is

used with the indexes in C. Let Cinternal be the sum of the costs of the

operators in the subplan ip and sTi
be the index access cost for index
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ITi
. The cost of a query Q when using plan p is given by the following

equation:
Cp = Cinternal + sT1

+ sT2
+ ... + sTn

(3.1)

Equation (3.1) assumes that p uses all the indexes of C, otherwise

the sTi
values are invalid. Notice that equation (3.1) does not imply

that p is the optimal plan for C. It just expresses the cost of any

plan p as a ’‘function” of the input configuration C. Given a way to

identify the optimal plan for C, equation 3.1 returns the correct query

cost. Equation 3.1 can be very efficiently computed because Cinternal is

already cached in the INUM Space and the sTi
parameters are computed

on-the-fly by the optimizer.

The following conditions are necessary for the validity of equation

(3.1).

1. Cinternal is independent of the STi
’s. If Cinternal depends on some

sTi
, then equation 3.1 is not linear.

2. The sTi
’s must be independent of p. Otherwise, although the ad-

dition is still valid, (3.1) is not a function of the sTi
variables.

3. Plan p can actually use the indexes in C. If a plan expects a specific

ordering (for instance, to use with a merge join) but C does not

contain an index to provide this ordering, then it is incorrect to

combine p with C.

We can show that conditions (1) and (2) hold for MHJ plans through

the same argument used in the proof of Theorem 3.2.1. The indexes in

C are always accessed in the same way regardless of the plan’s internal

structure. Conversely, a plan’s internal operators will have the same

costs regardless of the access methods used (as long as condition (3))

holds. Note that the last argument does not mean that the selection of

the optimal plan is independent of the access methods used.
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Condition (3) is a constraint imposed for correctness. Equation (3.1)

is invalid if plan p can not use the indexes in C. We define the notion

of compatibility as follows:

Definition 3.4.1 A plan is compatible with a configuration and vice-

versa if plan p can use the indexes in the configuration without any

modifications to its internal structure.

Assuming constraints (1)-(3) hold, equation (3.1) computes query

costs given a plan p and a configuration C. Next, we use equation (3.1)

to efficiently identify the optimal plan for an input configuration C and

to efficiently populate the INUM Space.

3.4.2 Mapping Configurations to Optimal Plans

We examine two ways to determine which plan, among those stored in

the INUM Space, is optimal for a particular input configuration: An

exhaustive algorithm and a technique based on identifying a “region of

optimality” for each plan.

Exhaustive Search

Consider first the brute-force approach of finding the optimal plan for

query Q and configuration C. The exhaustive algorithm iterates over

all the MHJ plans in the INUM Space for Q that are compatible with

C and uses equation (3.1) to compute their costs. The result of the

exhaustive algorithm is the plan with the minimum cost.

The problem with the above procedure is that equation (3.1) com-

putes the total cost of a query plan p if all the indexes in C are used.

If some indexes in C are too expensive to access (for example, non-

clustered indexes with low selectivity), the optimal plan is likely to

be one that does not use those expensive indexes. To account for this
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Figure 3.4: The cost functions for MHJ plans form parallel hyper-surfaces.

case, the exhaustive algorithm needs to also search for the optimal plan

for all the configurations C ′ ⊂ C and return the one with the overall

minimum cost. We call this iteration over C’s subsets atomic subset

enumeration.

If the INUM Space is constructed according to definition 3.3.1, the

exhaustive search with atomic subset enumeration is guaranteed to re-

turn correct results, but has the disadvantage of iterating over all the

plans in the INUM Space and over all the subsets of C. In the next sec-

tions we show how to avoid the performance problems of the exhaustive

search by exploiting the properties of equation (3.1).

Regions of Optimality

Consider a query Q accessing 2 tables, T1 and T2, with attributes {ID,

a1, b1} and {ID, a2, b2}. Q joins T1 and T2 on ID and projects attribute

a1 of the result.

Let C be a configuration with two indexes, IT1
and IT2

, on attributes

{T1.ID, T1.a1, T1.b1} and {T2.ID, T2.a2,T2.b2} respectively. Let p1 be

a merge join plan that is the optimal MHJ plan for C. (We ignore the

subset enumeration problem for this example, assuming that we have

no reason not to use IT1
and IT2

).

What happens if we change C to C1, by replacing IT1
with I ′T1

: {ID,

a1}? We can show that plan p1 remains optimal and avoid a new opti-
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mizer call, using an argument similar to that of Section 3.2.2. Assume

that the optimal plan for C1 is p2 that uses a hash join. Since the index

access costs are the same for both plans, by equation (3.1) the Cinternal

value for p2 must be lower than that for p1 and therefore p1 cannot be

optimal for C, which is a contradiction.

The intuition is that since both C and C1 are capable of “supporting”

exactly the same plans (both providing ordering on the ID columns),

a plan p found to be optimal for C must be optimal for C1 and any

other configuration covering the same interesting orders. The set O of

interesting orders that is covered by both C and C1 is called the region

of optimality for plan p. We formalize the above with the following

theorem.

Theorem 3.4.1 For every configuration C covering a given set of in-

teresting orders O, there exists a single optimal MHJ plan p such that

p accesses all the indexes in C.

Proof Let C(O) be a set of configurations covering the given interest-

ing order O. Also, consider the set P of all the MHJ plans that are

compatible with the configurations in C(O).

For every configuration C in C(O) containing indexes on tables

T1,...,Tn we can compute the index access costs sT1
,...,sTn

independently

of a specific plan. Conceptually, we map C to an n-dimensional point

(sT1
, sT2

, ..., sTn
). The cost function Cp for a plan p in P is a linear

function of the sTi
parameters and corresponds to a hypersurface in the

(n+1)-dimensional space formed by the index access cost vector and

Cp. To find the optimal plan for a configuration C, we need to find the

plan hypersurface that gives us the lowest cost value.

By the structure of equation (3.1) all hypersurfaces are parallel, thus

for every configuration in C(O) there exists a single optimal plan.
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Figure 3.5: Modified plan comparison taking into account index I/O costs. The

optimal plan for expensive indexes (to the right of the thick line) performs a sequential

scan and uses a hash join.

Figure 3.4 shows the cost hypersurfaces for a merge and a hash

join plan, joining tables T1 and T2. To avoid 2-dimensional diagrams,

assume we fix the index built on T2 and only compute the plan cost for

the indexes on T1 that cover the same interesting order. The optimal

plan for an index IT1
corresponds to the hypersurface that first intersects

the vertical line starting at the point IT1
. Since the plan cost lines are

parallel, the optimal plan is the same for all the indexes regardless of

their sTi
values.

The INUM Space exploits Theorem 3.4.1 by storing for each plan

its region of optimality. The INUM identifies the optimal plan for

a configuration C by first computing the set of interesting orders O

covered by C. O is then used to find the corresponding plan in the

INUM Space. By Theorem 3.4.1 the retrieved plan will be the optimal

plan that accesses all the indexes in C. Like in the case of the exhaustive

algorithm, to obtain the globally optimal plan the above procedure must

be repeated for every subset C ′ of C.

Atomic Subset Enumeration

To find the query cost for an input configuration C we need to apply

theorem 3.4.1 for every subset of C and return the plan with the lowest

cost. Enumerating C’s subsets for n tables requires in the worst case
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2n iterations. Since each evaluation corresponds to a lookup based

on a set of interesting orders and n is fixed, the exponent does not

hurt performance: For 5 tables, subset enumeration requires merely 32

arithmetic evaluations.

The overhead of subset enumeration might be undesirable for queries

accessing 10 or 20 tables. For such cases we can avoid the enumeration

by predicting when the optimizer will not use an index of the input

configuration C, or equivalently use a specific subset C ′. It can be

shown that an index is not used only if it has an access cost that is too

high. By storing with each plan the ranges of access costs for which it

remains optimal, the INUM can immediately find the indexes that will

actually be used.

Figure 3.5 shows an example of how the plan curves of Figure 3.4

change to incorporate index access costs. The hash join cost flattens

after the index access cost exceeds the table scan cost (there is no need

to access that index for a hash join plan). The hash join is optimal for

indexes in the region to the right of the intersection point between the

merge and hash join lines.

Parametric Query Optimization (PQO) techniques can be directly

applied to piecewise linear cost functions like those in Figure 3.5, in

order to directly find the optimal plan given the index access cost values.

We omit the details of a PQO model due to lack of space.

3.5 Computing the INUM Space

Theorem 3.4.1 in Section 3.4.2 suggests a straightforward way for com-

puting the INUM Space. Let query Q reference tables T1, ..., Tn and

let Oi be the set of interesting orders for table Ti. We also include the

“empty” interesting order in Oi, to account for the indexes on Ti that
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do not cover an interesting order.

The set O = O1×O2× ...×On contains all the possible combinations

of interesting orders that a configuration can cover. By theorem 3.4.1,

for every member of O there exists a single optimal MHJ plan. Thus,

to compute the INUM Space it is sufficient to invoke the optimizer once

for each member o of O, using some representative configuration. The

resulting internal subplan is sufficient, according to Theorem 3.4.1, for

computing the query cost for any configuration that covers o. In order

to obtain MHJ plans, the optimizer must be invoked with appropriate

hints to prevent consideration of nested-loop join algorithms. Hints

have the additional benefit of simplifying optimizer operation because

fewer plans need to be considered.

The precomputation phase requires fewer optimizer calls compared

to optimizer-based tools, as the latter deal with different combinations

of indexes, even if the combinations cover the same interesting orders.

The number of MHJ plans in the INUM Space for a query accessing

n tables is |O1| × |O2| × ... × |On|. Consider a query joining n tables

on the same id attribute. There are 2 possible interesting orders per

table, the id order and the ] empty order that accounts for the rest of

the indexes. In this case the size of INUM Space is 2n. For n = 5, 32

optimizer calls are sufficient for subsequently estimating the query cost

for any configuration without further optimizer invocation.

For larger n, for instance for queries joining 10 or 20 tables, precom-

putation becomes expensive, as more than a thousand optimizer calls

are required to fully compute the INUM Space. Large queries are a

problem for optimizer-based tools as well, unless specific measures are

taken to artificially restrict the number of atomic configurations ex-

amined [15]. Fortunately, there are ways to optimize the performance

of INUM construction, so that it still outperforms optimizer-based ap-
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proaches. The main idea is to evaluate only a subset of O without

sacrificing precision. We propose two ways to optimize precomputa-

tion, lazy evaluation and cost-based evaluation.

Lazy evaluation constructs the INUM Space incrementally, in-sync

with the index design tool. Since the popular greedy search approach

selects one index at a time, there is no need to consider all the possible

combinations of interesting orders for a query up-front. The only way

that the full INUM Space is needed is for the tool to evaluate an atomic

configuration containing n indexes covering various interesting orders.

Existing tools avoid a large number of optimizer calls by not generating

atomic configurations of size more than k, where k is some small number

(according to [15] setting k = 2 is sufficient). With small-sized atomic

configurations, the number of calls that INUM needs is a lot smaller.

Cost-based evaluation is based on the observation that not all tables

have the same contribution to the query cost. In the common case,

most of the cost is due to accessing and joining a few expensive tables.

We apply this idea by “ignoring” interesting orders which are unlikely

to significantly affect query cost. For a configuration covering an “ig-

nored” order, the INUM will simply return a plan that will not take

advantage of that order and thus have a slightly higher cost. Notice

that only the Cinternal parameter of equation (3.1) is affected and not

the STi
’s. if an index on an “ignored” order has a significant I/O benefit

(if for example, it is a covering index) the I/O improvement will still

correctly be reflected in the cost value returned by the INUM. Cost-

based evaluation is very effective in TPC-H style queries, where it is

important to capture efficient plans for joining the fact table with one

or two large dimension tables, while the joining smaller tables is not as

important.
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Figure 3.6: NLJ plan costs for a single table as a function of an index’s sNL parameter

(System R optimizer).

3.6 Extending the INUM

In this section we consider plans containing nested-loop join operators

(NLJ plans) and explain why they require additional modeling effort.

We present ways to incorporate NLJ plans in the INUM.

3.6.1 Modeling NLJ Plans

The cost of an NLJ plan can not be described by Equation (3.1) of

Section 3.4.1. Therefore we can no longer take advantage of the linearity

properties of equation 3.1 for determining the plans that must be stored

in the INUM Space and characterizing their regions of optimality.

We present an example based on System R’s query optimizer [58].

For System R the cost of a plan using a nested-loop join is expressed by

Cout +N ×Cin, where Cout is the cost of the outer input, Cin is the cost

of accessing the inner relation through index I and N is the number of

qualifying outer tuples.

Cin is given by Cin = F × (Pages(I) + Card(T )) + W ×RSI, where

F is the selectivity of the relevant index expressions, Pages(I) is the

index size and Card(T ) is the number of tuples in the table. W and

RSI account for the CPU costs. It is easy to see that N and RSI are

not independent of the plan, since both are determined by the number
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of qualifying outer tuples.

We define the nested loop access cost SNL as sNL = F × (Pages(I)+

Card(T )) and set W = 0 for simplicity. The nested-loop cost becomes:

C(p) = Cout + N × sNL.

Figure 3.6 shows the cost of different plans as a function of the

nested-loop access cost for a single table. The difference with Figure

3.4 is that the hypersurfaces describing the plan costs are no longer

parallel. Therefore for indexes covering the same set of interesting

orders there can be more than one optimal plans. In Figure 3.6, plan

p2 gets better than p1 as the sNL value increases, because it performs

fewer index lookups. (lower N value and lower slope).

The System R optimizer example highlights two problems posed by

the NLJ operator. First, it is more difficult to find the entire set of

optimal plans because a single optimizer call per interesting order com-

bination is no longer sufficient. For the example of Figure 3.6, finding

all the optimal plans requires at least two calls, using indexes with high

and low sNL values. A third call might also be necessary to ensure

there is no other optimal plan for some index with an intermediate sNL

value. The second problem is that defining regions of optimality for

each plan is not as straightforward. The optimality of an NLJ plan

is now predicated on the sNL values of the indexes, in addition to the

interesting orders they cover.

In modern query optimizers, the cost of a nested-loop join operator

is computed by more complicated cost models compared to System R.

Such models might require more parameters for an index (as opposed to

the sNL values used for System R) and might have plan hypersurfaces

with a non-linear shape. Determining the set of optimal plans and their

regions of optimality requires exact knowledge of the cost models and

potentially the use of non-linear parametric query optimization tech-
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Figure 3.7: NLJ plan cost curves for a single table and an unknown cost function of

a single index parameter sI .

niques. In this dissertation we are interested in developing a general

solution that is as accurate as possible without making any assump-

tions about optimizer internals. The development of optimizer-specific

models is an interesting area for future research.

3.6.2 Extending INUM with NLJ Plans

In this section we develop general methods for populating the INUM

Space with NLJ plans in addition to MHJ plans and for determining

the overall optimal plan given an input configuration.

We begin with the problem of obtaining a set of optimal NLJ plans

from the optimizer. We assume that each index is modeled by a single

index parameter sI (like the sNL parameter in Section 3.6.1) that relates

to its properties but we do not have access to the precise definition of

sI . The formula relating the sI parameters to the plan costs is also

unknown. Let Imin and Imax be two indexes having minimum and

maximum sI values respectively. We also assume that the plans cost

function is monotonically increasing, thus every plan has a minimum

cost value for the most “efficient” index Imin and maximum cost for

Imax.

We present our approach using a simple example with a single ta-

ble and a single interesting order. Figure 3.7 shows the plan costs for
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two different NLJ plans, as a function of a single index parameter sI .

Even without precise knowledge of the cost functions, we can retrieve

at least two plans. Invoking the optimizer with Imin returns plan p1,

while Imax returns plan p2. There is no way without additional infor-

mation to identify intermediate plans, but p1 and p2 are a reasonable

approximation.

Identifying the Imin, Imax indexes for a query is easy: Imin provides

the lowest possible cost when accessed through a nested-loop join, thus

we set it to be a covering index 1. Using the same reasoning, we set Imax

to be the index containing no attributes other than the join columns.

Performing 2 calls, one for Imin and for Imax will reveal at least one

optimal NLJ plan. There are two possible outcomes.

1. At least one call returns an NLJ plan. There might be more plans

for indexes in-between Imax and Imin. To reveal them we need

more calls, with additional indexes. Finding those intermediate

plans requires additional information on optimizer operation.

2. Both calls return an MHJ plan. If neither Imin nor Imax facilitates

an NLJ plan, then no other index covering the same interesting

order can facilitate an NLJ plan. In this case, the results of the

previous sections on MHJ plans are directly applicable: By theo-

rem 3.4.1, the two calls will return the same MHJ plan.

For queries accessing more than one table, INUM first considers all

interesting order subsets, just like the case with MHJ plans. For a given

interesting order subset, there exist an Imin and Imax index per inter-

esting order. The INUM performs an optimizer call for every Imin and

Imax combination. This procedure results in more optimizer calls com-

pared to the MHJ case, which required only a single call per interesting
1There exist cases where Imin is a non-covering index, but in this case the difference in costs

must be small. Generally, the covering index is a good approximation for Imin.
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Figure 3.8: Experimental results for TPCH15. (a) Optimizer calls vs. time for an

exhaustive candidate set (b) Recommendation quality (c) Optimizer calls vs. time

for a heuristic candidate set

order combination. Multiple calls are necessary because every individ-

ual combination of Imin and Imax indexes could theoretically generate

a different optimal plan.

We reduce the number of optimizer calls during NLJ plan enumera-

tion by caching only a single NLJ plan and ignoring the rest. Instead of

performing multiple calls for every Imin, Imax combination, the INUM

invokes the optimizer only once, using only the Imin indexes. If the call

returns an NLJ plan then it gets cached. If not, then INUM assumes

that no other NLJ plans exist. The motivation for this heuristic is that

a single NLJ plan with a lower cost than the corresponding MHJ plan

is sufficient to prevent INUM from overestimating query costs. If such

a lower NLJ plan exists, invoking the optimizer using the most efficient

indexes (Imin) is very likely to reveal it.

Selecting the optimal plan for an input configuration when the INUM

Space contains both MHJ and NLJ plans is simple. The optimal MHJ

plan is computed as before (Section 3.4.2). If the INUM Space also con-

tains an NLJ plan, the index access costs can be computed by the op-

timizer separately (just like for an MHJ plan) and added to the cached

NLJ plan cost. INUM compares the NLJ and MHJ plans and returns

the one with the lowest cost.
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3.7 Experimental Setup

We implemented INUM using Java (JDK1.4.0) and interfaced our code

to the optimizer of a commercial DBMS, which we will call System1.

Our implementation demonstrates the feasibility of our approach in the

context of a real commercial optimizer and workloads and allows us to

compare directly with existing index selection tools. To evaluate the

benefits of INUM, we built on top of it a very simple index selection tool,

called eINUM. eINUM is essentially an enumerator, taking as input a

set of candidate indexes and performing a simple greedy search, similar

to the one used in [15].

We chose not to implement any candidate pruning heuristics because

one of our goals is to demonstrate that the high scalability offered by

INUM can deal with large candidate sets that have not been pruned in

any way. We “feed” eINUM with two different sets of candidate indexes.

The exhaustive candidate set is generated by building an index on every

possible subset of attributes referenced in the workload. From each

subset, we generate multiple indexes, each having a different attribute

as prefix. This algorithm generates a set of indexes on all possible

attribute subsets, and with every possible attribute as key.

The second candidate set, the heuristic, emulates the behavior of

existing index selection tools with separate candidate selection mod-

ules. We obtain heuristic candidates by running commercial tools and

observing all the indexes they examine through tracing. The purpose of

the heuristic candidate set is to approximate how INUM would perform

if integrated with existing index selection algorithms.

Besides the automated physical design tool shipping with System1,

we compare eINUM with the design tool of a second commercial DBMS,

System2. We were unable to port eINUM to System2 because it does
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not allow us to use index hints. Since we never actually ran eINUM with

System2’s query optimizer, we cannot report on a direct comparison,

but we include System2 results for completeness. Integrating INUM

with more commercial and open source database management systems

is part of our ongoing work.

We experiment with two datasets. The 1GB version of the TPC-

H benchmark and the NREF protein database described in [19]. The

NREF database consists of 6 tables and consumes is 1.5 GBs of disk

space. For TPC-H, we used a workload consisting of 15 out of the 22

queries, which we call TPCH15. We were forced to omit certain queries

due to limitations in our parser but our sample preserves the complex-

ity of the full workload. The NREF workload consists of 235 queries

involving joins between 2 and 3 tables, nested queries and aggregation.

We use a dual-Xeon 3.0GHz based server with 4 gigabytes of RAM

running Windows Server 2003 (64bit). We report both tuning running

times and recommendation quality, that is computed using optimizer

estimates. Improvements are computed by:

%improvement = 1 − costindexed/costnotindexed.

3.8 Experimental Results

In this section we demonstrate the superior performance and recom-

mendation quality of eINUM compared to System1 and System2 for

our TPCH15 and NREF workloads.
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3.8.1 TPCH15 Results

Exhaustive Tuning Performance

We provided eINUM with an exhaustive candidate set for TPCH15

consisting of 117000 indexes. For the exhaustive experiment we ran all

the tools without specifying a storage constraint. Figure 3.8 (a) shows

the number of cost estimation calls performed by the 3 systems and

the time it took to complete them. The data for the two commercial

systems come from traces of database activity. The horizontal axis

corresponds to optimization time: for each point in the horizontal axis,

the graph shows the number of estimation calls up to that point. The

graph focuses only on the tuning time spent during cost estimation

and not the overall execution time, which includes the algorithm itself,

virtual index construction and other overheads. Query cost estimation

dominates the execution time for all cases, so we discuss this first. We

report on the additional overheads (including the time to construct the

INUM model) later.

According to Figure 3.8 (a), eINUM performs the equivalent of 31

million optimizer (per query) invocations within 12065 seconds (about

3.5 hours), or equivalently, 0.3ms per call. Although such a high number

of optimizer invocations might seem excessive for such a small workload,

INUM’s ability to support millions of evaluations within a few hours

will be invaluable for larger problems.

Compare eINUM’s throughput with that of the state-of-the-art opti-

mizer based approaches (notice that the graph is in logarithmic scale).

System1 examines 188 candidates in total and performs 178 calls over

220 seconds, at an average 1.2s per call. System2 is even more conser-

vative, examining 31 candidates and performing 91 calls over 7 seconds

at 77ms per call. System2 is faster because it does not use the optimizer
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during enumeration. However, as we see in the next paragraph, it pro-

vides lower quality recommendations. Another way to appreciate the

results is the following: If we had interrupted eINUM after 220 seconds

of optimization time (the total optimization time of System1, it would

have already performed about 2 million evaluations!

The construction of the INUM took 1243s, or about 21 minutes,

spent in performing 1358 “real” optimizer calls. The number of actual

optimizer calls is very small compared to the millions of INUM cost eval-

uations performed during tuning. As we show later, we can “compress”

the time spent in INUM construction for smaller problems. System1

required 246 seconds of total tuning time: For System1, optimization

time accounted for 92% of the total tool running time. System2 needed

3 seconds of additional computation time, for a total of 10 seconds.

The optimization time was 70% of the total tuning time.

Exhaustive Tuning Quality

Figure 3.8 (b) shows the recommendation quality for the three systems

under varying storage constraints, where eINUM used the exhaustive

candidate set. The percentage improvements are computed over the

unindexed database (with only clustered indexes on the primary keys).

The last data point for each graph corresponds to a session with no

storage constraint. INUM’s recommendations have 8%-34% lower cost

compared to those of System1.

System2’s unconstrained result was approximately 900MB, so we

could not collect any data points beyond this limit. To obtain the

quality results shown in Figure 3.8 (b), we implemented System2 rec-

ommendations in System1 and used System1’s optimizer to derive query

costs. The results obtained by this method are only indicative, since

System2 is at a disadvantage: It never had the chance to look at cost
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estimates from System1 during tuning. It performs slightly worse than

System1 (and is 37% worse than eINUM but the situation is reversed

when we implement System1’s recommendation in System2 (we omit

those results). The only safe conclusion to draw from System2 is that

it fails to take advantage of additional index storage space.

We attribute the superior quality of eINUM’s recommendations is

to its larger candidate set. Despite the fact that eINUM is extremely

simple algorithmically, it considers candidates that combine high im-

provements with low storage costs, because they are useful for multiple

queries. Those indexes are missed by the commercial tools, due to their

restricted candidate set.

Heuristic Enumeration

In this section we demonstrate that using INUM in combination with

existing index selection algorithms can result in huge savings in tuning

time without losing quality. We use eINUM without a storage con-

straint and we provide it with a candidate index set consisting of 188

candidate indexes considered by System1. System1 was configured ex-

actly the same way as in the previous session.

Figure 3.8 (c) shows the timing results for eINUM comparing with

System1, in a logarithmic plot. System1, eINUM performs more query

cost estimation calls (7440 compared to 178), yet cost estimation re-

quires only 1.4 seconds compared to the 220 seconds for System1. For a

fair comparison, we must also take into account the time to compute the

INUM Space. With lazy precomputation (Section 3.5), INUM construc-

tion took 180.6 seconds. Overall, eINUM took 182 seconds compared

to 246 seconds for System1. Note that eINUM does not implement any

of the atomic configuration optimizations proposed in the literature

for optimizer-based tools [15]. Incorporating additional optimizations

81



would have reduced the precomputation overhead down, since it would

allow a further reduction in the number of optimizer calls. even further.

The quality reached by the two algorithms was the same, which

makes sense given that they consider exactly the same candidates.

INUM Precision

INUM’s estimates do not exactly match the query optimizer’s output.

Even the optimizer itself, due to various implementation details such as

variations in statistics, provides slightly different cost values if called for

the same query and the same configurations. These slight differences

exist between the plans saved by the INUM and the ones dynamically

computed by the optimizer.

We measure the discrepancy E between the optimizer estimate for

the entire workload cost Copt and the INUM estimate CINUM by E =

1 − CINUM/Copt. We compute E at the end of every pass performed

by eINUM over the entire candidate set and we verify that the INUM

cost estimate for the solution computed up to that point agrees with

the “‘real” optimizer estimate. We never found E to be higher than

10%, with an average value of 7%.

We argue that a 10% error in our estimate is negligible, compared to

the scalability benefits offered by the INUM. Besides, existing optimizer-

based tools that use atomic configuration optimizations [15] or the ben-

efit assignment method for the knapsack formulation [32] already trade

accuracy for efficiency.

3.8.2 NREF Results

In this section, we present our results from applying eINUM with an

exhaustive candidate index set on the NREF workload. NREF is dif-
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Figure 3.9: Optimizer calls vs.time for the NREF workload

ferent from TPCH15 in that it contains more queries (235) that are

simpler in terms of the number of attributes they access: Each query

accesses 2 to 3 columns per table.

Figure 3.9 compares eINUM and System1 in terms of the time spent

in query cost estimation. eINUM performed 1.2M “calls”, that took

180s (0.2ms per call). System1 performed 952 optimizer calls that took

2700s (or 2.9s per call). INUM construction took 494s (without any

performance optimizations whatsoever), while the total time for Sys-

tem1 was 2800s. Interestingly, searching over the exhaustive candidate

set with eINUM was about 6 times faster compared to System1, de-

spite the latter’s candidate pruning heuristics. We also compare the

recommendation quality for various storage constraints, and find that

eINUM and System1 produce identical results. This happens because

NREF is easier to index: Both tools converge to similar configurations

(with single or two-column indexes) that are optimal for the majority

of the queries.

3.9 Conclusion

Index selection algorithms are built around the query optimizer, how-

ever the query optimization complexity limits their scalability. We

introduce INUM, a framework that solves the problem of expensive op-
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timizer calls by caching and efficiently reusing a small number of key

optimizer calls. INUM provides accurate cost estimates during the in-

dex selection process, without requiring further optimizer invocations.

We evaluate INUM in the context of a real commercial query optimizer

and show that INUM improves enumeration performance by orders of

magnitude. In addition, we demonstrate that being able to evaluate

a larger number of candidate indexes through INUM improves recom-

mendation quality.
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Chapter 4

An Integer Linear Programming

Approach to Automated Database

Design

4.1 Introduction

Automated database design is a major challenge in building self-tuning

database management systems. A major difficulty in the development

of practical physical design algorithms is dealing with the huge number

of design features, such as indexes or materialized views, that are rele-

vant to an input workload and must be considered. A second difficulty

is determining, given a (pruned) search space of candidate features, a

combination that provides optimal performance for the workload that

also satisfies resource constraints such as available storage. Theoretical

studies in index and materialized view selection prove that determining

optimal solutions is computationally hard [14].

An orthogonal problem is the design of a cost model in order to com-

pare the merits of different design alternatives. Existing tools typically

rely on the query optimizer for workload cost estimation under varying

physical designs. The query optimizer provides an accurate cost model,
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but each invocation is expensive in terms of execution time. Query op-

timizer performance directly affects physical design algorithms, as it

increases their running times and limits their scalability in terms of the

total number of alternative designs they can consider.

Existing techniques address the above challenges with carefully engi-

neered tools that involve a multitude of application-specific heuristics.

Modern physical design tools select promising candidates by separately

analyzing each query in the workload [15, 2] and traverse the pruned

search space in a cost-based, greedy fashion, during which additional

candidates can be generated [9]. To avoid the overhead of the query

optimizer, several approximation schemes are employed (such as local

plan changes [9, 10]) that provide upper or lower bounds to the actual

query cost values and are used to guide the heuristics.

Although heuristics have led to practical implementations, they have

an unpredictable impact on solution quality. For example, the greedy

search heuristic might be fast, but considering one (or a few) design

features at a time ignores the interaction between features [73] and

could easily be diverted to suboptimal solutions. By the same token,

generating new candidates in parallel with the search [9] is prone to

missing important candidates. The above inaccuracies are made worse

by cost model approximations, that can easily mis-guide the search into

suboptimal paths. There is currently no general analysis on the tradeoff

between algorithm performance and solution quality, as the tradeoff is

considered a necessary condition for practical tools.

This dissertation introduces a radically different approach to database

physical design. Instead of immediately addressing the engineering of

practical algorithms using heuristics we take a step back and model

database physical design as a standard combinatorial optimization prob-

lem, that must in principle be optimally solved. Our model opens the
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way for the application of a huge body of work in combinatorial opti-

mization and operations research, that is successfully deployed for real-

world, large-scale optimization problems in countless other domains,

but not in databases.

We model physical design using an Integer Linear Programming

(ILP) formulation, that captures the full complexity of the design prob-

lem, while admitting practical implementations. We couple our ILP

abstraction with general, industry-strength optimization tools, such as

CPLEX, that can find optimal solutions for very large problem instances

occurring in practice. This chapter focuses on index selection, but the

ILP formulation is applicable to other design features.

Our approach separates the optimization part of physical design,

which is offloaded to ILP solvers, from the modeling part, that involves

capturing critical model parameters (such as query costs) and requires

database-specific knowledge. For the optimization part, we replace the

greedy search heuristic used in previous approaches by generic, highly-

efficient optimization engines that avoid the shortcomings of greedy

search (such as local minima). State-of-the-art engines can handle very

large problem instances consisting of thousands or tens of thousands of

decision variables, or in our case, index combinations, in a very small

amount of time. Contrary to heuristic search, we exploit both the

performance of modern solvers and their optimality guarantees.

The problem now shifts to deriving an appropriate ILP model for

a given physical design problem. In constructing an ILP model, we

face the same difficulties as in developing a heuristic search algorithm.

First, the ILP formulation cannot have unlimited size. Even for small

problems, we can naively generate unreasonable ILPs, with millions or

billions of variables. Second, even with practical problem sizes it is very

expensive to solely rely on the query optimizer for cost estimation. We
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therefore still need to adjust the model size and parameters to allow

for efficient implementations.

What makes our approach different from previous work is that we

show how to use the mathematical model to bound the impact of our

heuristics to solution quality. This allows us to apply heuristics in

order to improve running times in a controlled fashion, while providing

a guarantee about the worst-case loss in solution quality. If the bounds

obtained are not satisfactory, the precision of the ILP formulation can

be increased in order to improve the quality of the solution (with a

necessary increase in running time). Previous approaches, based on

heuristic search, can not provide such guarantees simply because it is

not possible to provide optimality bounds for the greedy traversal.

In this chapter, we make the following contributions:

1. We show how to take advantage of existing Integer Linear Pro-

gramming (ILP) solvers for database design. The efficiency of

state-of-the-art optimization engines allows us to handle very large

design problems with realistic databases and workloads and find

optimal solutions within seconds.

2. We couple the increase performance of ILP solvers with a fast

query cost estimation module, based on our work on optimizer

plan reuse. Our cost estimation module, the Index Usage Model

(INUM) (Chapter 3), provides query cost estimation results with

three orders of magnitude better performance compared to the

query optimizer, but the same precision.

3. We introduce a technique for eliminating indexes and index com-

binations from consideration, that considerably reduces problem

sizes. Contrary to previous techniques, we can provide per-instance

optimality guarantees, before solving the problem. In this way

88



database administrators can balance solution quality with solu-

tion efficiency.

4. We introduce a technique for minimizing the number of optimizer

calls required, through query cost approximation. Our technique

performs even fewer calls compared to the INUM and allows the

computation of approximate solutions fairly quickly, with guar-

anteed optimality bounds. If the provided bounds are not satis-

factory, further optimization calls can be performed. Using this

technique, we were able to process workloads consisting of 1000

queries, performing only 2 optimizer calls per query, while prov-

ably staying within 10% of the optimal. Due to our approximation,

we achieved a 10x speedup and 10x improvement in quality com-

pared to existing tools.

This chapter is organized as follows. Section 4.2 formalizes index

selection using our ILP formulation. Section 4.3 describes the index se-

lection tool architecture we use to exploit our ILP formulation. Section

4.4 details the cost approximation schemes we use to improve perfor-

mance with a predictable impact on quality. Sections 4.5 and 4.6 detail

our experimental evaluation, while Section 5.7 presents concluding re-

marks.

4.2 An ILP Model for Index Selection

In this section we introduce an integer linear programming formulation

that captures the full complexity of the index selection problem.
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4.2.1 Mathematical Formulation

Consider a workload consisting of m queries and a set of n indexes I1-

In, with sizes s1-sn. We want our model to account for the fact that

a query has different costs depending on the combination of indexes it

uses. A configuration is a subset Ck = {Ik1, Ik2, ...} of indexes with the

property that all of the indexes in Ck are used by some query.

Let P be the set of all the configurations that can be constructed

using the indexes in I and that can potentially be useful for a query.

For example, if a query accesses tables T1, T2 and T3 then P contains

all the elements in the set (indexes in I on T1) × (indexes in I on T2)

× (indexes in I on T3).

The cost of a query i when accessing a configuration Ck is c(i, Ck) and

c(i, {}) denotes the cost of the query on an unindexed database. We de-

fine the benefit of a configuration Ck for query i by bik = max(0, c(i, {})−

c(i, Ck)).

Let yj be a binary decision variable that is 1 if the index is actually

implemented and 0 otherwise. In addition, let xik be a binary deci-

sion variable that is equal to 1 if query i uses configuration Ck and 0

otherwise.

Using xik and bik, the benefit for the workload Z is

Z =
m∑

i=1

p∑

k=1

bik × xik (4.1)

where p = |P |. The values of xik depend on the values for yj : We

cannot have a query using Ck if a member of Ck is not implemented.

Also, we require that a query uses at most one configuration at a time.

For instance, a query cannot be simultaneously using both C1 = {I1,

I2, I3} and C2 = {I1, I2}. Finally, we require that the set of selected

indexes consumes no more than S units of storage. Thus the formal
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Figure 4.1: Index selection example.

specification of the index selection problem is as follows.

maximize Z =
m∑

i=1

p∑

k=1

bik × xik (4.2)

subject to

p∑

k=1

xik ≤ 1 ∀i (4.3)

xik ≤ yj ∀i, ∀j, k : Ij ∈ Ck. (4.4)

n∑

j=1

sj × yj ≤ S (4.5)

Constraints (4.3) guarantee that a query uses at most one configu-

ration. Constraints (4.4) ensure that we cannot use a configuration k

unless all the indexes in it are built and constraint (4.5) expresses the

available storage.

Figure 4.1 shows an example with 2 queries and 4 indexes, listing all

the relevant configurations for each query. Assume only indexes I1 and

I2 are relevant to Q1, whose cost varies depending on whether uses a

single-index configuration ( c1 or c2) or a pair (c3). The same holds for

Q2 and indexes I3 and I4.
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Assume we want to optimize workload benefit given total storage

capacity of S=200 units.

minimize Z = b11 × x11 + b12 × x12 + b13 × x13 +

+b24 × x24 + b25 × x25 + b26 × x26 (4.6)

subject to

3∑

k=1

x1k ≤ 1,
6∑

k=4

x2k ≤ 1,

x11 ≤ y1, x12 ≤ y2, x13 ≤ y1, x13 ≤ y2,

x23 ≤ y3, x24 ≤ y4, x35 ≤ y3, x36 ≤ y4,
4∑

j=1

sj × yj ≤ 200

By inspection we determine the optimal solution

y1 = 1, y2 = 1, y3 = 0, y4 = 0,

x11 = 0, x12 = 0, x13 = 1, x24 = 0,

x25 = 0, x26 = 0

The set of indexes I1 and I2 is preferable because their combination

has a large benefit for Q1 and outperforms any other alternative. Notice

that the commonly used greedy search would fail to identify t he optimal

solution. In the first iteration it would pick index I3 and in the second

I4.

The exact solution provided by the ILP formulation is optimal for the

given initial selection of indexes. If we were to include all the possible

indexes that are relevant to the given workload, it would give us the

globally optimal solution.
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Considering the set of all the possible indexes is prohibitively ex-

pensive and thus a candidate selection module is necessary. The ILP

approach is flexible in that we can use it with an arbitrary candidate

index set.

4.2.2 Supporting Updates & Clustered Indexes

The ILP formulation of Section 4.2 can be extended to handle updates

in the workload (SQL INSERT, UPDATE or DELETE statements).

We model an update statement as a sequence of two sub-statements,

“select” and ’“modify”. The “select” part is just another query select-

ing the set of rows to be modified or deleted and thus is handled by the

formulation of Section 4.2 (INSERT statements do not have a selection

part and thus get a zero benefit value for all configurations). The “up-

date” part is a statement that simply updates the set of rows returned

by the “select” part. It has a different behavior, because an index con-

figuration Ck can have a negative benefit for the update part, because of

the additional cost for updating the relevant indexes in Ck. Specifically,

the benefit bU
lk of configuration Ck for the update sub-statement Ul is

bU
lk = costupdate(l, {})− costupdate(l, Ck) (4.7)

costupdate(l, ) is zero, while costupdate(l, Ck) is equal to the sum of the

costs for updating all the indexes in Ck.

bU
lk = −

∑

Ij∈Ck

costupdate(l, Ij) (4.8)

Generally, for every index Ij we can associate a (negative) benefit

value −fj which is computed by summing up all the −costupdate(l, Ij)

values over all the update statements Ul and corresponds to the update

overhead introduced by that index. To model updates, we only need
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to modify the objective function of Section 4.2 (Equation 4.2) to take

into account the negative benefit values fj.

maximize Z =
m+m1∑

i=1

p∑

k=1

bik × xik −
n∑

j=1

fj × yj (4.9)

Equation 4.9 describes the workload benefit in the presence of m

queries and m1 update statements. The second term simply states that

if index Ij is constructed as part of the solution, it will cost fj units of

benefit to maintain it in the presence of the m1 update statements.

Supporting clustered indexes is straightforward with our model. A

candidate clustered index is yet another index in the candidate set,

one that contains all the attributes in a relation. We allocate a yj

variable to it as usual. It also participates in combinations naturally.

The size of clustered indexes is artificially set to 0 (as no additional

space is required to sort a table). For each table T we restrict the set of

clustered indexes on it, say {yT c
1
, yT c

2
, ...yT c

l
} so that only one clustered

index is picked:

yT c
1
+ yT c

2
+ ... + yT c

l
≤ 1 (4.10)

4.3 An ILP-based Index Selection Tool

In the previous sections we presented an ILP formulation that com-

pletely describes the index selection problem. In this section we discuss

the architecture of a practical ILP-based index selection tool.

Figure 4.2 details the components that are used in our tool. All

the modules except for the ILP solver are used in the construction of

the model, deciding the xk and yj variables and computing the benefit

values bk, all described in Section 4.2. Once the model is constructed,

the ILP solver is used to determine the optimal solution.
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Figure 4.2: Architecture for an ILP-based index selection algorithm.

The Candidate Selection and Combination Selection modules allow

the determination of the xk and yj decision variables from the prob-

lem at hand. For each combination xk participating in the model, the

Cost Estimation module determines the query costs and correspond-

ing ck benefit values. Cost Estimation is typically based on the query

optimizer. In our system, we couple the query optimizer to the Index

Usage Model (INUM), a mechanism we have developed for improving

the performance of query cost estimation through caching and reusing

of optimizer computation. The INUM is three orders of magnitude

faster than a query optimizer call, while providing exactly the same re-

sult. Section 4.3.2 provides an overview of the INUM, while a detailed

description appears in Chapter 3. The completed ILP representation is

consequently input to the ILP solver.

The overall performance depends on the numbers of yj and xk vari-

ables, which control the problem size and consequently the optimization

time and the time spent in the cost estimation module. Our ILP for-

mulation is advantageous compared to existing approaches in that the

efficiency of modern ILP Solvers and of the INUM allows us to consider

very large numbers of decision variables (candidate indexes and index

combinations). In our experiments, we have been able to solve ILP

instances considering up to 110,000 candidate indexes and 3.2 million
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combinations within minutes.

Furthermore, our ILP formulation allows for a particularly attractive

modular design, where the impact of optimizations in each module on

the final solution can be analyzed and quantified. Each module can

apply cost-based pruning (for Candidate and Combination Selection)

and approximations (for Cost Estimation), to improve performance.

In the remaining subsections we describe the components of Figure

4.2 in more detail. We start with the ILP Solver and the INUM, which

are the foundations of our technique, providing efficiency and scalability

and continue with the Candidate Selection and Combination Selection

modules, that ensure that the resulting ILP formulation accurately re-

flects the index selection problem at hand.

4.3.1 ILP Solver

The ILP Solver module of Figure 4.2 takes as input the ready ILP for-

mulation corresponding to an index selection problem and computes

the optimal solution. While ILPs are NP-hard in the worst case, mod-

ern ILP solvers can efficiently optimize very large problem instances.

The index selection problem in databases is particularly amenable to

the optimization algorithms in modern optimization engines. Using

CPLEX, an industry-strength optimization tool, allowed us to solve

index selection ILPs with millions of decision variables always in less

than a minute.

For the cases where a particular problem instance proves to be more

“difficult and optimization does not finish within a given time thresh-

old, the solver can be interrupted at any time. The partial solution

reached by the solver is in this case suboptimal, however there is an

immediate way to estimate a bound from the optimal solution. Solv-

ing the Linear Programming (LP) relaxation of an ILP problem [12] is
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Figure 4.3: Illustration of plan reuse with INUM. (a) The optimal plan p1 for con-

figuration C1. (b) The cost for C2 is computed by reusing the cached internal nodes

of plan p1 and adding the costs of the new index access operators. This example is

valid under the constraints described in Section 4.3.2.

very efficient (there exist polynomial algorithms for LP problems) and

the LP solution provides a bound for the objective function of the ILP

problem. The computed LP bounds are tight for index selection prob-

lems. For our experiments, those instances taking more than 1 minute

to optimize were interrupted, with a bound that was always less than

0.2%.

4.3.2 The Index Usage Model

The Index Usage Model is a framework for efficient and accurate query

cost estimation. Given a query and an index combination, it computes

a value for the query cost that is the same as the one that would have

been returned by an optimizer call with the same input. The INUM

computes cost estimates very efficiently, by not invoking the query op-

timizer, except for a small number of “seed” calls. The query plans

returned from the “seed” calls are used by the INUM to accurately

compute query costs for all the other calls, without additional opti-

mizer invocations.

Since the optimizer is not involved for the large majority of cost
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estimations, the INUM can achieve 3 orders of magnitude faster perfor-

mance while maintaining optimizer precision. The INUM is indepen-

dent of the index selection algorithm used, however it is a direct match

for our ILP-based approach, that relies on considering large numbers

of index combinations to achieve good solution quality.

The intuition behind the INUM is that although the number of pos-

sible index combinations (xk variables in our model) relevant to a given

query can be very large (thousands or tens of thousands), the number of

different optimal query execution plans and thus the range of different

optimizer outputs is much smaller (Consider for example the number

of different ways to execute an SPJ query on two tables). Therefore it

is more cost effective to reuse the set of optimal plans, than take the

cost of computing the same plan multiple times.

Figure 4.3 shows an example of plan reuse in INUM. In Figure 4.3

(a), the optimizer is used to obtain the query execution plan for query

Q, using the indexes in combination C1. The INUM caches the internal

structure of the plan, the Internal Subplan ip1 shown in Figure 4.3

(b), in order to reuse it for other input combinations. Assume that an

index selection tool asks for the cost of an index combination C2, whose

indexes do not contain the join columns (and thus can not be used by

the optimizer to facilitate merge or nested loop joins). The internal

structure of plan p1 is applicable to C2, since it contains only hash

joins and it can be shown that it is in fact the plan that the optimizer

would have selected for C2: If the optimizer was to return a different

plan, say p2, then p2 could have been used for C1 as well, but we know

this is not possible since p1 is optimal. Therefore, the cost of Q under

C2 can be computed by reusing the cached cost of p1 and adding the

individual access costs for the indexes in C2. The index access cost

can be efficiently computed using the relevant optimizer cost models

without invoking the bulk of the query optimization process.
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In the example of Figure 4.3, plan p1 can be reused with input com-

binations that do not involve the join columns of Q and thus save

the overhead of multiple optimizer calls that we know would have re-

turned plan p1. If the input combination involves the join columns

however, reusing p1 might result in erroneous estimation, as the opti-

mizer is likely to select more efficient join algorithms and join orders.

The INUM accounts for such cases by performing additional optimizer

calls to retrieve the set of all possible optimal plans. We developed

the matching logic that allows INUM to distinguish whether a cached

plan is appropriate for reuse with a given input combination, or a new

optimizer call must be performed and cached. INUM’s matching logic

is based on simple observations about optimizer operation and can be

implemented without additional interfaces. Chapter 3 of this disserta-

tion presents a detailed description of INUM, along with an evaluation

of its correctness and performance advantages using a real commercial

optimizer.

We use INUM to accurately compute query costs and the corre-

sponding ck variables for thousands of combinations, while achieving

lower total running times compared to existing tools. We report both

the time consumed in obtaining INUM’s cost estimates and the time

spent by INUM in obtaining and caching optimal plans from the query

optimizer.

4.3.3 Candidate Selection

If it were possible to allocate a yj variable for every possible index

that is relevant to a given workload, the formulation of Section 4.2

would specify the full index selection problem and allow us to identify

the optimal solution1. Since every subset of attributes for every table

1Assuming we could also exhaustively generate all possible combinations (xik variables as well.
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referenced by the workload is a potential index, exhaustively computing

all possible relevant indexes in a workload is impractical. The goal

of Candidate Selection is to determine a set of promising candidate

indexes, that is likely to contain a superset of the optimal solution,

although there are no guarantees.

We built a Candidate Selection module using a strategy that gener-

ates thousands or tens of thousands or candidates, a number at least an

order of magnitude higher compared to existing index selection tools.

Our system is designed to provide high performance for such large can-

didate set sizes and thus has the advantage, over existing work, that

it minimizes the chances of “missing” some important index. Further-

more, we note that our system can incorporate any previously proposed

candidate selection technique, such as the “per-query-optimal” indexes

of [15], or cost-based index transformations, adapting techniques from

[9].

Per-query-relevant Index Selection

We model an index on a table T as a tuple (K, S) (using the same

notation as in [10]), where K and S are subsets of T ’s attributes. K

consists of the key attributes and thus is order-sensitive, while S is a

suffix, insensitive to attribute ordering.

Our strategy, called per-query-relevant candidate selection, operates

on a per-query basis. For each query Q, referencing tables T1, ...TN ,

we build attribute subsets ST1
, ..., STN

, where STi
consists of all the at-

tributes in Ti referenced by Q. We then proceed to build an index for

each subset of attributes in each STi
, also taking into account the dif-

ferent orders in the key part of the index. The number of combinations

that can be generated from a set STi
depends on its size and also on

the number of attributes in the key. Assuming a key length of 1, gives
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us |STi
| × 2|STi

| possible indexes.

The above technique is likely to also build indexes that although syn-

tactically relevant, are useless performance-wise. Consider for example

indexes on a small subset of Q’s select-clause attributes. Such indexes

do not take advantage of where-clause predicates and potentially incur

a high RID lookup overhead, since they require additional accesses to

the base tables. We use a cost-based filtering step to eliminate such

expensive indexes. We compute the cost of scanning each candidate

with respect to Q and eliminate those that have a scan cost greater

than or equal to a × cost(Q, {}), where 0 ≤ a ≤ 1. For a = 1, we

eliminate indexes with a scan cost larger than the total cost of Q when

running unindexed, as these indexes are guaranteed to not be used 2.

By reducing the value of a, for instance setting a = 0.8, we improve the

effectiveness of the filter with a low probability of missing important

indexes: For a = 0.8%, a “pruned” index can not be useful unless the

cost of executing the rest of the query is “compressed” to less than 20%

of its original value. Even in this case, the benefit lost by ignoring such

and index would be small.

Effect of Candidate Selection on Solution Quality

Candidate selection plays an important role in the ILP formulation, as

the selection of the yj variables affects solution optimality. The ‘globally

optimal solution is obtained only by exhaustively generating the set of

all possible indexes. By pruning even a single candidate, we generate a

“restricted” ILP instance that is different from the exhaustive one. By

solving the “restricted” ILP, even in an optimal fashion, the resulting

solution might be different from the “globally” optimal one. Thus, it

is important to note that the solution specified by an ILP formulation
2Notice that the scan cost includes possible predicates in Q that might take advantage of the

index.
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is essentially the optimal solution with respect to the provided set of

candidate indexes.

Computing optimality bounds for candidate selection algorithms is

inherently more difficult, compared to analyzing the other approxima-

tions described in this chapter. In order to estimate a benefit value

for a single index yj any approach would need at least one optimizer

(or INUM) call (probably more if we consider all possible combinations

xik using this index). The number of possible indexes is at least ex-

ponential to the number of attributes in a table and thus grows very

large very quickly: for instance, a 20 attribute table generates about

20 million candidate indexes.

Due to its exponential size, enumerating an exhaustive set of candi-

dates might be impractical from a performance perspective. Pruning in

this case can not be simply cost based, as we will have to eliminate sets

of indexes even without considering their costs. While such an approach

is possible for Combination Selection presented in the following section,

in this case it is difficult to characterize the relationship between index

properties and query performance and derive bounds on the latter.

We chose to deal with this lack of mathematical structure by simply

generating as many candidates as possible, thus reducing the probabil-

ity of missing an index that could be important. The only restriction

that we impose is that all the attributes in a candidate index are refer-

enced in at least one query of the workload (thus excluding indexes that

have some attributes referenced by one query and some by another).

Our techniques capture all the possible “covering” indexes for a query

and their subset, thus it is guaranteed to contain the optimal indexes

for a query and is in fact a superset of the per-query-optimal approach

used in the literature. We do not take into account “merged” indexes,

however our technique can easily be adapted to accommodate them.
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Our experiments with the TPC-H workload suggested that, starting

with our per-query-relevant index selection, merging afterwards does

not significantly improve solution quality.

4.3.4 Combination Selection

Constructing the ILP model requires “assembling” index combinations

(variables xik) from the candidate indexes (variables yj) selected by the

Candidate Selection module. Exhaustively iterating over all possible

combinations is likely to generate a huge number of variables. Besides

increasing the problem size and optimization times, generating a large

number of variables also requires more work to estimate all the bik

variables. The combination selection module is responsible for reducing

the number of xik variables through pruning.

In this section we describe two combination selection approaches

that improve the efficiency of ILP-based index selection and show how

to bound the quality loss resulting from pruning. Cost-based pruning

intuitively eliminates all combinations that are unlikely to participate in

the optimal solution because they offer very low benefits. Pruning based

on table-subsets keeps only those combinations that involve indexes on

certain ‘interesting subsets of tables, motivated by the observations that

only a few of the tables are responsible for most of the query costs. In

both cases, the ILP formulation allows us to estimate the worst-case

benefit loss by combination selection.

Cost-based Pruning

In the ILP formulation, omitting a combination xpruned from consider-

ation means a-priori determining the value of xpruned:

xpruned = 0 (4.11)
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The resulting “simplified” ILP model has one less variable and thus is

easier to solve. However if in the optimal solution xpruned = 1 then our

pruning was wrong, since we interfered with the optimal solution to the

original problem.

Cost-based pruning iterates over all possible xik variables for a prob-

lem and eliminates those that offer a relative improvement of less than

e%, where e is a user-defined parameter. For example, if e = 20%,

for every query Q, every relevant combination xk with a benefit value

ck ≥ 0.2×cost(Q, {}) will be included in the model and everything else

will be omitted. We can in fact specify multiple threshold values ei, one

per query, and apply each threshold to the range of xk variables cor-

responding to each query. Multiple threshold values allow us to prune

more combinations from the cheaper queries and intuitively, have less

impact to the overall achievable improvement.

How does pruning affect the quality of the derived solution? Let

Z∗ denote the optimal value for the simplified objective function (after

pruning) and Z be the optimal objective function value for the original

problem. Naturally, Z∗ ≤ Z and we can prove that

Z − Z∗ ≤
m∑

i=1

ei × cost(Qi, {}) (4.12)

Equation 4.12 states that the loss in quality is bounded by the unin-

dexed query costs weighted by the individual thresholds and suggests

the adaptive strategy of keeping low thresholds for relatively expensive

queries, while aggressively pruning cheaper queries.

To prove Equation 4.12 we first show that omitting a single combi-

nation xkpruned
results in a reduction in the objective value function of

at most cpruned. Let the original problem have a solution vector X =

(x0, x1, ...xK, y0, y1, yN) and an objective function value Z. Also, let the

simplified problem have a solution vector X∗ = (x∗
0, x

∗
1, ..., x

∗
K, y∗0, ..., y

∗
N)
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and an objective value function Z∗. Our goal is to show that

Z − Z∗ ≤ ckpruned
(4.13)

If xkpruned
= 0, then the pruned combination is not used in the optimal

solution and thus Z − Z∗ = 0 and the theorem holds. If xkpruned
= 1,

then the solution to the simplified problem is suboptimal with respect

to the original. If the two solutions agree in any other value, thus

∀k 6= kpruned : xk = x∗
k then Z − Z∗ ≤ ckpruned

and the theorem holds.

How is it possible that the two solutions do not agree in all of their

variables? It could be the case, for example, that omitting xkpruned

results in the corresponding indexes becoming less “attractive” and

being omitted as well. Now the space released by the omitted indexes is

allocated in a different way, resulting in an entirely different solution for

the simplified problem. Even if this is the case, we can still prove (4.13.

Consider a solution vector X+, derived from X by setting xkpruned
= 0

and let Z+ be the objective function value for X+ and leaving all other

variables the same. The objective function values for the three solutions

are related as follows:

Z − Z+ ≤ ckpruned
. (4.14)

Z+ ≤ Z∗ (4.15)

Equation (4.15) holds, otherwise Z∗ would not have been optimal.

Equation (4.13) follows from (4.14), (4.15).

With equation 4.13,it is easy to see that if for query Qi we prune

all the combinations with benefit values ck ≤ ei × cost(Qi, {}), the

maximum loss in benefit is ei × cost(Qi, {}). Note that the benefit loss

for a single query is not additive, as the query can only use a single

combination. Repeating the pruning process for each query however is

additive, hence equation 4.12.

105



Table-Subsets

Cost-based pruning reduces the problem size, but the costs of all com-

binations must still be computed through the Cost Estimation module.

We propose a pruning technique based on table-subsets, where we keep

index combinations on the most expensive tables. We are based on the

observations that not tables are equally costly to access: In fact, ta-

ble sizes and row counts are highly non-uniform, especially in decision

support databases and star-schemas such as TPC-H. In a typical TPC-

H statement, most of the benefit is obtained by indexing the largest

tables, LINEITEM and ORDERS, as they are the most expensive to

access. Thus LINEITEM and ORDERS form an “interesting” table

subset, on which index combinations are likely to yield large bene-

fit values. Indexes on the smaller tables, such as NATION, REGION

and SUPPLIER might have some benefit, however this benefit will be

smaller. The quality loss from not including indexes on such tables in

combinations would be negligible.

We next quantify the previous statement. Consider a query Q and

let T be a table subset that we wish to keep in the ILP formulation

and P be a set of tables that can be “pruned”. This means that for

Q we can consider any combination of indexes built on tables in T

but no combinations involving tables in P . Notice that we can define

a separate table subset for each query, consisting, for example, of the

one or two of the most expensive tables referenced by Q. Naturally,

for cheap queries we can consider smaller subsets (since anyways the

benefit loss will be small), while for most expensive queries we want to

preserve more information by looking at largest subsets.

Consider first the set of combinations XP that contains indexes only

on tables in P . Every combination xk ∈ XP will get pruned. Following

the results of the previous section, the benefit loss for Q will be bounded
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by

max
xk∈XP

bQ,xk
(4.16)

If we properly select the table subset T for Q, then the tables in

P will not be so important thus the maximum benefit loss will be

small and thus can be ignored. As an example, consider the maxi-

mum benefit obtainable through index combinations on the set P =

{NATION, REGION}. While the effect of indexes on NATION or

REGION is small, considering one index on each table increases the

number of possible combinations by 4.

Besides combinations exclusively on P , there exists a set of combina-

tions XPT , that contain some indexes on tables in T and some indexes

on tables in P . This set also gets pruned. Based on the reasoning fol-

lowed above for the P , we might erroneously reach the conclusion that

the benefit loss will be

max
xk∈XP T

bQ,xk
. (4.17)

Since, XPT contains combinations with indexes also on “important”

tables, so this bound could be quite large.

Fortunately, although the set XPT gets pruned, there also exists the

set XT , consisting of combinations with indexes exclusively on tables

in T , that gets preserved. Every combination is XPT that gets pruned

has a smaller “subset” combination in XT that gets preserved, the only

difference being that the latter lacks the indexes on the “unimportant”

tables. The implication is that most of the benefit of combinations in

XPT is preserved by the combinations in XT .

This intuition is formalized as follows. Let Xopt be the optimal so-

lution obtained for the problem without any pruning and Zopt the cor-

responding objective function. Let xpruned be a decision variable corre-
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sponding to a combination in XPT and xpruned = 1 in Xopt. By pruning

every combination in XPT we in fact set xpruned = 0 which leads to

a suboptimal solution. Let X∗
opt be the resulting sub-optimal solution

and Z∗
opt be the corresponding objective function function. Obviously

Z∗
opt ≤ Zopt and our goal is to estimate Zopt − Z∗

opt. Now consider an-

other solution X+, that is constructed from Xopt, by setting xpruned = 0

and setting xkept = 1, where xkept is a combination in XT that is a

“subset” of the pruned one, without any index on the “unimportant”

tables. Notice that if Xopt is feasible then also X+ is feasible (as it

contains a subset of Xopt’s indexes) and let Z+ be its benefit. We now

have: Z+ ≤ Z∗
opt ≤ Zopt. We can now bound the quality loss as follows:

Zopt − Z∗
opt ≤ Zopt − Z+ (4.18)

Since Xopt and X+ differ only in the xpruned and xkept values, Equation

4.18 becomes:

Zopt − Z∗
opt ≤ Zopt − Z+ ≤ bpruned − bkept (4.19)

Any of the combinations in XPT could potentially be in the optimal

solution, so the worst-case loss for a single query becomes the maximum

benefit difference between a pruned and its corresponding kept combi-

nation. Using the index k for the various combinations in XPT and the

corresponding subset combinations in XT we can rewrite Equation 4.19

as:

Zopt − Z∗
opt ≤ Zopt − Z+ ≤ max

xk
pruned∈XPT

bk
pruned − bk

kept (4.20)

The loss for multiple queries is additive, however notice that the def-

inition of the P and T table-subsets for each query might be different.

What equation 4.20 says is that with the ILP formulation, the drop in
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solution quality is mathematically bounded by how close we approxi-

mate bprune by bkept or, at a higher level, by the relative “importance” of

the tables in P and T and the characteristics of individual queries. No-

tice that although this intuition has been used in previous techniques,

for example to simplify cost estimation [15], the ILP framework allows

us to guarantee a maximum quality loss from its usage. Existing algo-

rithms, such as greedy search, cannot provide such guarantees: greedy

search can be arbitrarily bad and certainly approximating costs by ig-

noring certain tables does not improve things. In addition, the ILP

formulation allows us to “customize” the approximation in a per-query

fashion: More combinations can be allocated to queries that are most

expensive or will benefit the most, thus optimizing the overall algorithm

performance.

Another implication of the above argument is that, if the perfor-

mance of a given table subset assignment is satisfactory, we can always

“correct” by adding more tables in the T set and thus add more combi-

nations for queries. In the case of the ILP formulation this “resolution

increase” is guaranteed to improve the solution (if a better solution

exists) and this increase will be equal to the increase in the benefits

caused by the addition of the extra indexes. On the other hand, ex-

isting heuristics and greedy search are again not guaranteed to reach a

better solution, although the chances might be better.

Finally, a related question is: Can we precompute the bounds of

Equation 4.20 before solving, so that we can “guide” the table-set

heuristic? Computing the bound requires computing all possible bk
pruned

values, which defeats the whole purpose of table-based pruning! Alter-

natively, we could approximate the bound of 4.20 by computing the

benefit of the optimal combination for Q, boptimal. The optimal combi-

nation will most likely belong to XPT , as it will involve indexes from

all the tables accessed by Q. For a given table-subset selection, we can
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pick the subset combination in XT that has the lowest benefit bmin
kept.

The bound then becomes:

Zopt − Z∗
opt ≤ Zopt − Z+ ≤ bmax − bmin

kept (4.21)

This bound is relatively pessimistic, however it is still indicative of the

quality of the approximation and it allows us to fine-tune the selection

of P and T depending on the query costs.

4.4 Approximate Cost Estimation

The Cost Estimation module computes for each combination xik a ben-

efit value bik. There are several approaches to cost estimation. The

query optimizer provides the most accurate query estimates and is the

cost model used in current systems [15, 2, 1]. Unfortunately query op-

timization is a time-consuming process and is very expensive to use for

large number of combinations.

Since for database design it is desirable to evaluate as many combi-

nations as possible, previous work introduces approximations, such as

the local transformation approach of [9, 10] that avoids accessing the

optimizer in most cases and thus is more efficient, but does not provide

accurate results. Specifically, the local transformation approach returns

lower bounds for the benefit of a particular combination.

Finally, we develop the Index Usage Model (INUM), a cost estima-

tion technique that works by caching and reusing a small number of key

optimizer invocations (See Section 4.3.2 for an overview and Chapter 3

for a detail description) to efficiently provide accurate cost estimates.

Although primarily designed for accurate cost estimation, we can con-

siderably reduce the INUM setup time by sacrifice some accuracy. The

INUM can also be used to provide lower bounds instead of accurate ben-

efits, by controlling the number of plans cached in the INUM Space. In
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the worst case, we can cache only a single plan per query and use it to

produce cost estimates (requiring a single optimizer call per query). If

we wish to improve accuracy, we can alternatively cache and reuse more

plans, although this might require more optimizer calls. To explore the

performance-quality tradeoff exposed by the INUM, we need to answer

the question: how much accuracy do we need for index selection?

We use our ILP formulation to answer this question. Our approach

is to model approximation of cost estimates as a modification to the ob-

jective function of our ILP formulation. Consider the objective function

Z defined using accurate benefit values bik and the objective function

Z∗ resulting from substituting a benefit value bik by a lower bound b∗ik,

such that b∗ik ≤ bik. Let Xopt be the optimal solution to the original ILP

instance and Zopt be the corresponding objective function value. Simi-

larly, let X∗
opt be the optimal solution to the modified ILP instance that

uses the lower bound and Z∗
opt be the corresponding objective value.

Our goal is to bound the difference Zopt −Z∗
opt. We follow an approach

similar to that of Section 4.3.4. Consider the objective function value

Z+ computed by using the solution Xopt with the modified objective

function Z∗. Obviously

Z+ ≤ Z∗
opt ≤ Zopt (4.22)

Since Z and Z∗ differ only in the benefit value for combination xik,

from 4.22 follows:

Zopt − Z∗
opt ≤ Zopt − Z+ ≤ bik − b∗ik (4.23)

Equation 4.23 implies that the quality of the approximation deter-

mines the loss of benefit when optimizing with benefit lower bounds.

If we apply approximations to all benefit values for all the queries, we

can write:
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Zopt − Z∗
opt ≤

∑

qi

max
xik

(bik − b∗ik) (4.24)

Equation 4.24 does guarantee that a good quality approximation

will result in a small quality loss, however we can not directly apply

it because we don’t know the accurate benefit values bik. We exploit

the bound of 4.24 by replacing bik by bi
max, where bi

max is the maximum

possible benefit achievable for query qi, also used in Section 4.3.4.

Naturally we would like to exploit the ability of INUM to trade per-

formance for accuracy. By using Equation 4.24 we can identify those

queries with the largest contribution in the error bound. We can per-

form additional optimizer calls only for those queries so that the derived

bounds are improved and improve the overall quality of the derived so-

lution.

4.5 Experimental Setup

We implemented our ILP-based index selection system using Java and

interfaced it to a commercial DBMS. Our implementation allows us to

experiment with real-life databases and workloads and with a real com-

mercial optimizer. Furthermore, we compare our ILP-based approach

directly with the state-of-the-art index selection tool provided with the

DBMS. We use CPLEX, a commercial linear programming tool to solve

the resulting ILP instances. Our experiments were carried out on a dual

Xeon 3GHz server.

We experiment with a workload consisting of 1000 queries, randomly

selected from the TPC-H workload. The parameters for the TPC-

H queries were also modified according to the QGEN utility and the

database size was 1GB. We compare our ILP-based approach against

the commercial index selection tool integrated in our server, along two
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dimensions: solution quality and running time, for various amounts of

storage space available for index selection.

We compute solution quality similarly to [15, 2], by comparing the

total workload cost on an unindexed database cunindexed vs the total

workload cost on the indexes selected by the design tool cindexed. We

report percent workload speedups according to:

1 −
cindexed

cunindexed

(4.25)

The total running time computed for our ILP-based system includes:

1. INUM setup time. The time to compute the plans in the INUM

Space that are reused for cost estimation.

2. Model creation time. The time taken to perform candidate selec-

tion, combination selection and cost estimation for the resulting

index combination.

3. Solution time. The time taken to solve the resulting ILP instance

using CPLEX.

The total running time is compared to that of the commercial index

selection tool.

4.6 Experimental Results

We construct the ILP instance for our input 1000 query TPC-H work-

load by performing candidate selection as described in Section 4.3.3

and combination selection using the table-set approach of Section 4.3.4.

We used the same “interesting” table-set for all the queries, consisting

of tables LINEITEM, ORDERS, PART and CUSTOMER. Table 4.1

shows the number of candidates and combinations considered by our
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ILP Commercial

Combinations 348147 42189

Candidates 1931 138

Table 4.1: Number of candidates and combinations considered by our ILP-based and

the commercial index selection tool.

ILP-based and the commercial index selection tool. The first column

of Table 4.1 corresponds to the size of the resulting ILP instance. The

data for the second column were obtained through the profiling of the

commercial tool. Due to the efficiency of our ILP solver and the INUM,

our ILP tool was able to handle an order of magnitude more indexes

and combinations.

Figure 4.4: Comparing the solution quality between our ILP-based and the commer-

cial index selection tool for two storage constraint values.

Figure 4.4 compares the solution quality achieved by our ILP-based

and the commercial tool for 1GB and 3GB storage constraint values.

For the “tight” storage constraint of 1GB, the ILP algorithm (ilp) pro-

vides 16 more percentage points of benefit to the workload compared

to the commercial tool (commercial). Equivalently, when using the
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indexes recommended by our ILP tool the workload runs 30% faster

Figure 4.4 also shows the optimal workload performance (“bound”

line), obtained by optimizing this query individually without regard to

the storage constraint. This bound is the same obtained by utilizing the

bopt benefit values in Sections 4.3.4, 4.4. Achieving this bound requires

an impractical amount of storage (50GB), but is easy to compute and

is useful in estimating the optimality of existing approaches. The ILP

formulation, using the table-subset pruning approach comes within 12%

of this bound for 1GB of storage and within 4% for the 3GB case, which

is an acceptable quality tradeoff given the running time superiority of

our ILP approach (discussed later).

Finally, Figure 4.4 shows the quality achieved using cost approxi-

mation, in addition to table-subset pruning (ilp cost approx). In this

case we applied cost approximation using a single plan per query in the

INUM space (and thus performing only one optimizer call per query!).

The quality loss resulting from cost approximation was less than 3 per-

centage points in both cases. As we show next, this small quality loss

allowed for a dramatic reduction in running times.

Figure 4.5 compares the running times of the ILP-based and the

commercial design tools, for the 1GB constraint case (the 3GB case

results are identical). The running times for the ILP-based algorithm

is broken down into the time to set up the cost model (INUM, see

Section 4.3.2) (“inum setup”), the time to create the ilp model for

the problem (“ilp setup”) and the time to solve the ilp problem using

cplex (’solver’). The commercial tool ran for approximately 7 hours,

while our ILP algorithm using table-set pruning ran for 44 minutes,

an order of magnitude improvement. The improved performance of

ILP is a result of the use of INUM for cost estimation, instead of the

query optimizer and of the very fast optimization engine, that took

115



Figure 4.5: Running times for a commercial and the ILP-based design algorithms.

only 1.5 minutes to find an optimal solution. Using approximate cost

estimates (’ilp cost approx’) reduced the setup time for the INUM to

only 5 minutes, making the total index selection time 12.2 minutes, a

34x speedup!

4.7 Conclusion

This chapter develops an Integer Linear Programming (ILP) model for

the index selection problem. We apply standard optimization tech-

niques to compute optimality bounds, derive approximate solutions

with known distance for the optimal and improve approximate solu-

tions. We describe an efficient implementation architecture that makes

use of optimizer estimates similarly to commercial tools. Our experi-

mental results indicate that ILP-based index selection is efficient effi-

ciently and offers higher quality solutions compared to existing tools.
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Chapter 5

AutoPart: Workload-Aware

Schema Design for Large Scientific

Applications

5.1 Introduction

Scientific experiments in fields such as astronomy and biology typically

require accumulating, storing, and processing very large amounts of

information. The ongoing effort to support the Sloan Digital Sky Sur-

vey (SDSS) [40, 63] provides a comprehensive example for both the

terabyte-scale storage requirements and the complex workloads that

will execute on future database systems. Similarly, the Large-aperture

Synoptic Survey Telescope (LSST) [66] dataset is expected to be in the

scale of petabytes (the data accumulation rate is calculated at 8 ter-

abytes per night). Typical processing requirements on these datasets

include decision-support queries, spatial or temporal joins, and version-

ing. The combination of massive datasets and demanding workloads

stress every aspect of traditional query processing.

In environments of such scale, query execution performance heavily

depends on the indexes and materialized views used in the underlying
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physical design. The database community has recently focused on tools

that utilize workload information to automatically design indexes [15, 2,

73]. Currently, all major commercial systems ship with design tools that

identify access patterns in the input workload and propose an efficient

mix of indexes and materialized views to speed up query execution.

Typically, the tools tend to generate a set of “covering” indexes per

query to enable index-only query processing (essentially, these indexes

implement and ordered partition of the table). In the case of large-

scale applications like SDSS, performance depends upon a large set of

covering indexes, since accessing the large base tables (even through

nonclustered indexes) is prohibitively expensive.

Large numbers of covering indexes are expensive to store and main-

tain, as data columns from the base table are replicated multiple times

in the index set. Adding multiple indexes to multi-terabyte scientific

databases typically increases the database size by a factor of two or

three, and incurs a significant storage management overhead. In addi-

tion, indexing complicates insertions and updates. For instance, new

experimental or observation data are often inserted in the database and

derived data are recalculated using new models. During update opera-

tions, all “replicated” new and updated data values must be sorted and

written multiple times for all the indexes. Insertion and update costs

increase as a function of the number of tuples inserted or modified. If

update or storage constraints do not exist, the workload can always be

processed using a complete set of covering indexes. Such a scenario,

however, is unrealistic for large-scale scientific databases, where both

insertion and storage management costs are seriously considered.

This paper describes AutoPart, an automated tool that partitions

the tables in the original database according to a representative work-

load. AutoPart receives as input a representative workload and designs

a new schema using data partitioning. By first designing a partitioned
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schema and then building indexes on the new database, queries can scan

the base tables efficiently as well as a smaller set of indexes, thereby al-

leviating unnecessary storage and update statement overhead. Because

data partitioning increases spatial locality, it improves memory and

disk system performance when the covering index set cannot be built

due to storage or update constraints. This paper makes the following

contributions:

1. We introduce AutoPart, a data partitioning algorithm. AutoPart

receives as input a representative workload and utilizes categorical

and vertical partitioning as well as selective column replication to

design a new high performance schema.

2. To evaluate AutoPart we build an automated schema design tool

that can interface to commercial systems and utilize cost estimates

from the DBMS query optimizer.

3. We experimentally evaluate AutoPart on the SDSS database and

workload. Our experiments i) evaluate the performance improve-

ments provided by partitioning alone, without the use of indexes

and ii) quantify the performance benefits of partitioned schemas

when indexes are introduced in the design.

Our experimental results confirm the benefits of partitioning: Even

without the use of indexes, a partitioned schema can speed up query

execution by almost a factor of two when compared to the original

schema. Partitioning alone improves query execution performance by

a factor of two on average. Combined with indexes, the new schema

also outperforms the indexed original schema by 20% (for queries) and

a factor of five (for updates), while using only half the original index

space.
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This paper is structured as follows: Section 5.2 discusses the par-

titioning problem in greater detail. In Section 5.3 we present the Au-

toPart algorithm and Sections 5.4 and 5.5 discuss the AutoPart archi-

tecture and our experimental setup. Section 5.6 presents our experi-

mental results and Section 5.7 our conclusions.

5.2 Workload-based Data Partitioning

In this section, we first briefly describe the vertical partitioning idea and

the factors that limits its efficiency. We then explain how categorical

partitioning and replication can alleviate the problem, using examples

drawn from real scientific databases.

A general formulation of the vertical partitioning problem is the

following: Given a set of relations R = R1, R2, ..., Rn and a set of

queries Q = Q1, Q2, ..., Qm determine a set of relations R∗ ∈ R to be

partitioned and generate a set of fragments F = F1, F2, ..., FN such

that:

1. Every fragment Fi ∈ F stores a subset of the attributes of a rela-

tion R ∈ R∗ plus an identifier column.

2. Each attribute of a relation R ∈ R∗ , is contained in exactly one

fragment Fi ∈ F . (except for the primary key).

3. The sum of the query costs when executed on top of the partitioned

schema, cost(Q, (R − R∗) ∪ F ) is minimized.

We expect the workload cost over the partitioned schema to be lower,

because the fragments are faster to access than the original relations

and queries will be able avoid accessing attributes they do not use.

We define the Query Access Set (QAS) of a query Q with respect to
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a relation R (QAS(Q, R)), as the subset of Rs attributes referenced

by Q. In the ideal case, where for all query pairs Qi, Qj, QAS(Qi, R)

∩ QAS(Qj, R)= ∅, the solution to the vertical partitioning problem

would be to simply generate a fragment F for each distinct QAS in the

workload. Then, each query would have to access a single fragment

containing exactly the attributes it references, resulting in minimal

I/O requirements. Realistically, however, the workload will contain

overlapping QAS. In this case, such “clean” solutions to the vertical

partitioning problem are not possible.

Figure 5.1: Partitioning example. (a) Original schema. (b) After vertical partitioning.

(c) After vertical & categorical partitioning. (d) Column replication.

Consider the example in Figure 5.1 (a), drawn from a simplified as-

tronomical database. Our database consists of a single table (Objects)

that stores astronomical objects (galaxies and stars). Our workload

consists of queries Q1, Q2, Q3, shown in the figure with their QAS.

Figure 5.1 (b) shows one possible solution for vertically partitioning
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Objects into 3 fragments (O1, O2, O3). Q1 needs to access only O1,

minimizing its I/O requirements. Since the attribute TYPE exists

in all QAS, queries Q2 and Q3 will have to access fragment O1 in

addition to O2 and O3 and perform the necessary joins. Also, since

QAS(Q2) ∩ QAS(Q3) = {MAG} Q2 will have to access fragment O3

to obtain its missing attribute, performing an additional join. Alter-

natively, merging some of the O1, O2, O3 would result in lower joining

overheads, but the queries would have to access a larger number of

additional attributes and the I/O cost would increase.

The previous example demonstrates that overlapping QAS in a work-

load reduce the efficiency of vertical partitioning, because it is impos-

sible to avoid additional joins for some of the queries in the workload.

Often, however, much of the overlap implied by comparing the QAS

is not real. Consider, for instance, that in the previous example Q1

restricts its search to objects of type “Stars”, whereas Q2 and Q3 only

care about objects of type “Galaxies”. In this case, considering only

QAS leads to “false sharing” as Q1 will process a completely disjoint

set of tuples than Q2 and Q3. By categorically partitioning Objects we

remove the overlap between QAS(Q1) and QAS(Q2)∪QAS(Q3), since

they now access only the categorical fragments (Figure 5.1 (c)). Now,

the fact that Q1 needs to access attributes TYPE, ERR together does

not affect queries Q2, Q3. In addition, TYPE can be removed from

the two horizontal fragments altogether. With this form of partitioning

queries benefit not only from the elimination of unnecessary accesses

to objects of the wrong class, but also from the removal of categorical

columns. Application of categorical partitioning is the first step of the

partitioning algorithm used in AutoPart.

Note that even in the categorically partitioned schema of Figure 5.1

(c), there is still an overlap between QAS(Q2) and QAS(Q3) on MAG.

The impact of such overlaps, which cannot be removed by categorical
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partitioning, can be reduced by allowing the replication of attributes

belonging to the intersection of two or more QAS. In our example, we

replicated attribute MAG in the two fragments, Galaxy1 and Galaxy2,

in order to remove the remaining joins (Figure 5.1(d)). In the resulting

schema all additional joins or unnecessary data accesses have been elim-

inated. Attribute replication is an effective way to remove the overheads

introduced by overlapping QAS. To control the amount of replication

introduced in the schema, we constraint the partitioning algorithm so

that it uses no more than a specified amount of space for attribute

replication.

5.3 The AutoPart Algorithm

This section describes the data partitioning algorithm used in Au-

toPart. The input to AutoPart is a collection of queries Q, a set of

database relations R, and parameter denoting denoting the amount of

storage available for attribute replication, which implicitly bounds the

degree of replication allowed. The output is a set F of fragments, which

accelerate the execution of Q. This section presents an overview and

details of the interesting stages of the partitioning algorithm.

5.3.1 Terminology

In our model, a relation R is represented by a set of attributes, whereas

a fragment F of R is represented by a subset of R. We distinguish

between two kinds of fragments: atomic fragments are the “thinnest”

possible fragments of the partitioned relations, and are accessed atom-

ically: there are no queries that access only a subset of an atomic

fragment. In addition, atomic fragments are disjoint and their union is

equal to R. A composite fragment is constructed by the union of two
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or more atomic fragments. The query extent of a fragment F is the

set of queries that reference it (if F is atomic) or the intersection of

the sets of queries that access each of its atomic components (if F is

composite).

5.3.2 Algorithm Overview

Figure 5.2: Outline of the AutoPart algorithm.

The general structure of our algorithm is shown in Figure 5.2. The

first step of the algorithm is to identify the categorical predicates in

Q, and to partition the input relations accordingly to avoid the “false

sharing” between queries that have overlapping QAS but access differ-

ent object classes. In the second step, the algorithm generates an initial

version of the partitioned schema, consisting only of atomic fragments

of the partitioned relations. The performance of this initial version of

the solution is determined by the joining overhead (since atomic frag-

ments may often contain a single attribute).

The performance of this initial schema is improved by forming com-
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posite fragments that reduce the joining overhead in the resulting schema

but increase I/O cost: queries accessing a composite fragment dont nec-

essarily reference all the attributes in it. Composite fragments can

either replace their constituent atomic fragments in the partitioned

schema, or just be appended to the schema (assuming the replication

constraint is not violated). The Composite Fragment Generation mod-

ule of our algorithm determines a set of composite fragments that should

be considered for inclusion in the schema, while the Composite Frag-

ment Selection module evaluates the available options and chooses the

fragments that are found to provide the highest improvements for the

workload.

The algorithm iterates through the composite fragment generation

and selection steps multiple times, each time expanding the fragments

selected in the previous steps. The generation of fragments with an

increasing number of attributes, based on the results of previous it-

erations, is a useful heuristic, applied also in index/materialized view

selection [2, 15], to reduce the number of combination considered by

the selection module. Note that the composite fragments considered

may contain attributes that are also included in other fragments in the

partitioned schema, thus allowing for attribute replication. When the

workload cost cannot be further improved by the incorporation of com-

posite fragments, the resulting schema is passed through a sequence

of pair-wise merges of fragments, attempting to further improve per-

formance.The following sections present the various components of the

algorithm in more detail. The pseudocode for the partitioning algo-

rithm is shown in Figure 5.3.
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Figure 5.3: AutoPart pseudocode

5.3.3 Categorical Partitioning

The categorical partitioning step first generates horizontal fragments of

the partitioned relations. The partitioning depends on the existence of

categorical attributes in the relations and in the workload. Categorical

attributes are attributes that take a small number of discrete values

and are used to identify classes of objects. The basic motivation for

categorical partitioning is that if queries operate on distinct classes of

objects, those classes can be stored in separate horizontal fragments.

The algorithm used for categorical partitioning of a relation R, under a

query workload Q is shown in Figure 4. The algorithm first identifies the

set of categorical attributes Ai in R and their corresponding domains

Di (step 1). This information can be provided either by the systems
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Figure 5.4: Categorical partitioning algorithm

.

designer or the system catalog. Each query containing predicates on

those attributes, defines a horizontal subset of R, containing all the

objects that satisfy the predicates. The purpose of the algorithm is

to determine a suitable collection of non-overlapping such fragments,

which will be assigned to different horizontal fragments.For this, we use

the methodology developed in [13].

We can express every query predicate involving each of those at-

tributes in the form xi : {Ai ∈ d ⊂ Di}. Let X = xi be the collection of

such predicates, and assume that it is minimal and complete, according

to [13]. Then, the min-term predicates Y(X) [13] computed in Step 4

define a collection of non-overlapping horizontal fragments that can be

used to define the horizontal fragments of R. If there exist categori-

cal attributes Ai that take a unique value in the horizontal fragments

determined, they can be removed (Step 7).

Note that this collection of fragments can be modified, for example

by suitably merging the horizontal fragments determined in step 4.

Such a merging is shown in steps 5a-5b. The purpose of merging could

be to derive a more suitable collection of horizontal fragments In Figure

4 we restrict the number of horizontal fragments generated to a number
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less than N. (This for example could express the users desire not to

over-partition the horizontal schema, in order to keep its definition

manageable).

5.3.4 Composite Fragment Generation

The composite fragment generation stage provides, in each iteration,

a new set of composite fragments to be considered for inclusion in the

schema. It is described by step 2 in Figure 5.3. The input to the

stage for iteration k is the set of composite fragments SF(k-1) that

were actually selected in the previous iteration. For the first iteration

(k=1) the input to the stage is the set AF of atomic fragments.

The algorithm reduces the total number of composite fragments eval-

uated for inclusion by essentially extending only those fragments that

were selected in the previous iteration. Those fragments can be ex-

tended in two ways:

1. By combining them with fragments in AF.

2. By combining them with fragments in SF(k-1)

The number of fragments generated in the initial steps of the algo-

rithm is in the worst case quadratic to the number of atomic fragments.

Depending on the size of the AF set, this number could be very large.

It is possible to reduce the number of fragments generated, by selecting

only those that will have the largest impact in the workload. Intuitively,

a composite fragment is useful if it is referenced by many queries. The

query extent of a fragment is a measure of a fragments importance. Step

2.a prunes the fragments that are referenced by less than X queries in

the workload. Pruning based on the query extent criterion reduces the

set of fragments considered during the initial steps of the algorithm.

4.5 Greedy fragment

128



5.3.5 Greedy Fragment Selection

Given the collection of composite fragments provided by the generation

stage, the selection stage greedily picks a subset of those for inclusion

in the partitioned schema. The selection stage is described by steps

3-8 in Figure 5.3. For each iteration, the selection module starts with

the best ”partial” schema found so far, PS, and a set of composite

fragments CF(k) that must be evaluated for inclusion in the schema

(step 3). The algorithm incorporates each candidate fragment in the

current partial solution PS and computes the workload cost on the

resulting schema (Steps 3.a, 3.b, 3.c). The fragment that minimizes

workload cost is selected and permanently added to PS (Steps 6-8).

The procedure is repeated until the workload cost cannot be further

improved by fragments in CF(k).

Figure 5.5: Procedure to add fragments

The function add fragment (Figure 5.5, used in step 3.a) removes all

the subsets of a new fragment before adding it to the schema. This ”re-

cycling” of fragments simplifies the management of the storage space

during the execution of the algorithm. If we were simply appending the

new fragments to the partial solution, then the algorithm would quickly

run out of space and then a separate process for removing fragments

would have to be used. Using this replacement strategy , our algo-

rithm works naturally when no replication is allowed in the partitioned

schema.
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Figure 5.6: The model used for cost estimation

5.3.6 Cost evaluation: Cost models

The selection module makes decisions based on the workload cost. We

implemented AutoPart to utilize both a simple analytical cost model

and the detailed cost estimation provided by the query optimizer of

database systems. A simple model for the cost of a query on a parti-

tioned schema is presented in Figure 5.6. The model captures only the

parameters necessary for partitioning, like the I/O cost of scanning a

table and the cost of joining two or more fragments to reconstruct a

portion of the original data. In our model the I/O cost of scanning a

fragment F is proportional to the number of its attributes (Step 4.a),

since the number of rows in the fragments of the same relation is con-

stant. The scaling factor SR accounts for differences in relation sizes.

The cost of joining two fragments is for simplicity considered constant

and equal to J. The value of J must be carefully chosen to reflect the

relative cost of joining compared to performing I/O. We computed the

value of J by observing the query plans generated by the query op-

timizer, for various partitioned schemas.Our experimentation suggests

that a value for J between 5 and 10 gives good approximations of the

workload cost.
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An alternative to analytical models is the systems query optimizer.

Modern optimizers utilize detailed knowledge of the query execution

engine internals and of the data distributions to provide realistic cost

estimates. The use of the query optimizer accounts for all the factors

involved in query execution that our simple model ignores, like those

affecting the joining costs. The use of the optimizer removes the con-

stant join cost assumption of our model and takes into account factors

like the existence of different join algorithms and the influence of pred-

icate selectivities.The main disadvantage of using the query optimizer

compared to an analytical cost model is that a call to the optimizer is

time consuming.

Figure 5.7: The pseudocode for pairwise merging

5.3.7 Pairwise Merging

The final part of the algorithm (Figure 5.7) is intended to improve the

solution obtained by the greedy fragment selection through a process

of pairwise merges. The algorithm merges pairs of fragments from the

solution obtained so far and evaluates the impact of the merge on the

workload. Merges that improve workload cost are incorporated in the

solution. The loop in steps 1-5 terminates when the solution cannot

be further improved. Note that merging does not increase the size of
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the solution. We use the pair-wise merging process to capture the most

important of those composite fragments that were not considered by

the algorithm, because they were omitted by the fragment selection

process.

Figure 5.8: AutoPart system architecture.

5.4 System Architecture

This section describes the functional blocks of the automated schema

partitioning tool, depicted in Figure 5.8. The system implementation

was done using Java (JDK 1.4) and JDBC and the DBMS is SQL Server

2000.

QUERY PARSER. This module receives as input the original queries

(Q) and the tables to partition (R). Its output is the queries in a parsed

representation (QP )

TABLE DESIGNER.The Table Designer module is the heart of the

schema design tool. It receives as input the set of parsed queries (QP )

and the original schema definition (WORIG), and applies the vertical

partitioning algorithms of Section 5.3. Its output is a set of candidate

partitioned schemas (WPART ) to be evaluated by the query optimizer.

QUERY REWRITER. The rewriter uses each partitioned schema

definition (WPART ) and the set of parsed queries (QP ) to produce a set
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of equivalent rewritten queries (QR) that can access the fragments in

WPART .

DBMS INTERFACE. This is a JDBC interface to the database cur-

rently hosted by the SQL Server. The interface executes table and

statistics creation statements according to WPART . To accurately esti-

mate query costs, our tool provides the query optimizer with the correct

table sizes and statistics for the partitioned schema. Since it is imprac-

tical to populate the tables for each candidate schema, we estimate

table sizes and copy the estimates to the appropriate system catalog

tables, for the optimizer to access. In addition, we compute statistics

for each column in the original, unpartitioned tables and reuse that

information for the evaluated partitions. To test our virtual table gen-

eration method, we actually implement the partitions recommended by

our tool and find that the cost estimates obtained by it match those

obtained from the real database.

We found that in order for the virtual and real cost estimates to

agree, the statistics must be generated using full data scans and not by

random sampling.

SYSTEM CATALOG. The DBMS catalog stores information like

table sizes, row sizes and statistics. To facilitate query cost estimation,

we update the system catalog tables with information reflecting the

new schemas.

OPTIMIZER INTERFACE. This JDBC interface receives as input

the rewritten queries (QR) and uses the query optimizer to obtain query

plan information and cost estimates.

We deployed our partitioning tool as a web application, that runs

independently of the database server component. We provide the in-

put (query workload and tables to be partitioned) through a simple

web interface. Our tool can (through standard JDBC) access remote
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databases to obtain the original schemas, modify their structure and

obtain cost estimates for alternative solutions.

5.5 Experimental Setup

Our experiments use the Sloan Digital Sky Survey (SDSS) database

[40, 63], running on SQL Server 2000. The database is structured

around a central “catalog” table, PHOTOOBJ (22GB), which describes

each astronomical object using 369 mostly numerical attributes. The

second largest table is NEIGHBORS (5GB), which is used to store spa-

tial relationships between neighboring objects. It essentially contains

pairs of references to neighboring PHOTOOBJ objects and additional

attributes, such as distance. Both tables are clustered on their primary

key, which consists from application-specific object identifiers.

The SDSS workload consists of 35 SQL queries. Most of them

are sequential scans that process PHOTOOBJ and apply predicates

to identify collections of astronomical objects of interest. 6 queries (the

most expensive ones) have a spatial flavor, joining PHOTOOBJ with

NEIGHBORS. Only 68 of the 369 attributes in the PHOTOOBJ table

and 5 out of the 8 attributes in NEIGHBORS are actually referenced

in the workload. For a fair comparison, we modified the database ta-

bles before our experiments, so that they only contain the attributes

actually referenced in the workload.

To realistically evaluate the full impact of data partitioning one

needs to include maintenance operations in the workload. The update

workload (SDSS U) used in our experiments consists of two insertion

statements (SQL INSERT), that simulate the insertion of new data in

the systems two largest tables. The statements we use simply append

800,000 and 5,000,000 tuples in the PHOTOOBJ and NEIGHBORS
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tables respectively, corresponding to 6% and 4.5% of their current con-

tents.

The SDSS database comprises 39 tables. We used our partitioning

algorithm to partition the two largest ones, PHOTOOBJ and NEIGH-

BORS, that are almost exclusively responsible for the workloads I/O

costs. We present our performance results in terms of the estimated ex-

ecution time provided by the query optimizer. The speedup of a query

is defined as

s = 1 −
query cost optimized

query cost original

5.6 Experimental Results

In this section we present experimental results on (a) the performance

of our data partitioning algorithm and (b) the benefits of partitioning

in the presence of indexes and maintenance workloads.

5.6.1 Evaluation of Partitioning

This section demonstrates that the combination of categorical parti-

tioning and attribute replication can generate schemas that can signif-

icantly improve query execution, even without the use of any indexes.

We derive two partitioned schemas, CVP x0 and CVP x0.5 through

categorical and vertical partitioning, without and with replication re-

spectively. In the attribute replication case, we set a storage upper

bound for the replication columns equal to 1/2 the original database

size.

The SDSS queries are categorized into two groups. The first group,

SDSS J, consists of four queries, whose execution is bounded by ex-
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pensive joins among several instances of PHOTOOBJ and NEIGH-

BORS. These queries account for 47% of the total workload cost. The

second group, SDSS S, includes 31 SDSS queries, dominated by table

scans. Queries in the SDSS J group do not benefit much from partition-

ing, since the joins are their dominant operators. On the other hand,

we expect vertical partitioning to significantly improve performance of

queries in the SDSS S group.

Figure 5.9: Comparison of workload costs for the two partitioned schemas and the

original, for the two workload classes.

Figure 5.9 shows the estimated workload performance distinguish-

ing and the two query classes, SDSS S and SDSS J. As expected the

replicated schema (CVP x0.5) performs better than the one without

replication. (CVP x0) The overall performance improvement is 47%

and 43% respectively. Queries in the SDSS J class benefit less, 19%

and 24% respectively, while the improvements for the SDSS S class

queries are 69% and 72%. We observe that attribute replication after

partitioning did not make significant difference in the overall execution

time (8%).

Figure 5.10 shows normalized execution times for queries in the

SDSS J (left) and in the SDSS S (right) groups. When compared to
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Figure 5.10: Individual query execution times for the original and partitioned

schemas.

ORIG, query performance in the SDSS J group, improves from 2%

(Q17, CVP x0) to 56% (Q17, CVP x0.5). The performance improve-

ment for queries in the SDSS S group is often impressive (an order of

magnitude for Q7).

5.6.2 Indexing a Partitioned Schema

This section shows the benefits of partitioning even when compared to

an unpartitioned schema with indexes. We designed indexes using the

Index Tuning Wizard in SQL Server 2000. We allowed unlimited stor-

age for indexes, but we added updates (SDSS U) to the input workload.

The cost of the SDSS U workload increases considerably with every

new index built, since that index would require the updated data to be

properly ordered. Since the partitioned schemas are already optimized

for the particular workload, they will require much less indexing effort,

offering better performance for both retrieval and update statements

Figure 5.12 shows the total workload cost when using the indexed

original and partitioned schemas, for all the statement groups (SDSS J,
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Figure 5.11: Query and update workload costs using the original and the partitioned

schemas.

SDSS S, and SDSS U). When using the I CVP x0 and I CVP x0.5

schemas, read-only statements run 20% faster compared to the orig-

inal schema, whereas the insertion statements are more than 5 times

faster. Overall, the partitioning improves query execution performance

even in the presence of indexes, by approximately 45%.

Figure 5.12 shows the total amount of storage allocated for the

I ORIG and the two partitioned schemas, broken down into the storage

required to index the two main tables. The partitioned schemas re-

quire about half the storage space for indexes, compared to the original

schema. According to Figure 5.12, the original schema relies on heav-

ily indexing PHOTOOBJ for performance. In comparison, because of

the performance benefits of partitioning PHOTOOBJ, the partitioned

schemas require 7 and 4 times less storage of indexing. Instead of heav-

ily indexing PHOTOOBJ, the partitioned schemas allocate some more

space for the efficient indexing of NEIGHBORS.

Our experimental results in this section show that partitioning can

improve query execution performance, requiring less indexing overhead.
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Figure 5.12: Index storage when using the original and the partitioned schemas.

5.7 Conclusions

Database applications that use multi-terabyte datasets are becoming in-

creasingly important for scientific fields such as astronomy and biology.

In such environments, physical database design is a challenge that in-

volves complex query processing needs as well as space limitations. We

propose AutoPart, an algorithm that automatically partitions database

tables utilizing prior knowledge of a representative workload. Using a

data partitioning and replication, Auto- Part suggests an alternative,

high-performance schema that executes queries faster than the orig-

inal one and can be indexed using a fraction of the space required

for indexing the original schema. To evaluate AutoPart, we build an

automated schema design tool that interfaces to commercial database

systems. The paper describes our algorithm, the system architecture,

and experimental results using the Sloan Digital Sky Survey database.
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Chapter 6

Efficient Query Processing on

Unstructured Tetrahedral Meshes

6.1 Introduction

Simulations are crucial for studying complex natural phenomena, from

the flow of hot gas inside a propellant to the propagation of cracks inside

materials, earthquakes and climate evolution. Recent advances in mod-

ern hardware allow scientists to carry out simulations of unprecedented

resolution and scale. Accurate simulations improve our understanding

and intuition about complex physical processes, but in order to reap

their benefits we must be able to search for useful information in the

haystack of large-scale simulation output datasets.

6.1.1 Querying Simulation Datasets

To analyze and display simulation results, post-processing and visual-

ization applications query a discretized version of the application do-

main (typically represented using a mesh) and the simulation output.

Figure 6.1 shows the architecture of Hercules, a simulation application

developed by the Quake group at Carnegie Mellon [4, 70, 47], that
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Figure 6.1: An earthquake simulation pipeline.

computes earthquake propagation for a given ground region and initial

conditions. The simulation receives as a grid-like discrete ground model

and at each simulated time-step it computes the ground velocity at the

mesh points, storing the result in the simulation output. In Quake

simulations, mesh models typically consume hundreds of gigabytes and

simulation output volumes are in the terabyte scale [4]. To fully uti-

lize the information involved in a modern simulation, post-processing

and visualization applications need efficient, scalable query processing

capabilities.

To organize the data representing the discretized application do-

main, simulations typically employ an unstructured tetrahedral mesh.

A tetrahedral mesh models the problem domain by decomposing it

into tetrahedral shapes called elements. For instance, Figure 6.2(a)

shows a part of a mechanical component mesh model, whereas Figure

6.2(b) illustrates a constituent tetrahedral element. The element end-

points, called the nodes, are the discrete points on which the simulation

computes physical parameter values, like ground velocity. Tetrahedral

elements have varying sizes, angles and orientations. When dealing

with complex geometries that require variable resolution, the tetrahe-

dral mesh is a powerful modeling tool due to its unique flexibility in

defining arbitrarily-shaped elements. Therefore, tetrahedral meshes are

vital for a wide range of applications in areas like mechanical engineer-

ing and earthquake modeling.

The most frequent query types on tetrahedral meshes are spatial,
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Figure 6.2: (a) Part of a tetrahedral mesh dataset modeling a mechanical component.

(b) A tetrahedral (pyramid) mesh element and its four endpoints, the nodes.

point and range queries. They retrieve the mesh elements intersecting

an input query region or containing the query points, along with the

corresponding mesh nodes. Such queries are important in visualization

or analysis applications that interpolate the values of physical parame-

ters (like ground velocity) at a given point or a region, from the values

computed at the mesh nodes. We also identify a class of queries called

feature queries, that retrieve arbitrarily shaped regions of the dataset

that are important for the application, such as surfaces and boundaries.

Query processing performance is critical for the scientific processing

applications that require interactive rendering rates (less than 1s per

frame [72]). High frame rates are impossible to achieve on large-scale

mesh datasets without efficient indexing techniques. Unfortunately, the

pyramid-based geometry of tetrahedral meshes, while increasing their

expressive power, makes developing effective indexing methods a chal-

lenging task. To tame the long execution times, scientific applications

typically compromise accuracy either by utilizing a subset of the mesh

data or by resorting to less flexible structures. Because meshes are

difficult to index and query efficiently using spatial indexing methods

available in today’s Database Management Systems (DBMS), appli-

cations use specialized programs instead. As the size and complexity

of the datasets grows, however, these programs suffer from scalability,

performance, and portability limitations [35].
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6.1.2 Our Approach and Contributions

In this dissertation, we introduce Directed Local Search (DLS), a query

processing approach for tetrahedral mesh datasets. DLS avoids the

complexities involved in trying to capture the geometry of the mesh,

by utilizing the connectivity between mesh elements.

DLS uses a novel application of the Hilbert curve to obtain an ini-

tial approximate solution, which is “refined” through local search al-

gorithms. Our technique relies on the distance preserving properties

of the Hilbert curve and on an efficient representation of connectivity

information to provide significantly better performance compared to

traditional techniques that rely only on geometric approximation.

DLS allows the construction of simulation applications that can effi-

ciently query large-scale meshes stored in a database system along with

implementation simplicity and easy integration with existing DBMS.

The detailed contributions of this dissertation are:

1. This is the first study to treat query processing on tetrahedral

mesh data, a crucial problem for large scale scientific applications,

using database technology.

2. We evaluate and compare the performance of the prevailing spatial

indexing methods when applied on tetrahedral meshes, explaining

their inefficiencies.

3. We design Directed Local Search (DLS), an efficient algorithm for

indexing and querying large unstructured tetrahedral meshes. To

index a mesh efficiently, DLS for the first time:

(a) Combines mesh topology information with the mesh geometry.

(b) Applies the Hilbert space-filling curve for approximate index-

ing
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Figure 6.3: The mesh representation in the database consists of separate tables for

the mesh elements and nodes.

4. We implement DLS in a simple and efficient fashion, using stan-

dard access methods (the ubiquitous B-Tree). In addition, we use

graph-based techniques to efficiently store dataset topology infor-

mation.

5. Experiments with DLS running on top of PostgreSQL show that

DLS results in a reduction in the number of I/O accesses and query

execution time by 25% up to a factor of 4.

6. We propose a graph-based technique for clustering mesh elements

on disk pages and we show that it improves the I/O performance

of feature queries by 16% to 37.9% compared to traditional linear

ordering based on the Hilbert space-filling curves.

This chapter is structured as follows. Section 6.2 details the database

design and query workloads. Section 6.3 evaluates the prevailing spa-

tial indexing techniques on tetrahedral mesh datasets. In Section 6.4 we

describe Directed Local Search and the related indexing and data or-

ganization and in Section 6.5 our element clustering approach. Section

6.6 details our implementation and experimental setup, while Section

6.7 presents our experimental results. We conclude with Section 6.8.
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6.2 Background

We use the database organization shown in Figure 6.3. The mesh

components, elements (tetrahedra) and nodes (points), are stored in

separate tables. Each Elements record contains the IDs of the 4 cor-

responding nodes, while Nodes holds the coordinates for each node.

This organization is suitable for spatial queries, as it allows fast access

to all the nodes of an element. There exist other relational mappings

for meshes [35], but they are tuned towards different query types, for

instance determining all the elements sharing a given node.

We consider the following 3 types of queries:

1. A point query simply returns the containing element (and its nodes).

Post-processing and visualization applications use point queries in

order to interpolate the value of a physical parameter on the par-

ticular query point, given the values computed by the simulation

at the nodes. This general functionality is vital to virtually every

application that requires values at points that do not coincide with

the input mesh node set.

2. Range queries return a set of elements contained in or overlapping

with the rectangular query region, along with the corresponding

nodes. A range query is used to retrieve “chunks” of data that are

then fed to a (possibly parallel) visualization or analysis tool.

3. Feature queries return regions of the dataset that have arbitrary

shapes. Features in datasets are defined by the application. For

example, in earthquake analysis the ground surface is a feature of

particular interest if we want to measure earthquake impact on

buildings.
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6.3 Traditional Indexing on

Tetrahedral Meshes

Database literature provides a wealth of multidimensional indexing

techniques. Gaede et al. provide an excellent survey on the topic

[25]. In this section we demonstrate that existing techniques have sub-

optimal performance for tetrahedral meshes and/or exhibit low storage

utilization and preprocessing overheads.

R-Tree-based approaches approximate objects by their Minimum

Bounding Rectangles (MBRs) and index them with an R-Tree [31] vari-

ant. Performance optimizations involve packing, clipping and replicat-

ing overlapping MBRs and using more complex bounding shapes (poly-

hedra). We investigate the applicability of R-Tree based techniques in

sections 6.3.1 and 6.3.2.

Another approach is to overlay a rectilinear grid over the indexed

domain and approximate each object by one or more grid cells. The

cells are arranged and indexed using coordinate transformations like

the Z-order. Z-order based techniques are investigated in section 6.3.3.

6.3.1 R-Tree Based Techniques

The R-Tree search for a query starts from the root level and follows a

path of internal nodes whose MBR intersects the query range or con-

tains the query point. If multiple nodes at one level match the query

criteria the search will follow all possible paths, requiring more page

accesses. There exists a large body of research on improving perfor-

mance by minimizing the area of R-Tree nodes and the overlaps that

lead to multiple paths. Dynamic techniques like the original R-Tree

construction algorithm [31] and the R*-Tree [6] maintain an optimized

tree structure in the presence of data updates. Static techniques like the
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Figure 6.4: (a) Overlaps between the leaf-level nodes of an R-Tree for a 2D mesh. (b)

The mesh used in the R-Tree experiments.

Hilbert-packed R-Tree [41], the Priority R-Tree [5] and others [57, 21]

attempt to compute an optimal R-Tree organization for datasets that

do not change.

Tetrahedral meshes are a challenging application for R-Trees be-

cause they have many overlapping MBRs. Figure 6.4 (a) shows a two-

dimensional example. The overlap between the R-Tree leaf nodes A

and B is significant and it is not clear how to arrange the individual

triangles to minimize it. Also, the elongated triangles in the upper right

part give a very large surface to node C.

We evaluate R-Tree performance with a real dataset used for crack

propagation simulations [35]. We compare two dynamic implementa-

tions, the originally proposed quadratic-split R-Tree and the R*-Tree

and two packed implementations, the Hilbert-packed R-Tree and the

STR-packed R-Tree [44]. The first two are implemented using Post-

greSQL, and the others are taken from the “Spatial Index Library”

([33]).

Figure 6.4 (b) shows part of our dataset structure. Our mesh mod-

els a mechanical component with a crack at its center. It contains a

very high-resolution central area, surrounded by more coarse-grained

elements.
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Figure 6.5: (a) Average number of page accesses per point query for 4 R-Tree variants,

where all trees have 3 levels. (b) Internal structure of a leaf-level node of the Hilbert-

packed R-Tree.

Figure 6.5 (a) shows the average number of page accesses for the

4 indexes over 1000 point queries focused on the dense region. The

indexes perform 30-198 page accesses, while the tree height (and hence

the theoretical minimum number of accesses) is 3. Figure 6.5 illustrates

the cause for the measured performance, showing one of the Hilbert-

packed R-Tree’s leaf nodes. The node has an unnecessarily large volume

because of the large elements on the top, that ’cover’ the smaller el-

ements. Any query intersecting the bottom right part of the MBR

(which is approximately where the dense region of the dataset is) will

have to unnecessarily hit that node.

Extensions like the P-Tree [39] attempt to improve R-Tree perfor-

mance by using Minimum Bounding Polyhedra. The P-Tree relies on

polyhedra with faces aligned to a fixed set of d orientations. Such ’con-

strained’ polyhedra will likely still lead to overlaps because they do

not capture the geometry of every pyramid in the mesh. In addition,

they require additional storage for storing the more complex bounding

approximations.
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Figure 6.6: Number of elements intersected by R-Tree nodes, as a function of node

volume.

6.3.2 Clipping

A clever solution to the problem of overlaps is to use non-overlapping

regions. The R+-Tree [59] ensures non-overlapping tree nodes by gen-

erating disjoint MBRs during node-splitting and replicating the objects

that cross MBR boundaries.

The R+-Tree attempts to improve performance by trading search

efficiency with higher storage overhead, as pointers to the same object

consume space in more than one tree nodes. The increased storage re-

quirements of the R+-Tree make it undesirable for scientific datasets:

Simulation datasets are challenging exactly because of their unprece-

dented volumes and it makes no sense to adopt an indexing solution

that multiplies the storage needed for each object!

Storage space is not the only problem: reduced storage utilization

negatively affects performance. Unlike point que-ries, that benefit from

the non-overlapping nodes, range queries will suffer because links to

objects within the query range will be retrieved multiple times. The

performance of loading data in the index will also be problematic, be-

cause of the more complicated loading algorithm that also needs to

write a lot more data).
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Grid Resolution Number of intersected elements

16x16x16 100

32x32x32 40

64x64x64 20

128x128x128 10

Table 6.1: Number of mesh elements intersected by grid cells with varying resolution.

We highlight the R+-Tree inefficiency by showing how indexing a

tetrahedral mesh dataset requires an unreasonable amount of replica-

tion. We measure the number of tetrahedra intersected by leaf-level

nodes of different sizes, for the mesh dataset described in Section 6.3.1,

using the nodes generated by the Hilbert R-Tree of Section 6.3.1 as a

guide. Figure 6.6 shows the number of mesh elements intersected by

nodes as a function of the MBR’s volume. According to Figure 6.6,

80% of the nodes intersect 500 to 1000 elements, which will have to be

replicated. Given that each node contains 120 entries, the new dataset

would require 5 to 10 times more space.

More sophisticated clipping-based techniques, like the disjoint con-

vex polygons of the cell-tree [30] exhibit similar inefficiencies: First, the

cell-tree construction algorithm still requires the replication of objects

that cross partition boundaries, like in the R+-Tree case. Furthermore,

the space overhead of keeping the polygon descriptions in the tree nodes

is much higher compared to that of storing MBRs and leads to poor

storage utilization for large datasets.

6.3.3 Z-Order based techniques

Z-order based techniques overlay a rectilinear grid on the indexed do-

main. Each object is approximated by a collection of grid cells and a

linear cell ordering is computed using the Z-order [53, 54].
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Figure 6.7: (a) A 2D example of Directed Local Search. (b) Directed Local Search

for a point query.

The cells intersecting the query range (or the cell containing a query

point) is identified by comparing the query’s Z-order value range with

those of the cells, using a B-Tree. Query performance depends on the

grid resolution. A very fine grid will lead to a large number of indexed

cells, but each cell will overlap with only a few elements. Higher res-

olution reduces the number of cells at the cost of losing precision and

performance.

Investigating the tradeoffs involved in picking the right resolution

and thus minimizing the impact of replication is an interesting exercise.

However, regardless of the optimal resolution, the z-order approach

will suffer from the same inherent problems of replication, described in

Section 6.3.2.

Table 6.1 demonstrates the amount of required replication for vary-

ing grid resolutions, for the uniform, dense region of the dataset in

Section 6.3.1. Figure 6.1 shows the average number of tetrahedra over-

lapping a cell. For the high resolution grid, which consists of 1283 cells,

the dataset requires 1283×10 = 20971520 records, which implies a 20×

increase in the dataset size. Lower resolutions reduce the storage over-

head, at the expense of search time (100 elements must be searched for

the 16 × 16 × 16 decomposition).
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Figure 6.8: The Directed Local Search algorithm

6.4 Directed Local Search

In this section we present Directed Local Search (DLS). We first present

the basic DLS algorithm for range and point queries and then describe

in detail the techniques that enable DLS, namely the proximity search

algorithm and the compressed representation of mesh connectivity in-

formation.

6.4.1 Algorithm Overview

Directed Local Search processes range and point queries by utilizing

the mesh connectivity. Figure 6.7 (a) shows an example range query

on a 2D triangular mesh. If we know a single initial element that

is part of the answer (highlighted) we compute the query result by

searching first all of the initial element’s neighbors and incrementally

expanding the search in a breadth-first search (BFS) fashion until we

find no additional elements within the range. Figure 6.7 (b) shows the

same principle applied to a point query: Starting at an initial element,

we perform the same expansion until we reach the target element.

Figure 6.8 details the DLS algorithm for a range query Q. Step 1

identifies a starting element that intersects the range query, using the

proximity search algorithm described in the next section. The next steps

describe the breadth-first search (BFS), that stops when no further
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elements intersecting the range can be found. The predicate in step

3.3.1 examines if the face fi of the current element e intersects the

query range. If it does not, it is not necessary to visit neighbor ni.

The primary advantage of DLS over traditional spatial indexing is

that the breadth-first search is independent of the mesh geometry. Us-

ing the mesh connectivity avoids the performance problems generated

by overlapping MBRs. Furthermore, DLS does not approximate tetra-

hedra by simpler shapes and therefore directly computes the query

results instead of first forming approximate answers and then post-

processing them.

Implementing DLS requires solving the following subproblems. First,

we need a way to determine a suitable starting element (step 1 of Fig-

ure 6.8) that intersects the query range. We call this starting element

selection “proximity search” and describe it in Section 6.4.2. For point

queries, the proximity search described in the next section directly finds

the containing element and thus the BFS search of Figure 6.8 is not

used. In addition, we need to efficiently represent the “neighbor” rela-

tionships between elements, so that BFS can quickly access them. In

Section 6.4.3 we show how to improve over the adjacency-list represen-

tation of connectivity information.

Finally, note that DLS is guaranteed to succeed if the dataset is

convex, not containing any holes or concavities. This is the case for

many models used in practice (ground, materials models). In practice,

our techniques work also for small holes or concavities because the BFS

can “work around” them as long as they are not too big. A more gen-

eral treatment involves cataloguing all the exterior mesh surfaces and

“jumping” from one surface face to another as long as they are con-

tained in the query region. Such a solution is part of our ongoing work.
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Query Point Range 1% Range 5% Range 10%

“hit” %’ 52% 93.3% 94.7% 97.7%

Table 6.2: BFS “hit rates” for various query types

6.4.2 Proximity Search

In this section we present algorithms for selecting an initial “seed”

element for DLS. We use the Hilbert curve to index the tetrahedral

elements, after representing each element by its center point. For a

range query, we find the element whose center has the closest Hilbert

value to the center of the query range. For a point query, we identify

the element closest to the query point in Hilbert space (Figure 6.9 (a)).

We work similarly for range queries, looking for an element close to the

center of the query range. The distance preserving properties of the

Hilbert curve [50] imply that the obtained element will be close to the

query region and thus a suitable starting point.

The Hilbert ordering translates the proximity search, a geometric

operation, into a numerical one. Thus we are able to use linear ac-

cess methods (the B-Tree) that are fast and predictable, avoiding the

complexity and cost of accessing a spatial access method.

To our knowledge this is the first time that the Hilbert curve is

directly used for spatial indexing. (Multiple Hilbert curves have been

proposed for nearest neighbor queries [45]). The problem is that there

exist no guarantees about the distance between the returned element

and the query point. The novelty of our approach is that using the

connectivity information, we can correct the problem by reaching a

suitable starting element even if the Hilbert index returns an element

that is far away.

Figure 6.9 (b) outlines our basic proximity search algorithm, Hilbert BFS.

Hilbert BFS selects an initial element using the Hilbert value index and
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Figure 6.9: (a) Using the Hilbert order to select a starting element for point Q. (b)

Hilbert BFS example. (c) Hilbert Direct example.

Figure 6.10: (a) Elements examined by the BES variants. (b) Corresponding page

accesses

if it doesn’t overlap the query region, it performs a breadth-first expan-

sion until another suitable element is found. Regardless of the initial

element the algorithm will eventually return an overlapping element,

as in the worst case the entire dataset will be scanned. The Hilbert

ordering of the elements benefits BFS by increasing spatial locality and

minimizing page accesses.

Figure 6.9 (c) presents Hilbert Direct, an improvement over the basic

Hilbert BFS algorithm. Instead of “expanding” the search towards all

directions, Hilbert Direct follows a path of elements towards the center

of the query region. The next neighbor in the path is determined by

“drawing” a line connecting the center of the current triangle to the

center of the query region and crossing the face intersected by the line.

Hilbert Direct resembles a depth-first search, since it expands only the

one neighbor that lies in the direction of the query region. It is still

useful to remember the other neighbors as well, since following alterna-

tive paths makes the algorithm robust to small concavities and “holes”.
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We now present a characterization of the above algorithms in terms

of their effectiveness in determining a suitable starting element, using

our gear dataset discussed in Section 6.6. We answer the following

questions:

1. How often does the Hilbert index provide a suitable starting ele-

ment immediately? For range queries, we measure the percentage

of queries that immediately find an intersected element. For point

queries, we measure the percentage of queries where the returned

element contains the query point.

2. How many elements does each of the above techniques examine

before a suitable element is returned?

3. How many page accesses does each of the above search techniques

require?

Table 6.2 shows how effective the Hilbert index would be if it was

used by itself. The Hilbert index immediately returned the correct

element for half of the point queries. Also, more than 90% of the queries

can be answered by the Hilbert index directly. Thus Hilbert indexing

by itself is highly efficient, returning immediately suitable results most

of the time. Similar results were obtained for all the datasets described

in our experimental section.

Figures 6.10 (a)-(b) characterize the performance of Hilbert- BFS

and Hilbert Direct, by measuring the tuples and pages accessed un-

til we reach a suitable starting element, considering only the queries

that were not answered immediately by the Hilbert index. We consider

point queries and range queries whose size is 1, 5 and 10 percent of

the dataset size. Hilbert BFS accesses a much higher number of tuples

than Hilbert Direct, because it searches towards all directions. Since
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Hilbert Direct offers the best performance, we use it in our implemen-

tation and experimental evaluation.

Hilbert Direct uses the same geometric principles as the “triangula-

tion walking” studies [22] by the computational geometry community,

where the main focus is the theoretical analysis of point query per-

formance. A complete theoretical analysis is a separate area of study,

where the additional assumption of uniformly distributed mesh nodes

is necessary for tractability [23] (such a theoretical analysis is beyond

the scope of this dissertation). When running point queries, at most

128 elements were processed by a single query before finding a suit-

able starting point, incurring 9 page accesses. In our experiments, only

one in a thousand queries exhibits this worst-case scenario, hence the

excellent average performance shown in Figure 6.10.

6.4.3 Representing Element Adjacency

In order to implement the algorithms of the previous section we need

to be able to retrieve the neighbors for each mesh element. A simple

way to obtain this connectivity information is through the mesh gen-

eration process itself: Mesh generators like Pyramid [60] can provide

the neighbors of each tetrahedral element as part of the output. If the

connectivity information is not accessible, there are simple techniques

to compute it, by using a hash table to match the elements with the

same face. There is even a way to compute element connectivity using a

standard commercial DBMS, as outlined in [37] 1. The development of

optimized ways to extract connectivity information from large meshes

is part of our ongoing work.

The connectivity information comprises, for each element, the lo-

cation on the disk of its 4 (at most) neighbors. A disk pointer is a

1By generalizing their surface extraction algorithm.
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(page no,offset) tuple ID. The simplest way to store the pointers is to

extend the Elements table with 4 additional columns. However, it is

desirable to develop a more efficient representation technique for the

connectivity information in order to improve the storage requirements

and I/O performance of our solution.

We propose a compressed representation based on the clustering

properties of the Hilbert curve. By computing the Hilbert ordering for

the elements, besides facilitating the efficient proximity search of Sec-

tion 6.4.2, we re-label the elements so that the spatially close elements

receive IDs that tend to be numerically close. The implication is that

the neighbors of an element are also likely to receive similar IDs. We

take advantage of this labeling property by actually storing the differ-

ences between the IDs of an element and its neighbors. The motivation

is that in the common case the difference will be much smaller than

the IDs themselves and thus, with an appropriate encoding scheme, it

will require fewer bits. Figure 6.11 shows an example. The neighbors

of element “1000” received similar IDs. The ID differences are orders

of magnitude smaller and require fewer bits to represent.

We now describe our compression scheme in more detail. Given an

element with ID E and 4 neighbors with IDs E1, E2, E3, E4, we encode

them by storing the values code(E −E1), code(E −E2), code(E −E3),

code(E − E4) in a variable length field. For the compression to be

efficient, the integer encoding function code(.) must represent small

values with fewer bits compared to larger values.

We use snip codes [7], shown to provide both high storage efficiency

and performance for general purpose graph compression. The snip en-

coding of an integer is the actual binary representation of the integer,

in a linked list format. Each 2-bit “snip” contains 1 binary digit from

the number’s representation and one “continue” bit that is set to zero
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Figure 6.11: 2D example of adjacency compression. Logical ID differences require

fewer bits.

Dataset Rows Bits/Record Fragmentation

gear 8.8M 14.5 3%

circle 10M 14.3 3.1%

cube 5.4M 14.8 3.4%

heart 510K 12.2 2.9%

quake 14M 14.2 3.3%

Table 6.3: Compression results for our real datasets.

only for the last snip. We use one additional snip for signs, as ID dif-

ferences could be negative and we prefix the code with 2 bits denoting

the neighbor count.

In practice, instead of logical IDs, we need to store the differences

of page numbers (encoding the offset within the page is easy, as it is

typically small). Compressing page differences is not straightforward.

We need to know the page numbers of neighboring elements in advance,

but this is impossible as the page number of an element depends in turn

on the compression of all the previous elements!

For simplicity, instead of developing complex multi-pass mapping

algorithms we use a constant page capacity P for the entire dataset.

We set P to be equal to the minimum page capacity when we use logical

ID encoding. Since the page number differences are smaller than the ID

differences, this approach might generate some free space in the page.

We can minimize the free space by increasing P an recomputing the

differences, up to the point where we do not cause page overflows.

Table 6.3 quantifies the compression achievable for our experimen-
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tal datasets and the amount of internal fragmentation incurred and

characterizes the storage overhead of our technique. The connectiv-

ity information requires fewer than 2 bytes per record even for large

datasets, in contrast to the 24 bytes of the adjacency-list implemen-

tation. The small overhead (increased space utilization) translates to

improved I/O performance for range queries.

6.4.4 DLS Generalization

DLS can form the basis for a more general indexing tool that can sup-

port other types of mesh shapes besides the tetrahedra, such as bricks,

prisms, or pyramids with more faces (like pentahedra). DLS is extensi-

ble because for all of the above shapes we can exploit the foundations

of our technique:

1. There exists a Hilbert encoding, that allows for proximity search

and clustering.

2. We can easily evaluate point containment or range intersection

predicates.

3. We can exploit element connectivity.

Extending DLS to handle finite volume meshes, such as those used

in Computational Fluid Dynamics (CFD) is not as straightforward,

because such meshes are often represented in a face-oriented rather

than element-oriented fashion. The absence of explicit elements means

that are no constraints in the volumes enclosed by faces, allowing non-

convexities and multiple elements sharing a face. Furthermore, there

are numerical tolerance issues in determining whether a face contains

a query point. A solution to this problem requires the development of

new indexing techniques and is also part of our ongoing work.
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6.5 Graph-based clustering for

Tetrahedral Mesh Data

Our techniques use the Hilbert curve to cluster mesh elements on the

disk, minimizing the Elements page accesses. In this section we show

that, while Hilbert clustering offers very good performance for rectan-

gular, box-shaped range queries, it is sub-optimal for queries on ar-

bitrarily shaped regions (like surfaces) that are frequent on scientific

applications.

To improve the clustering for these cases, we introduce the idea of

graph-based clustering. Rather than relying on element center coordi-

nates, graph based techniques try to place an element on the same page

with its neighboring elements, as frequently as possible.

Our approach goes beyond space-filling curve clustering, so far the

only general-purpose layout technique for spatial data, by allowing effi-

cient retrieval of arbitrary, application-specific regions without sacrific-

ing the overall spatial locality of the layout (and thus without requiring

multiple copies or orderings of the same data and without affecting DLS

indexing).

6.5.1 Graph Partitioning and I/O

We use the dual graph representation of a mesh, mapping each mesh

element to a graph vertex and each pair of neighboring elements to an

edge. Using the dual graph, we restate the abstract problem of “pre-

serving element spatial locality” as a graph partitioning problem: We

partition the dual graph vertices into page-size chunks so that we min-

imize the number of edges crossing page boundaries. This formulation

implies spatial locality because, intuitively, nodes connected by an edge

are likely to be retrieved together by a range query. .
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Graph partitioning is a hard problem [26] but there exist many prac-

tical heuristics. We use METIS [43], a multi-level graph partitioning

heuristic, shown to offer the best known results [7]. The dual represen-

tation of a mesh is given by the mesh generation process and thus we

can use METIS directly. In the case of very large models, we can first

coarsely partition them into memory-sized chunks using the Hilbert

clustering and use METIS on each individual partition. Alternatively,

we could modify METIS to produce memory-sized first level partitions.

6.5.2 Feature-Based Clustering

Scientific datasets commonly have distinct features, connected regions

repeatedly queried by the application. An example is the ground surface

in earthquake simulations, as we are interested in the damage inflicted

on the buildings. Features are usually known in advance and are heavily

queried because we need to access the relevant data for every simulated

time step.

Hilbert curve clustering is suboptimal for querying features, because

it is optimized for rectangular, box-like queries. It is well known that its

quality deteriorates with increasing query region hyper-surface [50]. We

use graph-based clustering to improve the retrieval performance for fea-

ture queries. Our approach is based on explicitly specifying frequently

co-accessed elements and on using this information to guide data lay-

out. The dual graph of the mesh dataset is ideal for this purpose, as

co-access information can be encoded into the edge weight.

As the example in Figure 6.12 shows, we overlay the dual graph on

the feature region and strengthen the weights for the edges within the

region. Our experimental results suggest that it is sufficient to increase

the edge weights so that the total weight associated with the region is

is comparable to the total original weight of the entire graph. If the
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Figure 6.12: A 2D feature example (highlighted)

weight increase is too small, it will not affect the overall quality of the

solution. Due to the increased edge weights, graph partitioning will

pack the feature’s elements in disk pages. sacrificing some of the edges

not fully contained in the feature. The remaining “regular” edges help

by still maintaining the overall spatial locality in the dataset.

Note that feature based clustering is not related to indexing: The fea-

ture specification and the assignment of elements to features is applica-

tion dependent. Rather than identifying the feature elements, feature-

based clustering reduces the I/O cost of retrieving them after they have

been identified by the application. Also, although we are motivated by

datasets queried repeatedly (per time-step), in this dissertation we only

consider spatial queries (not involving multiple time-steps).

6.6 Experimental Setup

In this section we describe the techniques, datasets and methodology

used to experimentally evaluate DLS.

6.6.1 Implementation

We implemented DLS on top of PostgreSQL (version 7.4.5). The data

is stored in the Elements and Nodes tables as shown in Section 6.2. We

store element center coordinates using the cube datatype included with
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Name Elements Nodes Size R-Tree B-Tree

(GB) levels levels

gear 8.8M 1.3M 1.3 4 4

circle 10M 1.5M 1.4 4 4

cube 5.4M 0.9K 0.6 4 4

heart 570K 110K 0.1 3 3

quake 14M 2.5M 2 4 4

Table 6.4: Datasets used in our experiments.

the PostgreSQL distribution and use the center for sorting and building

the B-Tree for the proximity search, based on the Hilbert ordering. To

incorporate the Hilbert order, we replaced the PostgreSQL comparison

routines with code that compares Hilbert values directly from IEEE

double precision coordinates, without actually computing them. The

direct comparison routines allow us to use the highest possible Hilbert

curve resolution, equivalent to 192-bit Hilbert values. The additional

storage required for the connectivity information is shown in Table

6.3 of Section 6.4.3. The DLS routines were implemented as new join

operators, based on the PostgreSQL nested loop join.

We compare DLS to a Hilbert R-Tree implementation also built on

top of PostgreSQL. We utilized the GiST access method, which we

modified to allow for the Hilbert R-Tree bulk loading method. The

Hilbert R-Tree is optimized so that it stops the search once the con-

taining element for a point query is found, eliminating unnecessary page

accesses.

Our experiments run on a 2-way P4 (3.6 GHz, 2MB L2) Xeon ma-

chine with 4GBs of memory and 2 320 SCSI-2 hard drives, running

Linux 2.6.
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rtree HRTree pages accesses.

btree B-Tree pages accesses (DLS).

elements The Elements page accesses.

nodes Accesses to Nodes and its index.

Table 6.5: PostgreSQL page access categories.rtree The time for an R-Tree lookup.

btree The time for a B-Tree lookup.

nodes Time for a lookup on the Nodes table.

elements Time for DLS proximity search and BFS.

others Containment predicate, direction computation.

Table 6.6: Running time breakdowns.

6.6.2 Datasets and Queries

We experiment with the real 3D mesh datasets shown in Table 6.4. The

gear, disk and cube meshes are used in crack propagation whereas the

quake meshes are used in earthquake simulations. Finally, the heart

dataset is a model of a human heart developed for use in biomedical

applications2.

Our query workloads consist of uniformly distributed point and range

queries. We vary the sizes of the range queries, so that the range size

is equal to 1%, 5% and 10% of the dataset size.

6.6.3 Performance Metrics

We report page accesses and query running times for the point and

range queries described in the previous sections. For page access counts,

we report the number of distinct database pages accessed per query,

broken down into the subcategories of Table 6.5. We measure running

times on a “cold” system, where no data or index pages are cached

in main memory at the beginning of each query. We use cold mea-

surements because they better capture the impact of I/O on query

2Made available by the Computational Visualization Center at the University of Texas, Austin

(http://ccvweb.csres.utexas.edu/cvc/).

166



performance. We break the running times into the components shown

in Table 6.6.

Performance improvements in terms of speedups of DLS over the

Hilbert R-Tree (HRTree) are computed by:

1 − Page accesses (DLS)/Page accesses (HRTree) and

1 − Running T ime(DLS)/Running T ime(HRTree).

Constructing the Hilbert index is essentially a standard sorting op-

eration that uses the comparison routine of Section 6.6.1. It is handled

by the DBMS and we therefore do not report its performance. Besides,

the Hilbert R-Tree which we compare against has exactly the same

performance. The connectivity information is computed and stored

during the mesh creation time and involves an additional pass over the

Elements table for computing the new element IDs after sorting the

elements according to the Hilbert order.

6.7 Experimental Results

In this section we experiment with DLS and compare its performance

against the Hilbert-packed Tree (HRTree).

6.7.1 Range Query Performance

Figures 6.13 (a)-(e) show the average number of page accesses for range

intersection queries of varying sizes, on 5 datasets. For each pair of

bars, the first corresponds to the HRTree (labeled rtree) and the second

to DLS (dls). As Figure 6.13 demonstrates, the R-Tree access is the

largest component in all the cases (up to 74% for circle 1%) except for
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Figure 6.13: Page accesses for range queries of varying sizes on our 5 datasets for the

Hilbert R-Tree and DLS.

the “large” 10% queries where it is comparable to the Elements table

accesses. For the 10% queries, the R-Tree is responsible for 32% (heart)

to 39% (circle) of the accesses.

DLS eliminates the R-Tree overhead by combining an efficient B-

Tree lookup and a localized proximity search instead of a costly R-Tree

traversal operation. The B-Tree lookup requires 4 page accesses for all

datasets (except for heart with only 3 levels). The proximity search

is highly efficient, requiring 0.5-2 additional page accesses on average

across all datasets. The overall effect is a reduction of up to 96 times

(quake 10%) in the number of page accesses required for indexing.

The improvement is larger for our more complex datasets (gear, cir-

cle, quake) as opposed to the more uniform ones (cube, heart), highlight-

ing the robustness of DLS with respect to the geometric complexity of

the dataset (the same trend appears in the results for point queries, Sec-
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Figure 6.14: Page Accesses per point query for the Hilbert R-Tree and DLS on our 5

datasets.

Figure 6.15: (a)-(b) query execution times for range queries on gear and circle. (c)

Query execution times for point queries.

tion 6.7.2). The cube and heart meshes contain more regular elements

(in terms of size/geometry), characteristics that help the performance

of the HRTree. The gear, circle and quake datasets are representative

of the real meshes used in applications: In practice only certain regions

of the domain are “refined” (modeled with large numbers of tiny ele-

ments), which leads to significant irregularities in the mesh structure.

The number of Elements pages accessed by DLS is comparable to

that of the HRTree, even for the 10% queries. Due to the effectiveness

of our compression technique, the additional connectivity information

does not deteriorate I/O performance. For all the “small” ranges (1%)

DLS accesses 1-3 fewer pages than the HRTree, corresponding to a
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reduction of up to 48%. This happens because the R-Tree accesses

leaf pages whose MBR intersects the query range, but do not contain

a result. The impact of this imprecision decreases for larger ranges,

as it is more likely that a leaf page will actually contain an element

intersecting the query range and is anyway needed by the query.

The overall performance improvement offered by DLS ranges from

28% to up to a significant factor of 4 (circle, 1%). The circle dataset

benefits from DLS the most, with improvements of 36% up to a factor

of 4.

Figure 6.15 (a), (b) shows the query execution times for the same

workloads on the gear and circle datasets. The query execution times

confirm the trend in the page access count results. DLS can improve

overall query execution performance by up to a factor of 4 for circle

10%.

6.7.2 Point Query Performance

Figure 6.14 shows the average number of page accesses for point queries.

The results are similar to the range query results. R-Tree accesses

correspond to 41% (cube) to 83% (circle) of the total page accesses.

As in Section 6.7.1, circle and gear, the most irregular datasets in this

study, have the highest number of R-Tree accesses.

DLS replaces the expensive R-Tree lookups with B-Tree page ac-

cesses that need only 4 page accesses (3 for the smaller heart). The

elimination of the R-Tree leads to overall improvements ranging from

19% up to a factor of 4.

The number of Elements pages accessed by the R-Tree and DLS

methods is very similar, 1.67-2.5 for the HRTree and 1.4-1.64 for DLS.

DLS accesses slightly fewer pages on average, as the R-Tree might have
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Figure 6.16: (a) Heart model with cross-sections. (b) Heart model with boundaries.

(c) Partitioned ground mesh

Figure 6.17: (a) Page accesses for retrieving the 10 cross-sections. (b) % Improvement

for retrieving boundaries. (c) Average accesses for range queries.

to access more elements simply because their MBRs intersect the query

point, without actually being part of the solution. The Hilbert cluster-

ing of Elements however helps in keeping those elements on the same

page.

Figure 6.15 (c) shows the query response times for point queries on

two datasets, gear and circle. The execution times confirm our page

count measurements and demonstrate that the reduction of R-Tree page

accesses by DLS can lead to significant savings in the overall query re-

sponse time. Similar to our page access results, gear and circle show

the largest running time improvements, 34% up to a factor of 2.5.
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6.7.3 Feature Clustering: Heart Model

In this section we show that feature-based clustering provides bet-

ter I/O performance compared to Hilbert curve clustering for feature

queries. We use two feature examples on the heart dataset.

Figure 6.16 (a) shows our first experiment, a situation where several

cross-sections of the heart model have been identified in advance and

are used for querying the model.

We use 10 such cross-sections, each represented by a “thin” range

query, with height equal to 1% of the dataset height, randomly spread

within the model. The elements intersected by each cross-section are

known in advance and our goal is to reduce the number of page accesses

required to retrieve them.

Figure 6.17 (a) compares the performance of Hilbert-order cluster-

ing to that obtained by using the ideas in Section 6.5.2 and the METIS

partitioning tool. Feature-based clustering reduces the number of pages

accessed per cross-section by 18%-31%, for an average improvement of

25%. More importantly, as Figure 6.17 (c) demonstrates, this perfor-

mance improvement comes at no cost for the average spatial range query

performance. In fact, the layout obtained through graph partitioning

improves range queries by 15%-19%.

For this particular scenario the Hilbert curve clustering could be

modified to favor accesses along horizontal cross-sections, by appropri-

ately “stretching” the Hilbert cells. This approach however does not

work for arbitrarily shaped features. As the next example illustrates,

feature-based clustering is a natural match for such datasets.

Figure 6.16(b) shows the heart model augmented with additional sur-

faces corresponding to various heart components (like the pulmonary

valve or the aorta). This information is provided by the model’s con-
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Figure 6.18: (a) % Reduction in the number of page accesses per partition for the

earthquake dataset. (b) Average page accesses for range queries

structor by assigning each node to either one of 22 different boundaries

or to the model’s interior. Using the node information we identify the

elements adjacent to each boundary and treat each boundary as a sep-

arate feature.

Figure 6.17 (b) compares the page accesses per surface for the Hilbert

and feature-based clustering. The improvements obtained by our lay-

out are 6% to 25% for an average of 16%. Again, like in the previous

example. there is no impact on the performance of the random range

query (Not shown).

6.7.4 Feature Clustering: Earthquake model

Figure 6.16 (c) shows a ground model mesh used in earthquake simula-

tions. The mesh is partitioned into 128 parts for parallel simulation on

128 computing nodes. Improving the performance of retrieving the in-

dividual mesh components is useful for applications that move the same

data between the storage subsystem and the computation nodes multi-

ple times, like for example large-scale I/O-bound visualization systems

[72] that read the same partitions for every time-step and distribute

them to rendering processors working in parallel.

Figure 6.18 (a) shows the reduction in the number of page accesses
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obtained by feature-based clustering over the Hilbert clustering for the

128 partitions. The improvements range from 15.2% to 57.5% with an

average improvement of 37.9%.

Figure 6.18 (b) shows the impact of the graph-based clustering on

the performance of random range queries of varying sizes. Contrary

to the previous examples, feature based clustering in this case hurts

random query performance. This happens because Hilbert clustering

has much better performance compared to graph based techniques for

this particular dataset, even when we use graph partitioning on the

initial dual graph without changing any edge weights (as the bar labeled

metis untuned of Figure 6.18 (b) demonstrates).

We believe that this happens because the mesh model we used is

small (150K elements) and regularly structured. It is derived by tri-

angulating an oct-tree mesh, thus the elements fit nicely into cubical

regions and the Hilbert curve does a better job at clustering them.

This example, besides highlighting the potential for improving Hilbert-

based clustering, motivates further research on the general properties

of graph-based partitioning, specifically on how it relates to different

dataset geometries.

6.8 Conclusion

This dissertation examines database support for efficient query execu-

tion on large tetrahedral mesh datasets. We present Directed Local

Search (DLS), a query processing technique for spatial queries that

takes advantage of the mesh connectivity and its efficiency is indepen-

dent of the complexity of the mesh geometry. We show that DLS can

be easily implemented in a database system without requiring the de-

velopment of new access methods. We also propose a new graph-based
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technique for clustering mesh elements to disk pages and demonstrate

that it has better performance than traditional clustering techniques

using space-filling curves when retrieving regions of arbitrary shapes.
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Chapter 7

Conclusion

“To find interesting events, physicists may apply range conditions on

a handful of attributes [...]. Efficiently answering these partial-range

queries is a serious challenge. The traditional indexing techniques,

such as B-trees and hashing, are inefficient for datasets with a large

number of searchable attributes. Even multidimensional indexing

techniques, such as R-trees, [...] a brute-force scan is more efficient

than these indexing schemes.”

The Office of Science Data-Management Challenge.

Report from the DOE Office of Science Data-Management Workshops

March-May 2004.

“Based upon the SDSS experience, if one has a careful processing plan

and a good [i.e, workload-based] database design, one can create a

small “summary” catalog, which will cover most of the scientific uses,

the rest of the data needs to be looked at much less frequently.”

Szalay et.al., “Petabyte-scale Data Mining: Dream or Reality?” [62]

The two quotes above are indicative of the challenges faced by scien-

tists when dealing with large volumes of complex datasets. The source
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of the first quote, the “Data Management Challenge” was published by

the D.O.E [66] and specifies a comprehensive agenda for scientific data

management research. The document also distinguishes between sim-

ulation and observation-driven applications. The distinction matches

the structure of this dissertation, that provides database support for

simulation applications that introduce new data organizations and also

for applications that directly match commercial, relational database

management systems.

7.1 Support for New Data Organizations

For simulation-driven applications, the challenge lies in supporting the

data mining and visualization tools used to process the simulation out-

put, that involves multidimensional data in the terabyte scale. The

example mentioned in the D.O.E document is the three-dimensional

hydrodynamics simulations performed by the DOE SciDAC TeraScale

Supernova Initiative, which produce data at the rate of 5TB/day. This

dissertation develops similar examples from earthquake simulation ap-

plications [4, 70, 68, 69] and general finite element analysis applications

[35, 37, 36].

The challenge shared by all applications is supporting multidimen-

sional queries on complex data, such as finite element meshes, with very

large data volumes. Existing database techniques, when applied to such

new data organizations, are often worse than the simple approach of

simply scanning the data. The reason is that existing multidimensional

indexing applications (such as the R-Tree) were originally developed

for CAD or geographic applications that have a simple structure and

admit approximations (such as Minimum Bounding Rectangles). When

applied to complex structures and geometries, “generic” multidimen-

sional indexing techniques do not provide adequate performance. It
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is therefore necessary to develop novel spatial indexing techniques for

complex scientific data.

There exist specialized, custom-developed data management solu-

tions [48, 71], that aim to account for the lack of general-purpose data

management techniques. Such techniques have limited portability, as

they are tightly integrated to the rest of the application they were de-

veloped for. Due to this lack of portability, there exist no comparative

performance studies and essentially no reuse of previously proposed so-

lutions and implementations. There is work in progress aiming to add

indexing support to scientific file formats such as HDF [64]. A prob-

lem with this approach is the lack of a general model for HDF data,

which would be used to guide the indexing. Furthermore, any such

indexing tool would have to be separately deployed and maintained, in

addition to other data management infrastructure (relational systems,

for instance). Finally, developing specialized indexing techniques will

eventually have to “duplicate” the mechanisms and implementation in-

tegrated in today’s highly optimized database engines.

We advocate the approach of integrating data into existing data man-

agement solutions. The idea is to reuse the core infrastructure provided

by existing database systems, such as: B-Tree indexing, join operators

and parallel data access, as building blocks for managing the complex

new data organizations introduced by scientific applications. An exam-

ple of this approach is the Hierarchical Triangular Mesh (HTM) [29],

used for spatial indexing in relational databases and the Finite Element

Analysis work in [35, 36, 37].

This Ph.D dissertation contributes Directed Local Search (DLS), a

multidimensional indexing technique for unstructured tetrahedral meshes,

a data organization typically used by a large class of scientific simulation

applications. DLS is novel in that it does not rely in geometry approx-
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imations, like existing multidimensional indexing techniques. Instead

of geometry it relies on mesh topology and on an efficient approximate

spatial search algorithm. The combination makes DLS insensitive to

the complex geometry of meshes and provides up to 4 times faster

performance (in our experiments with real-world meshes) compared to

optimized traditional database techniques. Furthermore, we extend the

idea of relying on mesh topology for query processing. We propose a

new technique for clustering mesh elements in disk pages that uses

graph partitioning algorithms and can outperform traditional multidi-

mensional clustering approaches based on space-filling curves by up to

38%.

DLS does not require the development of new, exotic data struc-

tures. The only data structure required is the B-Tree, optimized im-

plementations of which already exist in all database systems. For this

reason, DLS can be very easily integrated into existing, commercial

DBMS and enable them to efficiently handle mesh data. DLS avoids

the portability and compatibility problems faced by custom indexing

approaches: Using DLS, the same data management infrastructure (a

commercial DBMS) can be used to store both relational and complex

spatial data. DLS is in fact implemented in the data management sys-

tem implemented by the Cornell Fracture Group for managing FEA

data [35, 36, 37].

7.2 Automated Database Design for Large-Scale

Scientific Databases

Scientific applications dealing with observation data, such as astron-

omy, benefit most from existing commercial relational technology: Ap-

plications with relatively “flat” data such as catalogs of astronomical
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objects, can easily be hosted by commercial DBMS and take advantage

of the performance, streamlined deployment, extensibility and porta-

bility. The Sloan Digital Sky Survey (SDSS) is an example of a success-

ful large-scale application hosted by commercial DBMS, demonstrating

that DBMS technology can in principle scale to terabytes of data.

We focus on the performance of such large-scale relational deploy-

ments. Scientific query processing in relational systems naturally trans-

lates to SQL processing. SQL statements can be arbitrarily complex,

involving combinations (“joins”) of multiple tables, along with com-

plex predicates, sorting and aggregation computation. In addition,

databases such as SDSS that can be queried through the Web, need to

process several thousands of different SQL statements, each with dif-

ferent requirements. The challenge in relational deployments does not

involve new low-level indexing and query processing techniques, but

optimizing performance in the presence of large workloads of complex

SQL queries.

Improving the performance of SQL workloads is not unique to scien-

tific applications and therefore commercial systems already ship with

automated database design tools, that analyze input workloads and de-

termine appropriate database structures, such as tables, indexes and

materialized views [15, 2, 3, 73, 32]. Scientific applications impose two

broad requirements on database design tools. The first is solution qual-

ity. The resulting database design must significantly improve workload

performance. Ideally, workload performance will be as good as possible

(optimal) under limited resources (such as storage space). The second

requirement is scalability: Design tools should be able to process very

large workloads, consisting of thousands of SQL statements and at the

same time explore a large number of alternative designs, in order to

reach good quality solutions.
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The above requirements are particularly important for large-scale

scientific applications, because they typically involve large workloads

(coming from the Web, for instance) consisting of “expensive” state-

ments that require good database designs for acceptable performance.

Furthermore, resources are limited: Allocating 20TBs of storage to

indexes for a 10TB database is probably unacceptable for scientific de-

ployments with limited budgets. Our work on AutoPart (Chapter 5 of

this dissertation) is a good example of how workload-based database

design can improve both query performance and the consumption of

resources for scientific databases. AutoPart introduces table partition-

ing in database physical design: Partitioning is an interesting design

option, because it improves query I/O while requiring negligible addi-

tional storage. AutoPart performs automated partitioning, using the

query workload to guide the partitioning. We experimented with Au-

toPart and the SDSS database, using a real representative SQL work-

load. Our experiment demonstrated that adding the partitioning option

to database design improves query performance, while allowing for five

times faster update performance and reducing index storage by 50%.

This dissertation contributes a new framework for automated database

design that significantly improves the state of the art in terms of the

quality and running time requirements discussed above. Chapter 4

discusses the cost model used by automated design tool (the query

optimizer) and identifies the performance of the query optimizer as a

major bottleneck in the scalability of database design tools. Chapter

4 introduces the INdex Usage Model (INUM) a framework that allows

us to “cache” previous query optimizer output and reuse it to compute

new query estimates “on-the-fly” without further optimizer invocation.

INUM is based on the observation that although the index selection

algorithm evaluates a large number of candidate configurations, the

optimal plan for a given query does not necessarily change from one
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configuration to the next. INUM captures exactly the conditions that

cause the transition from one optimal plan to the other, when the selec-

tion of indexes changes. By eliminating the optimizer overhead, INUM

offers significantly improved scalability allowing candidate sets with

thousands of indexes and simpler enumeration algorithms.

Chapter 5 discusses the algorithmic approaches taken by database

design tools and starts with the observation that they use heuristic ap-

proaches, that do not provide optimal solutions or known bounds from

the optimal. Since the effect of the heuristics proposed in the literature

has not been formally analyzed, current approaches miss the opportu-

nity of selectively and aggressively applying approximations to improve

scalability, without a significant impact in solution quality. This disser-

tation develops a radically different approach to database physical de-

sign. We model design problems using an Integer Linear Programming

(ILP) formulation, that allows us to exploit existing, industry-strength

optimization engines to efficiently handle very large problem instances.

We also exploit the mathematical structure of the ILP formulation to

analyze application-specific heuristics. Unlike previous techniques, we

are able to prove bounds on the effect of our heuristics on solution

quality and through our analysis, apply them in an aggressive but still

controlled fashion. Using real database systems and workloads, we

demonstrate that our system improves the state-of-the-art in terms of

solution quality while being an order of magnitude faster.
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